ELEC-A4910 Sähköpaja (sivuaineopiskelijoille) (5 op) Vastuuopettaja: Keijo Nikoskinen; Kimmo Silvonen Opetusperiodi: I-II, III-V

Samankaltaiset tiedostot
Constructive Alignment in Specialisation Studies in Industrial Pharmacy in Finland

Additions, deletions and changes to courses for the academic year Mitä vanhoja kursseja uusi korvaa / kommentit

EI ole tarjolla JOOopiskelijoille. sisäisessä liikkuvuudessa MNT ELEC A3110 Mekaniikka 5 op

Pv Pvm Aika Kurssin koodi ja nimi Sali Tentti/Vk Viikko

Ohjelmien kehittämisstudiot varmistavat laadukkaat ja linjakkaat maisteriohjelmat Maire Syrjäkari ja Riikka Rissanen

Efficiency change over time

Kysymys 5 Compared to the workload, the number of credits awarded was (1 credits equals 27 working hours): (4)

Information on preparing Presentation

Master's Programme in Life Science Technologies (LifeTech) Prof. Juho Rousu Director of the Life Science Technologies programme 3.1.

Sähkötekniikan tutkintoohjelma. DI-tutkinto ja uranäkymät

Pv Pvm Aika Kurssin koodi ja nimi Sali Tentti/Vk Viikko

OP1. PreDP StudyPlan

ELEC-C5230 Digitaalisen signaalinkäsittelyn perusteet

Windows Phone. Module Descriptions. Opiframe Oy puh Espoo

Network to Get Work. Tehtäviä opiskelijoille Assignments for students.

Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine Centre for Language and Communication Studies

General studies: Art and theory studies and language studies

Information on Finnish Language Courses Spring Semester 2017 Jenni Laine

7. Product-line architectures

KORVAAVA / KORVATTAVA KURSSI, MUUT KOMMENTIT

Recommended background: Structural Engineering I and II

Osaamistavoitteet: Sisältö: Toteutus, työmuodot ja arvosteluperusteet: Oppimateriaali: Kurssin kotisivu: Esitiedot: Arvosteluasteikko Opetuskieli:

Capacity Utilization

Master s Programme in Building Technology Rakennustekniikka Byggteknik

Information on Finnish Courses Autumn Semester 2017 Jenni Laine & Päivi Paukku Centre for Language and Communication Studies

Network Management Systems, 3 ECTS, daytime course

TU-C2030 Operations Management Project. Introduction lecture November 2nd, 2016 Lotta Lundell, Rinna Toikka, Timo Seppälä

A new model of regional development work in habilitation of children - Good habilitation in functional networks

NBE-E4510 Special Assignment in Biophysics and Biomedical Engineering AND NBE-E4500 Special Assignment in Human. NBE-E4225 Cognitive Neuroscience

Other approaches to restrict multipliers

HITSAUKSEN TUOTTAVUUSRATKAISUT

Päivätty S-alkuisten kurssien tentit Pv Pvm Aika Kurssin koodi ja nimi Sali Tentti/Vk Viikko

Opetussuunnitelma : kurssien lisäykset, poistot ja muutokset (LPM)

Pvm Aika Kurssin koodi ja nimi Sali Tentti/Vk Viikko Ilm.aika 1.tenttijakso

7.4 Variability management

AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY VERKOTAN OY VERKOTAN LTD.

The CCR Model and Production Correspondence

Tietojenkäsittelytieteiden koulutusohjelma. Tietojenkäsittelytieteiden laitos Department of Information Processing Science

Students Experiences of Workplace Learning Marja Samppala, Med, doctoral student

Gap-filling methods for CH 4 data

Alternative DEA Models

Peliosaamisen koulutuskokonaisuus

KOMPETENSSIT. Koulutus Opiskelija Tuuttori. Business Information Technologies. NQF, Taso 6 - edellyttävä osaaminen

Faculty of Agriculture and Forestry. Forestry

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

Tuotantotalouden aineopinnot. Ville Tuomi

Flexbright Oy Embedded software/hardware engineer

Infrastruktuurin asemoituminen kansalliseen ja kansainväliseen kenttään Outi Ala-Honkola Tiedeasiantuntija

Siirtymä maisteriohjelmiin tekniikan korkeakoulujen välillä Transfer to MSc programmes between engineering schools

ISEB/ISTQB FOUNDATION CERTIFICATE IN SOFTWARE TESTING III

Jatko-opintovaihtoehdot/ Further studies

ECSEL - Electronic Components and Systems for European Leadership

Julkaisun laji Opinnäytetyö. Sivumäärä 43

Welcome to study! Master s Programme in Chemical, Biochemical and Materials Engineering. Chemistry major Kari Laasonen and Heli Järvelä

Research in Chemistry Education

AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY GRANT4COM OY

Teacher's Professional Role in the Finnish Education System Katriina Maaranen Ph.D. Faculty of Educational Sciences University of Helsinki, Finland

AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY

Poistuvat kurssit ja korvaavuudet (RRT ja YYT)

Study course code ects contents term other campus Community work methods

Tilanne sekä MS-A0003/4* Matriisilaskenta 5 op

KURSSIEN LISÄYKSET, POISTOT JA MUUTOKSET LUKUVUODEKSI

Läsnäolotiedot Syksy 2017 Kevät 2018 OPINTOJAKSO OP ARV PVM OPETTAJA

Lähellä kaupungissa. Web-based learning environment relating to urban and geography studies

AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY

TIEKE Verkottaja Service Tools for electronic data interchange utilizers. Heikki Laaksamo

Valuation of Asian Quanto- Basket Options

ECVETin soveltuvuus suomalaisiin tutkinnon perusteisiin. Case:Yrittäjyyskurssi matkailualan opiskelijoille englantilaisen opettajan toteuttamana

UUSIA TAPOJA OPPIMISEN ARVIOINTIIN

Sisällysluettelo Table of contents

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

NetPro projektin kokemuksia - Hajanaisia poimintoja kuuden vuoden Leonardo-projektin varrelta, ja vähän muualtakin

Kul Ship Project A. Course contents. Heikki Remes. Applied Mechanics Marine Technology

Toimisto (5) HUOM. Komiteoiden ja seurantaryhmien kokoonpanot on esitetty SESKOn komitealuettelossa

AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY

toukokuu 2011: Lukion kokeiden kehittämistyöryhmien suunnittelukokous

Camilla Wikström-Grotell, prefekt, prorektor DIAK to be Arcada s new neighbour A new sports hall is being planned

Hankkeen toiminnot työsuunnitelman laatiminen

LYTH-CONS CONSISTENCY TRANSMITTER

Aalto-yliopisto Kemian tekniikan korkeakoulu Kemian tekniikan lukujärjestys SYKSY 2012

Basic Flute Technique

2. Miten aaltomuodot luokitellaan? Millaisia aaltomuotoja etenee koaksiaalijohdossa, suorakulmaisessa aaltoputkessa ja mikroliuskajohdossa?

AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY

AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY

Digitalisaation ja IT:n johtamisen vaatimat kyvykkyydet ja osaamisen kehittäminen

Lausuntopyyntöluettelo HUOM. Komiteoiden ja seurantaryhmien kokoonpanot on esitetty SESKOn komitealuettelossa

SOVELLETUN MATEMATIIKAN JATKO-OPINTOKURSSI 5-7 op Advanced Topics in Applied Mathematics

UEF Statistics Teaching Bulletin, Fall 2017

Lyhyesti uusista DI-ohjelmista Isohenkilökoulutus to Opintoasianpäällikkö Mari Knuuttila

Konetekniikan koulutusohjelman opintojaksomuutokset

(Core) & (Test Manager). Sertifikaattikoe klo

Erasmus Charter for Higher Education Hakukierros kevät 2013 Anne Siltala, CIMO

FYSIIKKA. Perusopinnot

LAMK tekniikan ala Mekatroniikka (Konetekniikka) Teijo Lahtinen, Senior Lecturer, Mechatronics

Production Professionals and Developers for the Cultural Field DEGREE PROGRAMME IN CULTURAL MANAGEMENT

Missä mennään BI? Mikko Kontio

16. Allocation Models

Master s Thesis opinnäytetyön tuki Industrial Management Master s -ohjelmassa. TkT Marjatta Huhta, Metropolia

Stormwater filtration unit

Bioinformatics in Laboratory of Computer and Information Science

Transkriptio:

ELEC-A4010 Sähköpaja (8 op) Vastuuopettaja: Keijo Nikoskinen; Kimmo Silvonen Opetusperiodi: I-II, III-V Työmäärä toteutustavoittain: 28+28 (2+2), ryhmätyöprojektit Osaamistavoitteet: Kurssin suoritettuaan opiskelija on tutustunut sähkötekniikan mittauksiin ja nykyaikaisen elektroniikan perusteisiin sekä saanut kokemusta projektityöskentelystä. Sisältö: Sähkötekniikan mittausten ja elektroniikan komponenttien perusteet. Elektroniikkapiirien, liitäntöjen, tietoverkkojen ja ohjelmistojen yhteispeli. Toteutus, työmuodot ja arvosteluperusteet: Luennot, laboratoriotyöt, dokumentoidut vapaamuotoiset projektityöt. Oppimateriaali: Ilmoitetaan kurssin alkaessa. Arvosteluasteikko: 1-5 Opintojaksot Opetuskieli: Suomi pääosin. Pyydettäessä suoritettavissa englanniksi. ELEC-A4130 Sähkö ja magnetismi (5 op) Vastuuopettaja: Jari Hänninen; Henrik Wallén; Ari Sihvola Opetusperiodi: IV - V Työmäärä toteutustavoittain: Kontaktiopetus: 72 h Itsenäinen opiskelu: 60 h (n. 5 h viikossa kurssin ajan) Osaamistavoitteet: Opiskelija ymmärtää käsitteet sähkökenttä ja magneettikenttä sekä tietää, mitkä ilmiöt aikaansaavat em. kenttiä, tunnistaa sähkömagnetiikan perusilmiöt ja miten ne ovat yhteydessä toisiinsa. Osaa sähkömagneettisia ilmiöitä kuvaavan matemaattisen formalismin perusteet ja osaa ratkaista matemaattisten työkalujen avulla yksinkertaisia sähkömagneettisia perusongelmia sekä ymmärtää, miten perussuureiden aikariippuvuus johtaa sähkömagneettisiin aaltoihin. Osaa soveltaa kurssin asioita tulevissa opinnoissa ja kurssin asioiden pohjalta osaa ottaa selville työelämässä tarvittavia tietoja ja taitoja. Sisältö: Sähkömagneettiset perusilmiöt staattisessa ja dynaamisessa tilanteessa; optiikan perusteet; vektoridifferentiaali- ja vektori-integraalilaskennan alkeet. Toteutus, työmuodot ja arvosteluperusteet: Kurssilla on viikoittain esitehtävät, luennot (4 h) ja laskuharjoitukset (2 h). Esitehtävät palautetaan verkon kautta. Harjoitustehtävistä saa pisteitä näyttämällä ratkaisut assistentille harjoituksissa. Kurssilla on kaksi välikoetta ja yksi välikoeuusinta. Kurssin arviointiin vaikuttavat esitehtävät, laskuharjoitukset ja välikokeet. Oppimateriaali: Ydinmateriaali Young & Freedman: University Physics with Modern Physics, 13. painos, luvut 21-25, 27-30, 31(6) ja 32-36 tai Wolfson, R.: Essential University Physics, 2. painos, luvut 20-27 ja 29-32. Luentoaineisto (ei sovellu yksinään itseopiskelumateriaaliksi). Täydentävä materiaali Upadhyaya, J.C.: University physics-i, Part II ( http://site.ebrary.com/lib/aalto/ docdetail.action?docid=10416309) Kurssin kotisivu: https://noppa.aalto.fi/noppa/kurssi/elec-a4130/ Esitiedot: MS-A0204 Differentiaali- ja integraalilaskenta 2 tai vastaavat tiedot. Arvosteluasteikko: 0-5 Opetuskieli: Suomi ELEC-A4910 Sähköpaja (sivuaineopiskelijoille) (5 op) Vastuuopettaja: Keijo Nikoskinen; Kimmo Silvonen Opetusperiodi: I-II, III-V 1

Työmäärä toteutustavoittain: 8+28 (2+2), pienemmät ryhmätyöprojektit Osaamistavoitteet: Kurssin suoritettuaan opiskelija on tutustunut sähkötekniikan mittauksiin ja nykyaikaisen elektroniikan perusteisiin sekä saanut kokemusta projektityöskentelystä. Sisältö: Sähkötekniikan mittausten ja elektroniikan komponenttien perusteet. Elektroniikkapiirien, liitäntöjen, tietoverkkojen ja ohjelmistojen yhteispeli. Toteutus, työmuodot ja arvosteluperusteet: Luennot, laboratoriotyöt, dokumentoidut projektityöt. Oppimateriaali: Ilmoitetaan kurssin alkaessa. Arvosteluasteikko: 1-5 Opintojaksot Opetuskieli: Suomi pääosin. Pyydettäessä suoritettavissa englanniksi. ELEC-A4920 Sähkötekniikan historia ja innovaatiot L (3 op) Vastuuopettaja: Jari Hänninen; Ari Sihvola Opetusperiodi: III - IV Työmäärä toteutustavoittain: 24+0 (2+0) Luento-opetus 24 tuntia (2 tuntia viikossa) Itsenäinen työskentely 56 h Osaamistavoitteet: Kurssin jälkeen opiskelija osaa nähdä sähkötekniikan pitkän ajan kuluessa syntyneenä inhimillisenä järjestelmänä ja toimintana hahmottaa sähkön ja magnetismin ymmärtämisen historian erillisistä luonnonilmiöistä sähkömagneettiseksi kokonaisuudeksi sijoittaa sähkötekniikan historian osaksi muuta tieteenhistoriaa yhdistää ajallisesti sähkötekniikan historian merkittävät tapahtumat poliittisen, talous- ja sosiaalihistorian käännekohtiin. Sisältö: Sähkötekniikan perustana olevan ajatusrakenteen ja sen soveltamisen kehitys. Sähkön ja magnetismin varhaiskehitys, galvanismi, sähkömagnetismi, induktio, sähkömagneettiset aallot. Sovelluksia: tiedonsiirto, energiansiirto, valaistus, elektroniikka. Toteutus, työmuodot ja arvosteluperusteet: Pohdintatehtävät ja luentoihin perustuvat oppimispäiväkirjat. Hyväksyttyä arvosanaa varten opiskelijan on osoitettava, että hänellä on jonkinlainen kokonaiskäsitys sähkötekniikan historian merkittävistä tapahtumista ja kokonaisuudesta ja että hän osaa analysoida ja pohtia sähkön, magnetismin ja sähkötekniikan merkitystä historiassa ja nykypäivässä. Oppimateriaali: Lindell: Sähkön pitkä historia (Otatieto). Korvaavuudet: S-96.1020, S-96.020 Kurssin kotisivu: https://noppa.aalto.fi/noppa/kurssi/elec-a4920/ Arvosteluasteikko: Hyväksytty/hylätty Opetuskieli: Suomi ELEC-A4930 Astronomical View of the World (3 cr) Responsible teacher: Joni Tammi; Anne Lähteenmäki Status of the Course: Aalto course. Level of the Course: Suitable for all students in Aalto. Teaching period: III-IV Workload: Lectures (30 h), assignments (32 h), and the learning diary (20 h). After the course the student can describe the physical background behind the basic celestial phenomena and knows how to take the movement of the Sun and the stars into account in engineering, design and architectural projects. The student recognises the astronomical nature of various historical and architecturally and otherwise significant constructions, ranging from the Stonehenge to sundials and modern 2

observatories. She is able describe the basics of the current scientific worldview and understands how it has been built over the millennia, and has basic knowledge of the interplay between astronomy and arts, as well as the influence on society and culture in general. Content: Basic astronomical concepts; influence of astronomy and space sciences to history, civil engineering, architecture and art, and to science and culture in general. For further studies the course "S-92.3146 Radio Astronomy" is recommended. Assessment Methods and Criteria: The course consists of lectures, preliminary assignments for each lecture, writing learning diary after each lecture, excursion. Grading is based on participation on lectures and the learning diary. Study Material: Online material provided by during the course Course Homepage: https://wiki.aalto.fi/display/avotw Registration for Courses: Weboodi ELEC-C4110 Piirianalyysi I (5 op) Vastuuopettaja: Keijo Nikoskinen; Anu Lehtovuori Opetusperiodi: I-II Työmäärä toteutustavoittain: 24+24 (2+2) Itsenäinen työskentely 48 (4) Osaamistavoitteet: Kurssin jälkeen opiskelija osaa ratkaista pienehköjen tasa- ja vaihtovirtapiirien toiminnan tarkoituksenmukaisesti valitulla analyysimenetelmällä ja osaa laskea kompleksiluvuilla. Opiskelija ymmärtää mm. kompleksisen tehon ja suodatuksen käsitteet ja voi syventää tietämystään tulevilla kursseilla. Sisältö: Piirien peruskomponentit: resistanssi, kapasitanssi, induktanssi, riippumattomat ja ohjatut lähteet, operaatiovahvistin ja muuntaja. Tasa- ja vaihtovirtapiirien analyysimenetelmät: piirimuunnokset, silmukka- ja solmumenetelmä, kerrostamismenetelmä sekä Theveninin ja Nortonin menetelmä. Perussuodattimet ja resonanssi. Tehosovitus ja loistehokompensointi. Symmetristen kolmivaihejärjestelmien analysointi. Toteutus, työmuodot ja arvosteluperusteet: Ilmoitetaan kurssin alkaessa. Oppimateriaali: M. Valtonen ja A. Lehtovuori: Piirianalyysi, osa 1: Tasa- ja vaihtovirtapiirien analyysi, 2011. ISBN: 978-952-92-8720-8 Korvaavuudet: S-55.1210, S-55.141 Arvosteluasteikko: 1-5 Opintojaksot Opetuskieli: Suomi pääosin. Pyydettäessä suoritettavissa englanniksi. ELEC-C4120 Piirianalyysi II (5 op) Vastuuopettaja: Keijo Nikoskinen; Anu Lehtovuori Opetusperiodi: III-IV Työmäärä toteutustavoittain: 24+24 (2+2) Itsenäinen työskentely 48 (4) Osaamistavoitteet: Kurssin jälkeen opiskelija osaa analysoida piirien muutosilmiöitä Laplace-muunnoksen avulla ja tuntee systeemifunktioihin liittyviä käsitteitä. Opiskelija kykenee analysoimaan siirtojohtopiirien toimintaa niin aika- kuin taajuusalueessakin ja myös Smithin kartan avulla. Sisältö: Muutosilmiöanalyysi ja Laplace-muunnos. Harmoninen analyysi. Syöttöpisteja siirtofunktiot, stabiilisuus. Taajuusvaste ja Boden diagrammi. Kaksiporttien z-, y- ja ketjuparametrit. Siirtojohdot aika-ja taajuusalueessa. Smithin kartta. Esimerkkejä piirien epälineaarisuudesta ja epäideaalisuuksista. Toteutus, työmuodot ja arvosteluperusteet: Ilmoitetaan kurssin alkaessa. Oppimateriaali: Ilmoitetaan kurssin alkaessa. 3

Korvaavuudet: S-55.1220, S-55.142 Esitiedot: ELEC-C4110 tai S-55.1210 Arvosteluasteikko: 1-5 Opintojaksot Opetuskieli: Suomi pääosin. Pyydettäessä suoritettavissa englanniksi. ELEC-C4140 Kenttäteoria (5 op) Vastuuopettaja: Jari Hänninen; Henrik Wallén; Ari Sihvola Kurssin taso: Kandidaattiopinnot Opetusperiodi: I - II Työmäärä toteutustavoittain: Kontaktiopetus: 72 h Itsenäinen opiskelu: 60 h (n. 5 h viikossa kurssin ajan) Osaamistavoitteet: Sähkömagneettiset peruskäsitteet ja -ilmiöt tulevat tutuiksi jo Sähkö- ja magnetismi -kurssilla. Kenttäteoria -kurssilla opiskelija syventää aiemmin hankittua osaamistaan ja oppii käyttämään uusia matemaattisia työkaluja. Kurssin jälkeen opiskelija tuntee sähkö- ja magneettikenttäsuureet, lähdesuureet ja väliaineparametrit sekä ymmärtää näiden väliset yhteydet. Opiskelija osaa myös laskea lähteiden kenttiä ja sähköisiä piirisuureita perusgeometrioissa sekä määrittää sähkömagneettisia voimia, energioita ja tehotiheyksiä. Kurssilla opiskelija oppii ratkaisemaan induktiotehtäviä ja oppii kuvaamaan tasoaallot kompleksivektoreilla sekä soveltamaan tätä kuvausta heijastusja läpäisytehtävissä erilaisissa polarisaatiotilanteissa. Opiskelija ymmärtää, kuinka tasoaalto esittää valonsäteitä ja radioaaltoja. Opiskelija omaksuu ohjattujen aaltojen ja sähkömagneettisen säteilyn peruskäsitteet ja osaa laskea aaltoputkia ja antenneja kuvaavia parametreja sekä ratkaista yksinkertaisia radioyhteystehtäviä. Sisältö: Sähkömagneettinen kenttäteoria Maxwellin yhtälöiden differentiaaliesityksen avulla: sähköstatiikka, magnetostatiikka, Faradayn induktiolaki, jatkuvuusehdot, tasoaallot, aaltojen heijastuminen ja läpäisy, aaltojohdot, antennit ja sähkömagneettinen säteily. Tarvittavien matemaattisten työkalujen esittely. Toteutus, työmuodot ja arvosteluperusteet: Kurssilla on viikoittain esitehtävät, luennot (4 h) ja laskuharjoitukset (2 h). Esitehtävät palautetaan verkon kautta. Harjoitustehtävistä saa pisteitä näyttämällä ratkaisut assistentille harjoituksissa. Kurssilla on kaksi välikoetta ja yksi välikoeuusinta. Kurssin arviointiin vaikuttavat esitehtävät, laskuharjoitukset ja välikokeet. Oppimateriaali: Ulaby, Michielssen & Ravaioli: Fundamentals of Applied Electromagnetics, 6. laitos, Pearson 2010/2014 Kurssin kotisivu: https://noppa.aalto.fi/noppa/kurssi/elec-c4140/ Esitiedot: ELEC-A4130 Sähkö ja magnetismi ja ELEC-C4120 Piirianalyysi II tai näitä vastaavat tiedot. Arvosteluasteikko: 0-5 Opetuskieli: Suomi ELEC-C4210 Sähkötekniikka ja elektroniikka (5 op) Vastuuopettaja: Ville Viikari; Kimmo Silvonen Opetusperiodi: I-II Työmäärä toteutustavoittain: 28+28+12 (2+2+1), itsenäinen työskentely vähintään 2h viikossa Osaamistavoitteet: Kurssin suoritettuaan opiskelija on tutustunut sähkön perusteisiin. Sisältö: Sähkötekniikan komponentit ja laskumenetelmät sekä niiden suhde sähköfysiikkaan, puolijohdekomponentit ja elektroniikan perusteet, simulointi. Toteutus, työmuodot ja arvosteluperusteet: Tentti tai välikokeet. Lisäksi 4 pakollista laboratoriotyötä (4*3h). Oppimateriaali: Silvonen: Sähkötekniikka ja piiriteoria, Otatieto 2009 (tärkeä), Elektroniikka ja puolijohdekomponentit, Otatieto 2009 (suositeltava). 4

Korvaavuudet: S-55.1100 Arvosteluasteikko: 1-5 Opintojaksot Opetuskieli: Suomi pääosin. Pyydettäessä suoritettavissa englanniksi. ELEC-D4110 Radio Science for Space and Environmental Applications (2 cr) Responsible teacher: Anne Lähteenmäki; Jaan Praks Teaching period: I Workload: Lectures: 14 h (1x2 h /week) Independent work: preparation of seminar talk 20 h, preparation for lectures 20 h. The course gives general understanding about radio science applications in space technology and remote sensing and presents current developments in this field. This course helps student in main and minor subject selection. Content: The course gives an overview on space environment, current trends in space technology, and remote sensing instruments and applications. The following application topics will be covered: environmental disaster assessment from space, climate change monitoring, interplanetary exploration, deep space missions, cosmology and radio astronomy and space research in Finland. During the course several visiting top lecturers from various space research and remote sensing institutes give general lectures about their topic. Assessment Methods and Criteria: Compulsory lectures, homework exercises and seminar presentation. No examination. Study Material: Lecture handouts and other material. Substitutes for Courses: S-92.2110 Radio Science for Space and Environmental Applications Evaluation: pass/fail Language of Instruction: Primarily English. The assessed work may be completed in Finnish or Swedish upon request. Further Information: Suitable for everybody interested in space technology. ELEC-E4110 Introduction to nano and radio sciences (5 cr) Responsible teacher: Jari Holopainen; Teppo Huhtio Teaching period: I - II (Autumn) Workload: Contact hours 42 h (1 x 3 h/week, 14 weeks + possible other sessions 14 h). Independent work 79 h. After successful completion of the course the student is able to outline the structure of the Master s programme and he/she is able to plan his/her studies in order to complete the studies within two years. The student is aware of the most typical teaching and assessment methods that are applied in Aalto University School of Electrical engineering. The student is able to perform in the used learning environments. The student knows the research groups of the two departments, and is able to discuss the research of the nano and radio sciences. The student has an ability to collect relevant information from scientific publications and other sources, and he/she is able to critically evaluate the applicability and validity of the found information. He/she is able to effectively cooperate with the other students and also work individually towards the joint goal. The student s scientific writing, presentation, group work, and evaluation skills have been strengthened. 5

Content: Study planning and curriculum. Tutoring. Visits to the departments involved in the Master's programme and possible excursion to the industry. Research topics of the departments. Group work and its presentation in a seminar. Assessment Methods and Criteria: The successful completion of the course requires active participation in the contact sessions. The assessment criteria are to be specified in the beginning of the course. Evaluation: pass/fail ELEC-E4130 Electromagnetic fields (5 cr) Responsible teacher: Ari Sihvola; Konstantin Simovski Teaching period: I - II (Autumn) Workload: Contact hours 72 h (6 h/week, 12 weeks). Independent work 60 h. The course raises and reinforces the already implied basic knowledge of master students in field and wave electrodynamics from electrostatics to resonators and dipole antennas. After passing this course the students are ready to learn antennas (IV-V) and other radio components and techniques of microwave engineering course (IV-V) and linear light-matter interaction in metamaterials (2d year, I-II) Content: Basic concepts of electromagnetic fields, carriers and sources, including Maxwell and supporting equations (continuity, material etc.) in their links to basic physic laws, circuitry and impedance models as quasi-static limit cases, wave equations and their solutions, radiation, properties and parameters of electromagnetic waves in media, refraction, reflection, transmission, guided waves, transmission lines, confined waveguides, closed resonators, open waveguides and resonators. Assessment Methods and Criteria: Preliminary tasks, homework, in-class exercises with course assistants, final exam. Study Material: D.K. Cheng, Field and Wave Electromagnetics Substitutes for Courses: S-26.2900 Elements of electromagnetic field theory and guided waves Prerequisites: Basic knowledge of mathematics, circuit theory, electromagnetics, fundamentals of electromagnetic radiation Evaluation: 0-5 ELEC-E4210 Introduction to space (5 cr) Responsible teacher: Anne Lähteenmäki; Jaan Praks Teaching period: III-IV (spring 2016) Workload: Contact hours: 48h (2x2h / week) Independent work: 87h After the course the student has the basic knowledge of astronomy, space physics and space technology that are needed for further studies. The student knows the structure and central physical properties of the universe and the solar system, and the objects contained in them. She/he identifies the basic concepts and tools of astronomy and space physics, and is able to solve simple problems related to them. The student can list what kind of observations can be made of astronomical and solar system phenomena, and what is the motivation behind such efforts. She/he can compute simple orbits of satellites using celestial and orbital mechanics, and can apply various celestial coordinate systems. The student recognises the basic vocabulary used in space science and technology, and how Aalto University is situated in the national and international space research scenes. 6

Content: Basics of astronomy and space physics. Building blocks and central properties of the universe and the solar system. Emission mechanisms Coordinate systems. Celestial mechanics & orbits. Observations of astronomical and solar system phenomena. Space technology and missions. Space science and technology research and education at Aalto University. Assessment Methods and Criteria: Exercises, learning assignments, examinations. Study Material: To be specified. Prerequisites: Basic knowledge of mathematics and physics. ELEC-E4220 Space instrumentation L (5 cr) Responsible teacher: Anne Lähteenmäki; Esa Kallio Teaching period: I-II (First time autumn 2016) Workload: Contact hours: 48h, 2x2h / week Independent work: 87h After this course the student knows why and how information about astronomical and solar system phenomena is collected. She/he can describe the physical principles on which the scientific instruments onboard satellites and probes are based. The student is able to differentiate between various types of instruments and observing techniques and what they are used for, and evaluate which kind of systems are suitable for measuring certain astronomical and solar system phenomena. She/he identifies what kinds of effects space environment has on instrumentation and observations. The student is able to review the state-of-the-art space instrumentation and its immediate possibilities and challenges. She/he can explain the life cycle of a space mission from a researcher's point of view (from long-term planning, such as ESA's Cosmic Vision, to implementation and operation of a space mission, all the way to analysis of the scientific data), and give examples of scientific space missions. Content: Observational techniques in astronomy and space physics. Scientific payloads of satellites and probes. Effect of space environment on instrumentation. Life cycle of a space mission: researcher's view. Examples of science missions. Assessment Methods and Criteria: Exercises, learning assignments, examinations. Study Material: To be specified ELEC-E4230 Microwave Earth observation instrumentation L (5 cr) Responsible teacher: Jaan Praks; Miina Rautiainen Teaching period: I-II (First time autumn 2016) Workload: Contact teaching 44 h (2 h lectures and 2 h workshop weekly, 11 weeks). Independent work: laboratory work 30 h, exercises 50 h, preparation to lectures 11 h. 7

After the course the student is ready to work with microwave remote sensing data in a research project. He/she can classify microwave instruments used in remote sensing, explain their functioning principles, sketch the structure, and calculate key performance parameters. The student understands the physics of microwave interaction with natural medium and can interpret target properties based on measured microwave signatures. He/she can distinguish between electrical properties of snow, water and soil. The student can make a basic interpretation of typical features in microwave radar and radiometer images. Content: Microwave interaction with nature. Dielectric properties of natural media. Blackbody radiation, emission, scattering, absorption, backscattering. Radiative transfer, radar equation. Microwave radiometer and radar; components, structure and performance parameters. Synthetic aperture radar, interferometric radiometer, image formation. Interferometry, polarimetry, polarimetric interferometry. Image interpretation and applications. Missions and sensors. Assessment Methods and Criteria: Laboratory work, workshop, homework exercises and examination. Substitutes for Courses: S-92.3132 Remote Sensing Prerequisites: E4210 Introduction to space Electromagnetics, engineering mathematics, radio engineering basics. ELEC-E4240 Satellite systems L (5 cr) Responsible teacher: Jaan Praks; Esa Kallio Teaching period: IV-V (spring 2016) Workload: Contact teaching 44 h (2 h lectures and 2 h workshop weekly, 11 weeks). Independent work: laboratory work 30 h, exercises 50 h, preparation to lectures 11 h. After the course the student can comfortably work in an entry level space project. He/she knows basic terminology, can assess the suitability of a subsystem for a given mission and estimate key parameters of a mission. He/she can use systems engineering tools such as power budget and link budget. The student is also aware of quality assurance in space projects and is able to design basic tests for subsystems. Content: Space environment. Technical challenges in space. Electronics in space. Mission design. Requirement formulation. Spacecraft subsystems; communication, power, data handling, attitude, propulsion, structure, payloads. Systems engineering practices. Spacecraft budgets, including mass, power, link and data budgets. 8

Propulsion and launch. Orbit control and orbital maneuvers. Spacecraft stabilization and attitude. Quality assurance in space projects.testing and qualification. Model philosophy. Space project documentation and management practices. CubeSat. Lean space technology. Trends and developments. Assessment Methods and Criteria: Laboratory work, workshop, homework exercises and examination. Study Material: Peter Fortescue, John Stark, Graham Swiner: Spacecraft Systems Engineering Handouts. Substitutes for Courses: S-92.3114 Spaceflight Instrumentation ELEC-E4410 Electromagnetic and circuit simulations (5 cr) Responsible teacher: Keijo Nikoskinen; Henrik Wallén Teaching period: III (spring) Workload: Contact hours 48 h (2 x 4 h/week, 6 weeks). Independent work 85 h. The student will recall the basic circuit analysis methods DC, AC, transient, and harmonic and two popular computational methods for electromagnetic fields FEM and FDTD. The student will learn the strengths and weaknesses of the methods, and learn to select the appropriate method for a given situation. The student will comprehend what information each method is able to provide and what it does not. The student will identify different sources of error and recognise what characteristics or features of the user input, the computational method and the discretization contribute to the result. Thus the student will be able to qualitatively estimate whether the simulation result is credible or not and whether it is usable in terms of accuracy. At the end of this course the student will know how to use the professional simulation software used in the course. Content: Basics of electromagnetic field and circuit simulation using professional software, underlying theory and a lot of hands-on exercises, strengths and weaknesses of different analysis/simulation methods. Assessment Methods and Criteria: Written and simulation assignments both in class and at home. Prerequisites: ELEC-E4130 Electromagnetic fields and ELEC-E3210 Analysis and design of electronic circuits or similar basic knowledge of electromagnetics and circuits. ELEC-E4420 Microwave engineering I (5 cr) Responsible teacher: Katsuyuki Haneda; Jari Holopainen Teaching period: III-IV (spring) Workload: Contact hours 40 h (2 x 2 h/week, 10 weeks). Independent work 95 h. After successful completion of the course the student is able to explain the basic theories, models and design methods applied in microwave engineering starting from the fundamental theories of electrical engineering (see the course content). Based on the theories, models and design methods the student is able explain the operational principles of basic microwave components, circuits, and systems. He/she can also calculate the relevant microwave circuit and system parameters analytically and with computer simulations. 9

The student can explain the radiowave propagation, as well as the biologican effects and safety issues of radio frequency radiation. He/she is able to calculate basic characteristics of radio links based on propagation models. He/she can explain the usage of radio frequency spectrum and typical microwave applications. Content: Transmission line theory and common transmission lines. Smith chart and impedance matching. Microwave network analysis. Resonator theory. Mixing phenomenon. Radio receiver architectures. Noise characterization of a receiver. Radio wave propagation. Biological effects and radiation safety. Assessment Methods and Criteria: Preliminary tasks, return exercises (analytical and computer simulation), clicker tests, final exam. The successful completion of the course requires active participation in the contact sessions. The assessment criteria are to be specified in the beginning of the course. Study Material: D. Pozar: Microwave Engineering or other microwave engineering basic book (e.g. A. Räisänen - A. Lehto: Radio Engineering for Wireless Communication and Sensor Applications) Substitutes for Courses: S-26.2110 Fundamentals of Radio Engineering Prerequisites: Basic knowledge of engineering mathematics, circuit theory, electronics, electromagnetics, fundamentals of electromagnetic radiation, mathematical softwares, circuit and EM simulator softwares. ELEC-E4430 Microwave engineering II (5 cr) Responsible teacher: Clemens Icheln; Ville Viikari Teaching period: IV - V (Spring) Workload: Contact hours 40 h (2 x 2 h/week, 10 weeks). Independent work 95 h. The student can outline the basic operation of parts/components in RF circuits, design generic RF components for a given desired performance, analyse the practical factors that affect the design and the final performance of an RF circuit component. Content: Design of passive and active components (filters, couplers, resonators, microstrip-line transitions, amplifiers, mixers, oscillators, detectors). Several component design assignments that can facilitate the design of a small radio system. Assessment Methods and Criteria: in-class quizzes, homework exercises, reporting group project results in a seminar, final exam. Study Material: D.M. Pozar: Microwave Engineering (3rd or 4th edition) Substitutes for Courses: S-26.3100 RF and Microwave Engineering Prerequisites: Use of CAD tools (e.g. AWR), matching circuit design, S-parameters, use of Smith chart ELEC-E4440 Microwave engineering workshop (5 cr) Responsible teacher: Clemens Icheln; Juha Mallat Teaching period: I - III (Autumn-winter 2016-17) Workload: Contact hours 24 h (2 h/week, 12 weeks). Independent work 111 h. The student can outline the basic operation of generic RF electronic circuits, design generic RF electronic circuits for given desired functionality, analyse the basic factors that affect the performance of an RF circuit, test experimentally the performance of a given or an own circuit design, solve design problems 10

collaboratively in small groups within a given time, and present and defend own project results in a concise and comprehensible manner (both orally and written). Finally he/she understands principles and masters practices of common RF measurements. Content: System-level design and evaluation of RF devices, also considering noise and non-linearity. I.e. design of active RF circuits such as a low-noise amplifier and a radio transceiver, and experimental evaluation of a prototype, including output spectrum measurements and VNA measurements of scattering-parameters. Independent information acquisition, group work, and oral presentation of project results. Assessment Methods and Criteria: in-class quizzes, learning diaries, reporting project results in a seminar, final exam. Substitutes for Courses: S-26.3120 Radio Engineering, laboratory course Prerequisites: basic VNA/SA measurements, understanding of active RF components (diode-/transistor- biasing, stability, matching), microstrip-line design of passive components (filters, couplers etc) ELEC-E4450 Antennas (5 cr) Responsible teacher: Keijo Nikoskinen; Jari Holopainen Teaching period: IV-V (spring) Workload: Contact hours 56 h (2 x 2 h/week, 14 weeks). Independent work 79 h. After successful completion of the course the student is able to solve electromagnetic fields and basic antenna parameters for simple microwave radiators, starting from the Maxwell's equations. The student is able to explain fundamental antenna concepts and parameters (see content of the course). The student can calculate the fundamental antenna concepts and parameters analytically and with computer simulations. The student can analyse the effect of the antenna on the performance of radio communication systems. The student can explain the operation principles of most common antenna types, such as wire antennas, array antennas, and aperture and reflector antennas. He/she can calculate the performance parameters of the most common antenna types analytically and with computer simulations. The student has a readiness for performing basic antenna measurements such as the antenna impedance and radiation pattern measurements. The student can analyse the measurement results and estimate the error sources. Content: Fundamentals of electromagnetic radiation. Antenna fundamentals and parameters such as field regions, radiation pattern and related parameters, antenna impedance, polarization, and receiving properties. Antenna as part of a communication systems. The most common antenna types: wire antennas, array antennas, aperture and reflector antennas. Basic antenna measurements such as impedance and radiation pattern measurements. Assessment Methods and Criteria: Preliminary tasks, return exercises (analytical and computer simulation), clicker tests, final exam. The successful completion of the course requires active participation in the contact sessions. The assessment criteria are to be specified in the beginning of the course. Study Material: Stutzman-Thiele: Antenna Theory and Design or other basic antenna book. Substitutes for Courses: S-96.3415 Antennas - Theory Prerequisites: Basic knowledge of engineering mathematics, circuit theory, electronics, electromagnetics, microwave engineering, mathematical softwares, circuit and EM simulator softwares. 11

ELEC-E4510 Earth observation L (5 cr) Responsible teacher: Jaan Praks; Miina Rautiainen Teaching period: III-IV (spring 2016) Workload: Contact teaching: 20 h (lectures) and 10 h (workshop). Group work: 50 h. Independent work: exercises (20 h), preparation for lectures (10 h), study for examination (25 h). Content: After the course the student is familiar with the physical basics of optical remote sensing and the common methods used to interpret optical remote sensing datasets. The student understands the relationship between target properties and measured reflectance signals. He/she is able to identify the most appropriate type of remote sensing data for a given application. The student is familiar with current and upcoming Earth Observation missions. Physical basics of optical remote sensing. Methods to interpret and manipulate Earth observation data. Applications of Earth observation data in environmental monitoring. Current and upcoming Earth observation missions. Assessment Methods and Criteria: Exercises, learning assignments, examinations. Study Material: Handouts, selected scientific articles/chapters. ELEC-E4520 Space physics L (5 cr) Responsible teacher: Anne Lähteenmäki; Esa Kallio Teaching period: IV-V (spring 2016) Workload: Contact hours: 48h (2x2h / week) Independent work: 87h Content: After this course the student is aware of basics of space weather. The student understands how the Sun drives space weather. The student recognises the effects of space weather on Earth and other solar system objects. The student is able to explain how the properties of an object in our solar system influence its space weather. The student can describe how space weather can be studied with measurements and simulations. Basics of space plasma physics. Basic properties of solar system objects. Magnetosphere and ionosphere physics. Space weather, auroras. Space plasma, electric and magnetic fields. Space-borne and ground-based instrumentation. Space probes for space weather research. Space plasma simulations. 12

Assessment Methods and Criteria: Exercises, learning assignments, examinations. Prerequisites: E4210 Introduction to space Good knowledge of mathematics and physics. ELEC-E4530 Radio astronomy L (5 cr) Responsible teacher: Anne Lähteenmäki; Merja Tornikoski Teaching period: I-II (First time autumn 2016) Workload: Contact hours: 48h (2x2h / week) Independent work: observation work 10 h, exercises and learning assignments 57h, examination and preparation 20 h. Content: After this course the student knows how radio astronomy can be used to study astronomical objects, how radio astronomy complements the data collected with other instruments, and where radio astronomy is the only/superior method for collecting data. The student understands the basic principles of radio telescopes and receivers, from radiometers to bolometers, as well as the various observing methods. She/he can plan and even conduct an observing session at a radio telescope for a given astronomical problem. The student identifies the challenges that radio astronomy faces with the increasing electromagnetic interference, as well as the efforts to avoid them. She/he is able to describe the current developments and future prospects in radio astronomy. Fundamentals of astronomy and radio astronomy. Radio astronomy in Finland. Radio astronomy antennas and receivers. Single-dish radio astronomy and observing methods. Very Long Baseline Interferometry. Radio emission from the Sun, Galactic objects and extragalactic sources. Cosmic Microwave Background. Life in the Universe and search for intelligence. Radio frequency & electromagnetic interference. Future of radio astronomy. Assessment Methods and Criteria: Exercises, observation work at Metsähovi, learning assignments, final examination. Substitutes for Courses: S-92.3146 Radio astronomy Prerequisites: E4210 Introduction to space Basic knowledge of mathematics, physics and radio technology. ELEC-E4710 Computational electromagnetics L (5 cr) Responsible teacher: Keijo Nikoskinen; Pasi Ylä-Oijala Teaching period: IV - V (Spring 2016, even years) Workload: Contact hours 44 h (2 h lectures 10 weeks, 2 h exercises 10 weeks, project work 2x2 h) Independent work 91 h After the course, the student will understands the basic principles of two popular numerical analysis methods in electromagnetics. She/he recognizes the strengths and weaknesses of the methods and is able to evaluate their suitability for solving practical engineering problems. The student learns how to implement (with Matlab) solvers for simple example problems and to use these solvers to find solutions 13

for electromagnetic design problems. He/she will utilize problem-solving processes and learns to report and document his/her results. Content: The course focuses on the fundamentals of the frequency domain finite element method (FEM) and integral equation method (the method of moments, MoM). The course gives students theoretical background of the methods and considers practical implementation and application oriented issues, such as Matlab programming of FEM and MoM and their application in waveguide eigenmode analysis, S-parameter determination of multiport structures, and computation of scattering cross sections of arbitrary scatterers, and antenna radiation patterns. Assessment Methods and Criteria: Home exercises, hands-on Matlab exercises, project works, reports, literature study, and seminar presentations. Evaluation criteria will be specified at the beginning of the course. Substitutes for Courses: S-96.3330 Numerical methods in electromagnetics Prerequisites: Basic knowledge of electromagnetic field theory, engineering mathematics (vector differential and integral calculus), and Matlab programming Evaluation: 0-5 ELEC-E4720 Advanced circuit theory L (5 cr) Responsible teacher: Anu Lehtovuori; Henrik Wallén Teaching period: IV-V (spring, even years) Workload: Contact hours 48 h (2 x 2 h/week, 12 weeks). Independent work 87 h. After the course, the student is able to study problems also from a synthesis point of view and can apply his/her knowledge to analyze the operation of complicated designs. Content: Network synthesis methods, properties of transfer functions, filter approximations, scattering parameters, wideband impedance matching, transmission line filters Assessment Methods and Criteria: Home exercises and exam Study Material: To be specified Substitutes for Courses: S-55.3110 and S-55.3150 ELEC-E4730 Advanced field theory L (5 cr) Responsible teacher: Ari Sihvola; Konstantin Simovski Teaching period: IV - V (First time spring 2017, odd years) Workload: Contact hours 48 h (2 x 2 h/week, 12 weeks). Independent work 87 h. Advanced understanding of electromagnetic fields and methodology to solve fundamental problems in electromagnetic field theory. Content: Complex vectors, dyadics, field equations, field transformations, electromagnetic field solutions, source equivalence. Assessment Methods and Criteria: Home exercises, project work Study Material: I.V. Lindell: Methods for Electromagnetic Field Analysis. Oxford/IEEE Press, 1995. Prerequisites: ELEC-E4130 Electromagnetic fields or equivalent knowledge Evaluation: 0-5 ELEC-E4740 Antennas workshop L (5 cr) Responsible teacher: Ville Viikari; Jari Holopainen Teaching period: I-II (autumn) Workload: Contact hours 56 h (2 x 2 h/week, 14 weeks). Independent work 79 h. 14

After successful completion of the course the student can work in an antenna project as antenna designer or researcher. The student is capable of applying relevant antenna and microwave engineering theories and antenna design tools, such as CAD, in antenna design and problem solving. The student has an ability to collect relevant information from scientific publications and he/she is able to critically evaluate the applicability and validity of the found information. He/she is able to design antennas for a given desired performance in given time and explain relevant design principles. The student has a readiness to evaluate the antenna performance based on measurements. The student can analyse the measurement results, identify possible error sources and estimate the measurement uncertainty. He/she is able to effectively cooperate with the other students and also work individually towards the joint goal. The student is able to present and/or report the results of the project. The student is able to self-evaluate his/her working, learning and know-how. Content: Practical antennas studied in group project works: design, building and evaluation of antennas with measurements. The studied antenna types and applications may vary year after year. Assessment Methods and Criteria: Antenna projects and project working skills. The successful completion of the course requires active participation in the contact sessions. The assessment criteria are to be specified in the beginning of the course. Substitutes for Courses: S-26.3150 Antennas Practice Prerequisites: Engineering mathematics, circuit theory, basics of electromagnetics and RF engineering, antenna theory. Further Information: The maximum number of students is limited to 20. ELEC-E4750 Radiowave scattering and propagation L (5 cr) Responsible teacher: Katsuyuki Haneda; Sergei Tretiakov Teaching period: I - II (First time autumn 2016, even years) Workload: Contact hours 48 h (2 h/week for lectures, 2 h/week for exercises, 12 weeks). Independent work 87 h. After the course, the participants are expected to be capable of 1.Discussing the dominant propagation mechanisms in the radio frequency ranges between 900 MHz and 100 GHz; 2.Exercising theories and practical techniques to model and predict radiowave propagation analytically, numerically, and experimentally 3.Estimating the influence of radiowave propagation on cellular radio performance, and finally, 4.Exercising improved skills in scientific activities, e.g., making a summary and a report, discussing in a group, making a presentation, and performing a measurement. Content: Radiowave propagation phenomena, i.e., reflection, diffraction, and scattering in different kinds of environments. Radiowave propagation models for radio communication systems, i.e., site-specific, empirical, and statistical models. Practical radiowave propagation models for future mobile cellular networks, i.e., standardized and reference models. Radiowave propagation measurements and their comparison with models. Impact of radiowave propagation on the performance of radio communications, e.g., wideband multiple-input multiple-output (MIMO) mobile links. Assessment Methods and Criteria: Homework exercises, hands-on problem solving during lessons, final exam 15

Study Material: S. Saunders and A. Aragón-Zavala, "Antennas and Propagation for Wireless Communication Systems," 2nd Edition, Wiley, 2007. Substitutes for Courses: S-96.3320 Radiowave propagation Prerequisites: Engineering mathematics, basics of electromagnetics (e.g., ELEC-E4130 Electromagnetic fields) and RF engineering. Evaluation: 0-5 ELEC-E4760 Terahertz techniques L (5 cr) Responsible teacher: Juha Ala-Laurinaho; Antti Räisänen Teaching period: V (spring, even years) Workload: Contact hours 36 h (4 + 2 h/week, 6 weeks). Independent work 99 h The student has broad basic knowledge and understanding of THz techniques, i.e. how to fill the THz gap, and THz applications, some basic design or analysis skills. Content: Generation of THz radiation (0.1 10 THz) with electronic and photonic means, antennas, waveguiding, quasioptics, detection, measurement techniques, applications. Assessment Methods and Criteria: Home work exercises, seminar presentation, final exam Study Material: G. Carpintero, L.E. Garcia Munoz, S. Preu, H. Hartnagel, and A.V. Räisänen (eds.), Semiconductor THz Technology: From Components to Systems, John Wiley & Sons, 2015, 450 pages Prerequisites: ELEC-E4420 Microwave Engineering I (or equivalent) ELEC-E4770 MIMO radios L (5 cr) Responsible teacher: Katsuyuki Haneda; Clemens Icheln Teaching period: IV - V (First time spring 2017, odd years) Workload: Contact hours 32 h (2 h/week for lectures, 12 weeks, 2 h for a project work x 4). Independent work 103 h. After finishing this course, an attendee is expected to Be able to connect the knowledge of three fundamental areas of technologies and predict implications of their interactions; Be able to deepen the knowledge of each area of the fundamental technologies by keeping the system and applications in mind, where the interaction is a governing phenomenon; and finally, Be able to design MIMO radio communications and radar systems, and to identify possible solutions when he/she encounters a specific problem in MIMO radio systems design. Content: Fundamental building blocks of MIMO radio systems: Antennas and RF frontends. Multi-element antenna design strategies and methods. Adaptive multi-element antenna platforms by means of tunable RF circuitries. Wave propagation as a limiting factor of MIMO radio systems. Radio signal transmission schemes in MIMO radio communications. RF measurements and sensing. Multi-element antenna evaluation methodology. Radar MIMO systems for security and emergency applications. Interaction of the three building blocks through practical examples of designing and evaluating MIMO communications and radar systems. Assessment Methods and Criteria: Homework exercises, hands-on problem solving during lessons, final exam. Approximately equal weight for all four methods. Study Material: A. Sibille, C. Oestges and A. Zannella (Eds.), "MIMO: From Theory to Implementation," Academic Press, Nov. 2010 Prerequisites: Engineering mathematics, basics of electromagnetics (e.g., ELEC-E4130 Electromagnetic fields), radio wave propagation, antennas theory/practice. 16

Evaluation: 0-5 ELEC-E4810 Metamaterials and nanophotonics L (5 cr) Responsible teacher: Sergei Tretiakov; Konstantin Simovski Teaching period: I-II (fall) Workload: Contact hours 48 h (2 x 2 h/week, 12 weeks). Independent work 87 h. Basic understanding of light-matter interaction on nano (subwavelength) scale, knowledge of recent developments and optical applications of nanostructures, nanostructured materials and surfaces. Content: Introduction (motivation - what changes if light "sees" particles which are smaller or comparable in size with the wavelength and why this is important); Photonic crystals; Plasmonic nanoparticles; Plasmonic waveguides (including particle chains); Metamaterials (definition and why they are promising), Superlens; Metasurfaces (including extraordinary transmission and perfect absorption); Review of applications (SERS, surface plasmon microscopy, nanostructured solar cells, metatronics, etc.) Assessment Methods and Criteria: Home exercises, seminar presentations, and exam Study Material: Lecture notes and selected original papers Prerequisites: Basic knowledge of electromagnetic theory (waveguides, radiation) and radio engineering (resonance, transmission lines) ELEC-E4910 Postgraduate course in radio science and engineering L V (V) (5 cr) Responsible teacher: Sergei Tretiakov; Antti Räisänen Teaching period: I-II III-V (autumn, spring) Workload: Total workload 135 hours (format of the course varies and is announced at the beginning of each semester). Learn about current frontier research topics and achievements. Various topics for each semester. Content: The course usually includes lectures, seminar presentations, exercise assignments, and essays (or a combination of these according to what will be defined for the semester). Assessment Methods and Criteria: Course organization and grading criteria vary and are announced in the beginning of each semester. Substitutes for Courses: S-26.4000 Postgraduate Course in Radio Science and Engineering Evaluation: 0-5 ELEC-E4920 Special assignment in radio science and engineering V (V) (5-10 cr) Responsible teacher: Juha Mallat; Sergei Tretiakov Teaching period: I, II, III, IV, V Workload: Independent work 130-260 h Gain experience in doing research and develop reporting skills Content: Special assignment on a research topic, done by the student or possibly also in a small group, with guidance of an instructor. Assessment Methods and Criteria: Written report Substitutes for Courses: S-26.3000, S-55.3320, S-96.3191 Prerequisites: Core courses as appropriate for the topic, to be agreed with the instructor Evaluation: 0-5 17

ELEC-E4930 Space technology project V (V) (5-10 cr) Responsible teacher: Jaan Praks; Esa Kallio Teaching period: I-V Workload: For 5 ECTS: Contact teaching 15h, 45h group work, 75h independent work. Content: After this course the student knows how space projects are managed, and is able to find and apply information independently. She/he demonstrates group work skills and efficient time management. The student fluently uses ITC tools and measurement techniques. She/he proficiently reads and writes documentation. She/he is familiar with system design tools, such as budgets and tables. Additionally she/he has gained practical skills on her/his specialization area. The course consists of various assignments in ongoing space projects. The project can be related to various subsystems and payloads in different development stages, starting from breadboards to flight model testing. Work assignments may be related to various engineering fields, from mechanical design to embedded system programming. The work is suitable for students from a wide variety of disciplines. Assessment Methods and Criteria: The work assessment is done according to deliverables by using self evaluation, peer review and expert assessment. Substitutes for Courses: S-92.3200 Student Satellite Project Prerequisites: ELEC-E4240 Satellite Systems is recommended. Good skills in some engineering discipline. ELEC-E4940 Special assignment in space science and technology V (V) (5-10 cr) Responsible teacher: Jaan Praks; Esa Kallio Teaching period: I-V Workload: For 5 ECTS: Guidance 10h Independent work: 125h Content: The student knows how to analyse and assess scientific and technical material, and apply them to her/his own work. The student is able to write a scientific or technical report. The student is able to work independently in a research team Space science or technology related project work which can be done individually or in groups. Topics include, for example, software or hardware and their applications, scientific themes or the student satellite project. The approach can be design, development, or literature review. The student writes a project report which is graded. Assessment Methods and Criteria: Assignment report. Substitutes for Courses: S-92.3192 Special assignments in space science and technology 18