Pinnoitteilla kestävyyttä ja uusia ominaisuuksia Katsaus termisiin ruiskutus- ja laserpinnoitteisiin sekä vähän muunkinlaiseen pinnoittamiseen Prof. Petri Vuoristo Tampereen teknillinen yliopisto Materiaaliopin laitos / Pinnoitustekniikka
Esityksen sisältö (esityskalvot englanniksi) Terminen ruiskutus eilen ja tänään Terminen ruiskutus Pohjoismaissa Ruiskutuspinnoitusprosessien ja laitteiden kehitysalueet Plasmaruiskutus HVOF/HVAF -ruiskutus Valokaariruiskutus Uudet ruiskutusteknologiat kylmäruiskutus, suspensioruiskutus (, HVOF) Laserpinnoituksen kehitys
Thermal - history Dr. Schoop 1914
Thermal today One of the most important and flexible coating processing technology: - Various techniques: Plasma, HVOF/HVAF, Arc, Flame etc. - From manual to fully automised processes - From widely used coatings to tailored materials and structures for different applications
MUTTA: Terminen ruiskutus on vain osa koko palettia joskin yhä tärkeämpi koko ajan taustaax xtausraxx
Thermal spray in global world (2004) 6000 thermal spray companies active in 7000 sites. 30 of these are international players Geographical distribution: North America 35% Europe 30% Japan 15% South and East Asia 15% The rest in total 15% Industrial sectors: Aviation and space 35% Basic industries 25% Industrial turbines 25% Cars and engines 15% Market value 2004: 3,3 mrd. (EUR), of which: - Coating service 86 % - Materials 9% - Equipment and parts 5%
Thermal Spray Market Development by Process Due to higher technical requirements the industry has shifted to more sophisticated processes over the last 40 years Plasma and recently HVOF have fundamentally replaced the traditional combustion processes New processes such as Cold Spray might eventually capture a fairshare
Thermal spray in the Nordic countries Petroleum, paper, metals, transport, defence and high-tech machinery industries Finland pulp and paper industries Sweden aero engines and in industrial gas turbine applications Norway offshore Denmark marine
Finnish TS companies Metso Paper
Large paper machine center press roll with a thermally sprayed ceramic coating (Metso Paper Inc.)
Thermal spray milestones Intelligent controls New gun designs Advanced materials. composites Composites Free-standing/bulk materials Flame Schoop, Arc spray Reinecke, 1st spray Norton Rokide Oxide coatings Metco 3M Thermal Dynamics F-40 Union Carbide, arc gas heater Hobart-Tafa, Induction Browning, JetKote/HVOF Metco 7M & Plasmadyne SG-1 Extended arc PlazJet Giannini & Plasmadyne Union Carbide, Detonation gun Mass flow control PlasmaTechnik F4 & PS1000 Electro Plasma LPPS (VPS) Center feed guns Computer control 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Nanostructured materials In-situ synthesis Fibrereinforcement Advanced thermal barriers Cermets Oxides Metals & alloys
Classification of thermal spray processes according to various type of energy source Energy from molten liquid Energy from combustion of gases Kinetic energy Energy from Electric discharge Energy from beams Liquid Flame Detonation Velocity Cold kinetic Plasma Arc Laser (cladding) Powder (flame) Wire (flame) velocity oxy-gas fuel HVOF Velocity oxy-liquid fuel HVOF velocity air fuel HVAF velocity arc HV-Arc Shrouded arc Fused coatings Plasma in air Plasma in chamber at high or low P velocity Shrouded Water stabilised Spraying WSP Induction Spraying Powder tranferred arc PTA
Joitakin menetelmäkohtaisia tunnuslukuja Ruiskutusmenetelmä Partikkelinopeus m/s (km/h) Pinnoitusnopeus kg/h Pinnoitteen huokoisuus % Kerrospaksuus mm Lämmönlähde C Tartuntalujuus MPa Liekki-Jauhe 70 (144) 1...8 10...15 0,2...10 3000 10...30 Liekki+sulautus 70 (144) 5...8 0,2...0,4 0,2...3 3000+1100 n. 300 Liekki-Lanka 220 (790) 6...40 10...20 0,2...20 3000 10...30 Kaari (tav.) 240 (860) 6...60 8...15 0,2...20 5500 15...40 HVAF-kaari 360 (1290) 6...60 1...3 0,1...10 6000 25...45 Plasma 600 (2160) 1...6 2...8 0,2...2 16500 20...70 HVOF 800 (2880) 2...9 0,5...2 0,2...2 2800 50...120* AC-HVAF 800 (2880) 10...30 0,1...1,5 0,1...15 1800 60...120* Detonaatio 900 (3240) 2...6 0,1...1,5 0,1...50 4500 75...120* *) Pinnoitteiden tartuntalujuuden mittaamisessa käytetään epoksiliimoja joiden vetolujuus on enimmillään 80-120 MPa, joten tätä suurempaa tartuntalujuutta ei standardien mukaan voi mitata liimasauman murtumisen takia. Korkeampiakin tartuntalujuuksia esitetään aika ajoin.
Principle of thermal spray coating 1 5 Feedstock materials Stick Wire Powder Heat source, spray gun Acceleration Impacting Spreadening and cooling
Characteristics of thermally sprayed coating structures Oxide Ra Rz Rp Rt Pores Cracks t Embedded grit blasting pieces over-blasted area Unmolten particle Grit blasted surface
HVAF sprayed WC-10Co-4Cr Coating
Dense cold sprayed Ta coating
Classification of thermal spray processes according to various type of energy source Energy from molten liquid Energy from combustion of gases Kinetic energy Energy from Electric discharge Energy from beams Liquid Powder (flame) Flame Wire (flame) Detonation velocity oxy-gas fuel HVOF Velocity Velocity oxy-liquid fuel HVOF Cold kinetic velocity air fuel HVAF Atmospheric Plasma Plasma Spraying APS Arc New standard guns Multielectrode torch Axial guns velocity arc HV-Arc Laser (cladding) Shrouded arc Fused coatings Plasma in air Plasma in chamber at high or low P velocity Shrouded Water stabilised Spraying WSP Induction Spraying Powder tranferred arc PTA
ProPlasma HP features: versatility (Saint Gobain) Std 6.5 mm nozzle For substrates sensitive to temperature (heat flux) HP 6.5 mm nozzle throughput, higher particle speed Std HP6.5 HP 8.0 mm nozzle throughput, high residence time: refractory materials, multiple injection points HP8
ProPlasma HP features: arc stability Electrical and thermal characterization Dynamic comparison HP6.5 vs. Std ( 6.5mm) er mean voltage for HP6.5 Reduced voltage fluctuation amplitude for HP6.5 Reduced fluctuation pattern for HP6.5 (smaller peak on the frequency spectrum)
Improved spray rates
Axial feed high power (Axial III, Mettech) Specially designed three electrode torch Powder feeding axially to plume Improved deposition efficiency for most materials powder feed rates Shroud for gas shielding
Axial feed high power (Axial III, Mettech)
Powder feed rates and deposition efficience for axial Performance of a high power spray system with central powder feed configuration Material Cermets Feedrate (kg/h) Feedrate (g/min) Deposition efficiency (%) WC-17% Co 9-13.5 150-225 75-90 WC-12% Co 9-13.5 150-225 65-80 WC-Cr 3 C 2 -Ni 7.2-11.4 120-190 75-90 Cr 3 C 2 -NiCr 3.6-6.9 60-115 65-90 Ceramics Al 2 O 3 1.8-4.5 30-75 75-90 Al 2 O 3-13% TiO 2 2.7-5.4 45-90 75-90 ZrO 2-8% Y 2 O 3 2.1-3.6 35-60 60-85 Cr 2 O 3 1.8-5.4 30-90 45-75 Abradables AlSi-Polyester 1.8-3.6 30-60 70-90 AlSi-Graphite 1.8-2.7 30-45 45-50 Metals & alloys 316L S.S. 4.5-11.4 75-190 70-90 Titanium (CP) 1.8-4.5 30-75 75-90 NiAlMo 8.1-9.9 135-165 75-90 NiCoCrAlY 4.5-9 75-150 75-90 Copper 9-10.8 150-180 75-90 Molybdenum 9-18 150-300 75-90 Source: Northwest Mettech Corp. Canada www.mettech.com
Classification of thermal spray processes according to various type of energy source Energy from molten liquid Energy from combustion of gases Kinetic energy Energy from Electric discharge Energy from beams Liquid Flame Detonation Velocity Cold kinetic Plasma Arc Laser (cladding) Powder (flame) Wire (flame) velocity oxy-gas fuel HVOF Velocity Air Fuel HVAF Velocity oxy-liquid fuel HVOF velocity air fuel HVAF velocity arc HV-Arc Shrouded arc Fused coatings Plasma in air Plasma in chamber at high or low P velocity Shrouded Water stabilised Spraying WSP Induction Spraying Powder tranferred arc PTA
History of HVAF The process was invented in 1982 by James A. Browning as a cheaper alternative to HVOF. The first commercial systems were available by the late 1980 s. Used kerosene and air, as well as oxygen and hydrogen for start up Typical problems: low deposit efficiency due to radial powder injection (used to be called warm grit blaster ) unsafe operation because of hydrogen use
History of HVAF (Dick Whitfield)
HVAF position vs. other thermal spray processes 2500 Particle Temperature, oc 2000 1500 1000 500 Arc Plasma HVOF-1 Melting Temperature of Metals HVOF-2 Detonation Quasar AC-HVAF (2 st gen) M2 Gun Cold Spray Processes UltraCoat SAF (3 d gen) M3 Gun Hot Mode Cold Mode 0 0 200 400 600 800 1000 Particle Velocity, m/sec
Principle of HVAF spray gun (M3 of Uniquecoat Technologies) Supersonic Gas Dynamic Virtual Nozzle (GDVN) allows for achieving supersonic jet velocity without losing in jet temperature.
WC-10Co-4Cr Coating: 1380HV300 SEM Micrographs, M3 gun 100x 300x 1000x 3000x
HVAF sprayed WC-10Co-4Cr Coating
Side by Side Comparison: SAF vs. HVOF WC-10Co-4Cr Agglomerated and sintered (100x) M3 JP5000
Classification of thermal spray processes according to various type of energy source Energy from molten liquid Energy from combustion of gases Kinetic energy Energy from Electric discharge Energy from beams Liquid Flame Detonation Velocity Cold kinetic Plasma Arc Laser (cladding) Powder (flame) Wire (flame) velocity oxy-gas fuel HVOF Velocity oxy-liquid fuel HVOF velocity air fuel HVAF Velocity Arc velocity arc HV-ARC HV-Arc Shrouded arc Fused coatings Plasma in air Plasma in chamber at high or low P velocity Shrouded Water stabilised Spraying WSP Induction Spraying Powder tranferred arc PTA
velocity arc spray gun HV-ARC
velocity arc spray gun (HV-Arc) 3 6
velocity arc spray gun HV-ARC W-Cu wire tips Gun body DC motor for wire feeding Air cooled combustion chamber Wire nozzles Wire feeder Top: Inconel 625 by HV-arc Below: conv. Arc spray gun Wire feeding wheels
velocity arc sprayed Fe-13% 2 parameters (Metcoloy 2)
Classification of thermal spray processes according to various type of energy source Energy from molten liquid Energy from combustion of gases Kinetic energy Energy from Electric discharge Energy from beams Liquid Flame Detonation Velocity Cold kinetic Cold Spraying HPCS/LPCS Plasma Arc Laser (cladding) Powder (flame) Wire (flame) velocity oxy-gas fuel HVOF Velocity oxy-liquid fuel HVOF velocity air fuel HVAF velocity arc HV-Arc Shrouded arc Fused coatings Plasma in air Plasma in chamber at high or low P velocity Shrouded Water stabilised Spraying WSP Induction Spraying Powder tranferred arc PTA
pressure and low pressure cold spray processes Parameter HPCS (CGT) LPCS (DYMET) Process gas N 2, He ilma Pressure (bar) 7-40 6-10 Gas temperature (ºC) 20-550-800 20-650 Gas flow rate (m 3 /min) 0.85-2.5 (N 2 ), max. 4.2 (He) 0.3-0.4 Powder feed rate (kg/h) 4.5-13.5 0.3-3 Stand-off distance (mm) 10-50 5-15 Electric power (kw) 17-47 3.3 Particle size of powder (µm) 1-50 5-30 CGT Kinetiks 4000 DYMET 403K 21.10.2
Dense cold sprayed Ta coating
Corrosion properties of HPCS Ta coatings E corr i corr CS Ta: -0.67 V, 1.1 µa/cm 2 Ta: -0.66 V, 1.1 µa/cm 2 E corr i corr CS Ta: -0.33 V, 0.3 µa/cm 2 Ta: -0.32 V, 0.4 µa/cm 2 HPCS Ta coating behaved like corresponding Ta bulk material in 3.5% NaCl and 40% H 2 SO 4 solutions similar corrosion resistance rapid passivation corrosion protection E corr i corr CS Ta: -0.28 V, 0.4 µa/cm 2 Ta: -0.29 V, 0.2 µa/cm 2 HPCS Ta coating behaved like corresponding Ta bulk material also in 20% HCl solution, however, passivation was first linear, then curving slightly and followed again linear behavior repassivation
Hapettumattomia ja tiiviitä Cold Spray-pinnoitteita Kuparipinnoite alumiinin päällä: - ei raepuhallusta - tiivis ja hapettumaton - olematon lämpökuorma alustaan Tantaalipinnoite alumiinin päällä: - ei raepuhallusta - tiivis ja hapettumaton - olematon lämpökuorma alustaan
Classification of thermal spray processes according to various type of energy source Energy from molten liquid Energy from combustion of gases Kinetic energy Energy from Electric discharge Energy from beams Liquid Flame Detonation Velocity Cold kinetic Plasma Arc Laser (cladding) Powder (flame) Wire (flame) velocity oxy-gas fuel HVOF Velocity oxy-liquid fuel HVOF Suspension velocity air fuel HVAF SPS, SPPS, HVSFS velocity arc HV-Arc Shrouded arc Fused coatings Plasma in air Plasma in chamber at high or low P velocity Shrouded Water stabilised Spraying WSP Induction Spraying Powder tranferred arc PTA
Suspension thermal Plasma, HVOF, Flame
Suspension HVOF-
Coatings with nanopowder suspension Northwest Mettech Corp.
Classification of thermal spray processes according to various type of energy source Energy from molten liquid Energy from combustion of gases Kinetic energy Energy from Electric discharge Energy from beams Liquid Flame Detonation Velocity Cold kinetic Plasma Laser Arc Laser cladding Laser (cladding) Powder (flame) Wire (flame) velocity oxy-gas fuel HVOF Velocity oxy-liquid fuel HVOF velocity air fuel HVAF velocity arc HV-Arc Shrouded arc Fused coatings Plasma in air Plasma in chamber at high or low P velocity Shrouded Water stabilised Spraying WSP Induction Spraying Powder tranferred arc PTA
Laser cladding process
Latest deposition rates in laser cladding with high kw levels (Tampere Univ. Tech.)
Corrosion properties of laser coatings
Hot corrosion resistant laser coatings in diesel engine
Trends in thermal Thermal spray business smoothly increasing Cheaper, faster, more durable and predictable solutions New functionalities electrical, photocatalytic, diffusion barrier New thermal spray methods HVAF, CGS, SPS, HVSFS, Laser processes, Direct write, etc. New applications fuel cells, hardchrome replacement New materials new carbides, nano metal alloys, nanocomposite oxides, suspensions, new compositions Life-cycle management, sustainable use of materials
http://etsa-thermal-spray.org/