/1. MTTTP5, luento Kertausta. Olk. X 1, X 2,..., X n on satunnaisotos N(µ, ):sta, missä tunnettu. Jos H 0 on tosi, niin

Samankaltaiset tiedostot
Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen)

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

MTTTP5, luento Luottamusväli, määritelmä

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)

Valitaan testisuure, jonka jakauma tunnetaan H 0 :n ollessa tosi.

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

MTTTP5, luento Kahden jakauman sijainnin vertailu (jatkoa) Tutkimustilanteita y = neliöhinta x = sijainti (2 aluetta)

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

6.1.2 Yhdessä populaatiossa tietyn tyyppisten alkioiden prosentuaalista osuutta koskeva päättely

Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo?

/1. MTTTP1, luento Normaalijakauma (kertausta) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti:

/1. MTTTP1, luento Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti:

Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma tiedetään. Se on normaalijakauma, havainnollistaminen simuloiden

dx=5&uilang=fi&lang=fi&lvv=2014

MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu

MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla

riippumattomia ja noudattavat samaa jakaumaa.

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla

7.4 Normaalijakauma (kertausta ja täydennystä) Taulukosta P(Z 1,6449) = 0,05, P(Z -1,6449) = 0,05 P(Z 1,96) = 0,025, P(Z -1,96) = 0,025

Sovellettu todennäköisyyslaskenta B

H0: otos peräisin normaalijakaumasta H0: otos peräisin tasajakaumasta

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.

voidaan hylätä, pienempi vai suurempi kuin 1 %?

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

MTTTP1, luento KERTAUSTA

&idx=2&uilang=fi&lang=fi&lvv=2015

¼ ¼ joten tulokset ovat muuttuneet ja nimenomaan huontontuneet eivätkä tulleet paremmiksi.

MTTTP1, luento KERTAUSTA

Esim. Pulssi-muuttujan frekvenssijakauma, aineisto luentomoniste liite 4

Miten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä palamisaikaa?

c) A = pariton, B = ainakin 4. Nyt = silmäluku on5 Koska esim. P( P(A) P(B) =, eivät tapahtumat A ja B ole riippumattomia.

&idx=2&uilang=fi&lang=fi&lvv=2015

MTTTP1, luento KERTAUSTA JA TÄYDENNYSTÄ. Tunnusluvut. 1) Sijainnin tunnuslukuja. Keskilukuja moodi (Mo) mediaani (Md) keskiarvo, kaava (1)

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Luottamusvälit. Normaalijakauma johnkin kohtaan

dx=2&uilang=fi&lang=fi&lvv=2015

r = n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.

Estimointi. Vilkkumaa / Kuusinen 1

Otoskoko 107 kpl. a) 27 b) 2654

MTTTP1 SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN

Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto

Luento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja

10. laskuharjoituskierros, vko 14, ratkaisut

voidaan hylätä, pienempi vai suurempi kuin 1 %?

Sovellettu todennäköisyyslaskenta B

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾

Kokonaisuudet johon opintojakso kuuluu Lang=fi&lang=fi&lvv=2014

A130A0650-K Tilastollisen tutkimuksen perusteet 6 op Tentti / Anssi Tarkiainen & Maija Hujala

9. laskuharjoituskierros, vko 12-13, ratkaisut

Testaa onko myrkkypitoisuus eri ryhmissä sama. RATK. Lasketaan kaikkien havaintoarvojen summa: k T i = = 486.

Sovellettu todennäköisyyslaskenta B

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen

Tutkimustiedonhallinnan peruskurssi

6. laskuharjoitusten vastaukset (viikot 10 11)

Sovellettu todennäköisyyslaskenta B

Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu.

&idx=1&uilang=fi&lang=fi&lvv=2017

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo

Väliestimointi (jatkoa) Heliövaara 1

Näistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina.

MTTTP1, luento KERTAUSTA

Harjoitus 7: NCSS - Tilastollinen analyysi

Jatkuvat satunnaismuuttujat

Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit

Tilastollinen aineisto Luottamusväli

Tehtävät. 1. Ratkaistava epäyhtälöt. a) 2(4 x) < 12, b) 5(x 2 4x + 3) < 0, c) 3 2x 4 > 6. 1/10. Sukunimi (painokirjaimin)

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

031021P Tilastomatematiikka (5 op) viikko 5

g=fi&lvv=2018&uilang=fi#parents

Mat Sovellettu todennäköisyyslasku A

Sovellettu todennäköisyyslaskenta B

Näistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina.

pisteet Frekvenssi frekvenssi Yhteensä

Osa 2: Otokset, otosjakaumat ja estimointi

&idx=2&uilang=fi&lang=fi&lvv=2015

x=2&uilang=fi&lang=fi&lvv=2017

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

dx=2&uilang=fi&lang=fi&lvv=2015

Mat Sovellettu todennäköisyyslasku A

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:

SPSS-pikaohje. Jukka Jauhiainen OAMK / Tekniikan yksikkö

Estimointi. Otantajakauma

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Sovellettu todennäköisyyslaskenta B

MTTTP1 Tilastotieteen johdantokurssi Luento JOHDANTO

pitkittäisaineistoissa

Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan

1. Nollahypoteesi on, että teksti on kirjoitettu lyhyemmällä murteella. Mahdollisiavaihtoehtojaonvainyksieliettäteksti

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

MTTTP1 Tilastotieteen johdantokurssi Luento JOHDANTO

Testejä suhdeasteikollisille muuttujille

1. Matikan kurssin arvosanat jakautuivat seuraavalla tavalla:

Teema 8: Parametrien estimointi ja luottamusvälit

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös):

Kvantitatiiviset tutkimusmenetelmät maantieteessä

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3

Transkriptio:

30.11.2017/1 MTTTP5, luento 30.11.2017 Kertausta H 0 : µ = µ 0 Olk. X 1, X 2,..., X n on satunnaisotos N(µ, ):sta, missä tunnettu. Jos H 0 on tosi, niin = / ~ 0,1. Kaava 5.1

30.11.2017/2 Esim. Tutkija olettaa, että reagointiaika erääseen ärsykkeeseen on keskimäärin alle 6 sekuntia. Mitattiin 25 henkilön reagointiajat ja saatiin keskiarvoksi 5,2 s. Oletetaan, että reagointiaika on normaalisti jakautunut hajontana 2 s. Onko tutkija oikeassa? H 0 : µ = 6 H 1 : µ < 6 Jos H 0 on tosi, niin = / ~ 0,1. Tässä µ 0 = 6, = 2.

30.11.2017/3 Saadaan. =, / 2. Pienin riskitaso, jolla H 0 voidaan hylätä, on P(Z<-2) = 1- (2) = 1 0,9772 = 0,0228. Jos valitaan riskitaso, joka on tätä suurempi, niin H 0 hylätään ja H 1 hyväksytään (tutkija oikeassa). Jos valitaan esim. 2 %:n riskitaso, H 0 hyväksytään. Päätellään, että tukija väärässä.

30.11.2017/4 Päättely taulukkoarvojen perusteella: Jos valitaan 5 %:n riskitaso, niin harvinaisten arvojen raja on z 0,05 = -1,65. Koska -2 < -1,65, niin H 0 hylätään ja H 1 hyväksytään. Jos valitaan 1 %:n riskitaso, niin harvinaisten arvojen raja on z 0,01 = -2,33. Koska -2 > -2,33, niin H 0 hyväksytään.

30.11.2017/5 Esim. Riisipussien pakkauskoneen pitäisi tuottaa keskimäärin kilon pusseja. Painon oletetaan vaihtelevan normaalijakauman mukaisesti keskihajonnan ollessa 2,1 g. Tutkitaan koneen toimivuutta. Punnitaan satunnaisesti valitut 20 pussia, joiden keskipainoksi saadaan 1001 g. Toimiiko kone oikein? H 0 : µ = 1000 H 1 : µ 1000 Jos H 0 on tosi, niin = / ~ 0,1.

Saadaan. =, / = 2,13 30.11.2017/6 Pienin riskitaso, jolla H 0 voidaan hylätä, on 2P(Z>2,13) = 2(1- (2,13)) = 2(1 0,9834) = 0,0338. Jos valitaan riskitaso, joka on tätä suurempi, niin H 0 hylätään ja H 1 hyväksytään (päätellään: kone ei toimi oikein). Jos valitaan esim. 1 %:n riskitaso, H 0 hyväksytään (päätellään: kone toimii oikein).

30.11.2017/7 Päättely taulukkoarvojen perusteella: Jos valitaan 5 %:n riskitaso, niin harvinaisten arvojen raja on z 0,05/2 = 1,96. H 0 hylätään, H 1 hyväksytään. Jos valitaan 1 %:n riskitaso, niin harvinaisten arvojen raja on z 0,01/2 = 2,57. H 0 hyväksytään.

30.11.2017/8 6.1.1 Yhden populaation odotusarvoa koskeva päättely (jatkoa) H 0 : µ = µ 0 Olk. X 1, X 2,..., X n on satunnaisotos N(µ, ):sta, missä tuntematon. Jos H 0 on tosi, niin = / ~. Kaava 5.2

30.11.2017/9 Jos H 1 : µ µ 0, niin H 0 hylätään riskitasolla, jos otoksesta laskettu t hav. > t /2, n-1. Pienin riskitaso p, jolla H 0 voidaan hylätä, on 2P(t n-1 t hav. ).

30.11.2017/10 Jos H 1 : µ > µ 0, niin H 0 hylätään riskitasolla, jos otoksesta laskettu t hav. > t n-1 Pienin riskitaso p, jolla H 0 voidaan hylätä, on P(t n-1 > t hav ).

30.11.2017/11 Jos H 1 : µ < µ 0, niin H 0 hylätään riskitasolla, jos otoksesta laskettu t hav. < -t n-1 Pienin riskitaso p, jolla H 0 voidaan hylätä, on P(t n-1 < t hav. ).

30.11.2017/12 Esim. 6.1.3 Lepakot paikallistavat hyönteisiä lähettämällä korkeataajuista ääntä. Kaiun kuulemiseen kuluvan ajan perusteella ne pystyvät paikallistamaan hyönteiset. Tutkijat arvelivat, että keskimääräinen tunnistusmatka voisi olla yli 35 cm. He keräsivät aineiston mitaten etäisyydet (cm), joista lepakot löysivät hyönteisiä. Mitatut etäisyydet olivat 62, 52, 68, 23, 34, 45, 27, 42, 83, 56, 40. Voidaanko saatujen tulosten perusteella pitää tutkijoiden arvioita oikeana?

30.11.2017/13 H 0 : µ = 35 H 1 : µ > 35 Jos H 0 on tosi, niin Saadaan = / ~. =48,36, s = 18,085,. =,, / = 2,450

30.11.2017/14 Koska t hav. = 2,450 < t 0,01;10 = 2,764, H 0 hyväksytään 1 % riskitasolla. Koska t hav. = 2,450 > t 0,025;10 = 2,228, H 0 hylätään 2,5 % riskitasolla Siis 0,01 < p < 0,025 (SPSS: 0,034/2 = 0,017) SPSS-ohjeet: Analyze -> Compare Means -> One-Sample T Test -> Test Variable Matka, Test Value 35

SPSS-tulostus 30.11.2017/15

30.11.2017/16 Esim. Valmistaja ilmoittaa kynttilöittensä keskimääräiseksi palamisajaksi 9,5 tuntia. Tutkit asiaa ja teet valmistajan kynttilöistä 6 kynttilän satunnaisotoksen. Mittaat näiden palamisajat ja saat keskiarvoksi 8,8 tuntia ja keskihajonnaksi 0,48 tuntia. Voitko uskoa valmistajan väitteen? H 0 : µ = 9,5 H 1 : µ < 9,5

30.11.2017/17 Jos H 0 on tosi, niin = / ~. Nyt µ 0 = 9,5, n = 6, =8,8, s = 0,48,. =,,, / = 3,57. H 0 hyväksytään 0,5 % riskitasolla, koska t hav. = -3,57 > -t 0,005,5 = -4,032 t 0,01,5 = 3,365 H 0 hylätään 1 %:n riskitasolla, koska t hav. = -3,57 < -t 0,01,5 = -3,365.

Siis 0,005 < p < 0,01 30.11.2017/18

30.11.2017/19 Esim. Tutkittiin ph-mittarin toimivuutta. Mitattiin 14 neutraalin (ph = 7) liuoksen ph-arvot, joiksi saatiin 7,01, 7,04, 6,97, 7,00, 6,99, 6,97, 7,04, 7,04, 7,01, 7,00, 6,99, 7,04, 7,07, 6,97. Toimiiko mittari oikein? H 0 : µ = 7 H 1 : µ 7 Jos H 0 on tosi, niin = / ~. Nyt µ 0 = 7, n = 14, =7,01, s = 0,03162,. =,, / = 1,183.

30.11.2017/20 Jos valitaan = 0,05, niin t 0,05/2;13 = t 0,025;13 = 2,160. H 0 hyväksytään 5 %:n riskitasolla, koska -2,160 < t hav. < 2,160. Pienin riskitaso, jolla H 0 voidaan hylätä, on > 0,05. Laskurin http://vassarstats.net/ tulos http://www.sis.uta.fi/tilasto/mtttp5/syksy2015/ph_mit tari.pdf

30.11.2017/21 Esim. Eräs yritys tarjoaa valmennuskurssia yliopistoon pyrkijöille. Yritys haluaa tutkia kurssinsa tehokkuutta. Tutkitaan pareja, joilla on samanlaiset lähtötiedot. Toinen osallistuu valmennuskurssille, toinen ei. Saadaan aineisto, jossa pyrkijöiden valintakoepisteet. Onko kurssi tehokas? Osallistui Ei osallistunut Erotus d Pari 1 82 75 7 Pari 2 73 71 2 Pari 3 59 52 7 Pari 4 48 46 2 Pari 5 69 70-1 Pari 6 93 83 10

Tutkitaan, onko erotus peräisin jakaumasta, jonka odotusarvo nolla. Siis H 0 : µ D = 0 H 1 : µ D > 0 Jos H 0 on tosi, niin = / ~. Nyt = 27, = 207, = 4,5 SS d = 207 27 2 /6 = 85,5, s = 30.11.2017/22 4,135,. =,, / = 2,666. t 0,025;5 = 2,571, t 0,01;5 = 3,365, joten 0,01 < p <0,025

Ks. SPSS-tuloste 30.11.2017/23