LAPPEENRANNAN TEKNILLINEN YLIOPISTO LUT ENERGIA SÄHKÖTEKNIIKKA Sähkömarkkinat - opetusmoniste LUT 2014 Jarmo Partanen, Satu Viljainen, Jukka Lassila, Samuli Honkapuro, Kaisa Salovaara, Salla Annala, Mari Makkonen PL 20, 53851 LAPPEENRANTA www.lut.fi/lutenergia
SISÄLLYSLUETTELO 1 Johdanto...1 2 Sähkömarkkinoiden kehitystrendit, tavoitteet ja valvonta...2 2.1 Sähkömarkkinalaki... 2 2.2 Sähkömarkkinoiden valvonta... 2 2.3 Sähköenergiamarkkinat... 3 2.3.1 Sähkön hinnan muodostuminen... 3 2.3.2 Sähkön siirto ja jakelu... 4 2.3.3 Sähkön tuotanto... 5 2.3.4 Sähkökauppa... 6 2.3.5 Sähkön hinta... 7 2.3.6 Sähkön käyttö... 10 2.3.7 Sähkönkulutuksen mittaus... 11 3 Sähkön käytön mallintaminen ja ennustaminen... 12 3.1 Kuormitusten määrittäminen... 13 3.1.1 Velanderin kaava... 13 3.1.2 Kuormitusmallit... 14 3.2 Kuormitusmallien käyttö... 15 3.2.1 Keskitehon laskeminen... 16 3.2.2 Huipputehon laskeminen... 17 4 Sähkökauppa... 20 4.1 Vähittäismarkkina... 20 4.2 Tukkusähkömarkkina... 21 4.3 Siirtoverkko... 23 4.4 Sähköpörssi... 23 4.5 Sähköpörssin fyysiset tuotteet... 24 4.5.1 Elspot... 24 4.5.2 Elbas... 26 4.6 Sähköpörssin johdannaistuotteet... 27 4.6.1 Futuurit ja DS-futuurit... 27 4.6.2 Optiot... 28 4.7 OTC-markkinat... 29 4.8 Sähkönhankinnan periaatteita... 29 4.9 Riskit vapailla sähkömarkkinoilla... 30 4.10 Riskienhallinta sähkömarkkinoilla... 31 4.11 Päästökaupan vaikutus sähkön hintaan... 32 4.12 Syöttötariffit ja muut energiatukijärjestelmät... 35 5 Sähkötaseiden hallinta... 37 5.1 Tasehallinta... 37 5.1.1 Valtakunnallisen tehotasapainon ylläpito... 37
5.1.2 Säätösähkökauppa... 38 5.2 Taseselvitys... 40 5.2.1 Jakeluverkonhaltijan taseselvitys... 41 5.2.2 Tasevastaavan taseselvitys... 42 5.2.3 Valtakunnallinen taseselvitys... 43 5.3 Tasesähkökauppa... 44 6 Sähkön ja sen toimituksen hinnoitteluperiaatteet... 45 6.1 Hinnoittelu sähkökaupassa... 45 6.2 Siirtohinnoittelu... 45 6.2.1 Hinnoitteluperusteet... 46 6.2.2 Hinnoittelumalli... 46 7 Sähkönjakeluverkkoliiketoiminta... 51 7.1 Verkkoliiketoiminnan tavoitteet... 51 7.2 Verkkoliiketoiminnan sääntely... 52 7.2.1 Valvontamallit... 52 7.2.2 Sääntelyyn liittyvät kannustinjärjestelmät... 53 7.3 Sähköverkkoliiketoiminnan sääntely Suomessa... 54 7.3.1 Sähkönjakeluverkkoliiketoiminnan sääntely valvontajaksolla 2012-2015... 55 7.4 Tehokkuusarvioinnin rooli verkkoliiketoiminnan valvonnassa... 64 7.4.1 Tehokkuusmittauksen menetelmät... 64 7.5 Sähkön laatu verkkoliiketoiminnan valvonnassa... 65 7.5.1 Sähkön laadun arviointi... 67 7.5.2 Verkkoyhtiöiden sähköntoimituksen laatu Suomen valvontamallissa... 70 7.6 Verkkoliiketoiminnan valvonta Euroopassa... 73 8 Lähdeluettelo... 80
1 1 Johdanto Sähkömarkkinat koostuvat sähköntuotannosta, siirtoverkkoliiketoiminnasta, sähkönjakeluverkkoliiketoiminnasta ja sähkökaupasta. Tässä opetusmonisteessa tarkastellaan keskeisiä sähkökauppaan ja jakeluverkkoliiketoimintaan liittyviä asioita pääosin kotimaisesta näkökulmasta. Sähkömarkkinoiden toimintaperiaatteet ovat muuttuneet ja muuttuvat nopeasti. Keskeisinä muutosta ohjaavina ja vauhdittavina tekijöinä ovat energiamarkkinoiden lainsäädännön muuttuminen eurooppalaisella ja kotimaisella tasolla, verkkoliiketoiminnan valvontametodiikan kehittyminen, energia- ja sähköyhtiöiden omistajapolitiikan muutokset sekä sähkönkäyttäjien vaatimusten muuttuminen. Tässä opetusmonisteessa asioita tarkastellaan syksyn 2014 tilanteen mukaisesti. Osa monisteessa esitetyistä asioista tulee varmasti muuttumaan lähivuosina. Kehotammekin lukijoita päivittämään monisteessa kuvattujen menetelmien yksityiskohtien sisällöt ennen niiden käyttöä todellisissa päätöksentekotilanteissa.
2 Sähkömarkkinoiden kehitystrendit, tavoitteet ja valvonta 2.1 Sähkömarkkinalaki 2 Sähkömarkkinoiden toimintaa Suomessa säätelevät sähkömarkkinalaki (588/2013), valtioneuvoston asetus sähkömarkkinoista (65/2009), laki Energiavirastosta (870/2013), valtioneuvoston ja työ- ja elinkeinoministeriön päätökset ja asetukset sekä Euroopan Unionin asetukset ja direktiivit. Sähkömarkkinalain mukaan sähköverkkotoiminta on eriytettävä sähkön tuotannosta ja sähkökaupasta. Sähkön tuotanto ja kauppa kuuluvat vapaan kilpailun piiriin, siirrosta vastaa valtakunnallinen kantaverkkoyhtiö ja jakelusta alueellisessa monopoliasemassa toimivat jakeluverkonhaltijat. Eriyttäminen tarkoittaa, että sähköverkkotoiminnalle on laadittava erillinen tuloslaskelma ja tase. Lisäksi verkkoliiketoiminnan tulee olla oikeudelliselta muodoltaan, organisaatioltaan ja päätöksenteoltaan riippumaton sähkökaupasta ja sähkön tuotannosta (oikeudellisen eriyttämisen vaatimus ei koske pienimpiä verkkoyhtiöitä). Tällä pyritään edistämään tervettä ja toimivaa kilpailua sähkökaupassa ja sähkön tuotannossa sekä varmistamaan, ettei kilpailun piiriin kuuluvaa liiketoimintaa tueta monopolitoiminnan tuotoilla. Sähkön myynnin ja tuotannon osalta markkinat avattiin kilpailulle vuonna 1995. Avaaminen toteutettiin portaittaisesti siten, että ensimmäisessä vaiheessa sähkön kilpailuttaminen oli mahdollista suurille yli 500 kw asiakkaille. Vuoden 1997 alusta tehoraja poistettiin ja kilpailun piiriin tulivat kaikki sähkön käyttäjät. Käytännössä pienimmät sähkön käyttäjät pääsivät kilpailun piiriin kuitenkin vasta syksyllä 1998, jolloin otettiin käyttöön tyyppikuormituskäyräjärjestelmä, joka poisti jatkuvan tuntitehon mittaustarpeen. Sähkönjakeluverkkoliiketoiminta säilytettiin sähkömarkkinauudistuksessa säädeltynä monopolina. Verkonhaltijalle säädettiin siirto-, liittämis- ja verkon kehittämisvelvollisuus sekä velvollisuus toimia tasapuolisesti, syrjimättömästi ja avoimesti eri myyjien ja asiakasryhmien suhteen. Sähkön siirron hinnoittelussa säädettiin käytettäväksi pistehinnoittelua, mikä tarkoittaa, että verkonhaltijan on osaltaan järjestettävä edellytykset sille, että asiakas saa asianomaiset maksut suorittamalla oikeuden käyttää liittymispisteestään käsin koko maan sähköverkkoa ulkomaanyhteyksiä lukuun ottamatta. Lisäksi säädettiin, ettei verkkopalvelujen hinta jakeluverkossa saa riippua siitä, missä asiakas maantieteellisesti sijaitsee verkonhaltijan vastuualueella. (Sähkömarkkinalaki 1995) 2.2 Sähkömarkkinoiden valvonta Sähkömarkkinoiden valvontaa varten perustettiin työ- ja elinkeinoministeriön hallinnonalalla toimiva asiantuntijavirasto. Virasto aloitti toimintansa huhtikuussa 1995 Sähkömarkkinakeskuksen nimellä. Viraston nimi muuttui Energiamarkkinavirastoksi elokuussa 2000 samalla, kun sen tehtäväkenttä laajeni kattamaan myös maakaasumarkkinoiden valvonnan. Vuonna 2014 nimi muuttui Energiavirastoksi ja virastolle siirtyi energiatehokkuuden ja uusituvan energian edistämistehtäviä työ- ja elinkeinoministeriöstä (TEM 2014).
3 Energiavirasto valvoo sähkö- ja maakaasumarkkinalainsäädännön noudattamista sekä edistää kilpailulle perustuvien sähkö- ja maakaasumarkkinoiden toimintaa. Lisäksi virasto toimii päästökauppaviranomaisena Suomessa. Energiaviraston toteuttama valvonta on luonteeltaan osin etukäteistä ja jälkikäteistä. Sähköverkkoliiketoiminnan valvonnan periaatteet julkaistaan etukäteen, mutta varsinaiset edellä mainittuihin periaatteisiin pohjautuvat valvontapäätökset tehdään jälkikäteen, kun verkkoyhtiöiden tilinpäätöstiedot ovat käytettävissä. Energiaviraston päätöksiä koskevat valitukset käsitellään hallinto-oikeudessa tai markkinaoikeudessa. Sähkömarkkinoilla Energiaviraston tehtäviin kuuluu mm. (energiavirasto.fi): Kansallisen ja Euroopan unionin sähkömarkkinalainsäädännön noudattamisen valvonta Kilpailulle perustuvien sähkömarkkinoiden toiminnan edistäminen Sähköverkkotoiminnan siirtohinnoittelun valvonta Sähköverkkotoiminnan toimilupien ja vähintään 110 kv:n voimajohtojen rakentamislupien myöntäminen Sähkön alkuperätakuujärjestelmän valvonta. 2.3 Sähköenergiamarkkinat 2.3.1 Sähkön hinnan muodostuminen Asiakkaan sähkön hinta muodostuu sähköenergian hankinnan kustannuksista, sähkön siirron kustannuksista ja veroista. Sähköenergian hankintahinta muodostuu sähköenergian hinnasta ja sähkön myyntityöstä aiheutuneista kustannuksista. Siirtohinta koostuu sähkön siirron kustannuksista kantaverkossa, alueverkossa ja jakeluverkossa. Kotitalousasiakkaalla sähköenergian osuus sähkön toimituksen kokonaiskustannuksista on runsas kolmannes, siirron osuus vajaa kolmannes ja loppuosa muodostuu veroista. Kuvassa 2.1 on esimerkki kotitalousasiakkaan sähkön hinnan muodostumisesta. Arvonlisävero 19% Sähkön hankinta 34% Sähköverot 11% Sähkön myynti 6% Jakeluverkkosiirto 28% Kantaverkkosiirto 2% Kuva 2.1. Kotitalousasiakkaan sähkön hinnan muodostuminen. Kotitalousasiakkaan keskimääräinen sähkön kokonaishinta 1.5.2013 oli 15,29 snt/kwh. (EMV 2013a)
4 Sähkölämmittäjillä sekä teollisuusasiakkailla sähköenergian osuus sähkön toimituksen kokonaiskustannuksista on suurempi kuin kotitalousasiakkailla, siirron osuus vastaavasti hieman pienempi. 2.3.2 Sähkön siirto ja jakelu Sähkön siirto on säädeltyä monopolitoimintaa, jonka tavoitteena on siirtää sähköenergiaa tuottajilta käyttäjille. Valtakunnallisesti sähkön siirrosta vastaa kantaverkkoyhtiö Fingrid Oyj, joka omistaa myös maan rajojen yli menevät johdot. Kantaverkkoyhtiöillä on myös vastuu sähkövoimajärjestelmän toimitusvarmuudesta. Siksi kantaverkkoyhtiöitä nimitetään myös järjestelmävastaaviksi. Sähkön alue- ja jakeluverkkotoiminnasta vastaavat noin 90 verkkoyhtiötä, joilla on sähkömarkkinaviranomaisen myöntämä verkkolupa. Verkonhaltijoiden tehtäviin kuuluu verkostojen ylläpito, käyttö ja kehittäminen. Toimijarakenne sähkön siirrossa on esitetty kuvassa 2.2. (Energia.fi) Kuva 2.2. Toimijarakenne sähkön siirrossa. (Energia.fi) Sähkömarkkinalain mukaan verkonhaltijoiden on avattava verkkonsa kaikkien halukkaiden käyttöön asianmukaista korvausta vastaan. Lain tavoitteena on ollut muodostaa sähköverkoista markkinapaikka, joka palvelee tasapuolisesti kaikkia sähkökaupan osapuolia. (Energia.fi) Sähkön siirrossa ja jakelussa sovelletaan pistehinnoittelua. Saman jakeluverkon alueella samantyyppiset käyttäjät maksavat sähkön siirrosta saman hinnan, joka ei riipu esimerkiksi siitä, kuinka kaukana sähköasemasta käyttöpaikka sijaitsee. Käyttäjä voi hankkia tarvitsemansa sähkön vapaasti mistä tahansa Suomen alueelta. Käyttäjä maksaa sähköenergian hinnan ohella liittymispisteessään maksun, joka kattaa koko siirtoketjun. (Energia.fi) Sähkönjakeluverkkoliiketoiminta on säädeltyä monopolitoimintaa. Liiketoiminnalle sallitaan kohtuullinen tuotto, joka määräytyy verkkoyhtiöön toimintaan sitoutuneen pääoman ja vallitsevan yleisen korkotason perusteella. Siirtohinnoittelun kohtuullisuutta valvoo Energiavirasto. Sähkönjakeluverkkotoiminnan hinnoittelun valvonnasta seuraa, että tuottomahdollisuudet ovat rajoitetut. Toisaalta myös toiminnan riskit ovat pienet ja tuotto pysyy lähes vakiona. Sähkönjakeluverkkoliiketoiminnan tavoitteita ja kehitysnäkymiä on käsitelty tarkemmin luvussa 7.
5 2.3.3 Sähkön tuotanto Sähkömarkkinauudistuksen myötä toimintaympäristö sähkön tuotannossa on kokenut huomattavia muutoksia. Kilpailu on kiristynyt Suomen liityttyä entistä selkeämmin osaksi pohjoismaisia ja eurooppalaisia markkinoita. Kilpailun myötä toimitussopimukset ovat lyhentyneet ja toiminnan riskit kasvaneet. Ympäristötekijöiden, kuten ympäristöverojen ja päästörajoitusten, merkitys sähkön tuotannossa on viime vuosina lisääntynyt. Sähkön hankinta Suomessa vuonna 2013 tuotantolajeittain jaoteltuna on esitetty kuvassa 2.3. Vesivoima 15,2 % Tuulivoima 0,9 % Ydinvoima 27,1 % Nettotuonti 18,7 % Erillistuotanto 9,7 % Yhteistuotanto, teollisuus 12,0 % Yhteistuotanto, kaukolämpö 16,4 % Kuva 2.3. Sähkön hankinta Suomessa vuonna 2013 tuotantolajeittain jaoteltuna. (Energia.fi) Kuvasta 2.3 nähdään, että tuotantorakenne Suomessa on monipuolinen. Vuonna 2013 ydinvoiman osuus kokonaistuotannosta oli reilu neljännes, vesivoiman osuus 15 %, sähkön ja lämmön yhteistuotannon osuus reilu neljännes sekä muun lämpövoiman osuus 10 %. Tuonnin osuus oli 19 %. Sähköenergian kokonaiskulutus Suomessa vuonna 2013 oli 83,9 TWh. Raakaenergialähteittäin jaoteltu sähkön hankinta vuonna 2013 on esitetty kuvassa 2.4. (Energia.fi)
6 Ydinvoima 27,1 % Jäte Turve 1,1 % 4,0 % Kivihiili 11,8 % Öljy 0,3 % Biomassa 12,8 % Kuva 2.4. Sähkön hankinta vuonna 2013 energialähteittäin jaoteltuna.(energia.fi) Yhteistuotantolaitoksissa tuotetun sähkön määrä vaihtelee, sillä primäärituotteena yhteistuotantolaitoksissa on lämpö, jonka vuosittainen tarve vaihtelee. Voimalaitoksia ajetaan lämmöntarpeen mukaan ja sähköä saadaan lämmöntuotannon sivutuotteena. Vesivoiman määrän vaihtelee vuosittaisen vesitilanteen mukaan. Vesitilanne heijastuu myös tavallisella lauhdevoimalla tuotetun sähkön määrään. Hyvinä vesivuosina vesivoimaa käytetään paljon ja tavallista lauhdevoimaa vastaavasti vähemmän. Huonoina vesivuosina vesivoiman osuus sähkön hankinnasta pienenee ja tavallisen lauhdevoiman osuus kasvaa. Hyvinä vesivuosina pohjoismaisilla sähkömarkkinoilla on ollut tarjolla runsaasti halpaa vesivoimaa, jota on kannattanut tuoda Suomeen. 2.3.4 Sähkökauppa Vesivoima 15,2 % Nettotuonti 18,7 % Tuuli 0,9 % Maakaasu 8,1 % Sähkön tukkukauppaa käydään sähköpörssissä ja OTC-markkinoilla. Sähkön tuottajat myyvät sähköä sekä pohjoismaisen sähköpörssin Nord Poolin kautta että OTC - markkinoilla kahdenvälisin sopimuksin suurasiakkaille ja sähkön vähittäismyyjille. Sähkön vähittäismyyjinä toimivat pääasiassa paikalliset ja alueelliset sähköyhtiöt. Sähkömarkkinauudistuksen myötä sähkön myynti ei enää ole luvanvaraista toimintaa, joten ala on vapaa myös uusille yrittäjille. Kuvassa 2.5 on esitetty toimijarakenne sähkökaupassa. Sähkökauppa jakaantuu isoimmille toimijoille suunnattuun tukkusähkökauppaan sekä pienasiakkaille suunnattuun vähittäismyyntiin. Asiakas G G G Tukkusähkö Markkinat; pörssi ja OTC-kauppa Vähittäismyynti Asiakas Asiakas Asiakas G Asiakas Kuva 2.5. Tukkusähkö- vähittäismyyntimarkkinat. G = sähkön tuottaja, Asiakas = sähkön käyttäjä.
7 Sähkön vähittäiskaupassa katteet ovat tyypillisesti pieniä. Toiminnan riskit sen sijaan ovat suuria, mikä edellyttää sähkökaupassa toimivilta osapuolilta suunnitelmallista riskienhallintaa. Sähkön hankinnan ja myynnin suunnittelussa sähkön kulutuksen ennustuksilla on keskeinen rooli. Ennusteita käytetään myös sähkön tuotannon suunnittelussa. Ennusteet eivät koskaan toteudu aivan sellaisinaan vaan tuotannon ja kulutuksen välillä voi olla yli- tai alijäämä. Valtakunnallisen tehotasapainon ylläpitämiseksi tuotannon ja kulutuksen on kuitenkin oltava tasapainossa joka hetki, tehotasapainon säilyminen hoidetaan säätösähkömarkkinoiden avulla. Kaupallisesti kunkin suuren toimijan (ns. tasevastaavien) tuotannon ja kulutuksen välistä poikkeamaa käsitellään tasesähkönä. Sähkökaupan osapuolten toimitukset selvitetään taseselvitysten avulla. 2.3.5 Sähkön hinta Sähkön tukkuhinta määräytyy kunkin ajanhetken kysynnän ja tarjonnan mukaan. Sähkön tukkukauppaa käydään sähköpörsseissä (Pohjoismaissa Nord Pool). Sähköpörssin Spot -markkinoilla sähkölle määritetään hinta seuraavan vuorokauden jokaiselle tunnille markkinaosapuolien toimittamien osto- ja myyntitarjouksien perusteella. Tarjoukset koskevat tiettyä sähkömäärää. Tiettyä tuntia vastaavat tarjoukset yhdistetään kysyntä- ja tarjontakäyriksi kuvan 2.7 mukaan. Näin kaikella käytettävissä olevalla tuotannolla on markkinoilla sama asema ja hinta huolimatta tuotantotavasta. Kysyntä- ja tarjontakäyrien kohtaamispisteestä määräytyy sähkön ns. tukkumarkkinahinta, jolla kaikki kaupankäynti tapahtuu. Tukkumarkkinahinta vastaa muuttuvia kustannuksia kaikkein kalleimmasta tuotantomuodosta, joka tarvitaan sähkön kysynnän kattamiseksi. Tämän tuotantomuodon muuttuvat kustannukset määrittävät sen hetkisen marginaalikustannuksen sähkölle. Kun tuotannon ajojärjestys järjestetään alkaen alhaisimman marginaalikustannuksen tuotantomuodosta kalleimpaan kysynnän kattavaan tuotantomuotoon, sähkön tuotanto ja kulutus kohtaavat joka hetki mahdollisimman alhaiseen hintaan. Tämän vuoksi esimerkiksi jos tuottaja on tarjonnut kapasiteettiaan markkinahintaa korkeammalla hinnalla, se ei ehkä saa sähköä myydyksi. Kuvassa 2.6 on havainnollistettu kaksi eri tilannetta, sähkön kysyntä kesällä ja talvella. Kesällä pienemmät kuormitukset katetaan perustuotannolla, jolla tyypillisesti on suuret perustamiskustannukset, mutta pienet muuttuvat kustannukset. Siksi tällaista tuotantoa on kannattava ajaa niin paljon kuin mahdollista. Talvella sähkön kysyntä kasvaa ja sähköntuotantokapasiteettia pitää ottaa enemmän käyttöön. Tukkuhinnassa voi esiintyä suuriakin piikkejä, jos kysynnässä tai tarjonnassa tapahtuu radikaaleja muutoksia.
8 Muuttuvat Tuotantokustannukset ( /MWh) Kysyntä talvella Tarjonta Hinta talvella Hinta kesällä Kysyntä kesällä Vesivoima Ydinvoima CHP Hiililauhde Kaasuturbiini Kysyntä kesällä Kysyntä talvella (MW) Kuva 2.6. Sähköenergian markkinahinnan muodostuminen. CHP = sähkön ja lämmön yhteistuotanto. Sähkön hintakehitys on pohjoismaisilla sähkömarkkinoilla voimakkaasti riippuvainen erityisesti Norjan vesivarannoista, koska huomattava osa sähköstä tuotetaan vesivoimalla. Kuvassa 2.7 on esitetty vesivarantojen sekä sähkön systeemihinnan ja Suomen aluehinnan riippuvuutta. Kuvasta on nähtävissä kaksi selkeää sähkön hintapiikkiä vuonna 2010. Normaalia heikomman vesitilanteen lisäksi hintoja nostivat kylmyys ja ongelmat ruotsalaisissa ydinvoimaloissa (NordREG 2011). GWh 20000 /MWh 180 15000 160 10000 5000 0 140 120-5000 2007 2008 2009 2010 2011 2012 2013 100-10000 80-15000 -20000-25000 60 40-30000 20-35000 Erotus normaaliin vesivuoteen Systeemihinta Suomen aluehinta 0 Kuva 2.7. Vesivarantojen taso suhteessa normaalivuoteen ja sähkön hinnan käyttäytyminen (energia.fi) Sähkön pörssihinta ei välittömästi vaikuta vähittäismarkkinoiden hintatasoon, koska asiakkaat solmivat toistaiseksi voimassa olevia sopimuksia, joiden hinnanmuutoksista on ilmoitettava asiakkaalle vähintään kuukautta etukäteen, tai määräaikaisia, kiinteähintaisia sopimuksia. Spot-hintaan sidotut sopimukset ovat pienasiakkaiden parissa vähemmän suosittuja.
9 Suuri osa hinnannousuista on johtunut verotuksen kiristymisestä sekä vesivarantojen tilanteesta. Sähkön vähittäishinta on ollut nousussa viime vuosina, mutta on kuitenkin edelleen melko edullista. Sähkön kuluttajahinta on Euroopan halvimpien joukossa. Kuvassa 2.8 on esitetty kotitalouksien sähköenergian hinnan reaalinen kehitys vuoden 1997 alusta vuoden 2012 kesäkuuhun. 170 100 = vuoden 1997 alun hintataso 160 150 140 130 Sähkölämmittäjä 120 110 100 90 80 70 1/1997 7/1997 1/1998 7/1998 1/1999 7/1999 1/2000 7/2000 1/2001 7/2001 1/2002 7/2002 1/2003 7/2003 1/2004 7/2004 1/2005 7/2005 1/2006 7/2006 1/2007 Kotitalouskuluttaja 7/2007 1/2008 7/2008 1/2009 7/2009 1/2010 7/2010 1/2011 7/2011 1/2012 Kuva 2.8. Kotitalouksien sähköenergian verottoman hinnan reaalinen kehitys ajalla 1/1997-6/2012. (EMV 2012) Kuvassa 2.9 on esitetty kotitalouksien ja keskisuuren teollisuuden verottoman siirtohinnan reaalinen kehitys vuoden 1997 alusta vuoden 2012 kesäkuuhun. 115 110 100 = vuoden 1997 alun hintataso Keskisuuri teollisuuskäyttäjä 105 100 95 90 85 Kotitalouskuluttaja 80 1/1997 7/1997 1/1998 7/1998 1/1999 7/1999 1/2000 7/2000 1/2001 7/2001 1/2002 7/2002 1/2003 7/2003 1/2004 7/2004 1/2005 7/2005 1/2006 7/2006 1/2007 7/2007 1/2008 7/2008 1/2009 7/2009 1/2010 7/2010 1/2011 7/2011 1/2012 Kuva 2.9. Verottoman siirtohinnan reaalinen kehitys ajalla 1/1997-6/2012. (EMV 2012) Kuvasta 2.9 nähdään, että pienkäyttäjien tullessa kilpailun piiriin vuonna 1998 siirtohinnoissa tapahtui vähäistä nousua ja sen jälkeen hinnat pysyivät melko vakaina useita vuosia. Viimevuosien trendi on ollut kuitenkin nouseva.
10 Kotitalouksien sähkön verollisen kokonaishinnan reaalinen kehitys vuodesta 2003 lähtien on esitetty kuvassa 2.10. 170 160 100 = vuoden 2003 alun hintataso 150 140 Sähkölämmittäjä 130 120 110 Kotitalouskuluttaja 100 90 80 1/2003 7/2003 1/2004 7/2004 1/2005 7/2005 1/2006 7/2006 1/2007 7/2007 1/2008 7/2008 1/2009 7/2009 1/2010 7/2010 1/2011 7/2011 1/2012 7/2012 1/2013 Kuva 2.10. Sähkön verollisen kokonaishinnan reaalinen kehitys ajalla 1/2003-1/2013. (EMV 2013b) Sähkön kokonaishinnan nousuun vuoden 2011 alussa vaikutti sähköenergian hinnan nousun lisäksi vuoden alussa voimaan tullut sähköveron korotus. 2.3.6 Sähkön käyttö Suomessa sähkön osuus energian loppukäytöstä on noin neljännes. Kuvassa 2.11 on esitetty sähkön käytön jakaantuminen käyttäjäryhmittäin vuonna 2013, jolloin sähkön kokonaiskulutus oli 83,9 TWh. (Energia.fi) Metallinjalostus 10% Kemianteollisuus 8 % Muu teollisuus 5% Asuminen ja maatalous 28 % Teollisuus yhteensä 47 % (v. 2012 46%) Muu kulutus yhteensä 50 % (v. 2012 51 %) Metsäteollisuus 24 % Häviöt 3 % Palvelut ja rakentaminen 22 % Kuva 2.11. Sähkön käyttötiedot käyttäjäryhmittäin vuonna 2013. Sähkön kokonaiskulutus oli 83,9 TWh. (Energia.fi) Kuvasta 2.11 nähdään, että Suomessa suurin sähkön käyttäjäryhmä on teollisuus, joka käyttää noin puolet sähköenergiasta. Valtaosa teollisuuden käyttämästä sähköenergiasta menee metsäteollisuuden tarpeisiin. Kotitaloudet käyttävät sähköstä noin viidenneksen
11 ja loppu jakautuu palveluiden, julkisen kulutuksen ja maatalouden kesken. Sähkön siirtohäviöiden osuus kokonaiskulutuksesta on muutaman prosentin luokkaa. 2.3.7 Sähkönkulutuksen mittaus Perinteisesti pienasiakkaiden, kuten kotitalouksien, sähkönkulutusta on mitattu mittareilla, jotka rekisteröivät energian kokonaiskulutuksen, mutta eivät kulutuksen ajallista sijoittumista päivä/yö-tasoa tarkemmin. Mittarit on luettu paikan päällä yleensä kerran vuodessa, ja laskutus mittauksien välillä on perustunut kuormitusmalleilla tehtyihin arvioihin. Maaliskuussa 2009 voimaan tullut valtioneuvoston asetus (VNA 66/2009) teki etäluettavat ja kulutuksen tuntitasolla rekisteröivät mittarit pakollisiksi myös pienasiakkaille. Asiakkaiden, joiden pääsulake on suurempi kuin 3 x 63 A, mittarit piti vaihtaa tuntirekisteröiviksi ja etäluettaviksi vuoden 2010 loppuun mennessä. Pienemmille asiakkaille tuntirekisteröivät etäluettavat mittarit oli asennettava viimeistään vuoden 2013 loppuun mennessä. Siirtymäajan jälkeenkin jakeluverkonhaltija voi poiketa tuntimittausvaatimuksesta tiettyjen asiakkaiden kohdalla, kuitenkin korkeintaan 20 prosentissa jakeluverkon sähkönkäyttöpaikoista. Käytännössä lähes kaikki mittarit ovat nyt tunneittain rekisteröiviä mittareita. Perinteiset mittarit on siirtymäajan jälkeen luettava kolme kertaa vuodessa aiemman yhden kerran sijaan. Tunneittain rekisteröivät mittarit on luettava kerran päivässä.
12 3 Sähkön käytön mallintaminen ja ennustaminen Sähkön käyttöä (kulutusta) on kyettävä ennustamaan sähkömarkkinoiden eri liiketoiminta-alueilla; tuotannossa, sähkön siirrossa ja jakelussa sekä myynnissä. Erityisesti niiden voimalaitosten, jotka eivät osallistu valtakunnallisen tehotasapainon hetkelliseen ylläpitoon sähkömarkkinoilla, tuotannon suunnittelu perustuu sähkön kulutuksen ennusteisiin. Sähkökaupassa yksi kannattavan toiminnan edellytyksiä on myynnin ja hankinnan suunnittelu mahdollisimman tarkasti siten, ettei yhtiön avoin positio muodostu merkittävästi suuremmaksi kuin on riskienhallintaa suunniteltaessa ajateltu. Avoimella positiolla tarkoitetaan esim. tilannetta, jossa sähkökauppiaalla on tiedossa tietty määrä sähkönmyyntiä (määrä ja hinta tiedossa), mutta sähkön hankinnasta osa on vielä avoinna määrän tai hinnan osalta. Sähkön myyntiennusteiden laadinnassa keskeinen lähtökohta on sähkön kulutuksen ennustaminen ja sähkön hankinta puolestaan suunnitellaan myyntiennusteiden perusteella. Sähkön siirrossa ja jakelussa sähkön kulutuksen ennusteet ovat verkostosuunnittelun ja käyttötoiminnan pohjana. Sähkön kulutusta ennustettaessa kiinnostavia asioita ovat hetkellinen pätö- ja loisteho, huipputeho, kulutuksen ajallinen vaihtelu, energian tarve ja häviöenergia. Sähkötehon tarve vaihtelee vuorokaudenajan, viikonpäivän ja vuodenajan mukaan. Kuvassa 3.1 on esitetty erään pienehkön 110/20 kv sähköaseman sähkönkulutus tammikuun ensimmäisellä viikolla. Kuvasta nähdään, ettei tehontarve pysy vakiona vaan se vaihtelee vuorokaudenajasta ja viikonpäivästä riippuen. Teho [MW] 9 8 7 6 5 4 3 2 1 0 Tammikuun 1. viikko Kuva 3.1. Erään sähköaseman sähkönkulutus tammikuun ensimmäisellä viikolla. Tällainen sähkönkulutuksen vaihtelu on pystyttävä ennakoimaan. Sähkön tuotantokapasiteettia on oltava vähintään kulutushuippujen aikaista sähkönkulutusta vastaava määrä. Sähkön kulutuksen voimakas vaihtelu on huomioitava siirto- ja jakeluverkkojen rakenteissa. Vaikka tuotanto saadaan vastaamaan kulutusta, on sähkö pystyttävä siirtämään tuotannosta kulutukseen ilman että häviöt kasvavat liian suuriksi ja että sähkön laatu säilyy hyväksyttävällä tasolla. Sähkönkulutuksen vaihtelut voidaan parhaiten ennakoida tuntemalla sähkönkäyttäjien kuormitustottumukset. Kotitalouksien viikoittaisen ja vuorokautisen sähkötehon tarpeen vaihtelu poikkeaa paljon esimerkiksi teollisuusyrityksen tehontarpeesta. Nämä asiat on huomioitava esim. verkon rakentamisen ja käytön suunnittelussa. Tarve sähkön käytön mallintamiselle on siis suuri. Seuraavissa kappaleissa kuvataan, miten sähkön käyttöä on Suomessa mallinnettu ja miten malleja voidaan soveltaa käytännössä.
13 3.1 Kuormitusten määrittäminen Teoriassa muttei käytännössä sähköverkkojen eri solmupisteiden kuormitusten määrittäminen voisi tapahtua reaaliaikaisten mittausten avulla. Sähköverkot ovat kuitenkin niin laajoja, ettei teho- ja virtamittausten toteuttaminen näin laajasti ole mahdollista. Lähtökohtana kuormitusten arvioinnille käytetäänkin useimmissa tapauksissa tehojen sijasta vuosienergioita, jotka tunnetaan kaikkien sähkönkäyttäjien osalta, koska ne ovat sähkönkäytön laskutuksen perustana. Myös sähkönkäyttöennusteet laaditaan yleensä energiapohjalta. Asiakkaiden vuosienergioiden tunteminen ei kuitenkaan anna verkoston seurantalaskennan, suunnittelulaskennan ja käyttötoiminnan kannalta riittävää informaatiota verkon kuormituksista. Energia pitää siten pystyä muuttamaan mahdollisimman tarkasti joko huipputehoksi tai tietyn hetken tehoksi. Vuosienergiat voidaan muuttaa tehoiksi useilla eri menetelmillä, kaikille menetelmille on ominaista mittauksin saatu kokemus kuormitusten käyttäytymisestä. Aiemmin yleisesti käytössä Velanderin kaava on korvautunut kuormitusmalleihin perustuvilla menetelmillä. Seuraavassa on ensin lyhyesti kuvattu Velanderin kaavan käyttöä ja sitten laajemmin kuormitusmalleja. 3.1.1 Velanderin kaava Huipputehojen arvioimiseen voidaan käyttää yhtälön 3.1 mukaista ns. Velanderin kaavaa, joka oli tavanomaisin huipputehojen laskentamenetelmä ennen nykyisten käytössä olevien kuormituskäyrien määritystä. Pmax k1 W k2 W, (3.1) Yhtälössä P max on huipputeho kilowatteina [kw], k 1 ja k 2 ovat Velanderin kertoimet ja W on vuosienergia megawattitunteina [MWh]. Kertoimet k 1 ja k 2 ovat käytännön kokemusten ja mittausten perusteella valittuja. Taulukossa 3.1 on esitetty tyypillisiä Velanderin kertoimia. Taulukon kertoimet ovat voimassa vain esitetyillä yksiköillä (huipputeholle [kw] ja vuosienergialle [MWh]). Jos yksiköitä muutetaan, myös kertoimia k 1 ja k 2 on muutettava. Taulukko 3.1 Velanderin kaavan kertoimia (P [kw], W [MWh]) Sähkön käyttäjäryhmä k 1 k 2 Kotitalous 0,29 2,50 Sähkölämmitys 0,22 0,90 Palvelu 0,25 1,90 Käytännössä sähkönkäyttäjät eivät noudata tarkasti Velanderin kaavaa johdettaessa käytettyjä oletuksia. Mittaukset ovat kuitenkin osoittaneet, että Velanderin kaava antaa likimain oikeita arvoja tehohuipulle silloinkin, kun osakuormitukset ovat erilaisia. Velanderin kaava soveltuu erityisesti suuren sähkönkäyttäjäjoukon huipputehon määritykseen. Yksittäisen sähkönkäyttäjän ja tietyn hetken tehojen määritykseen se ei sovellu.
14 Kokonaiskulutuksen huipputehon arvioinnissa ei riitä, että tunnetaan eri kuluttajaryhmien huipputehot tarkasteltavalla alueella. Lisäksi on tiedettävä, miten eri kuluttajaryhmien tehon tarve vaihtelee eri aikoina. Tämä vaihtelu voidaan ottaa huomioon ns. osallistumiskertoimien avulla. Osallistumiskerroin kertoo tiettynä ajankohtana sähkönkäyttäjän tehon suhteessa sähkönkäyttäjän huipputehoon. 3.1.2 Kuormitusmallit Velanderin kaavaa tarkempaan kuormitusten mallintamiseen päästään profiloimalla eri tyyppisten sähkönkäyttäjien sähkönkäyttötottumukset. Profiloinnin tavoitteena on laatia ns. kuormitusmallit, jotka kuvaavat sähkönkäyttäjän määrällisesti ja ajallisesti vaihtuvaa sähkönkulutusta. Tällaisen kuormitusmallin avulla voidaan määrittää yksittäisten sähkönkäyttäjien tuntikohtainen tehontarve. Käytännön toteutus on tehty määrittelemällä tyyppikäyttäjät, joita on yhteensä 40 kpl ja tekemällä tyyppikäyttäjille määrällisesti ja ajallisesti laajat mittaukset. Nykyisin käytössä olevat kuormitustiedot perustuvat Sähkölaitosyhdistyksen (nykyinen Sähköenergialiitto ry Sener) vuonna 1992 julkaisemaan sähkön käytön kuormitustutkimukseen. Mittaustoiminnan toteutuksesta vastasi 42 sähkölaitosta ja mittauskohteita oli yhteensä lähes 1200. Mittaukset tehtiin 1980 ja 90 luvuilla. Mittausten tuloksena on saatu eri tyyppikäyttäjien tuntikohtainen tehovaihtelu, tuntikeskitehojen hajonta ja lämpötilariippuvuus. Sähkön kokonaiskäytön tarkasteluissa käytetään lukuisten pienten käyttäjäryhmien sijasta laajempia ryhmiä, jotka muodostavat hierarkkisen jaon kokonaiskulutuksesta alaspäin. Kokonaiskäytön jakaantumisen periaate on esitetty kuvassa 3.2. KOKONAISKULUTUS JALOSTUS PALVELU YKSITYINEN JA MAATALOUS Prosessiteollisuus Hallinto Sähkölämmitys Muu teollisuus Liike-elämä Osittainvaraava 1-vuoro teollisuus 2-vuoro teollisuus Huonekohtainen Varaava Kotitaloudet Kerrostaloasuminen Omakoti-ja rivitaloasuminen Maataloudet Kuva 3.2 Sähkönkäyttäjäryhmien pääpiirteittäinen jaottelu. Kuormitusmallien muodostaminen mittausaineistosta ja erilaisten kuormitusesitysten laskenta on esitetty kuvassa 3.3 (SLY 1992).
15 Kyselylomake Kuormitusmuisti sähkölaitokselta Ilmatieteen laitos Kohdetiedot Mittausdata Tietokanta Kohdetiedot Suodatettu mittausdata Vuosienergian estimaatti Lämpötilatiedot Mittaustietojen analysointi Kuormitusmalleja Kuva 3.3. Periaatekaavio kuormitustietojen keruusta, kuormitusmallien laskentaan ja edelleen erilaisten tulosten laskentaan. (SLY 1992) Kuormitusmallien määrityksen lähtökohta on siis käyttäjäryhmittelyssä, joka jakaa sähkönkäyttäjäjoukon sellaisiin ryhmiin, joissa sähkön käyttö voidaan olettaa riittävällä tarkkuudella samanlaiseksi. Kerätyn mittausaineiston analysoinnissa käyttäjäryhmille laskettiin vuoden jokaista 2-viikkojaksoa vastaavat keskitehot ja niihin suhteutetut 2- viikkoindeksit (kuva 3.4) sekä päivittäiset tuntimallit ja tunti-indeksit kunakin 2- viikkojaksona (kuva 3.5). Viikonpäiväjaksona käytetään kolmitasoista mallia; arki, aatto ja pyhä. Kaikki arkipäivät oletetaan siis samanlaisiksi kyseisenä 2-viikkojaksona. Kuormitusmalleja muodostettaessa sähkön käytön lämpötilariippuvuus on huomioitu yksinkertaisella lineaarisella laskentamallilla yhtälön (3.2) mukaisesti: q tod ( t) q0 ( t) T ( t), (3.2) missä q tod (t) on mitattu sähkön käyttö hetkellä t, q 0 (t) on sähkön käyttö normaalissa ulkolämpötilassa hetkellä t, on sähkön käytön lämpötilariippuvuutta kuvaava kerroin, joka on voimassa koko mallin ajan, ja T(t) on mitatun ja normaalin ulkolämpötilan erotus hetkellä t. Normaalilla ulkolämpötilalla tarkoitetaan laskennallista referenssilämpötilaa. (SLY 1992) 3.2 Kuormitusmallien käyttö Eri käyttötarkoituksia varten tarvitaan kuormituksista erilaisia esitystapoja, kuten kuormituskäyriä, indeksisarjoja ja tunnuslukuja, jotka kattavat koko vuoden. Tällöin lasketuille malleille suoritetaan niiden muodostamiseen nähden käänteiset operaatiot. Tuloksena saadaan kuormitustiedot, jotka vastaavat tiettyä vuosienergiaa, tietyn vuoden kalenteritietoja ja tiettynä vuonna tietyssä paikassa vallinneita olosuhteita. (SLY 1992)
16 3.2.1 Keskitehon laskeminen Tietyn ajankohdan i tuntikeskitehon absoluuttinen arvo voidaan laskea suhteellisista 2- viikko-ja tunti-indeksisarjoista yhtälön (3.3) avulla: P ri E r Q ri qri, (3.3) 8760 100 100 missä P ri on käyttäjäryhmän r ajankohdan i tuntikeskiteho, E r on käyttäjäryhmän r vuosienergia, Q ri on käyttäjäryhmän r ajankohtaa i vastaava 2-viikkoindeksi (ns. ulkoinen indeksi), q ri on käyttäjäryhmän r ajankohtaa i vastaava tunti-indeksi (ns. sisäinen indeksi). (SLY 1992) Esimerkki kuormituskäyrän käytöstä tehon määrittämisessä Omakotitaloasujan vuosienergia on 10 000 kwh. Mikä on käyttäjän tuntiteho tammikuun 1. viikon lauantai-iltana klo 17 18? Tarkastellaan omakotitaloasujan sähkön käyttöä kuvaavaa kuormituskäyrää ja haetaan sieltä Q ri eli kyseisen käyttäjäryhmän tammikuun 1. viikkoa vastaava 2-viikkoindeksi. kw 0,8 2-viikkokeskitehot Omakoti- ja rivitaloasuminen Vuosienergia /kw h M ittauskohteita/kpl 5000 60 0,6 0,4 0,2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2-viikkokeskitehot Viikko 1 2 3 4 5 6 7 8 9 10 11 12 13 123 123 118 116 109 107 101 100 97 88 84 77 77 Viikko 14 15 16 17 18 19 20 21 22 23 24 25 26 73 73 78 79 89 94 100 104 107 112 115 127 129 Kuva 3.4. 2-viikkokeskitehot ja indeksit omakoti- ja rivitaloasumiselle. 2-viikkoindeksille saadaan kuvan alareunassa olevasta taulukosta arvo Q ri = 123, joka tarkoittaa, että tammikuun alussa olevan 2-viikkojakson keskiteho on 23 % vuotuista keskitehoa suurempi. Kuvassa olevat keskitehot (kw) on laskettu sellaiselle sähkönkäyttäjälle, jonka vuosienergia on 5000 kwh.
17 Seuraavaksi haetaan kyseisen käyttäjäryhmän lauantai-iltaa (aattoa) klo 17-18 vastaava tunti-indeksi q ri kuvasta 3.5. Keskimääräinen vuorokausi, suhteelliset arvot kesä talvi 250 200 150 100 50 0 7.00 12.00 17.00 22.00 03.00 Arki 250 200 150 100 Kuva 3.5.Tunti-indeksit omakoti- ja rivitaloasumiselle. 50 0 7.00 12.00 17.00 22.00 03.00 Aatto 250 200 150 100 50 0 7.00 12.00 17.00 22.00 03.00 Pyhä Kuvasta saadaan tunti-indeksille arvo q ri = 250, talviaatto klo 17-18. Indeksi tarkoittaa, että kyseisen tunnin keskiteho on 150 % suurempi kuin tammikuun ensimmäisen 2- viikkojakson keskiteho. Keskituntitehoksi kyseiselle ajankohdalle saadaan: P ri 10000 kwh 8760 h 123 250 100 100 3,5kW 3.2.2 Huipputehon laskeminen Edellä kuvatulla tavalla laskettu keskiteho kuvaa suuren sähkönkäyttäjäjoukon mukaista keskimääräistä käyttäytymistä. Yksittäisen sähkönkäyttäjän sähkönkäytössä esiintyy voimakastakin satunnaisvaihtelua, välillä teho on suurempi ja välillä pienempi kuin keskimääräinen teho. Kuormitusmallin tuloksena saatavaa keskitehoa ei voidakaan käyttää sähkönkäyttäjän huipputehona, joka yksittäisen sähkönkäyttäjän kohdalla on selvästi keskitehoa suurempi. Huipputeho on kuitenkin kiinnostava suure, koska se vaikuttaa mm. verkoston mitoitukseen. Huipputehoa voidaan arvioida tilastomatematiikan keinoin, kun oletetaan samantyyppisten sähkönkäyttäjien tehojen vaihtelun tiettynä ajanhetkenä olevan normaalijakauman mukaista. Tällöin tiettyä todennäköisyyttä (ylitystodennäköisyyttä) a vastaava huipputeho voidaan laskea, jos hajonta tunnetaan (oletetaan normaalijakaumaksi). Kuva 3.6. Normaalijakauma ja todennäköisyydet. z Todennäköisyys sille, että x < + z 0,00 0,50 0,68 0,75 1,00 0,84 1,65 0,95 2,00 0,97 2,32 0,99 3,00 0,999 4,00 0,99997 Esimerkiksi, jos a = 1 % (eli halutaan 99 % varmuus siitä, ettei huipputeho ylitä laskettua tehoa) saadaan normaalijakaumasta kertoimeksi z 99 = 2,32 (ko. huipputeho on