MasterClass 14. Hiukkasfysiikan kokeet
|
|
- Pentti Nurmi
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 MasterClass 14 Hiukkasfysiikan kokeet Mikko Voutilainen Helsingin yliopisto osa kalvoista: Lauri A. Wendland Hiukkasfysiikan kokeet CERNissä 1 / 54
2 Koe ja teoria kohtaavat Teoria Kokeet Hiukkasfysiikan kokeet CERNissä 2 / 54
3 Suuret kiihdyttimet Hiukkasfysiikan kokeet CERNissä 3 / 54
4 Valtaisat ilmaisimet Hiukkasfysiikan kokeet CERNissä 4 / 54
5 2000 triljoonaa törmäystä Hiukkasfysiikan kokeet CERNissä 5 / 54
6 Satoja petatavuja dataa Hiukkasfysiikan kokeet CERNissä 6 / 54
7 Uusi Apollo-ohjelma Ensimmäinen kierros klo 10:28 Hiukkasfysiikan kokeet CERNissä 7 / 54
8 Innostuneita tutkijoita TeV fysiikka-ajon alku 30. maaliskuuta, 2010 klo 12:57 Hiukkasfysiikan kokeet CERNissä 8 / 54
9 Tiedettä reaaliajassa In science, we expect new discoveries to be confirmed by independent experiment, then accepted by scientific community after scrutiny On July 4 th, this all took place in a single seminar: discovery by acclamation! A new boson was found, with mass 125.7±0.5 GeV, and with properties consistent with the SM Higgs Hiukkasfysiikan kokeet CERNissä 9 / 54
10 MasterClass 14 Osa 3: kiihdyttimet * Kiihdytys sähkökentällä * Magneetit * LHC/CERN: status ja tavoitteet * Törmäykset: E=mc 2 Hiukkasfysiikan kokeet CERNissä 10 / 54
11 Kiihdytinkompleksi Maailman suurin kiihdytinkompleksi: LHC-kiihdytinrengas 27 km, neljä suurta koeasemaa, lukuisia esikiihdyttimiä Hiukkasfysiikan kokeet CERNissä 11 / 54
12 Esikiihdyttimet Kiihdytin toimii parhaiten tietyllä energia-alueella (LHC TeV) Todella suureen energiaan pääsyyn tarvitaan ketju esikiihdyttimiä LINAC (LINear Accelerator): 50 MeV PSB (Proton Synchrothron Booster, 1972): 1.4 GeV PS (Proton Synchrotron, 1959): 26 GeV SPS (Super Proton Synchrotron, 1976): 450 GeV LHC (Large Hadron Collider, 2008, LEP ): 7 TeV Hiukkasfysiikan kokeet CERNissä 12 / 54
13 Potentiaaliero: ev Hiukkaskiihdyttimet perustuvat varauksen kiihdyttämiseen sähkökentällä Yksinkertaisin kiihdytin on kondensaattori Hiukkasfysiikan energian yksikkö on 1 ev eli elektronivoltti: elektronin saama liike-energia sen ylitettyä 1 V:n potentiaaliero Aiemmin esikiihdyttimenä käytetyllä Cockcroft-Walton generaattorilla eli jännitteenkertaajalla päästään miljooniin voltteihin Hiukkasfysiikan kokeet CERNissä 13 / 54
14 Liukuputki Läpilyönti rajoittaa levyn suurinta mahdollista jännitettä (vrt. salamat) Ratkaisuna käyttää pientä jännitettä ja vaihtaa putkien polariteettia Matalan energian malleissa käytetään liukuputkia (drift tube), joiden välissä on sähkökenttä. Putken polariteetti vaihdetaan, kun hiukkanen on putken sisällä Kiihdytys toimii, kun hiukkaset kimpuissa Fermilab 200 MeV linac drift tube CERN SPS RF cavity Hiukkasfysiikan kokeet CERNissä 14 / 54
15 Radiotaajuusresonaattori Lähellä valonnopeutta tarvittava kytkentänopeus on mikroaaltotaajuudella Kiihdytinputket vaihdetaan radiotaajuusresonaattoreihin (RF) Resonaattoriontelossa on seisova radioaalto, jonka sähkökenttä värähtelee kiihdytyssuunnassa Hiukkasfysiikan kokeet CERNissä 15 / 54
16 Rengaskiihdytin Suuriin energioihin pääsy vaatii todella pitkän kiihdytyksen Laitteiston pienentämiseksi hiukkaset kierrätetään ympyrää ja yhtä kiihdytinjaksoa käytetään uudelleen ja uudelleen off-beam collimator kiihdytinjakso beam abort beam halo collimator Hiukkasfysiikan kokeet CERNissä 16 / 54
17 Hiukkanen magneettikentässä Varatun hiukkasen rata kaareutuu magneettikentässä: F = q v x B Risti- eli vektoritulon suunta oikean käden säännöllä X x Y = Z...tai vasemman käden muistisäännöllä F.B.I. (I=qv) Yhdistämällä Newtonin toinen laki, F = ma, keskeiskiihtyvyys a = v 2 / R ja p = mv: p = qrb eli suurempi liikemäärä vastaa suurempaa kaarevuussädettä Hiukkasfysiikan kokeet CERNissä 17 / 54
18 Radan kääntäminen Ensimmäiset rengaskiihdyttimet käyttivät kestomagneetteja, jolloin hiukkasten kiertorata laajenee energian kasvaessa (syklotroni) Nykyisin käytössä sähkömagneetteja (tavallisia tai suprajohtavia), joiden virtaa voidaan muuttaa Hiukkanen ja sen antihiukkanen kaartuvat magneettikentässä eri suuntiin, joten ne voivat kulkea samaa putkea vastakkaisiin suuntiin LHC:ssä molemmat suihkut koostuvat protoneista, joten magneetteja tarvitaan kaksi Hiukkasfysiikan kokeet CERNissä 18 / 54
19 Vahva fokusointi Hiukkassuihkussa on pienessä tilassa suuri määrä saman varauksen omaavia hiukkasia, jotka pyrkivät erilleen Suihkun fokusointi tapahtuu kahdella poikittaisella kvadrupolimagneetilla, jotka taivuttavat harhautuneita hiukkasia kohti tyhjiöputken keskipistettä Tyypillisessä kiihdyttimessä on nk. FODO-ketju, jossa F fokusoi pystysuunnassa, D vaakasuunnassa ja O:t kääntävät rataa kvadrupolimagneetti testivarauksia dipolimagneetti Hiukkasfysiikan kokeet CERNissä 19 / 54
20 LHC-kompleksi (video) CERN-MOVIE mov 3:30 Hiukkasfysiikan kokeet CERNissä 20 / 54
21 Törmäys: E=mc 2 Törmäyksessä liike-energiaa muuttuu uusien hiukkasten massaksi Einsteinin kaavan E=mc 2 mukaisesti Liikemäärä ja kokonaisenergia säilyvät törmäyksessä: Kiinteällä kohtiolla vain Esuihku on käytettävissä uusien hiukkasten massaaan Protoni-protonitörmäyksessä koko 2Esuihku on käytettävissä uusien hiukkasten massaan kiinteä kohtio törmäytin Hiukkasfysiikan kokeet CERNissä 21 / 54
22 Suhteellisuusteoria Törmäyksissä syntyvät hiukkaset relativistisia eli suhteellisuusteorian mukaan E 2 = m0 2 c 4 + p 2 c 2 : Nopeus v lähes valonnopeus c: v~c Energia E ja liikemäärä p paljon suurempia kuin lepomassa m0: E>>m0c 2, p~e/c Käytännössä hiukkasfyysikot asettavat c=1 ja käyttävät energiasta (GeV), liikemäärästä (GeV/c) ja massoista (GeV/c 2 ) samaa energiayksikköä GeV (vastaa noin protonin massaenergiaa) Hiukkasfysiikan kokeet CERNissä 22 / 54
23 Materia vs antimateria Kaikissa tunnetuissa reaktioissa syntyy lähes täysin sama määrä ainetta ja antiainetta: varatut hiukkaset syntyvät vastapareittain leptoniluku säilyy (e, μ, τ, νe, νμ, ντ) baryoniluku (kolmen kvarkit hiukkaset kuten protoni ja neutroni) säilyy Kun hiukkanen ja antihiukkanen kohtaavat, syntyy puhdasta energiaa Hiukkasfysiikan kokeet CERNissä 23 / 54
24 MasterClass 14 Osa 4: ilmaisimet * Ilmaisinten perustyypit * Koeaseman rakenne * Varatut hiukkaset magneettikentässä * Energian mittaus ja muunnos signaaliksi * Hiukkasten tunnistaminen Hiukkasfysiikan kokeet CERNissä 24 / 54
25 Pari koeasemaa D0-koe, Fermilab CMS-koe, CERN Hiukkasfysiikan kokeet CERNissä 25 / 54
26 CMS - kompakti myonisolenoidi Jälki-ilmaisin Sähkömagneettinen kalorimetri Hadronikalorimetri Solenoidimagneetti Magneettivuon palautin (rautaa) Myoni-ilmaisimet Halkaisija: 15 m Pituus: 22 m Paino: t Magneettikenttä: 3.8 T Kollaboraattoreita: 3600 Kansallisuuksia: 38 Hiukkasfysiikan kokeet CERNissä 26 / 54
27 Biimiputki - hiukkasten moottoritie Protonikimput kulkevat koelaitteiston läpi ohuessa (n. 300 μm Be) biimiputkessa Protonit kulkevat siis tyhjiössä Törmäystuotteet lentävät yleensä vaivatta putken läpi Putkessa vastakkaisiin suuntiin liikkuvat protonikimput kulkevat toistensa läpi n. 20 μm x 20 μm x 10 cm kokoisella alueella keskellä koeasemaa 20µm törmäysalue 10cm Asennettu biimiputki Hiukkasfysiikan kokeet CERNissä 27 / 54
28 Jälki-ilmaisin - varattujen hiukkasten radat Sisin osa jälki-ilmaisimesta: piipikseli-ilmaisimia 70 milj. piipikseliä, joiden koko 100 μm x 150 μm Toimintaperiaate: varatut hiukkaset tuottavat piissä elektroniaukkopareja Vähintään kolme mittauspistettä kullekin radalle Mahdollistaa epästabiilien hiukkasten hajoamispaikan rekonstruoimisen (lentomatka tyypillisesti satoja μm) Kaaviokuva piipikseli-ilmaisimesta Puolikas piipikselimoduuli Rekonstruoitu neutraalin epästabiilin hiukkasen (D 0 ) hajoamispiste Hiukkasfysiikan kokeet CERNissä 28 / 54
29 Ulompi jälki-ilmaisin Ulompi osa jälki-ilmaisimesta: piinauhailmaisimia N. miljoona piinauhaa; n. 200 m 2 piitä Varatut hiukkaset tuottavat piissä elektroni-aukkopareja Mittaa varattujen hiukkasten jälkiä n. 10 µm tarkkuudella; antaa n. 10 mittauspistettä kullekin radalle 512/768 nauhaa 80/140 µm välein 12 cm Asennettu Piinauhailmaisin jälki-ilmaisin ilman piipikseleitä Rekonstruoituja jälkiä kosmisista myoneista Hiukkasfysiikan kokeet CERNissä 29 / 54
30 Fysiikkaa: ionisaatio Jälki-ilmaisinten toiminta perustuu ionisaatioon: varattu hiukkanen irrottaa atomien elektroneja sähkökenttä tai puolijohdediodi kerää varauksen Nykyaikainen jälki-ilmaisin toimii kuin digikameran kenno: tarkka paikannus Vanhoissa kupla- ja pilvikammioissa syntynyt varaus toimi kiehumis- tai tiivistymiskeskuksena, joista otettiin valokuva Hiukkasen radan kaarevuussäde kertoo hiukkasen liikemäärän (p=qrb) ja varauksen merkin Ionisaatiota hyödynnetään myös kalorimetreissä, joissa syntynyt varaus lasketaan yhteen Hiukkasfysiikan kokeet CERNissä 30 / 54
31 SM kalorimetri - elektronit ja fotonit N PbWO 4 kristallia Pysäyttää elektronit(/positronit) sekä fotonit Perustuu sähkömagneettiseen vuorovaikutukseen Valon määrä kristallissa vastaa hiukkasen energiaa Yksittäisiä Valmiiksi PbWO asennettu 4 -kristalleja kalorimetri 400:n PbWO 4 -kristallin moduuli Hiukkasfysiikan kokeet CERNissä 31 / 54
32 Fysiikkaa: tuikevalo Tuikevalo on kuin epätäydellinen ionisaatio: elektroni virittyy, mutta ei irtoa virityksen purkaantuminen vapauttaa fotonin valon kokonaismäärä verrannollinen hiukkasen energiaan Lyijyvolframaattikristalli, CMS, CERN Valo johdetaan valonmonistimiin, jotka muuttavat signaalin sähköiseksi Kamland, Japani: valonmonistimia nestetuikeainetankissa Tuikemuovia, CDF, Fermilab Hiukkasfysiikan kokeet CERNissä 32 / 54
33 Hadronikalorimetri Voileipä-rakenne Pino messinkilevyjä, joiden välissä tuikeilmaisimia Pysäyttää raskaat hiukkaset ja mittaa yksittäisen hiukkasen tai hiukkasryöpyn energian Perustuu vuorovaikutukseen atomiydinten välillä Tuikeilmaisinten valon määrä vastaa hiukkasten energiaa Hadronikalorimetrimoduuli Valmiiksi koottu kalorimetri Kierrätettyä messinkiä Venäjän laivastolta Hiukkasfysiikan kokeet CERNissä 33 / 54
34 Fysiikkaa: kuuro Kalorimetreissä primäärihiukkanen tuottaa kuuron sekundäärihiukkasia: sekundäärihiukkasia syntyy niin kauan kuin energiaa riittää niiden tuottoon sähkömagneettinen kuuro, n. 2 cm x 20 cm jarrutussäteily ja e + e - -parintuotto ytimen sähkökentässä vuorottelevat jarrutussäteily vaatii kevyen hiukkasen (=elektroni; myonit ja hadronit liian raskaita) hadroninen kuuro, n. 20 cm x 200 cm useita hadroneita kun osuma ytimeen; pieni maali, siksi pitkä kuuro hadroninen kuuro vaatii vahvasti vuorovaikuttavan hiukkasen (protoni, neutroni, pioni) Suurin osa ionisaatiosta ja tuikevalosta sekundäärihiukkasten tuottamaa Hiukkasfysiikan kokeet CERNissä 34 / 54
35 Kalorimetrejä Näytteistävässä kalorimetrissa absorboiva materiaali (usein metallilevy) tuottaa ryöpyn sekundäärihiukkasia, jotka aktiivinen materiaali mittaa Absorbaattori ja aktiivinen aine vuorottelevat => näytteistys: E = c1*e1 + c2*e2 + c3*e3... Levyjen välissä kuuro esim. ionisoi neste-argonia tai tuottaa valoa tuikemuovissa Aktiivinen kalorimetri sekä absorboi että aktivoituu esim. lyijyvolframaattikristallit Hiukkasfysiikan kokeet CERNissä 35 / 54
36 Solenoidimagneetti Suurin koskaan rakennettu suprajohtava magneetti magneettikenttä 3.8 T (max 4.0 T) operointilämpötila: 5 K (220 t kylmämassa) magneettikenttään varastoitunut energia: 2.3 GJ (riittää sulattamaan17 t kultaa) kaareuttaa varattujen hiukkasten lentoratoja Magneettivuon hajautuminen ympäristöön estetään rautalevyillä Al alloy Sc cable Insert Pure Al Al alloy EB welds Mallikappale käämityksestä Asennettu magneetti Hiukkasfysiikan kokeet CERNissä 36 / 54
37 Myoni-ilmaisimet Kolme eri ilmaisinteknologiaa perustuu myonin aiheuttamaan ionisaatioon n. miljoona mittauskanavaa n m 2 mittauspinta-alaa Mahdollistaa myoneiden tunnistamisen sekä niitä sisältävien törmäysten nopean valinnan Mittauspisteitä kosmisesta myonista Asennettuja ilmaisimia Hiukkasfysiikan kokeet CERNissä 37 / 54
38 Hiukkasten tunnistaminen Törmäystapahtuman selvittäminen on kuin palapeli Yhdistetään erilaisten neutriinot ilmaisintyyppien informaatio: Jälki-ilmaisin (varattujen hiukkasten jäljet) Kalorimetri (energia) Tiettyjä hiukkasia mittaavat ilmaisimet Asetetaan ilmaisimet magneettikentän sisään neutraalit hadronit varatut hadronit fotonit elektronit/ positronit myonit Hiukkasfysiikan kokeet CERNissä 38 / 54
39 Hiukkasten tunnistaminen Hiukkaset vuorovaikuttavat aineen kanssa eri tavoin Varatut hiukkaset ionisoivat, joten niiden radat havaitaan Elektroni ja fotoni tuottavat sähkömagneettisen ryöpyn Hadronit tuottavat pitkän hadronisen ryöpyn Raskaat muonit tunkeutuvat aineen läpi tehokkaasti Neutronit havaitaan epäsuorasti liike-määrän säilymisen kautta: tiiviys! Hiukkasfysiikan kokeet CERNissä 39 / 54
40 Liipaisu ja tiedonkeruu 40 MHz Törmäystapahtumia 100 khz 1-tason liipaisu 1 Tb/s Törmäyksen rekonstruointi 500 Gb/s kytkin Eri ilmaisinten tiedon yhdistäminen Tietokonefarmi Päätös onko tapahtuma mielenkiintoinen Analogia valokuvaamiseen: otetaan 40 milj. kertaa sekunnissa jokaisen kuvan koko n. 1 MB kuva otetaan n. 500 eri osassa kuvan osat yhdistetään nopealla kytkimellä yhdistetyt osat analysoidaan prosessorilla (n prosessoria) valitaan n. 250 mielenkiintoista kuvaa sekunnissa ja tallennetaan ne maailmanlaajaan valokuva-arkistoon (n GB / vuosi) ~250 Hz (=250 MB/s) Valittujen törmäystapahtumien tallennus Hiukkasfysiikan kokeet CERNissä 40 / 54
41 Törmäys (video) CERN-MOVIE avi 0:30 Hiukkasfysiikan kokeet CERNissä 41 / 54
42 MasterClass 14 Osa 5: data-analyysi * Signaali ja tausta * Menetelmät: lukumäärät, massapiikit * Tilastotiede ja virhearviot Hiukkasfysiikan kokeet CERNissä 42 / 54
43 Tavoite: löytää Higgsin bosoni Signaali ja tausta Higgsin bosoni hajoaa toisinaan W-bosoniin, H->W + W - Tämä on etsimämme signaali W + W - pareja syntyy protoni-protonitörmäyksissä myös ilman Higgsin bosonia Tämä on taustaa etsinnöillemme Kuinka erottaa nämä toisistaan? Lukumäärät Massapiikit Kinemaattiset leikkaukset Tilastotiede! Events / 10 GeV CMS 4.9 fb (7 TeV) fb (8 TeV) data top H WW DY+jets W+jets WW WZ+ZZ+VVV -1 m H -1 = 125 GeV eµ 0-jet [GeV] Hiukkasfysiikan kokeet CERNissä 43 / 54 m ll
44 Lukumäärät Teoria ennustaa, kuinka usein Higgsin bosoneita syntyy: 4200 Teoria ennustaa, kuinka usein Higgsin bosoni hajoaa W + W - : 10% Teoria ennustaa, kuinka usein W + W - syntyy ilman Higgsin bosonia: 5000 Kokeessa havaitsemme 5306 W + W - paria. Löytyikö Higgs? Tilastotiede kertoo, kuinka todennäköistä on P(N > z σ)= (1 - erf(z/ 2)) / 2 a) Saada vähintään 5306 W + W - paria ilman Higgsiä: P(NB>5306; μ=5000, σ=71) = 4.3σ On siis noin 1: todennäköisyys, että vähintään noin monta W + W - paria syntyi sattumalta taustasta b) Saada korkeintaan 5306 W + W - paria Higgsin kanssa: P(NS+B<5306; μ=5420, σ=74) = 1.5σ On siis noin 1:15 todennäköisyys, että W + W - lukumäärä jäi näin pieneksi, vaikka Higgs onkin olemassa c) Mikäli molemmat otaksumat alunperin yhtä todennäköisiä, Higgs löytyi 1:8000 todennäköisyydellä Hiukkasfysiikan kokeet CERNissä 44 / 54
45 Massapiikit Signaalin ja taustan erottamista helpottaa, jos signaali on kapeassa massapiikissä Hiukkasten yhteenlaskettu energia massakeskipistekoordinaatistossa MKP on hajonneen hiukkasen lepokoordinaatisto, jolloin E = mc 2 käytännössä massa lasketaan suoraan neliliikemäärien summasta Kvanttimekaniikassa massa ei ole tarkka, vaan se vaihtelee sitä enemmän, mitä lyhytikäisempi hitu Hiukkasfysiikan kokeet CERNissä 45 / 54
46 Kaksi fotonia (γγ) "Fotoniparin massa" Hiukkasfysiikan kokeet CERNissä 46 / 54
47 Neljä leptonia (ZZ) "Leptonikvartetin massa" Hiukkasfysiikan kokeet CERNissä 47 / 54
48 Massaa lainaamassa a) Kuinka Higgsin bosoni voi hajota kahteen W tai Z bosoniin, vaikka sen massa on alle puolet näiden massoista? mh = 125 GeV, mz = 91.2 GeV, mw = 80.4 GeV Vastaus: kvanttimekaniikassa lyhytikäisten Z ja W bosonien massa ei ole tarkkaan määrätty, vaan niillä on pieni todennäköisyys olla myös paljon normaalia keveämpiä ennen hajoamistaan edelleen b) Kuinka keveämpi Z voi säteillä raskaamman Higgsin bosonin? Vastaus: kuten yllä, Z bosonilla on pieni todennäköisyys olla hetken normaalia raskaampi ennen Higgsin bosonin säteilyä. Tällaista väliaikaisesti lihonutta hiukkasta kutsutaan virtuaaliseksi Yleisesti, kvanttimekaniikassa saa rikkoa energian ja liikemäärän säilymistä, kunhan se tapahtuu hyvin lyhyen aikaa. Tämä on yksi ilmentymä Heisenbergin epätarkkuusperiaatteesta (ΔE x Δt < h) Hiukkasfysiikan kokeet CERNissä 48 / 54
49 Jakaumia Tapahtumien (eventtien) lukumäärät ovat yleensä Poisson-jakautuneita keskihajonta N tapahtumalle on tällöin N lähestyy suurilla N normaalijakaumaa, jossa μ=n ja σ= N Systemaattiset virheet ovat yleensä normaalijakautuneita (Gaussin jakauma) Ilmoitetaan tyypillisesti 1σ (68% luottamusväli) tai 2σ (95% luottamusväli) tasolla Hiukkasfysiikan kokeet CERNissä 49 / 54
50 Virhearvioista Virheitä arvioitaessa ne jaetaan tyypillisesti kahteen kategoriaan: Tilastolliset virheet satunnaisvaihteluista esim. tapahtumien lukumäärissä suhteellinen virhe skaalautuu 1/ N tai σ/ N, joten toistot auttavat Systemaattiset virheet esim. teorian ennustamissa hajoamissuhteissa suhteellinen virhe pysyy vakio-% ilman parannuksia menetelmissä Hiukkasfysiikan kokeet CERNissä 50 / 54
51 MasterClass 14 Osa 5: tutkimuksen organisointi * Kansainvälinen yhteistyö Hiukkasfysiikan kokeet CERNissä 51 / 54
52 Globaali yhteistyö CERNin tutkimuksessa mukana olevat maat kattavat lähes koko kehittyneen maailman Hiukkasfysiikan kokeet CERNissä 52 / 54
53 Datankäsittely Myös CERNin data käsittely on jaettu maailmanlaajuisesti Kaikesta datasta yksi kopio CERNissä (Tier-0) Varmuuskopio jossain päin maailmaa (Tier-1) Analyysikopioita (Tier-2, Tier-3) jaettuna useille tietokonekeskuksille Datan voi analysoida lähettämällä työn tietokonekeskukselle, jolla on kopio Hiukkasfysiikan kokeet CERNissä 53 / 54
54 Globaali datankäsittely Hiukkasfysiikan kokeet CERNissä 54 / 54
55 Varakalvot Varakalvot Hiukkasfysiikan kokeet CERNissä 55 / 54
56 LHC:n koeasemat B-fysiikkaa protoni-protoni -törmäyksillä CMS +TOTEM LHC-törmäytin Yleisilmaisin protoni-protoni ja lyijy-lyijy -törmäyksille LHCb +MoEDAL SPS-törmäytin Raskasionifysiikkaa PS-törmäytin ALICE ATLAS +LHCf Hiukkasfysiikan kokeet CERNissä 56 / 54
57 Pääkokeet A Large Ion Collider Experiment Tutkii kvarkki-gluoniplasmaa lyijylyijy-ydintörmäyksillä LIISA IHMEMAASSA A Toroidal Lhc ApparatuS Yleiskäyttöinen ilmaisin: Higgsin bosoni, supersymmetria jne. KOOKKAIN Compact Muon Solenoid Yleiskäyttöinen ilmaisin. Loistava fotonikalorimetri, suuri magneetti, myonikammiot RASKAIN LHC Beauty Experiment Tutkii b-kvarkkien (beauty, bottom) fysiikkaa, aine-antiaine-symmetriaa (CP-symmetriarikko) PIENIN Hiukkasfysiikan kokeet CERNissä 57 / 54
58 Pienet kohteet - isot laitteet CERN, Building 40 CMS ATLAS Hiukkasfysiikan kokeet CERNissä 58 / 54
59 Esimerkki: top-kvarkkipari g g t W + b e + ν e g t b q W - q Hiukkasfysiikan kokeet CERNissä 59 / 54
60 Nobel 2013: Higgs (+Englert) Hiukkasfysiikan kokeet CERNissä 60 / 54
61 Raskasionitörmäyksiä LHC:llä törmäytetään myös lyijy-ytimiä energialla 2.76 TeV per nukleoni Tavoitteena tutkia aineen olomuotoa, jossa kvarkit ja gluonit ovat vapaita: aikaa heti alkuräjähdyksen jälkeen imulaatio kvarkki-gluoni-plasmasta Hiukkasfysiikan kokeet CERNissä 61 / 54
62 LHC:ltä on lupa odottaa lisää mielenkiintoisia tuloksia Mm. pimeän aineen etsinnät jatkuvat Vakuumin metastabiilisuus yllätävä tulos Kohti tulevaa Hiukkasfysiikan kokeet CERNissä 62 / 54
Hiukkasfysiikan kokeet
Helsingin yliopisto Fysiikan tutkimuslaitos (HIP) kalvot: Santeri Laurila,, Mikko Voutilainen, Lauri A. Wendland 1 / 54 Fysiikan teoria ja kokeet Teoria Kokeet 1. Hiukkaskiihdyttimet 2. Ilmaisimet 3. Data-analyysi
LisätiedotHiukkasfysiikan kokeet
Hiukkasfysiikan kokeet Santeri Laurila Helsingin yliopisto Fysiikan tutkimuslaitos (HIP) kalvot: Santeri Laurila, Kati Lassila-Perini, Mikko Voutilainen, Lauri A. Wendland Hiukkasfysiikan kokeet 1 / 54
LisätiedotHiukkaskiihdyttimet ja -ilmaisimet
Kati Lassila-Perini Fysiikan tutkimuslaitos Miksi hiukkasia kiihdytetään? Miten hiukkasia kiihdytetään? Mitä törmäyksessä tapahtuu? Miten hiukkasia mitataan? Esitys hiukkasfysiikan näkökulmasta, vastaavia
LisätiedotHiukkaskiihdyttimet ja -ilmaisimet
Hiukkaskiihdyttimet ja -ilmaisimet Kati Lassila-Perini Fysiikan tutkimuslaitos Miksi hiukkasia kiihdytetään? Miten hiukkasia kiihdytetään? Mitä törmäyksessä tapahtuu? Miten hiukkasia mitataan? Esitys hiukkasfysiikan
LisätiedotHiukkaskiihdyttimet. Tapio Hansson
Hiukkaskiihdyttimet Tapio Hansson Miksi kiihdyttää hiukkasia? Hiukkaskiihdyttimien kehittäminen on ollut ehkä tärkein yksittäinen kehityssuunta alkeishiukkasfysiikassa. Hyöty, joka saadaan hiukkasten kiihdyttämisestä
LisätiedotTheory Finnish (Finland) Suuri hadronitörmäytin (Large Hadron Collider, LHC) (10 pistettä)
Q3-1 Suuri hadronitörmäytin (Large Hadron Collider, LHC) (10 pistettä) Lue erillisessä kuoressa olevat yleisohjeet ennen tämän tehtävän aloittamista. Tässä tehtävässä tarkastellaan maailman suurimman hiukkasfysiikan
LisätiedotOpetusesimerkki hiukkasfysiikan avoimella datalla: CMS Masterclass 2014
Opetusesimerkki hiukkasfysiikan avoimella datalla: CMS Masterclass 2014 CERN ja LHC LHC-kiihdytin ja sen koeasemat sijaitsevat 27km pitkässä tunnelissa noin 100 m maan alla Ranskan ja Sveitsin raja-alueella.
LisätiedotTeoreettinen hiukkasfysiikka ja kosmologia Oulun yliopistossa. Kari Rummukainen
Teoreettinen hiukkasfysiikka ja kosmologia Oulun yliopistossa Kari Rummukainen Mitä hiukkasfysiikka tutkii? Mitä Oulussa tutkitaan? Opiskelu ja sijoittuminen työelämässä Teoreettinen fysiikka: työkaluja
Lisätiedotperushiukkasista Perushiukkasia ovat nykykäsityksen mukaan kvarkit ja leptonit alkeishiukkasiksi
8. Hiukkasfysiikka Hiukkasfysiikka kuvaa luonnon toimintaa sen perimmäisellä tasolla. Hiukkasfysiikan avulla selvitetään maailmankaikkeuden syntyä ja kehitystä. Tutkimuskohteena ovat atomin ydintä pienemmät
LisätiedotSuomalainen tutkimus LHC:llä. Paula Eerola Fysiikan laitos ja Fysiikan tutkimuslaitos
Suomalainen tutkimus LHC:llä Paula Eerola Fysiikan laitos ja Fysiikan tutkimuslaitos 2.12.2009 Mitä hiukkasfysiikka tutkii? Hiukkasfysiikka tutkii aineen pienimpiä rakennusosia ja niiden välisiä vuorovaikutuksia.
LisätiedotHavainto uudesta 125 GeV painavasta hiukkasesta
Havainto uudesta 125 GeV painavasta hiukkasesta CMS-koe CERN 4. heinäkuuta 2012 Yhteenveto CERNin Large Hadron Collider (LHC) -törmäyttimen Compact Muon Solenoid (CMS) -kokeen tutkijat ovat tänään julkistaneet
LisätiedotLeptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1
Mistä aine koostuu? - kaikki aine koostuu atomeista - atomit koostuvat elektroneista, protoneista ja neutroneista - neutronit ja protonit koostuvat pienistä hiukkasista, kvarkeista Alkeishiukkaset - hiukkasten
LisätiedotYdin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1
Ydin- ja hiukkasfysiikka 04: Harjoitus 5 Ratkaisut Tehtävä a) Vapautunut energia saadaan laskemalla massan muutos reaktiossa: E = mc = [4(M( H) m e ) (M( 4 He) m e ) m e ]c = [4M( H) M( 4 He) 4m e ]c =
LisätiedotHiukkasfysiikka. Katri Huitu Alkeishiukkasfysiikan ja astrofysiikan osasto, Fysiikan laitos, Helsingin yliopisto
Hiukkasfysiikka Katri Huitu Alkeishiukkasfysiikan ja astrofysiikan osasto, Fysiikan laitos, Helsingin yliopisto Nobelin palkinto hiukkasfysiikkaan 2013! Robert Brout (k. 2011), Francois Englert, Peter
LisätiedotHiggsin bosonin etsintä CMS-kokeessa LHC:n vuosien 2010 ja 2011 datasta CERN, 13 joulukuuta 2011
Higgsin bosonin etsintä CMS-kokeessa LHC:n vuosien 2010 ja 2011 datasta CERN, 13 joulukuuta 2011 Higgsin bosoni on ainoa hiukkasfysiikan standardimallin (SM) ennustama hiukkanen, jota ei ole vielä löydetty
LisätiedotHyvä käyttäjä! Ystävällisin terveisin. Toimitus
Hyvä käyttäjä! Tämä pdf-tiedosto on ladattu Tieteen Kuvalehden verkkosivuilta (www.tieteenkuvalehti.com). Tiedosto on tarkoitettu henkilökohtaiseen käyttöön, eikä sitä saa luovuttaa kolmannelle osapuolelle.
LisätiedotTampere 14.12.2013. Higgsin bosoni. Hiukkasen kiinnostavaa? Kimmo Tuominen! Helsingin Yliopisto
Tampere 14.12.2013 Higgsin bosoni Hiukkasen kiinnostavaa? Kimmo Tuominen! Helsingin Yliopisto Perustutkimuksen tavoitteena on löytää vastauksia! yksinkertaisiin peruskysymyksiin. Esimerkiksi: Mitä on massa?
LisätiedotSuhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa. Tapio Hansson
Suhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa Tapio Hansson Laskentoa SI-järjestelmä soveltuu hieman huonosti kvantti- ja hiukaksfysiikkaan. Sen perusyksiköiden mittakaava
LisätiedotSUPER- SYMMETRIA. Robert Wilsonin Broken Symmetry (rikkoutunut symmetria) Fermilabissa USA:ssa
SUPER- SYMMETRIA Robert Wilsonin Broken Symmetry (rikkoutunut symmetria) Fermilabissa USA:ssa Teemu Löyttinen & Joni Väisänen Ristiinan lukio 2008 1. Sisällysluettelo 2. Aineen rakenteen standardimalli
LisätiedotCERN ja Hiukkasfysiikan kokeet Mikä se on? Mitä siellä tehdään? Miksi? Mitä siellä vielä aiotaan tehdä, ja miten? Tapio Lampén
CERN ja Hiukkasfysiikan kokeet Mikä se on? Mitä siellä tehdään? Miksi? Mitä siellä vielä aiotaan tehdä, ja miten? Tapio Lampén CERN = maailman suurin hiukkastutkimuslaboratorio Sveitsin ja Ranskan rajalla,
LisätiedotPaula Eerola 17.1.2012
Suomalainen tutkimus LHC:llä Paula Eerola Fysiikan laitos ja Fysiikan tutkimuslaitostki it 17.1.2012 Mikä on LHC? LHC Large Hadron Collider Suuri Hiukkastörmäytin on CERN:ssä sijaitseva it kiihdytin, toiminnassa
LisätiedotTeoreetikon kuva. maailmankaikkeudesta
Teoreetikon kuva Teoreetikon kuva hiukkasten hiukkasten maailmasta maailmasta ja ja maailmankaikkeudesta maailmankaikkeudesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Lapua 5. 5. 2012 Miten
LisätiedotTriggeri. Tuula Mäki
Triggeri CERN Fysiikan kesäkoulu Tvärminne 24.05. 28.05.200 Sisältö Mikä on triggeri ja miksi se on tärkeä? CMS kokeen triggeri ensimmäinen ja toinen taso Harvennus (pre scaling) ja triggerin tehokkuus
LisätiedotLHC -riskianalyysi. Emmi Ruokokoski
LHC -riskianalyysi Emmi Ruokokoski 30.3.2009 Johdanto Mikä LHC on? Perustietoa ja taustaa Mahdolliset riskit: mikroskooppiset mustat aukot outokaiset magneettiset monopolit tyhjiökuplat Emmi Ruokokoski
LisätiedotUusimmat tulokset ATLAS-kokeen Higgs hiukkasen etsinnästä
Uusimmat tulokset ATLAS-kokeen Higgs hiukkasen etsinnästä 4. kesäkuuta 2012 ATLAS koe esitteli uusimmat tuloksensa Higgs-hiukkasen etsinnästä. Tulokset esiteltiin CERNissä pidetyssä seminaarissa joka välitettiin
LisätiedotAlkeishiukkaset. perushiukkaset. hadronit eli kvarkeista muodostuneet sidotut tilat
Alkeishiukkaset perushiukkaset kvarkit (antikvarkit) leptonit (antileptonit) hadronit eli kvarkeista muodostuneet sidotut tilat baryonit mesonit mittabosonit eli vuorovaikutuksien välittäjähiukkaset Higgsin
LisätiedotKorrelaatiofunktio ja pionin hajoamisen kinematiikkaa
Korrelaatiofunktio ja pionin hajoamisen kinematiikkaa Timo J. Kärkkäinen timo.j.karkkainen@helsinki.fi Teoreettisen fysiikan syventävien opintojen seminaari, Helsingin yliopiston fysiikan laitos 11. lokakuuta
LisätiedotHiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura
Hiukkasfysiikan luento 21.3.2012 Pentti Korpi Lapuan matemaattisluonnontieteellinen seura Atomi Aine koostuu molekyyleistä Atomissa on ydin ja fotonien ytimeen liittämiä elektroneja Ytimet muodostuvat
LisätiedotAlkeishiukkaset. Standarimalliin pohjautuen:
Alkeishiukkaset Alkeishiukkaset Standarimalliin pohjautuen: Alkeishiukkasiin lasketaan perushiukkaset (fermionit) ja alkeishiukkasbosonit. Ne ovat nykyisen tiedon mukaan jakamattomia hiukkasia. Lisäksi
LisätiedotHiukkasfysiikkaa. Tapio Hansson
Hiukkasfysiikkaa Tapio Hansson Aineen Rakenne Thomson onnistui irrottamaan elektronin atomista. Rutherfordin kokeessa löytyi atomin ydin. Niels Bohrin pohdintojen tuloksena elektronit laitettiin kiertämään
LisätiedotMitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN
Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN 17. helmikuuta 2011 ENERGIA JA HYVINVOINTI TANNER-LUENTO 2011 1 Mistä energiaa saadaan? Perusenergia sähkö heikko paino vahva
LisätiedotMikä on CERN? Conseil Européen pour la Recherche Nucléaire
Mikä on CERN? Conseil Européen pour la Recherche Nucléaire CERN on maailman suurin hiukkasfysiikan tutkimuslaitos Ranskan ja Sveitsin rajalla lähellä Geneveä Peruste;u 1954 Suomi lii;yi 1991 21 jäsenmaata
LisätiedotTervetuloa. Espoon yhteislyseo, Ivalon ja Kuninkaantien lukiot
Tervetuloa Espoon yhteislyseo, Ivalon ja Kuninkaantien lukiot 18.1.2017 Yleisesittely: Mikä CERN on ja mitä täällä tehdään? Timo Hakulinen BE/ICS Lyhyt Intro: mistä on kysymys Paikka, jossa paiskataan
LisätiedotLHC kokeet v J.Tuominiemi /
J.Tuominiemi / 28.12.2011 LHC kokeet v. 2011 CERNin LHC törmäytin oli talviseisokissa 6.12.2010 lähtien aina helmikuuhun 2011. Laitteistoa huollettiin ja tehtiin parannustöitä. Samoin LHC koeasemia huollettiin
LisätiedotHiukkasfysiikan avointa dataa opetuskäytössä
Hiukkasfysiikan avointa dataa opetuskäytössä TkT Tapio Lampén (tapio.lampen@cern.ch) Fysiikan tutkimuslaitos HIP (sisältää materiaalia Sanni Suoniemen pro gradu -tutkimuksesta) Sisältö: CERNin ja CMS-kokeen
LisätiedotKvarkkiaineen tutkimus CERN:n ALICE-kokeessa
Kvarkkiaineen tutkimus CERN:n ALICE-kokeessa Sami RäsänenR SISÄLTÖ: Vahvojen vuorovaikutusten teorian (=QCD) historiaa Olomuodon muutos ydinaineesta kvarkkiaineeseen Kvarkkiaineen kokeellinen tutkimus,
LisätiedotHiukkasfysiikkaa teoreetikon näkökulmasta
Hiukkasfysiikkaa teoreetikon näkökulmasta @ CERN Risto Paatelainen CERN Theory Department KUINKA PÄÄDYIN CERN:IIN Opinnot: 2006-2011 FM, Teoreettinen hiukkasfysiikka, Jyväskylän yliopisto 2011-2014 PhD,
LisätiedotKesätöihin CERNiin? Santeri Laurila & Laura Martikainen Fysiikan tutkimuslaitos (HIP) Santeri Laurila & Laura Martikainen / HIP
Kesätöihin CERNiin? Santeri Laurila & Laura Martikainen Fysiikan tutkimuslaitos (HIP) 1 CERN LHC CMS HIP! LHC on maailman suurin hiukkaskiihdytin CERNissä Sveitsin ja Ranskan rajalla! Suomen CERN-yhteistyötä
LisätiedotMagneettikentät. Haarto & Karhunen. www.turkuamk.fi
Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan
LisätiedotMahtuuko kaikkeus liitutaululle?
Mahtuuko kaikkeus liitutaululle? Teoreettinen näkökulma hiukkasfysiikkaan Jaana Heikkilä, CERN, 304-1-007 7.2.2017 Ylioppilas, 2010, Madetojan musiikkilukio, Oulu LuK (Fysiikka, teor. fysiikka), 2013,
LisätiedotArttu Haapiainen ja Timo Kamppinen. Standardimalli & Supersymmetria
Standardimalli & Supersymmetria Standardimalli Hiukkasfysiikan Standardimalli on teoria, joka kuvaa hiukkaset ja voimat, jotka vaikuttavat luonnossa. Ympärillämme näkyvä maailma koostuu ylös- ja alas-kvarkeista
LisätiedotMaailmankaikkeuden synty ja aineen perusrakenne
Maailmankaikkeuden synty ja aineen perusrakenne Johdatus maailmankaikkeuden syntyteoriaan, aineen rakenteen tutkimisen historiaan ja standardimalliin Johdatus tutkimuksiin Euroopan hiukkasfysiikan tutkimuskeskuksessa
LisätiedotKuva 2. LHC-dipolimagneetin poikkileikkaus, jossa näkyy suprajohtavan magneettikelan paikka suihkuputkien ympärillä.
CERNin LHC-projekti CERN:issä vuoden 2009 lopussa käynnistetty LHC (Large Hadron Collider, kts. http://lhc.web.cern.ch/lhc/) on maailman suurin hiukkaskiihdytinlaitteisto. Se on kahden suprajohteisia magneetteja
LisätiedotHarvinainen standardimallin ennustama B- mesonin hajoaminen havaittu CMS- kokeessa
Harvinainen standardimallin ennustama B- mesonin hajoaminen havaittu CMS- kokeessa CMS- koe raportoi uusissa tuloksissaan Bs- mesonin (B- sub- s) hajoamisesta kahteen myoniin, jolle Standardimalli (SM)
LisätiedotNeutriinokuljetus koherentissa kvasihiukkasapproksimaatiossa
Neutriinokuljetus koherentissa kvasihiukkasapproksimaatiossa Graduseminaari Joonas Ilmavirta Jyväskylän yliopisto 15.6.2012 Joonas Ilmavirta (JYU) Neutriinot ja cqpa 15.6.2012 1 / 14 Osa 1: Neutriinot
LisätiedotNeutriino-oskillaatiot
Neutriino-oskillaatiot Seminaariesitys Joonas Ilmavirta Jyväskylän yliopisto 29.11.2011 Joonas Ilmavirta (JYU) Neutriino-oskillaatiot 29.11.2011 1 / 16 Jotain vikaa β-hajoamisessa Ytimen β-hajoamisessa
LisätiedotNeutriinofysiikka. Tvärminne Jukka Maalampi Fysiikan laitos, Jyväskylän yliopisto
Neutriinofysiikka Tvärminne 27.5.2010 Jukka Maalampi Fysiikan laitos, Jyväskylän yliopisto Neutriinon keksiminen Ongelma 1900-luvun alusta: beetahajoamisessa syntyvän neutriinon energiaspektri on jatkuva.
LisätiedotAineen rakenteesta. Tapio Hansson
Aineen rakenteesta Tapio Hansson Ykköskurssista jo muistamme... Atomin käsite on peräisin antiikin Kreikasta. Demokritos päätteli alunperin, että jatkuva aine ei voi koostua äärettömän pienistä alkeisosasista
LisätiedotTervetuloa Pohjois-Tapiolan, Tapiolan ja Viherlaakson lukiot
Tervetuloa Pohjois-Tapiolan, Tapiolan ja Viherlaakson lukiot 12.10.2016 Yleisesittely: Mikä CERN on ja mitä täällä tehdään? Timo Hakulinen BE/ICS Lyhyt Intro: mistä on kysymys Paikka, jossa paiskataan
LisätiedotFysiikkaa runoilijoille Osa 5: kvanttikenttäteoria
Fysiikkaa runoilijoille Osa 5: kvanttikenttäteoria Syksy Räsänen Helsingin yliopisto, fysiikan laitos ja fysiikan tutkimuslaitos www.helsinki.fi/yliopisto 1 Modernin fysiikan sukupuu Klassinen mekaniikka
LisätiedotAineen olemuksesta. Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto
Aineen olemuksesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Miten käsitys aineen perimmäisestä rakenteesta on kehittynyt aikojen kuluessa? Mitä ajattelemme siitä nyt? Atomistit Loogisen päättelyn
LisätiedotLaboratoriot ja kokeet
Laboratoriot ja kokeet Osa 2. Paula Eerola Fysiikan laitos ja Fysiikan tutkimuslaitos 24.5.2010 Aiheet CERN LHC ja LHC-kokeet Fermilab Tulevaisuuden suunnitelmat P. Eerola, AFO 26.5.2010 2 The Tevatron
LisätiedotPerusvuorovaikutukset. Tapio Hansson
Perusvuorovaikutukset Tapio Hansson Perusvuorovaikutukset Vuorovaikutukset on perinteisesti jaettu neljään: Gravitaatio Sähkömagneettinen vuorovaikutus Heikko vuorovaikutus Vahva vuorovaikutus Sähköheikkoteoria
Lisätiedot766334A Ydin- ja hiukkasfysiikka
766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 5 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 04 Hiukkasfysiikka Hiukkaskiihdyttimet Ydin- ja hiukkasfysiikan varhaisvaiheessa
LisätiedotFysiikka 8. Aine ja säteily
Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian
LisätiedotSähköstatiikka ja magnetismi
Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän
LisätiedotLIITE 11A: VALOSÄHKÖINEN ILMIÖ
LIITE 11A: VALOSÄHKÖINEN ILMIÖ Valosähköisellä ilmiöllä ymmärretään tässä oppikirjamaisesti sitä, että kun virtapiirissä ja tyhjiölampussa olevan anodi-katodi yhdistelmän katodia säteilytetään fotoneilla,
LisätiedotRobert Brout. Higgsin bosoni. S. Lehti Fysiikan tutkimuslaitos Helsinki. Francois Englert. sami.lehti@cern.ch. Peter Higgs
Robert Brout Higgsin bosoni Francois Englert S. Lehti Fysiikan tutkimuslaitos Helsinki sami.lehti@cern.ch Peter Higgs G.Landsberg in EPS-HEP 2013 2 Muutamia peruskäsitteitä 3 Leptonit: alkeishiukkasia,
LisätiedotVuorovaikutuksien mittamallit
Vuorovaikutuksien mittamallit Hiukkasten vuorovaikutuksien teoreettinen mallintaminen perustuu ns. mittakenttäteorioihin. Kenttä viittaa siihen, että hiukkanen kuvataan paikasta ja ajasta riippuvalla funktiolla
LisätiedotYdin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1
Ydin- ja hiukkasfysiikka: Harjoitus Ratkaisut Tehtävä i) Isotoopeilla on sama määrä protoneja, eli sama järjestysluku Z, mutta eri massaluku A. Tässä isotooppeja keskenään ovat 9 30 3 0 4Be ja 4 Be, 4Si,
Lisätiedot(Hiukkas)fysiikan standardimalli
Alkeishiukkasista maailmankaikkeuteen: (Hiukkas)fysiikan standardimalli Helsingin Yliopisto Kaikki koostuu alkeishiukkasista: Aine koostuu protoneista, neutroneista ja elektroneista Protonit ja neutronit
LisätiedotAtomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N
Atomin ydin ytimen rakenneosia, protoneja (p + ) ja neutroneja (n) kutsutaan nukleoneiksi Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N saman
Lisätiedot766334A Ydin- ja hiukkasfysiikka
1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 4 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 01 6 Radioaktiivisuus Kuva 1 esittää radioaktiivisen aineen ydinten lukumäärää
LisätiedotAtomimallit. Tapio Hansson
Atomimallit Tapio Hansson Atomin käsite Atomin käsite on peräisin antiikin Kreikasta. Filosofi Demokritos päätteli (n. 400 eaa.), että äärellisen maailman tulee koostua äärellisistä, jakamattomista hiukkasista
LisätiedotHiggsin fysiikkaa. Katri Huitu Fysiikan laitos, AFO Fysiikan tutkimuslaitos
Higgsin fysiikkaa Katri Huitu Fysiikan laitos, AFO Fysiikan tutkimuslaitos Sisällys: Higgsin teoriaa Tarkkuusmittauksia Standardimallin Higgs Supersymmetriset Higgsit Vahvasti vuorovaikuttava Higgsin sektori
Lisätiedoterilaisten mittausmenetelmien avulla
Säteilynkestävien pii-ilmaisimien ilmaisimien karakterisointi erilaisten mittausmenetelmien avulla Motivaatio sekä taustaa Miksi Czochralski-pii on kiinnostava materiaali? Piinauhailmaisimen toimintaperiaate
LisätiedotKvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi
Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)
LisätiedotAVOIN HIUKKASFYSIIKAN TUTKIMUSDATA OPETUSKÄYTÖSSÄ
Pro gradu -tutkielma Fysiikan opettaja AVOIN HIUKKASFYSIIKAN TUTKIMUSDATA OPETUSKÄYTÖSSÄ Sanni Suoniemi 2014 Ohjaaja: Heimo Saarikko Tarkastajat: Heimo Saarikko ja Ismo Koponen HELSINGIN YLIOPISTO FYSIIKAN
LisätiedotKvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
LisätiedotHiukkasfysiikka, kosmologia, ja kaikki se?
Hiukkasfysiikka, kosmologia, ja kaikki se? Kari Rummukainen Fysiikan laitos & Fysiikan tutkimuslaitos (HIP) Helsingin Yliopisto Kari Rummukainen Hiukkasfysiikka + kosmologia Varhainen maailmankaikkeus
LisätiedotSäteily ja suojautuminen Joel Nikkola
Säteily ja suojautuminen 28.10.2016 Joel Nikkola Kotitehtävät Keskustele parin kanssa aurinkokunnan mittakaavasta. Jos maa olisi kolikon kokoinen, minkä kokoinen olisi aurinko? Jos kolikko olisi luokassa
LisätiedotSuojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009
Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009 Eino Valtonen Avaruustutkimuslaboratorio, Fysiikan ja tähtitieteen laitos, Turun yliopisto Eino.Valtonen@utu.fi 2 Kosminen säde? 3 4 5 Historia
LisätiedotCERN-matka
CERN-matka 2016-2017 UUTTA FYSIIKKAA Janne Tapiovaara Rauman Lyseon lukio http://imglulz.com/wp-content/uploads/2015/02/keep-calm-and-let-it-go.jpg FYSIIKKA ON KOKEELLINEN LUONNONTIEDE, JOKA PYRKII SELITTÄMÄÄN
LisätiedotOsallistumislomakkeen viimeinen palautuspäivä on maanantai
Jakso : Materiaalihiukkasten aaltoluonne. Teoriaa näihin tehtäviin löytyy Beiserin kirjasta kappaleesta 3 ja hyvin myös peruskurssitasoisista kirjoista. Seuraavat videot demonstroivat vaihe- ja ryhmänopeutta:
LisätiedotPerusvuorovaikutukset. Tapio Hansson
Perusvuorovaikutukset Tapio Hansson Perusvuorovaikutukset Vuorovaikutukset on perinteisesti jaettu neljään: Gravitaatio Sähkömagneettinen vuorovaikutus Heikko vuorovaikutus Vahva vuorovaikutus Sähköheikkoteoria
LisätiedotPerusvuorovaikutukset
Perusvuorovaikutukset Mikko Mustonen Mika Kainulainen CERN tutkielma Nurmeksen lukio Syksy 2009 Sisältö 1 Johdanto... 3 2 Perusvuorovaikutusten historia... 3 3 Teoria... 6 3.1 Gravitaatio... 6 3.2 Sähkömagneettinen
LisätiedotAine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos
Aine ja maailmankaikkeus Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Lahden yliopistokeskus 29.9.2011 1900-luku tiedon uskomaton vuosisata -mikä on aineen olemus -miksi on erilaisia aineita
Lisätiedot766334A Ydin- ja hiukkasfysiikka
1 76633A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 3 5-3 Kuorimalli Juhani Lounila Oulun yliopisto, Fysiikan laitos, 011 Kuva 7-13 esittää, miten parillis-parillisten ydinten ensimmäisen
Lisätiedot8. Hiukkasfysiikka ja kosmologia
8. Hiukkasfysiikka ja kosmologia Aineen alkeellisin rakenne Miten hiukkasia tutkitaan? Hiukkaset ja vuorovaikutukset Kvarkit Symmetriat ja vuorovaikutuksien yhtenäistäminen Maailmankaikkeuden rakenne Varhainen
LisätiedotFlrysikko Higgs iuhli. löytymistä 4. z.totz
H elsin 6tN S.rrwonÄ1..7.A0,S Vahva todiste himoitusta Higgsistä Higgsin hiukkasta on kaivattu tukemaan fysiikan perusteoriaa. Mutta vielä pitäisi varrnistaa pari asiaa. Nyt on löytynyt sen näköinen hiukkanen'
LisätiedotHiukkasten lumo: uuden fysiikan alku. Oili Kemppainen
Hiukkasten lumo: uuden fysiikan alku Oili Kemppainen 29.09.2009 Hiukkasfysiikka tutkii luonnon perusrakenteita Käsitykset aineen rakenteesta ja luonnonlaeista muuttuneet radikaalisti Viimeisin murros 1960-
LisätiedotMonissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta
8 LIIKEMÄÄRÄ, IMPULSSI JA TÖRMÄYKSET Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta Tällöin dynamiikan peruslain F = ma käyttäminen ei ole helppoa tai edes mahdollista Newtonin
Lisätiedot763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Kevät 2017
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Keät 207. Rekyyli Luentomonisteessa on käsitelty tilanne, jossa hiukkanen (massa M) hajoaa kahdeksi hiukkaseksi (massat m ja m 2 ). Tässä käytetään
LisätiedotFysiikan maanalaisen tutkimuksen nykytila Suomessa
Fysiikan maanalaisen tutkimuksen nykytila Suomessa 1. kosmisten säteiden koe EMMA 2. LAGUNA-infrastruktuuritutkimus Timo Enqvist Oulun yliopisto Oulun Eteläisen instituutti IX Kerttu Saalasti -seminaari,
LisätiedotYdinfysiikkaa. Tapio Hansson
3.36pt Ydinfysiikkaa Tapio Hansson Ydin Ydin on atomin mittakaavassa äärimmäisen pieni. Sen koko on muutaman femtometrin luokkaa (10 15 m), kun taas koko atomin halkaisija on ångströmin luokkaa (10 10
LisätiedotAtomimallit. Tapio Hansson
Atomimallit Tapio Hansson Atomin käsite Atomin käsite on peräisin antiikin Kreikasta. Filosofi Demokritos päätteli (n. 400 eaa.), että äärellisen maailman tulee koostua äärellisistä, jakamattomista hiukkasista
LisätiedotSähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä
Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Antti Haarto.5.13 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä
LisätiedotKvarkeista kvanttipainovoimaan ja takaisin
1/31 Kvarkeista kvanttipainovoimaan ja takaisin Niko Jokela Hiukkasfysiikan kesäkoulu Helsinki 18. toukokuuta 2017 2/31 Säieteorian perusidea Hieman historiaa 1 Säieteorian perusidea Hieman historiaa 2
LisätiedotMagneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän
3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina
Lisätiedotn=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1
10.1 RÖNTGENSPEKTRI Kun kiihdytetyt elektronit törmäävät anodiin, syntyy jatkuvaa säteilyä sekä anodimateriaalille ominaista säteilyä (spektrin terävät piikit). Atomin uloimpien elektronien poistamiseen
Lisätiedotfissio (fuusio) Q turbiinin mekaaninen energia generaattori sähkö
YDINVOIMA YDINVOIMALAITOS = suurikokoinen vedenkeitin, lämpövoimakone, joka synnyttämällä vesihöyryllä pyöritetään turbiinia ja turbiinin pyörimisenergia muutetaan generaattorissa sähköksi (sähkömagneettinen
LisätiedotSynkrotronisäteily ja elektronispektroskopia. Tutkimus Oulun yliopistossa
Synkrotronisäteily ja elektronispektroskopia Tutkimus Oulun yliopistossa Ryhmätyö Keskustelkaa n. 4 hengen ryhmissä, mitä on synkrotronisäteily ja miten sitä tuotetaan. Kirjoittakaa ylös ajatuksianne.
Lisätiedota) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.
Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi
LisätiedotErityinen suhteellisuusteoria (Harris luku 2)
Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen
LisätiedotSTANDARDIMALLI. Perus- Sähkö- Elektronin Myonin Taun hiukka- varaus perhe perhe perhe set
STANDARDIMALLI Fysiikan standardimalli on hiukkasmaailman malli, joka liittää yhteen alkeishiukkaset ja niiden vuorovaikutukset gravitaatiota lukuun ottamatta. Standardimallin mukaan kaikki aine koostuu
Lisätiedot763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1
763306A JOHDATUS SUHTLLISUUSTORIAAN Ratkaisut 3 Kevät 07. Fuusioreaktio. Lähdetään suoraan annetuista yhtälöistä nergia on suoraan yhtälön ) mukaan + m ) p P ) m + p 3) M + P 4) + m 5) Ratkaistaan seuraavaksi
LisätiedotFysiikkaa runoilijoille Osa 7: kohti kaiken teoriaa
Fysiikkaa runoilijoille Osa 7: kohti kaiken teoriaa Syksy Räsänen Helsingin yliopisto, fysiikan laitos ja fysiikan tutkimuslaitos www.helsinki.fi/yliopisto 1 Modernin fysiikan sukupuu Klassinen mekaniikka
LisätiedotFysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto
ysiikka 1 Coulombin laki ja sähkökenttä Antti Haarto 7.1.1 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä voi syntyä
LisätiedotFysiikan Nobel 2008: Uusia tosiasioita aineen perimmäisistä rakenneosasista
Fysiikan Nobel 2008: Uusia tosiasioita aineen perimmäisistä rakenneosasista K. Kajantie keijo.kajantie@helsinki.fi Tampere, 14.12.2008 Fysiikan (teoreettisen) professori, Helsingin yliopisto, 1970-2008
Lisätiedot763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,
Lisätiedot