Harjoitus 3: Matlab - Matemaattinen mallintaminen

Koko: px
Aloita esitys sivulta:

Download "Harjoitus 3: Matlab - Matemaattinen mallintaminen"

Transkriptio

1 Harjoitus 3: Matlab - Matemaattinen mallintaminen Mat Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat Sovelletun matematiikan tietokonetyöt 1

2 Harjoituksen aiheita Tutustuminen matemaattiseen mallinnukseen Ohjelmointi Matlabissa Funktiot ja komentojonotiedostot Matlabissa Mat Sovelletun matematiikan tietokonetyöt 2

3 Matemaattinen mallintaminen Malli = Todellisuuden jäljitelmä. Fysikaaliset lait, tilastollinen päättely, simulointi... Hyvä malli on yksinkertainen mahdollinen (käyttötarkoitukseensa nähden) Mallin avulla systeemiä voidaan tarkastella ilman kokeiden tekemistä. - Kokeiden tekeminen systeemistä voi olla liian vaikeaa tai kallista. Mat Sovelletun matematiikan tietokonetyöt 3

4 White Box - Black Box White box malli: Systeemin riippuvuussuhteet tunnetaan. - Luonnonlait - Fysikaalinen mallintaminen - Esim. sähköpiirin mallintaminen Black box malli: Systeemin riippuvuussuhteita ei tunneta, vaan sovitetaan malli mittausdataan. - Identifiointi - Esim. kansantalouden mallintaminen Välimaastossa Gray Box mallintamin - Systeemin rakenne osittain tunnettu, mittausdataa käytetään parametrien määrittämiseen. Mat Sovelletun matematiikan tietokonetyöt 4

5 Mallien käyttötarkoituksia 1/2 Ennustaminen - Esim. Kuinka suuri sähkön kulutus tulee olemaan ensi vuonna? Optimointi - Esim. Mikä on paras mahdollinen tuotannon määrä yritykselle? Säätö - Esim. Kuinka paperikonetta tulisi ohjata, jotta lopputulos olisi tasalaatuista? Mat Sovelletun matematiikan tietokonetyöt 5

6 Mallien käyttötarkoituksia 2/2 Päätöksenteko - Esim. Pitäisikö Suomeen rakentaa lisää ydinvoimaa? Maailmankuvan muodostaminen - Esim. Mitkä tekijät vaikuttavat Suomen kansantalouden kehittymiseen? Mat Sovelletun matematiikan tietokonetyöt 6

7 Mallien luokittelu 1/2 Deterministinen - Stokastinen Dynaaminen - Staattinen Jatkuva-aikainen - diskreettiaikainen Keskitetyt parametrit - Jakautuneet parametrit Jatkuva-aikainen - Tapahtumaorientoitunut Parametrinen - Ei-parametrinen Single-input-single-output (SISO) - Multi-input-multi-output (MIMO) Lineaarinen - Epälineaarinen Aikavariantti - Aikainvariantti Aikatasomalli - Taajuustasomalli Mat Sovelletun matematiikan tietokonetyöt 7

8 Mallien luokittelu 2/2 Mallit voidaan myös jaotella aiheen mukaan: - Matemaattiset mallit esim. Fysiikassa Lääketieteessä Psykologiassa Taloustieteessä TAI ratkaisutekniikan mukaan: - Matemaattinen mallintaminen esim. Differentiaaliyhtälöillä Graafeilla Matemaattisella ohjelmoinnilla Neuroverkoilla Mat Sovelletun matematiikan tietokonetyöt 8

9 Mallinrakennuksen vaiheet (1) Tehtävän määrittely (2) Mallin muodostaminen - Puetaan kohdan (1) tehtävä matemaattiselle kielelle. (3) Mallin ratkaiseminen - Suoraviivaisin osuus, perustuu yleensä hyvin määriteltyyn matemaattiseen teoriaan. (4) Validointi - Vastaako malli niihin kysymyksiin, johon sen piti vastata? (5) Ratkaisun käyttöönotto - Toimintaohjeita mallin käyttäjälle. Mat Sovelletun matematiikan tietokonetyöt 9

10 Ohjelmointi Matlabissa Relaatio-operaattorit < Pienempi kuin <= Pienempi tai yhtä suuri kuin > Suurempi kuin >= Suurempi tai yhtäsuuri kuin == Yhtä suuri kuin ~= Eri suuri kuin Huom! = on sijoitusoperaattori. Mat Sovelletun matematiikan tietokonetyöt 10

11 Loogiset operaattorit 1/2 && Palauttaa arvon true jos molemmat tarkasteltavat lausekkeet saavat arvon true, muussa tapauksessa palauttaa arvon false. Palauttaa arvon true jos jompikumpi inputeista (tai molemmat) saavat arvon true, muussa tapauksessa palautetaan false. Matlabissa on myös loogisia operaattoreita, jotka tarkastelevat vektoreita tai matriiseja alkioittain. - &,, xor Mat Sovelletun matematiikan tietokonetyöt 11

12 Loogiset operaattorit 2/2 && operaattoria käytettäessä toista lauseketta ei evaluoida mikäli ensimmäinen saa arvon false. Esim. Nollalla jakaminen voidaan estää seuraavasti: - x = (b ~= 0) && (a/b > 18.5) Mat Sovelletun matematiikan tietokonetyöt 12

13 Ohjelman kontrollirakenteet - if, else, elseif Haarautuminen: Ohjelmakoodissa voidaan edetä eri tavoin riippuen ohjelman tilasta. - if, else, elseif if x < 0 disp( Negatiivinen luku ); elseif rem(x,2) == 0 % Tarkastellaan jakojäännöstä disp( Parillinen luku ); else disp( Pariton luku ); end Mat Sovelletun matematiikan tietokonetyöt 13

14 Ohjelman kontrollirakenteet - switch, case, otherwise Jos haarautumisvaihtoehtojen määrä on suuri, on helpompaa käyttää switch - rakennetta. - switch, case, otherwise switch x case 1 disp( Tulos on yksi. ) case 2 disp( Tulos on kaksi. ) case 3 disp( Tulos on kolme. ) otherwise disp( Jokin muu luku. ) end Mat Sovelletun matematiikan tietokonetyöt 14

15 Ohjelman kontrollirakenteet - for Silmukoiden avulla joukko komentoja voidaan ajaa useamman kerran peräkkäin. for - silmukka - Käytetään kun silmukan toistojen lukumäärä on ennaltamäärätty. - Esim. Käydään läpi kaikki matriisin rivit. Mat Sovelletun matematiikan tietokonetyöt 15

16 Ohjelman kontrollirakenteet - while while - silmukka - Käytetään kun toistojen lukumäärä ei ole ennaltamäärätty. - Esim. Haetaan ratkaisua iteratiivisesti kunnes tietty toleranssiehto täyttyy. % Lasketaan ns. kone-epsilonin arvo eli luvun 1.0 % ja sitä seuraavan liukuluvun välinen ero. eps = 1; while (1+eps) > 1 eps = eps/2; end eps = eps*2 Mat Sovelletun matematiikan tietokonetyöt 16

17 continue, break, return Silmukoissa käytettäviä komentoja: - continue: Siirrytään silmukan alkuun seuraavalle iteraatiokierrokselle. - break: Siirrytään ulos silmukasta. - return: Lopetetaan koodin suoritus. Mat Sovelletun matematiikan tietokonetyöt 17

18 Silmukoita ei aina tarvitse käyttää... Matlab on sunniteltu vektori- ja matriisioperaatioita varten. Vektorization: for ja while -silmukoiden korvaaminen vektoritai matriisioperaatioilla. - Laskennallisesti tehokkaampaa kuin silmukoiden käyttäminen. % Sinifunktion arvojen % laskenta for-silmukassa % Vastaava operaatio % vektorimuodossa i = 0; for t = 0:.01:10 i = i + 1; y(i) = sin(t); end t = 0:.01:10; y = sin(t); Mat Sovelletun matematiikan tietokonetyöt 18

19 Funktiot ja komentojonotiedostot M-tiedostot voidaan jakaa funktioihin ja komentojonotiedostoihin (skripteihin). Funktiot: - Ottavat sisään argumentteja ja palauttavat myös arvoja. - Muuttujat tallennetaan funktion omaan sisäiseen työtilaan. - Matlabin työtilassa olevia muuttujia ei voida suoraan käyttää funktion sisällä, eikä funktion sisäisiä muuttujia voida käyttää sen ulkopuolella. Mat Sovelletun matematiikan tietokonetyöt 19

20 Funktioiden syntaksi function [x, y] = myfun(a, b, c) % Function definition line x = prod(a, b); % Start of Function code Yo. esimerkissä: - myfun : funktion nimi. - a, b, c : funktion input-argumentit. - x, y : funktion palauttamat arvot. - Funktio tallennetaan saman nimiseen m-tiedostoon. - Esim. funktio myfun() tallennettaisiin tiedostoon myfun.m. - Funktion 1. rivi alkaa avainsanalla function: Kertoo Matlabille, että ko. tiedosto on funktio eikä komentojonotiedosto. Mat Sovelletun matematiikan tietokonetyöt 20

21 Komentojonotiedostot Hyödyllisiä automatisoimaan peräkkäisiä komentoja, joita joudutaan ajamaan monta kertaa. Eivät hyväksy argumenttejä inputina eivätkä palauta argumenttejä. Muuttujat tallennetaan samaan työtilaan kuin Matlabin komentoriviltä ja muista skripteistä luodut muuttujat. - Käytettävissä myös skriptin suorittamisen päätyttyä. - Myös työtilassa olevia muuttujia voidaan hyödyntää skriptissä. - Skriptiä ajettaessa työtilassa olevien muuttujien päälle voi myös vahingossa tallentua uusia arvoja. Mat Sovelletun matematiikan tietokonetyöt 21

22 Ohjelman kehittäminen Monesti ongelma kannattaa pilkkoa itsenäisiin osiin. - Oma funktio erikseen eri osille. Pseudo-koodi-luonnos ennen varsinaista koodia. - Pääpaino ohjelman rakenteessa eikä syntaksissa. - Helppo muuttaa tämän jälkeen varsinaiseksi ohjelmaksi. Ohjelmointityyli - Käytä selkeitä funktioiden ja muuttujien nimiä. - Kommentoi koodiasi. - Käytä sisennyksiä ja tyhjää tilaa. Virheiden etsintä selkeästä koodista on helpompaa. Mat Sovelletun matematiikan tietokonetyöt 22

23 Satunnaislukujen generointi - Käänteisfunktiomenetelmä Simuloitavan suureen (satunnaismuuttujan) x kertymäfunktio F(x) tunnetaan. Käytössä on satunnaislukugeneraattori, josta saatavat satunnaisluvut y Tas[0, 1]. - rand-funktio Matlabissa. F 1 jakautunut kuten x. 1 Eksponentiaalijakauman kertymäfunktio: F(x)=1 e λ x F(x) 0 x Mat Sovelletun matematiikan tietokonetyöt 23

24 Kysymyksiä 1. Mitä eroa on white-box ja black-box mallintamisella? 2. Mihin eri tarkoituksiin matemaattista mallintamista voidaan käyttää? 3. Mitä eroa on for- ja while-silmukoilla? 4. Mitä haittoja liian monimutkaisessa mallissa on? 5. Mitä eroja on Matlabin komentojonotiedostoilla ja funktioilla? 6. Mistä lausekkeesta saat laskettua eksponentiaalijakautuneen satunnaismuuttujan arvon, kun olet soveltanut käänteisfunktiolauseketta eksponentiaalijakauman kertymäfunktioon? Mat Sovelletun matematiikan tietokonetyöt 24

Mat-2.129 Systeemien identifiointi

Mat-2.129 Systeemien identifiointi Luennot: TkT, erik. op. to 16-18 U261 Harjoitukset tekn.yo Ville Koskinen pe 10-12 joko mikroluokka U352 tai U261 Kurssikirja Ljung & Glad: Modeling of Dynamic Systems, Prentice-Hall, 1994 TAI Ibid.: Modelbygge

Lisätiedot

Harjoitus 2: Ohjelmointi (Matlab)

Harjoitus 2: Ohjelmointi (Matlab) Harjoitus 2: Ohjelmointi (Matlab) SCI-C0200 Fysiikan ja matematiikan menetelmien studio SCI-C0200 Fysiikan ja matematiikan menetelmien studio 1 2. Harjoituskerta Aiheet: - Matlabin kontrollirakenteet -

Lisätiedot

Harjoitus 2: Ohjelmointi (Matlab)

Harjoitus 2: Ohjelmointi (Matlab) Harjoitus 2: Ohjelmointi (Matlab) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 2. Harjoituskerta Aiheet: - Matlabin kontrollirakenteet - Funktiot ja komentojonotiedostot

Lisätiedot

Harjoitus 1: Johdatus matemaattiseen mallintamiseen (Matlab)

Harjoitus 1: Johdatus matemaattiseen mallintamiseen (Matlab) Harjoitus 1: Johdatus matemaattiseen mallintamiseen (Matlab) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Ensimmäinen harjoituskierros Aiheet Tutustuminen

Lisätiedot

Mat Systeemien identifiointi, aihepiirit 1/4

Mat Systeemien identifiointi, aihepiirit 1/4 , aihepiirit 1/4 Dynaamisten systeemien matemaattinen mallintaminen ja analyysi Matlab (System Identification Toolbox), Simulink 1. Matemaattinen mallintaminen: Mallintamisen ja mallin määritelmät Fysikaalinen

Lisätiedot

Ehto- ja toistolauseet

Ehto- ja toistolauseet Ehto- ja toistolauseet 1 Ehto- ja toistolauseet Uutena asiana opetellaan ohjelmointilauseet / rakenteet, jotka mahdollistavat: Päätösten tekemisen ohjelman suorituksen aikana (esim. kyllä/ei) Samoja lauseiden

Lisätiedot

Harjoitus 1: Matlab. Harjoitus 1: Matlab. Mat Sovelletun matematiikan tietokonetyöt 1. Syksy 2006

Harjoitus 1: Matlab. Harjoitus 1: Matlab. Mat Sovelletun matematiikan tietokonetyöt 1. Syksy 2006 Harjoitus 1: Matlab Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen Matlab-ohjelmistoon Laskutoimitusten

Lisätiedot

Koottu lause; { ja } -merkkien väliin kirjoitetut lauseet muodostavat lohkon, jonka sisällä lauseet suoritetaan peräkkäin.

Koottu lause; { ja } -merkkien väliin kirjoitetut lauseet muodostavat lohkon, jonka sisällä lauseet suoritetaan peräkkäin. 2. Ohjausrakenteet Ohjausrakenteiden avulla ohjataan ohjelman suoritusta. peräkkäisyys valinta toisto Koottu lause; { ja } -merkkien väliin kirjoitetut lauseet muodostavat lohkon, jonka sisällä lauseet

Lisätiedot

Zeon PDF Driver Trial

Zeon PDF Driver Trial Matlab-harjoitus 2: Kuvaajien piirto, skriptit ja funktiot. Matlabohjelmoinnin perusteita Numeerinen integrointi trapezoidaalimenetelmällä voidaan tehdä komennolla trapz. Esimerkki: Vaimenevan eksponentiaalin

Lisätiedot

Harjoitus 1: Johdatus matemaattiseen mallintamiseen (Matlab)

Harjoitus 1: Johdatus matemaattiseen mallintamiseen (Matlab) Harjoitus 1: Johdatus matemaattiseen mallintamiseen (Matlab) SCI-C0200 Fysiikan ja matematiikan menetelmien studio SCI-C0200 Fysiikan ja matematiikan menetelmien studio 1 MyCourses Kurssilla käytetään

Lisätiedot

Luento 5. Timo Savola. 28. huhtikuuta 2006

Luento 5. Timo Savola. 28. huhtikuuta 2006 UNIX-käyttöjärjestelmä Luento 5 Timo Savola 28. huhtikuuta 2006 Osa I Shell-ohjelmointi Ehtolause Lausekkeet suoritetaan jos ehtolausekkeen paluuarvo on 0 if ehtolauseke then lauseke

Lisätiedot

IDL - proseduurit. ATK tähtitieteessä. IDL - proseduurit

IDL - proseduurit. ATK tähtitieteessä. IDL - proseduurit IDL - proseduurit 25. huhtikuuta 2017 Viimeksi käsiteltiin IDL:n interaktiivista käyttöä, mutta tämä on hyvin kömpelöä monimutkaisempia asioita tehtäessä. IDL:llä on mahdollista tehdä ns. proseduuri-tiedostoja,

Lisätiedot

ATK tähtitieteessä. Osa 3 - IDL proseduurit ja rakenteet. 18. syyskuuta 2014

ATK tähtitieteessä. Osa 3 - IDL proseduurit ja rakenteet. 18. syyskuuta 2014 18. syyskuuta 2014 IDL - proseduurit Viimeksi käsiteltiin IDL:n interaktiivista käyttöä, mutta tämä on hyvin kömpelöä monimutkaisempia asioita tehtäessä. IDL:llä on mahdollista tehdä ns. proseduuri-tiedostoja,

Lisätiedot

Matlabin perusteita Grafiikka

Matlabin perusteita Grafiikka BL40A0000 SSKMO KH 1 Seuraavassa esityksessä oletuksena on, että Matlabia käytetään jossakin ikkunoivassa käyttöjärjestelmässä (PC/Win, Mac, X-Window System). Käytettäessä Matlabia verkon yli joko tekstipäätteeltä,

Lisätiedot

JavaScript alkeet Esimerkkikoodeja moniste 2 (05.10.11 Metropolia)

JavaScript alkeet Esimerkkikoodeja moniste 2 (05.10.11 Metropolia) JavaScript alkeet Esimerkkikoodeja moniste 2 (05.10.11 Metropolia) Esim 5.1 laskujärjestys operaattorit var tulos = 5 + 4 * 12 / 4; document.write("5 + 4 * 12 / 4 laskutoimituksen tulos

Lisätiedot

Harjoitus 9: Optimointi I (Matlab)

Harjoitus 9: Optimointi I (Matlab) Harjoitus 9: Optimointi I (Matlab) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen Optimointitehtävien

Lisätiedot

Harjoitus 4: Matlab - Optimization Toolbox

Harjoitus 4: Matlab - Optimization Toolbox Harjoitus 4: Matlab - Optimization Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 30.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 30.9.2015 1 / 27 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

Harjoitus 3: Flash-komponenttiarkkitehtuuri (18.3.2016)

Harjoitus 3: Flash-komponenttiarkkitehtuuri (18.3.2016) Harjoitus 3: Flash-komponenttiarkkitehtuuri (18.3.2016) Tietokoneavusteinen opetus -kurssilla opetetaan Adobe Flash CS6:n käyttämistä neljänä kertana: 11.3.2016, 15.3.2016, 18.3.2016 ja 1.4.2016. Harjoituskerroilla

Lisätiedot

Ohjelmointiharjoituksia Arduino-ympäristössä

Ohjelmointiharjoituksia Arduino-ympäristössä Ohjelmointiharjoituksia Arduino-ympäristössä Yleistä Arduino-sovelluksen rakenne Syntaksi ja käytännöt Esimerkki ohjelman rakenteesta Muuttujat ja tietotyypit Tietotyypit Esimerkkejä tietotyypeistä Ehtolauseet

Lisätiedot

TIEP114 Tietokoneen rakenne ja arkkitehtuuri, 3 op. Assembly ja konekieli

TIEP114 Tietokoneen rakenne ja arkkitehtuuri, 3 op. Assembly ja konekieli TIEP114 Tietokoneen rakenne ja arkkitehtuuri, 3 op Assembly ja konekieli Tietokoneen ja ohjelmiston rakenne Loogisilla piireillä ja komponenteilla rakennetaan prosessori ja muistit Prosessorin rakenne

Lisätiedot

ITKP102 Ohjelmointi 1 (6 op)

ITKP102 Ohjelmointi 1 (6 op) ITKP102 Ohjelmointi 1 (6 op) Tentaattori: Antti-Jussi Lakanen 7. huhtikuuta 2017 Vastaa kaikkiin tehtäviin. Tee jokainen tehtävä erilliselle konseptiarkille. Kirjoittamasi luokat, funktiot ja aliohjelmat

Lisätiedot

5/20: Algoritmirakenteita III

5/20: Algoritmirakenteita III Ohjelmointi 1 / syksy 2007 5/20: Algoritmirakenteita III Paavo Nieminen nieminen@jyu.fi Tietotekniikan laitos Informaatioteknologian tiedekunta Jyväskylän yliopisto Ohjelmointi 1 / syksy 2007 p.1/17 Tämän

Lisätiedot

OPPITUNTI 5 Ohjelman kulku

OPPITUNTI 5 Ohjelman kulku 5. Ohjelman kulku 67 OPPITUNTI 5 Ohjelman kulku Viime tunnilla luomamme skriptit olivat suoraviivaisia. Ohjelmalauseet suoritettiin aina samassa järjestyksessä, joten ohjelmissamme ei ollut lainkaan joustavuutta.

Lisätiedot

LOAD R1, =2 Sijoitetaan rekisteriin R1 arvo 2. LOAD R1, 100

LOAD R1, =2 Sijoitetaan rekisteriin R1 arvo 2. LOAD R1, 100 Tiedonsiirtokäskyt LOAD LOAD-käsky toimii jälkimmäisestä operandista ensimmäiseen. Ensimmäisen operandin pitää olla rekisteri, toinen voi olla rekisteri, vakio tai muistiosoite (myös muuttujat ovat muistiosoitteita).

Lisätiedot

Aluksi. 2.1. Kahden muuttujan lineaarinen epäyhtälö

Aluksi. 2.1. Kahden muuttujan lineaarinen epäyhtälö Aluksi Matemaattisena käsitteenä lineaarinen optimointi sisältää juuri sen saman asian kuin mikä sen nimestä tulee mieleen. Lineaarisen optimoinnin avulla haetaan ihannearvoa eli optimia, joka on määritelty

Lisätiedot

Alkuarvot ja tyyppimuunnokset (1/5) Alkuarvot ja tyyppimuunnokset (2/5) Alkuarvot ja tyyppimuunnokset (3/5)

Alkuarvot ja tyyppimuunnokset (1/5) Alkuarvot ja tyyppimuunnokset (2/5) Alkuarvot ja tyyppimuunnokset (3/5) Alkuarvot ja tyyppimuunnokset (1/5) Aiemmin olemme jo antaneet muuttujille alkuarvoja, esimerkiksi: int luku = 123; Alkuarvon on oltava muuttujan tietotyypin mukainen, esimerkiksi int-muuttujilla kokonaisluku,

Lisätiedot

Perusteet. Pasi Sarolahti Aalto University School of Electrical Engineering. C-ohjelmointi Kevät Pasi Sarolahti

Perusteet. Pasi Sarolahti Aalto University School of Electrical Engineering. C-ohjelmointi Kevät Pasi Sarolahti C! Perusteet 19.1.2017 Palautteesta (1. kierros toistaiseksi) (Erittäin) helppoa Miksi vain puolet pisteistä? Vaikeinta oli ohjelmointiympäristön asennus ja käyttö Ei selvää että main funktion pitikin

Lisätiedot

Sisällys. 11. Javan toistorakenteet. Laskurimuuttujat. Yleistä

Sisällys. 11. Javan toistorakenteet. Laskurimuuttujat. Yleistä Sisällys 11. Javan toistorakenteet Laskuri- ja lippumuuttujat.. Tyypillisiä ohjelmointivirheitä: Silmukan rajat asetettu kierroksen verran väärin. Ikuinen silmukka. Silmukoinnin lopettaminen break-lauseella.

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 1 Ti 6.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 1 Ti 6.9.2011 p. 1/28 p. 1/28 Numeriikan termejä Simulointi: Reaalimaailman ilmiöiden jäljitteleminen (yleensä)

Lisätiedot

TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio. Kimmo Berg. Mat Optimointioppi. 9. harjoitus - ratkaisut

TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio. Kimmo Berg. Mat Optimointioppi. 9. harjoitus - ratkaisut TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.139 Optimointioppi Kimmo Berg 9. harjoitus - ratkaisut 1. a) Viivahakutehtävä pisteessä x suuntaan d on missä min f(x + λd), λ f(x + λd) = (x

Lisätiedot

MATLAB 7.1 Ohjelmointiharjoitus. Matti Lähteenmäki 2005 www.tamk.fi/~mlahteen/

MATLAB 7.1 Ohjelmointiharjoitus. Matti Lähteenmäki 2005 www.tamk.fi/~mlahteen/ MATLAB 7.1 Ohjelmointiharjoitus 005 www.tamk.fi/~mlahteen/ MATLAB 7.1 Ohjelmointiharjoitus SISÄLLYSLUETTELO 1 Ohjelman kirjoittaminen editori/debuggerilla 3 Ohjelman ajaminen komentoikkunassa 4 3 Ohjausrakenteiden

Lisätiedot

Optimointi. Etsitään parasta mahdollista ratkaisua annetuissa olosuhteissa. Ongelman mallintaminen. Mallin ratkaiseminen. Ratkaisun analysointi

Optimointi. Etsitään parasta mahdollista ratkaisua annetuissa olosuhteissa. Ongelman mallintaminen. Mallin ratkaiseminen. Ratkaisun analysointi Optimointi Etsitään parasta mahdollista ratkaisua annetuissa olosuhteissa Ongelman mallintaminen Mallin ratkaiseminen Ratkaisun analysointi 1 Peruskäsitteitä Muuttujat: Sallittu alue: x = (x 1, x 2,...,

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 1 31.1.-1.2.2018 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka tutkii onko kokonaisluku tasan jaollinen jollain toisella kokonaisluvulla siten, että ei käytetä lainkaan jakolaskuja Jaettava

Lisätiedot

Sisällys. 17. Ohjelmoinnin tekniikkaa. Aritmetiikkaa toisin merkiten. for-lause lyhemmin

Sisällys. 17. Ohjelmoinnin tekniikkaa. Aritmetiikkaa toisin merkiten. for-lause lyhemmin Sisällys 17. Ohjelmoinnin tekniikkaa for-lause lyhemmin. Vaihtoehtoisia merkintöjä aritmeettisille lauseille. Useiden muuttujien esittely ja alustaminen yhdellä lauseella. if-else-lause vaihtoehtoisesti

Lisätiedot

Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti

Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti Luku 6 Dynaaminen ohjelmointi Dynaamisessa ohjelmoinnissa on ideana jakaa ongelman ratkaisu pienempiin osaongelmiin, jotka voidaan ratkaista toisistaan riippumattomasti. Jokaisen osaongelman ratkaisu tallennetaan

Lisätiedot

13. Loogiset operaatiot 13.1

13. Loogiset operaatiot 13.1 13. Loogiset operaatiot 13.1 Sisällys Loogiset operaatiot AND, OR, XOR ja NOT. Operaatioiden ehdollisuus. Bittioperaatiot. Loogiset operaatiot ohjausrakenteissa. Loogiset operaatiot ja laskentajärjestys.

Lisätiedot

Java-kielen perusteita

Java-kielen perusteita Java-kielen perusteita valintalauseet 1 Johdantoa kontrollirakenteisiin Tähän saakka ohjelmissa on ollut vain peräkkäisyyttä eli lauseet on suoritettu peräkkäin yksi kerrallaan Tarvitsemme myös valintaa

Lisätiedot

ITKP102 Ohjelmointi 1 (6 op), arvosteluraportti

ITKP102 Ohjelmointi 1 (6 op), arvosteluraportti ITKP2 Ohjelmointi 1 (6 op), arvosteluraportti Tentaattori: Antti-Jussi Lakanen 17. toukokuuta 219 Yleistä Tentti 1 oli pistekeskiarvon (14,6) perusteella hieman tavanomaista helpompi. Omasta tehtäväpaperista

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 1. Algoritmeista 1.1 Algoritmin käsite Algoritmi keskeinen laskennassa Määrittelee prosessin, joka suorittaa annetun tehtävän Esimerkiksi Nimien järjestäminen aakkosjärjestykseen

Lisätiedot

Sisällys. 16. Ohjelmoinnin tekniikkaa. Aritmetiikkaa toisin merkiten. Aritmetiikkaa toisin merkiten

Sisällys. 16. Ohjelmoinnin tekniikkaa. Aritmetiikkaa toisin merkiten. Aritmetiikkaa toisin merkiten Sisällys 16. Ohjelmoinnin tekniikkaa Vaihtoehtoisia merkintöjä aritmeettisille lauseille. Useiden muuttujien esittely ja alustaminen yhdellä lauseella. For-lause lyhemmin. If-else-lause vaihtoehtoisesti

Lisätiedot

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9.

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9. Python linkit: Python tutoriaali: http://docs.python.org/2/tutorial/ Numpy&Scipy ohjeet: http://docs.scipy.org/doc/ Matlabin alkeet (Pääasiassa Deni Seitzin tekstiä) Matriisit ovat matlabin perustietotyyppejä.

Lisätiedot

16. Ohjelmoinnin tekniikkaa 16.1

16. Ohjelmoinnin tekniikkaa 16.1 16. Ohjelmoinnin tekniikkaa 16.1 Sisällys Vaihtoehtoisia merkintöjä aritmeettisille lauseille. Useiden muuttujien esittely ja alustaminen yhdellä lauseella. For-lause lyhemmin. If-else-lause vaihtoehtoisesti

Lisätiedot

Harjoitus 10: Mathematica

Harjoitus 10: Mathematica Harjoitus 10: Mathematica Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen Mathematica-ohjelmistoon Mathematican

Lisätiedot

Alkuun HTML5 peliohjelmoinnissa

Alkuun HTML5 peliohjelmoinnissa Paavo Räisänen Alkuun HTML5 peliohjelmoinnissa www.ohjelmoimaan.net Tätä opasta saa vapaasti kopioida ja levittää ei kaupallisissa tarkoituksissa. Sisällysluettelo 1: Alkusanat 2: Alkuun 3: Pelinäkymä

Lisätiedot

OHJ-1151 Ohjelmointi IIe

OHJ-1151 Ohjelmointi IIe Tampereen teknillinen yliopisto Ohjelmistotekniikan laitos OHJ-1151 Ohjelmointi IIe Harjoitustyö Tomaattisota Välipalautus / Loppudokumentaatio Assistentin nimi Välipalautusaika (päivä ja kellonaika) ja

Lisätiedot

16. Ohjelmoinnin tekniikkaa 16.1

16. Ohjelmoinnin tekniikkaa 16.1 16. Ohjelmoinnin tekniikkaa 16.1 Sisällys For-lause lyhemmin. Vaihtoehtoisia merkintöjä aritmeettisille lauseille. Useiden muuttujien esittely ja alustaminen yhdellä lauseella. If-else-lause vaihtoehtoisesti

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 2.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 2.2.2009 1 / 43 Funktiot Tähän asti esitetyt ohjelmat ovat oleet hyvin lyhyitä. Todellisessa elämässä tarvitaan kuitenkin

Lisätiedot

13. Loogiset operaatiot 13.1

13. Loogiset operaatiot 13.1 13. Loogiset operaatiot 13.1 Sisällys Loogiset operaatiot AND, OR, XOR ja NOT. Operaatioiden ehdollisuus. Bittioperaatiot. Loogiset operaatiot ohjausrakenteissa. Loogiset operaatiot ja laskentajärjestys.

Lisätiedot

Perusteet. Pasi Sarolahti Aalto University School of Electrical Engineering. C-ohjelmointi Kevät Pasi Sarolahti

Perusteet. Pasi Sarolahti Aalto University School of Electrical Engineering. C-ohjelmointi Kevät Pasi Sarolahti C! Perusteet 19.1.2017 Palautteesta (1. kierros toistaiseksi) Toistaiseksi helppoa Miksi vain puolet pisteistä? Vaikeinta oli ohjelmointiympäristön asennus ja käyttö Vaikeaa eroavuudet Pythonin ja C:n

Lisätiedot

Matlab- ja Maple- ohjelmointi

Matlab- ja Maple- ohjelmointi Perusasioita 2. helmikuuta 2005 Matlab- ja Maple- ohjelmointi Yleistä losoaa ja erityisesti Numsym05-kurssin tarpeita palvellee parhaiten, jos esitän asian rinnakkain Maple:n ja Matlab:n kannalta. Ohjelmien

Lisätiedot

Harjoitus 11: Mathematica - Differentiaaliyhtälöiden analysointi, lisäpaketit

Harjoitus 11: Mathematica - Differentiaaliyhtälöiden analysointi, lisäpaketit Harjoitus 11: Mathematica - Differentiaaliyhtälöiden analysointi, lisäpaketit Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen

Lisätiedot

Ohjelmointikieli TIE Principles of Programming Languages Syksy 2017 Ryhmä 19

Ohjelmointikieli TIE Principles of Programming Languages Syksy 2017 Ryhmä 19 Ohjelmointikieli TIE-20306 Principles of Programming Languages Syksy 2017 Ryhmä 19 Juho Kärnä Ville Mäntysaari 1. Johdanto D on yleiskäyttöinen, strukturoitu, staattisesti tyypitetty, käännettävä ohjelmointikieli

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2018-2019 1. Algoritmeista 1.1 Algoritmin käsite Algoritmi keskeinen laskennassa Määrittelee prosessin, joka suorittaa annetun tehtävän Esimerkiksi Nimien järjestäminen aakkosjärjestykseen

Lisätiedot

Racket ohjelmointia osa 2. Tiina Partanen Lielahden koulu 2014

Racket ohjelmointia osa 2. Tiina Partanen Lielahden koulu 2014 Racket ohjelmointia osa 2 Tiina Partanen Lielahden koulu 2014 Sisältö 1) Funktiot ja muuttujat (kertaus) 2) Animaatiot & pelit (big-bang) 3) Vertailuoperaattorit sekä boolean arvot 4) Tietorakenteet (struct)

Lisätiedot

Tutoriaaliläsnäoloista

Tutoriaaliläsnäoloista Tutoriaaliläsnäoloista Tutoriaaliläsnäolokierroksella voi nyt täyttää anomuksen läsnäolon merkitsemisestä Esim. tagi ei toiminut, korvavaltimon leikkaus, yms. Hyväksyn näitä omaa harkintaa käyttäen Tarkoitus

Lisätiedot

Python-ohjelmointi Harjoitus 2

Python-ohjelmointi Harjoitus 2 Python-ohjelmointi Harjoitus 2 TAVOITTEET Kerrataan tulostuskomento ja lukumuotoisen muuttujan muuttaminen merkkijonoksi. Opitaan jakojäännös eli modulus, vertailuoperaattorit, ehtorakenne jos, input-komento

Lisätiedot

SIMULINK S-funktiot. SIMULINK S-funktiot

SIMULINK S-funktiot. SIMULINK S-funktiot S-funktio on ohjelmointikielellä (Matlab, C, Fortran) laadittu oma algoritmi tai dynaamisen järjestelmän kuvaus, jota voidaan käyttää Simulink-malleissa kuin mitä tahansa valmista lohkoa. S-funktion rakenne

Lisätiedot

T211003 Sovellusohjelmat Matlab osa 4: Skriptit, funktiot ja kontrollirakenteet

T211003 Sovellusohjelmat Matlab osa 4: Skriptit, funktiot ja kontrollirakenteet Ohjelmointi Matlab-komentoja voidaan koota ns. M-tiedostoon. Nimi tulee tiedoston tarkentimesta.m. Matlabilla voidaan ohjelmoida kahdella eri tavalla: Skriptit eli komentojonot eli makrot Funktiot eli

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 26.1.2009 T-106.1208 Ohjelmoinnin perusteet Y 26.1.2009 1 / 33 Valintakäsky if syote = raw_input("kerro tenttipisteesi.\n") pisteet = int(syote) if pisteet >=

Lisätiedot

Lisää segmenttipuusta

Lisää segmenttipuusta Luku 24 Lisää segmenttipuusta Segmenttipuu on monipuolinen tietorakenne, joka mahdollistaa monenlaisten kyselyiden toteuttamisen tehokkaasti. Tähän mennessä olemme käyttäneet kuitenkin segmenttipuuta melko

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 1.4.2009 T-106.1208 Ohjelmoinnin perusteet Y 1.4.2009 1 / 56 Tentti Ensimmäinen tenttimahdollisuus on pe 8.5. klo 13:00 17:00 päärakennuksessa. Tämän jälkeen

Lisätiedot

String-vertailusta ja Scannerin käytöstä (1/2) String-vertailusta ja Scannerin käytöstä (2/2) Luentoesimerkki 4.1

String-vertailusta ja Scannerin käytöstä (1/2) String-vertailusta ja Scannerin käytöstä (2/2) Luentoesimerkki 4.1 String-vertailusta ja Scannerin käytöstä (1/2) Vertailuja tehdessä törmätään usein tilanteeseen, jossa merkkijonoa (esimerkiksi merkkijonomuuttujaa) pitää vertailla toiseen merkkijonoon. Tällöin tavanomainen

Lisätiedot

Vertailulauseet. Ehtolausekkeet. Vertailulauseet. Vertailulauseet. if-lauseke. if-lauseke. Javan perusteet 2004

Vertailulauseet. Ehtolausekkeet. Vertailulauseet. Vertailulauseet. if-lauseke. if-lauseke. Javan perusteet 2004 Vertailulauseet Ehtolausekkeet Ehdot, valintalausekkeet Boolean-algebra == yhtäsuuruus!= erisuuruus < pienempi suurempi >= suurempi tai yhtäsuuri Esimerkkejä: int i=7; int j=10;

Lisätiedot

Tietotyypit ja operaattorit

Tietotyypit ja operaattorit Tietotyypit ja operaattorit Luennossa tarkastellaan yksinkertaisten tietotyyppien int, double ja char muunnoksia tyypistä toiseen sekä esitellään uusia operaatioita. Numeeriset tietotyypit ja muunnos Merkkitieto

Lisätiedot

Dynaamisen järjestelmän siirtofunktio

Dynaamisen järjestelmän siirtofunktio Dynaamisen järjestelmän siirtofunktio Nyt päästään soveltamaan matriisilaskentaa ja Laplace muunnosta. Tutkikaamme, miten lineaarista mallia voidaan käsitellä. Kuten edellä on jo nähty säätötekniikassa

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 15.2.2010 T-106.1208 Ohjelmoinnin perusteet Y 15.2.2010 1 / 46 Merkkijonot Merkkijonojen avulla ohjelmassa voi esittää tekstitietoa, esim. nimiä, osoitteita ja

Lisätiedot

Harjoitustyö: virtuaalikone

Harjoitustyö: virtuaalikone Harjoitustyö: virtuaalikone Toteuta alla kuvattu virtuaalikone yksinkertaiselle olio-orientoituneelle skriptauskielelle. Paketissa on testaamista varten mukana kaksi lyhyttä ohjelmaa. Ohjeita Noudata ohjelman

Lisätiedot

Java-kielen perusteita

Java-kielen perusteita Java-kielen perusteita Toistorakenne (while, do-while, for) 1 While- lause while-lauseen rakenne on seuraava: while (ehtolauseke) lause Kun ehtolausekkeen arvo on totta, lause suoritetaan. Lause suoritetaan

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 21.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 21.9.2015 1 / 25 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

TAITAJA 2007 ELEKTRONIIKKAFINAALI 31.01-02.02.07 KILPAILIJAN TEHTÄVÄT. Kilpailijan nimi / Nro:

TAITAJA 2007 ELEKTRONIIKKAFINAALI 31.01-02.02.07 KILPAILIJAN TEHTÄVÄT. Kilpailijan nimi / Nro: KILPAILIJAN TEHTÄVÄT Kilpailijan nimi / Nro: Tehtävän laatinut: Hannu Laurikainen, Deltabit Oy Kilpailutehtävä Kilpailijalle annetaan tehtävässä tarvittavat ohjelmakoodit. Tämä ohjelma on tehty laitteen

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 1.2.2010 T-106.1208 Ohjelmoinnin perusteet Y 1.2.2010 1 / 47 Sijoituksen arvokehitys, koodi def main(): print "Ohjelma laskee sijoituksen arvon kehittymisen."

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 9 Ti 4.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 9 Ti 4.10.2011 p. 1/44 p. 1/44 Funktion approksimointi Etsitään p siten, että p f, mutta ei vaadita, että

Lisätiedot

UML -mallinnus Viestiyhteyskaavio EERO NOUSIAINEN

UML -mallinnus Viestiyhteyskaavio EERO NOUSIAINEN UML -mallinnus Viestiyhteyskaavio EERO NOUSIAINEN SISÄLLYS 4. Viestiyhteyskaavio suunnitteluvaiheessa 4.1 Suunnitteluvaiheen viestiyhteyskaavion osat 4.2 Aikajakson viestit ohjelmakoodissa 4.3 Ehdonesittäminenohjelmakoodissa

Lisätiedot

Muuttujien roolit Kiintoarvo cin >> r;

Muuttujien roolit Kiintoarvo cin >> r; Muuttujien roolit Muuttujilla on ohjelmissa eräitä tyypillisiä käyttötapoja, joita kutsutaan muuttujien rooleiksi. Esimerkiksi muuttuja, jonka arvoa ei muuteta enää kertaakaan muuttujan alustamisen jälkeen,

Lisätiedot

Ehto- ja toistolauseet

Ehto- ja toistolauseet Ehto- ja toistolauseet 1 Ehto- ja toistolauseet Uutena asiana opetellaan ohjelmointilauseet / rakenteet, jotka mahdollistavat: Päätösten tekemisen ohjelman suorituksen aikana (esim. kyllä/ei) Samoja lauseiden

Lisätiedot

C-ohjelma. C-ohjelma. C-ohjelma. C-ohjelma. C-ohjelma. C-ohjelma. Operaatioiden suoritusjärjestys

C-ohjelma. C-ohjelma. C-ohjelma. C-ohjelma. C-ohjelma. C-ohjelma. Operaatioiden suoritusjärjestys Loogisia operaatioita - esimerkkejä Tänään on lämmin päivä ja perjantai Eilen satoi ja oli keskiviikko tai tänään on tiistai. On perjantai ja kello on yli 13 Ei ole tiistai tai ei sada. Ei pidä paikkaansa,

Lisätiedot

Algoritmit 2. Demot Timo Männikkö

Algoritmit 2. Demot Timo Männikkö Algoritmit 2 Demot 2 3.-4.4.2019 Timo Männikkö Tehtävä 1 Avoin osoitteenmuodostus: Hajautustaulukko t (koko m) Erikoisarvot VAPAA ja POISTETTU Hajautusfunktio h(k,i) Operaatiot: lisaa etsi poista Algoritmit

Lisätiedot

Matemaattiset ohjelmistot 1-2 ov, 2-3 op

Matemaattiset ohjelmistot 1-2 ov, 2-3 op Matemaattiset ohjelmistot 1-2 ov, 2-3 op Aloitustehtävät Perehdy netissä olevan oppaan http://mtl.uta.fi/opetus/matem_ohjelmistot/matlab lukuihin 0 Johdanto, 1 matriisit ja vektorit sekä 4 Ohjelmointi

Lisätiedot

Racket ohjelmointia II. Tiina Partanen 2015

Racket ohjelmointia II. Tiina Partanen 2015 Racket ohjelmointia II Tiina Partanen 2015 Sisältö Peruspeli 1 Yksinkertainen peli, jossa kerätään kohteita ja väistellään vaaroja Pitkälle viety koodi, johon täydennetään vain puuttuvat palat Ei tarvita

Lisätiedot

Luku 3. Listankäsittelyä. 3.1 Listat

Luku 3. Listankäsittelyä. 3.1 Listat Luku 3 Listankäsittelyä Funktio-ohjelmoinnin tärkein yksittäinen tietorakenne on lista. Listankäsittely on paitsi käytännöllisesti oleellinen aihe, se myös valaisee funktio-ohjelmoinnin ideaa. 3.1 Listat

Lisätiedot

Muuttujatyypit ovat Boolean, Byte, Integer, Long, Double, Currency, Date, Object, String, Variant (oletus)

Muuttujatyypit ovat Boolean, Byte, Integer, Long, Double, Currency, Date, Object, String, Variant (oletus) VISUAL BASIC OHJEITA Kutsuttava ohjelma alkaa kometoparilla Sub... End Sub Sub ohjelmanimi()...koodia... End Sub Muuttujat Muuttujan esittely Muuttujatyypit ovat Boolean, Byte, Integer, Long, Double, Currency,

Lisätiedot

Algebralliset tietotyypit ym. TIEA341 Funktio ohjelmointi 1 Syksy 2005

Algebralliset tietotyypit ym. TIEA341 Funktio ohjelmointi 1 Syksy 2005 Algebralliset tietotyypit ym. TIEA341 Funktio ohjelmointi 1 Syksy 2005 Tällä luennolla Algebralliset tietotyypit Hahmonsovitus (pattern matching) Primitiivirekursio Esimerkkinä binäärinen hakupuu Muistattehan...

Lisätiedot

5 Osa 5: Ohjelmointikielen perusteita

5 Osa 5: Ohjelmointikielen perusteita 5 Osa 5: Ohjelmointikielen perusteita 5.1 Omat funktiot R on lausekekieli: Kaikki komennot kuten funktiokutsut ja sijoitusoperaatiot ovat lausekkeita. Lausekkeet palauttavat jonkin arvon. Lausekkeita voidaan

Lisätiedot

Sisällys. 3. Pseudokoodi. Johdanto. Johdanto. Johdanto ja esimerkki. Pseudokoodi lauseina. Kommentointi ja sisentäminen.

Sisällys. 3. Pseudokoodi. Johdanto. Johdanto. Johdanto ja esimerkki. Pseudokoodi lauseina. Kommentointi ja sisentäminen. Sisällys 3. Pseudokoodi Johdanto ja esimerkki. Pseudokoodi lauseina. Kommentointi ja sisentäminen. Ohjausrakenteet: Valinta if- ja if--rakenteilla. oisto while-, do-while- ja for-rakenteilla. 3.1 3.2 Johdanto

Lisätiedot

TIEP114 Tietokoneen rakenne ja arkkitehtuuri, 3 op. Assembly ja konekieli

TIEP114 Tietokoneen rakenne ja arkkitehtuuri, 3 op. Assembly ja konekieli TIEP114 Tietokoneen rakenne ja arkkitehtuuri, 3 op Assembly ja konekieli Tietokoneen ja ohjelmiston rakenne Loogisilla piireillä ja komponenteilla rakennetaan prosessori ja muistit Prosessorin rakenne

Lisätiedot

Harjoitus 6: Simulink - Säätöteoria. Syksy 2006. Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1

Harjoitus 6: Simulink - Säätöteoria. Syksy 2006. Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoitus 6: Simulink - Säätöteoria Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen säätötekniikkaan Takaisinkytkennän

Lisätiedot

Sisältö Yleistä. Esittely ja luominen. Alkioiden käsittely. Kaksiulotteinen taulukko. Taulukko metodin parametrina. Taulukko ja HelloWorld-ohjelma. Ta

Sisältö Yleistä. Esittely ja luominen. Alkioiden käsittely. Kaksiulotteinen taulukko. Taulukko metodin parametrina. Taulukko ja HelloWorld-ohjelma. Ta 22. Taulukot 22.1 Sisältö Yleistä. Esittely ja luominen. Alkioiden käsittely. Kaksiulotteinen taulukko. Taulukko metodin parametrina. Taulukko ja HelloWorld-ohjelma. Taulukko paluuarvona. 22.2 Yleistä

Lisätiedot

Esimerkkejä derivoinnin ketjusäännöstä

Esimerkkejä derivoinnin ketjusäännöstä Esimerkkejä derivoinnin ketjusäännöstä (5.9.008 versio 1.0) Esimerkki 1 Määritä funktion f(x) = (x 5) derivaattafunktio. Funktio voidaan tulkita yhdistettynä funktiona, jonka ulko- ja sisäfunktiot ovat

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 31.1.2011 T-106.1208 Ohjelmoinnin perusteet Y 31.1.2011 1 / 41 Luentopalaute kännykällä käynnissä! Ilmoittaudu mukaan lähettämällä ilmainen tekstiviesti Vast

Lisätiedot

11. Javan toistorakenteet 11.1

11. Javan toistorakenteet 11.1 11. Javan toistorakenteet 11.1 Sisällys Laskuri- ja lippumuuttujat. Sisäkkäiset silmukat. Tyypillisiä ohjelmointivirheitä: Silmukan rajat asetettu kierroksen verran väärin. Ikuinen silmukka. Silmukoinnin

Lisätiedot

11. Javan valintarakenteet 11.1

11. Javan valintarakenteet 11.1 11. Javan valintarakenteet 11.1 Sisällys If- ja if-else-lauseet. Orpo else. Valintaa toisin: switch-lause. 11.2 If-lause Merkitään varatulla sanalla if. Kuvaa yksisuuntaisen päätöksen: rakenteen lauseet

Lisätiedot

ELEC-C5210 Satunnaisprosessit tietoliikenteessä Harjoitus M1,

ELEC-C5210 Satunnaisprosessit tietoliikenteessä Harjoitus M1, ELEC-C5210 Satunnaisprosessit tietoliikenteessä Harjoitus M1, 16.3.2017 1. Syntaksista, vektoreista ja matriiseista: Tehtävän eri kohdat on tehtävä järjestyksessä. Myöhemmissä kohdissa oletetaan, että

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 15.3.2010 T-106.1208 Ohjelmoinnin perusteet Y 15.3.2010 1 / 56 Tiedostoista: tietojen tallentaminen ohjelman suorituskertojen välillä Monissa sovelluksissa ohjelman

Lisätiedot

Listarakenne (ArrayList-luokka)

Listarakenne (ArrayList-luokka) Listarakenne (ArrayList-luokka) Mikä on lista? Listan määrittely ArrayList-luokan metodeita Listan läpikäynti Listan läpikäynti indeksin avulla Listan läpikäynti iteraattorin avulla Listaan lisääminen

Lisätiedot

815338A Ohjelmointikielten periaatteet Harjoitus 4 vastaukset

815338A Ohjelmointikielten periaatteet Harjoitus 4 vastaukset 815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 4 vastaukset Harjoituksen aiheena ovat imperatiivisten kielten lauseisiin, lausekkeisiin ja aliohjelmiin liittyvät kysymykset. Tehtävä 1. Mitä

Lisätiedot

Esimerkki: Laskin (alkua) TIEA341 Funktio ohjelmointi 1 Syksy 2005

Esimerkki: Laskin (alkua) TIEA341 Funktio ohjelmointi 1 Syksy 2005 Esimerkki: Laskin (alkua) TIEA341 Funktio ohjelmointi 1 Syksy 2005 Esimerkki: Laskin Liukulukulaskentaa Yhteen, vähennys, kerto ja jakolaskut Syötteenä laskutehtävä, tulosteena tulos tai virheilmoitus

Lisätiedot

VIII. Osa. Liitteet. Liitteet Suoritusjärjestys Varatut sanat Binääri- ja heksamuoto

VIII. Osa. Liitteet. Liitteet Suoritusjärjestys Varatut sanat Binääri- ja heksamuoto Osa VIII Liitteet Liitteet A B C Suoritusjärjestys Varatut sanat Binääri- ja heksamuoto Osa VIII A. Liite Operaattoreiden suoritusjärjestys On tärkeää ymmärtää, että operaattoreilla on prioriteettinsa,

Lisätiedot

Mat-2.091 Sovellettu todennäköisyyslasku 5. harjoitukset/ratkaisut. Jatkuvat jakaumat

Mat-2.091 Sovellettu todennäköisyyslasku 5. harjoitukset/ratkaisut. Jatkuvat jakaumat Mat-2.09 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Jatkuvat jakaumat Avainsanat: Binomijakauma, Eksponenttijakauma, Jatkuva tasainen jakauma, Kertymäfunktio, Mediaani, Normaaliapproksimaatio, Normaalijakauma,

Lisätiedot

Racket ohjelmointia I

Racket ohjelmointia I Racket ohjelmointia I Tiina Partanen 2015 Sisältö 1) Racket-kieli ja DrRacket 1.1 DrRacket esivalmistelut 1.2 Peruslaskutoimitukset 2) Piirtotyökalut 2.1 Peruskuvioiden piirtäminen 2.2 Määrittelyt (define)

Lisätiedot