Pertti Virtala. RIDE-model. Definition of the RIDE-model. Liikenneviraston tutkimuksia ja selvityksiä nro/2017

Koko: px
Aloita esitys sivulta:

Download "Pertti Virtala. RIDE-model. Definition of the RIDE-model. Liikenneviraston tutkimuksia ja selvityksiä nro/2017"

Transkriptio

1 Pertti Virtala RIDE-model Definition of the RIDE-model Liikenneviraston tutkimuksia ja selvityksiä nro/2017 Liikennevirasto Helsinki 2017

2 Kannen kuvat: Kuvan ottajan nimi tai esim. Liikenneviraston kuva-arkisto ISSN-L ISSN ISBN xxx-x Verkkojulkaisu pdf ( ISSN-L ISSN ISBN xxx-x Painotalon nimi Paikkakunta 2017 Julkaisua (myy)/saatavana Painotalon nimi (jos myynnissä) tai vastuuyksikön nimi Faksi <Kirjoita tähän> Puhelin <Kirjoita tähän> Liikennevirasto PL HELSINKI Puhelin

3 3 Pertti Virtala: RIDE-mallin määrittely. Liikennevirasto, xxxosasto. Helsinki 201x. Liikenneviraston tutkimuksia ja selvityksiä nro/201x. xx sivua ja xx liitettä. ISSN-L , ISSN , ISBN xxx-x, ISSN (pdf), ISBN xxx-x (pdf) Avainsanat: xxx Tiivistelmä Päällysteiden kunnossapidossa on ollut Suomessa käytössä tien epätasaisuuteen liittyvä tunnusluku (IRI) jo 1980-luvulta lähtien. Se on ollut pääasiallinen tunnusluku niin uusien kuin vanhojen päällysteiden kunnonhallinnassa. Monissa tutkimuksissa on kuitenkin todettu, ettei se ole paras ajomukavuutta kuvaava tunnusluku. Sitä toteamusta tukevat myös käytännön kokemukset. Liikennevirasto onkin kehittänyt epätasaisuuteen liittyviä tunnuslukuja siihen suuntaan, että ne kuvaisivat paremmin koettua epämukavuutta. Uusi tunnusluku (tunnusluvut) lasketaan monipuolisemmalla mallilla, jonka laskentaperusteet on kuvattu tässä määrittelydokumentissa. Määrittely pohjautuu Liikenneviraston teettämään selvitykseen uudesta RIDE-mallista [2]. Määrittelyn soveltaminen edellyttää perustietojen [1] hallitsemista ajoneuvodynamiikasta ja differentiaalilaskennasta.

4 4

5 5 Esipuhe Tässä dokumentissa on määritetty tien epätasaisuuteen liittyvien RIDE-tunnuslukujen laskentaperiaatteet. Dokumentti on tehty Liikenneviraston toimeksiannosta (Juho Meriläinen) ja sen on tuottanut Destia Oy (Pertti Virtala). Helsingissä toukokuussa 2017 Liikennevirasto Väylänpito/Kunnossapidon ohjaus ja kehittäminen

6 6 Table of Content 2.1 Standard terminology Coordinate system Vehicle Forces and moments Movements and angles Graphical model Motion equations Vehicle parameters Road Raw data Additional filtering Simulation speed Initial position of the vehicle Simulation Outcomes Outcomes sim_nop_ka pys_ki_std siv_ki_std nyö_ki_std yhd_ki_rms esal_std ltr_std Ityö_ka and Ityö_ha sim_nop_ha Reference Data Results APPENDIXES

7 7 1 Introduction The International Roughness Index (IRI) developed by the World Bank (1986) has been in use in the Finnish Transport Agency almost 30 years. It has been the main indicator describing the roughness (or unevenness) of a road pavement in the Asset Management Systems (RAMS) and in the Quality Assurance Standards (QS). Numeral studies have showed that IRI is not the best index concerning riding comfort. Kim et al. [3] performed correlation analysis to determine the relation between measured accelerations and subjective ratings of four expert drivers using a psychophysical power law. Nair et al. [5] have described the experience, accomplishments, and challenges of using pavement roughness to set specifications for ride comfort on Virginia s highways. The practical experiences in the Finnish Transport Agency support those statements. The pavement management system in Transport Agency works with the definition of the amount of pavements in poor condition. Tree main indexes (rut depth, IRI, and crack index) are classified into five distinctive classes (from poor to excellent) where two worst classes belong to the category of poor condition. The main weight is typically set to rutting of main roads and to the cracking of secondary roads. Roughness has not been as important as those two. It is a sort of secondary index affecting to the type of action or treatment when the main indexes exceed threshold values. There have clearly been problems in using the roughness information of pavements in pavement management during the past years. Typical statements have been that it does not represent the riding comfort of pavements well enough and it cannot show where the bad sections locate or what the type of roughness is. The conclusion is then that a better index describing the roughness of pavements is needed. It should locate the bad sections more precisely and it should give information of what kind of roughness exists. The relation of roughness index to the riding comfort should be better too. [2]. As a result of several studies funded by the FTA the conclusion has been to develop a better index to describe the roughness of road pavement. The main question was, what were the root causes for the problem, where IRI seems not to represent the riding comfort of a traveller in a car or in a truck well enough. A root cause analysis was conducted and the following potential root causes were found [2,3]: IRI is calculated using a quarter car model, where only one longitudinal profile is fed to the model and the outcome is therefore missing some important dimensions. One longitudinal profile cannot have any information of how the cross fall varies in transversal direction. Quarter car model is based on an American car where the suspension system differs from what is in a typical European or Japanese car or a truck. IRI represents the vertical movement of a car chassis which is not the best source for searching factors causing discomfort. (ISO 2631 uses vertical accelerations) [3]. The wavelength of longitudinal profile data used in calculating IRI is filtered to cover wavelengths between 0.5 and 50 m. Wavelengths shorter than 0.5 m can affect to the riding comfort as well. IRI is simulated using a constant speed 80 km/h. On high trafficked roads the speed of cars is usually much higher ( km/h). On low trafficked roads the speed of cars is usually much lower (50-60 km/h). The speed used in simulations of IRI differs from the real driving speed. The suspension system of the driver s seat is not included in the quarter car simulation model. The reporting interval of 100 m is too long to locate poor road sections accurately. It also averages the outcome too much and important transients in roughness cannot be recognized. Some of the parameters of the suspension system in a car are changing over time, which can affect to the riding comfort.

8 8 The decision has been to move from a 2-DOF IRI-model to a full-car 7-DOF RIDEmodel and introduce the indicators from RIDE-model to the Finnish RAMS. New indexes are based on vertical acceleration, roll acceleration, pitch acceleration and a combined vertical acceleration of vehicle sprung mass. This report describes the principles of the calculation of new indexes. A more detailed study of the new indicators is based on the results of the work done in [2].

9 9 2 RIDE-model 2.1 Standard terminology Coordinate system Axis system is a set of three mutually orthogonal X, Y, and Z axes. In a right-handed system, Z =X *Y [4]. Coordinate system is a numbering convention used to assign a unique ordered trio of numbers to each point in a reference frame. A typical rectangular coordinate system consists of an axis system plus an origin point [3]. Vehicle axis system (XV, YV, ZV) is a right-handed orthogonal axis system fixed in the vehicle reference frame, usually in the center of gravity (CG) of vehicle. The XV axis is primarily horizontal in the vehicle plane of symmetry and points forward. The ZV axis is vertical and the YV axis is lateral. The directions should coincide with the earth-fixed axis system when the vehicle is upright and aligned with the XV axis parallel to the XE axis [5]. Multibody vehicle dynamics models are typically generated using right-handed axis systems and coordinate systems. The axis orientation for ISO 8855 has X forward, Z up, and Y pointing to the left-hand side of the vehicle [5]. Figure 1. Vehicle body coordinate system as ISO standard [5]. Road axis system (XR, YR, ZR) right-handed orthogonal axis system whose ZR axis is normal to the road, at the center of tire contact, and whose XR axis is perpendicular to the wheel spin axis (YW). For an uneven road, a different road axis system exists for each tire Vehicle Size and weight Track width (W) is the distance between the centers of tire contact on one side of the vehicle. Wheelbase (L) is the distance between the front and rear axle. Distance of vehicle C.G. from front axle is marked with Lf and distance of vehicle C.G. from rear axle is marked with Lr.

10 10 Unsprung weight (mu) is portion of weight supported by a tire that is considered to move with the wheel. This usually includes a portion of the weight of the suspension elements. (SAE) [4]. Each wheel has an individual unsprung weight which is marked with letters describing the front ( f ) or rear ( r ) and left ( l ) or right ( r ), as mufl, mufr, murl and murr. Sprung weight (ms) is the weight of the vehicle chassis including driver, passengers, and loads. Total weight of the vehicle is the sum of sprung weight and unsprung weights Points C.G. (Center of gravity) is a point in the vehicle reference frame that coincides with the center of mass of the entire vehicle when the suspensions are in equilibrium and the vehicle is resting on a flat level surface. Vertical position is Z - ZE coordinate of the C.G. X position is X - XE coordinate of the C.G. Y position is Y - YE coordinate of the C.G. Pitch center is imaginary point in the XVZV plane through the lateral center of the vehicle reference frame at which a longitudinal force applied to the vehicle body is reacted without causing suspension jounce (front or rear). An alternate definition is that the pitch center is the intersection of the two lines shown in Figure 2. Note: this definition of pitch center does not take into account the wind up effects of drive train torque applied to the wheels from the vehicle body [4]. Figure 2. Pitch center [5].

11 11 Figure 3. Roll center [5]. Roll center is an imaginary point in the YVZV plane containing the two wheel centers of an axle, at which a lateral force applied to the vehicle body is reacted without causing suspension roll angle (ISO, SAE). An alternate definition is that the roll center is the intersection of the two lines shown in Figure 3. (Note: the figure shows a nonequilibrium position of the vehicle.) [5] Suspension Spring is a part which combines the wheel to the chassis for each corner. Spring stiffness (k fl, k fr, k rl, k rr) define the amount of load the spring is needed to be pressed to reach a certain compression. z sfl m sfl k sfl c sfl z ufl m ufl z Rfl k tf c tf Figure 4. Suspension of a vehicles front left corner. Damping coefficient is the ability of a shock absorber to resist movement. It is marked with a letter locating the corner in the vehicle (cfl, cfr, crl, crr). A tire can have a spring parameter (kt) and a suspension parameter (ct) Forces and moments Damping force Fd is a compressive force applied to the vehicle body by a damper (Fdfl, Fdfr, Fdrl, Fdrr).

12 12 Spring force Fs is a compressive force applied to the vehicle body by a suspension spring (Fsfl, Fsfr, Fsrl, Fsrr). Vertical tire force Fz is the ZR component of ground resultant force. (SAE16, ISO15) (Fzfl, Fzfr, Fzrl, Fzrr). Suspension roll moment Mroll is a total static roll moment applied to sprung roll angle. A positive moment causes positive vehicle roll. Suspension pitch moment Mpitch is a total static pitch moment applied to sprung pitch angle. A positive moment causes positive vehicle pitch Movements and angles Vertical displacement z s is the Z component of displacement vector of the C.G. Vertical velocity z s is the Z component of velocity vector of the C.G. Vertical acceleration z s is the Z component of acceleration vector of the C.G. Pitch θs is an angle from X axis to XV axis, about Y axis. (SAE, ISO) [5]. Pitch velocity θ s is the Y component of angular velocity vector of vehicle reference frame. Pitch acceleration θ s is the Y component of angular acceleration vector of vehicle reference frame. Roll φs is the angle from XEYE plane to YV axis, about X axis (SAE, ISO) [5]. Roll velocity φ s is the X component of angular velocity vector of vehicle reference frame. Roll acceleration φ s is the X component of angular acceleration vector of vehicle reference frame. Figure 5. Roll, pitch and yaw of a vehicle.

13 Graphical model The full-vehicle suspension system is represented as a linear seven degree-offreedom (DOF) system. It consists of a single sprung mass (car body) connected to four unsprung masses (front-left, front-right, rear-left and rear-right wheels) at each corner. The sprung mass is free to bounce, pitch and roll while the unsprung masses are free only to bounce vertically with respect to the sprung mass. All other motions are neglected for this model. Hence this system has seven degrees of freedom and allows simulation of tyre load forces in all four tyres, body acceleration and vertical body displacement as well as roll and pitch motion of the car body. The suspensions between the sprung mass and unsprung masses are modelled as linear viscous dampers and linear spring elements, while the tyres are modelled as simple linear springs without damping. For simplicity, all pitch and roll angles are assumed to be small [6]. The model of a full-car suspension system is shown in Figure 6. The full-vehicle suspension model is represented as a linear seven degree of freedom system. The lateral dynamics of the vehicle are ignored. It consists of a single sprung mass m (car body) connected to four unsprung masses m1 m4 (front-left, front-right, rear-left and rearright wheels) at each corner. The suspensions between the sprung mass and unsprung masses are modelled as linear viscous dampers and spring elements. The dampers between the body and the wheels represent sources of conventional damping such as friction between the mechanical elements. For the vehicle modelling fullcar will be used as a good approximation of the entire car [6]. L (m) L f (m) L r (m) front right W (m) rear right front left rear left Figure 6. Graphical vehicle model. There are some assumptions made in this model. The vehicle aerodynamic effect is neglected and the road is assumed to be level except for road disturbance. That means that the geometry of the road is neglected. The vehicle is also assumed to be rigid where the load transfer from one point to another is one hundred percent effective. Parameters of the vehicle are also assumed to be constant throughout the simulation process such as tire stiffness, spring stiffness, and damper coefficient.

14 Motion equations At time t, the vertical profile of the road (road roughness) corresponding to the front right wheel is denoted by zrfr(t), the road roughness corresponding to the front left wheel is denoted by zrfl(t), the road roughness corresponding to the rear left wheel is denoted by zrrl(t), finally the road roughness corresponding to the rear right wheel is denoted by zrrr(t). In fact, since a straight road is considered here, the road roughnesses zrfl(t) and zrfr(t) are encountered by the front wheels (right and, respectively, left wheels) at time t, while the right and left rear wheels encounter the same road roughnesses after Δt L/v (so at t +Δt), where L is the wheelbase and v the constant car speed. Thus: zrfl(t) = zrrl(t +Δt) and zrfr(t) = zrrr(t +Δt). The vertical dynamics equations of the 7 DOF model are obtained using the Newton- Euler formulation, as provided widely in the literature. There are 3 scalar dynamic equations of the sprung mass: one in terms of vertical forces (z direction), one in terms of moments with respect to the longitudinal x axis and the third one in terms of moments with respect to the transversal y axis. The dynamic of the sprung mass is defined by: m s z s = k sf (z Rfl z sfl ) + k sf (z Rfr z sfr ) + k sr (z Rrl z srl ) + k sr (z Rrr z srr ) + c sf (z ufl z sfl ) + c sf (z ufr z sfr ) + c sr (z url z srl ) + c sr (z urr z srr ) F zfl F zfr F zrl F zrr + m s g Where, m s = the mass of the vehicle chassis (kg) without wheels and axels z s = the body vertical acceleration (m/s 2 ) z R = road profile for each wheel (m) (front left, front right, rear left and rear right) z s = vertical displacement (m) of the sprung mass for each corner z s = vertical displacement velocity of the sprung mass for each corner (m/s) (front left, front right, rear left and rear right) k s = spring coefficient (N/m) for the spring in each corner (front left, front right, rear left and rear right) c s = damping coefficient (Ns/m) for the damper in each corner (front left, front right, rear left and rear right) z u = vertical displacement velocity (m/s) for the unsprung mass in each wheel (front left, front right, rear left and rear right) The roll effect of the vehicle is given by: J x φ = +{[k sf (z ufl z sfl ) + c sf (z ufl z sfl ) + k sr (z url z srl ) + c sr (z url z srl )] [k sf (z ufr z sfr ) + c sf (z ufr z sfr ) + k sr (z urr z srr ) + c sr (z urr z srr )] (F zfl + F zrl ) + (F zfr + F zrr )} W 2 Where, JX = the moment of inertia about x-axis (kgm 2 ) φ = the roll acceleration (rad/s 2 ) W/2 = the length of the vehicle from the center of gravity to the right end or to the left end of the vehicle (m). The pitch effect of the vehicle is given by: J y θ = [k sf (z ufl z sfl ) + c sf (z ufl z sfl ) + k sf (z ufr z sfr ) + c sf (z ufr z sfr )]L f + [k sr (z url z srl ) + c sr (z url z srl ) + k sr (z urr z srr ) + c sr (z urr z srr )]L r + (F zfl + F zfr )L f (F zrl + F zrr )L r

15 15 Where, JY = the moment of inertia about y-axis (kgm 2 ) θ = the pitch acceleration (rad/s 2 ) Lf = the length of vehicle from the center of gravity to the front axel (m) Lr = the length of vehicle from the center of gravity to the rear axel (m) Acceleration at unsprung mass for each wheel is given by: m ufl z ufl = k tf (z Rfl z ufl ) + c tf (z Rfl z ufl ) + k sf (z sfl z ufl ) + c sf (z sfl z ufl ) + F zfl + m ufl g m ufr z ufr = k tf (z Rfr z ufr ) + c tf (z Rfr z ufr ) + k sf (z sfr z ufr ) + c sf (z sfr z ufr ) + F zfr + m ufr g m url z url = k tr (z Rrl z url ) + c tr (z Rrl z url ) + k sr (z srl z url ) + c sr (z sfr z url ) + F zrl + m url g m urr z urr = k tr (z Rrr z urr ) + c tr (z Rrr z urr ) + k sr (z srr z urr ) + c sr (z srr z urr ) + F zrr + m urr g 2.4 Vehicle parameters Table 1. Vehicle parameters for car and truck. RIDE-sim parametrit Nro Muuttuja Yksikkö HA KA 1 Kokonaismassa kg Akseliväli L (m) m Taka-akselin et. Painopisteestä L f m Etuakselin et. Painopisteestä L r m Etupyörien raideväli W f m Takapyörien raideväli W r m Etupyörän massa m uf kg Takapyörän massa m ur kg Korin massa m s kg Renkaan jousivakio k t N/m Renkaan vaimennuskerroin c t Ns/m Etujousen jousivakio k sf N/m Takajousen jousivakio k sr N/m Etuiskarin vaimennuskerroin c sf Ns/m Takaiskarin vaimennuskerroin c sr Ns/m Inertia J X kgm Inertia J Y kgm Painopisteen korkeus h CG m Heilahduskeskiön korkeus h ROLL m

16 Road Raw data The raw data is a data consisting of the longitudinal profile data of a 3.2 m wide lane with 100 mm intervals. Currently the raw data is measured with the GE manufactured (Greenwood Engineering Ltd) point laser-based high speed monitoring vehicle. The measurement beam is locating in front of the vehicle and it has at a minimum of 17 point-lasers which measure the vertical distance of the road surface from the beam. The beam construction has usually more sensors in both wheel paths than in between. If the wheel path is measured with five sensors then the longitudinal profile is calculated as a mean of information collected with those five sensors. Longitudinal profile for left wheel path is obtained from sensors measuring the left wheel path and for the right wheel path respectively from sensors measuring that. The reference point of raw data is the data of the left wheel path at the location of 0 meters. All other vertical data is measured proportional to that. The raw data is filtered as is usually filtered when calculating the IRI. Road is given to the dynamic simulation as a profile for the left wheel path and for the right wheel path in 10 cm intervals. It is given as: z Rfl (t) = mean(p 3 (t), p 4 (t), p 5 (t), p 6 (t), p 7 (t)) z Rfr (t) = mean(p 11 (t), p 12 (t), p 13 (t), p 14 (t), p 15 (t)) z Rrl (t) = mean(p 3 (t t), p 4 (t t), p 5 (t t), p 6 (t t), p 7 (t t)) z Rrr (t) = mean(p 11 (t t), p 12 (t t), p 13 (t t), p 14 (t t), p 15 (t t)) Where, pi(t) = individual parallel profiles in one wheel path covering a 50 cm width (m) where i is the sensor number in a point laser profilograph with 17 sensors in transversal direction starting from the left side t = time (s) starting from 0 and ending to the tmax representing the time travelled to the end of a road section using speed v (m/s) Δt = time interval (s) defined by the axel base L and speed v (m/s) zr(t) = road profile (m) for each wheel (front left, front right, rear left and rear right) at the moment of t (s) This principle is designed to work with the current measurement technologies. However it is possible to produce the longitudinal profiles for each wheel using other technologies and calculation methods. Generally the rear wheels get the same profile than front wheels but the profile information flow is delayed with time interval Δt Additional filtering Many low-volume roads are hilly or curvy meaning that the gradient in vertical direction or the curvature in lateral direction is varying quite a lot. Some parts of those roads cannot be driven with a car using constant speed representing the speed limit. That means that the simulation cannot either be driven with that speed. To avoid expanding simulations covering unlimited amount of different speed limits the longitudinal profile is necessary to be re-filtered. Re-filtering should be made according to the following principles: 1. Finding filtering parameters a and b

17 17 % =========== FILTERING PARAMETERS ========================== % First calculate average 10 m values and standard deviations for curvature and gradient for sections longer than 300 m if (size(raakadata0, 1) > 3000); Interval=10; % [m] = 10 * 10 [cm] mn100 = (Interval * 10); nn2 = round(size(raakadata0, 1) / mn100, 0) + 1 GradientAvg=zeros(1, nn2); % each meter of the data onted is 10 * 10cm CurvatureAvg=zeros(1, nn2); % same space for curvature ii1=0; ii2=0; index_c=0; %use this to avoid name conflict for index_c=1:nn2; if ((index_c * mn100) <= size(raakadata0, 1)); ii1 = ((index_c - 1) * mn100) + 1; ii2 = (index_c * mn100) - 1; CurvatureAvg(1, index_c)=mean(raakadata0(ii1:ii2, 19)); GradientAvg(1, index_c)=mean(graakadata0(1, ii1:ii2)); end end end We now have the curvature parameters calculated from raw-data level curvature and gradient at 10 m level. Then a cutoff distance is calculated using the geometry parameters calculated above. Cutoffdistance must be limited to a range of v = 1; %Timo Eskola calculate filter cut off distance % do not try to calculate if site is less than 300m long if (size(raakadata0, 1) > 3000) cstd = std(curvatureavg(20:nn2)); %std dev of curvature gstd = std(gradientavg(20:nn2)); %std dev of gradient cutoffdistance = round(((21-0.5*cstd) + (21-76*gstd)) / 2, 0); %if values got by formula exceed limits cut them to be border if (cutoffdistance>30); cutoffdistance=30; elseif (cutoffdistance<4); cutoffdistance=4; end else cutoffdistance = 17; %default for really short sites end %sample distance is fixed to 10cm sampledistance = 0.1; Fs = v/sampledistance; %sample frequency lets keep v = 1 m/s => Fs = 1 / sample distance N = 3; %order of butterworth filter Fc = v/cutoffdistance; %cut off frequency => Fc = 1 / cut of distance (cut of distance has to be at least 2 times sample distance) h = fdesign.highpass('n,fc', N, Fc, Fs); Hd = butter(h); [b, a] = tf(hd); % This function gives parameters a and b %End of filtering design 2. Filtering profiles using parameters a and b p_v(:,2)=filtfilt(b,a,p_v(:,2)); p_o(:,2)=filtfilt(b,a,p_o(:,2)); where p_v() represents the left road profile and the p_o() represents the right road profile

18 18 Profiles are now filtered. a=filtering parameter b=filtering parameter Simulation speed RIDE-simulations are made using the actual speed limits on each road section. Simulation with car model should be made using actual summer time speed limits. Simulations with truck model should be made with actual summer speed limits but the individual speed limit of a truck (80 km/h) should be taken into account as well. When a road section has several speed limits, simulation should be made with all speeds. The area between the urban traffic signs is also a speed limit (50 km/h). The final outcome should be collected for each part defined by speed limit from corresponding simulation. Simulation speed is constant inside every 10 m section length. A further discussion on how to deal with so called local point speed limits should be done. It might be that speed limits shorter than certain threshold length would not be simulated. The main simulation speeds would then continue over local spot like limits. 2.6 Initial position of the vehicle Motion equations are describing the dynamic behavior of the vehicle during the simulation. The initial position of the vehicle should be calculated as initial values in z- direction. Main principle in that calculation is that the suspension (springs) takes an initial position due to the weight of the vehicle. En example of a Matlab code for that part is presented below: % Initial position massa=(m_k(i)+m_to(i)+m_tv(i)+m_eo(i)+m_ev(i)); % Wheel loads according to the C.o.G F_rr_stat(i)=m_k(i)*g*L_f(i)/L(i)/2; F_rl_stat(i)=m_k(i)*g*L_f(i)/L(i)/2; F_fr_stat(i)=m_k(i)*g*L_r(i)/L(i)/2; F_fl_stat(i)=m_k(i)*g*L_r(i)/L(i)/2; % Initial displacement due to gravity as_afl(i)=-(m_fl(i)*g+f_fl_stat(i))/k_rfl(i);%+p_l(1,2); as_afr(i)=-(m_fr(i)*g+f_fr_stat(i))/k_rfr(i);%+p_r(1,2); as_arl(i)=-(m_rl(i)*g+f_rl_stat(i))/k_rrl(i);%+p_l(1,2); as_arr(i)=-(m_rr(i)*g+f_rr_stat(i))/k_rrr(i);%+p_r(1,2); % initial displacement of front right due to gravity as_fr(i)=-f_fr_stat(i)/k_fr(i)+as_afr(i); % initial displacement of front left due to gravity as_fl(i)=-f_fl_stat(i)/k_fl(i)+as_afl(i); % initial displacement of rear right due to gravity as_rr(i)=-f_rr_stat(i)/k_rr(i)+as_arr(i); % initial displacement of rear left due to gravity as_rl(i)=-f_rl_stat(i)/k_rl(i)+as_arl(i); % Initial state of the rear center z_kr(i)=sin(asin((as_rr(i)-as_rl(i))/l_r(i)))*l_r(i)/2+as_rr(i); % Initial state of the front center z_kf(i)=sin(asin((as_fr(i)-as_fl(i))/l_f(i)))*l_f(i)/2+as_fl(i); % Initial Pitch angle as_pitch(i)=asin((-z_kr(i)+z_kf(i))/l(i)); % Initial displacement of C.o.G as_k(i)=z_kr(i)+sin(as_pitch(i))*l_r(i); z_l(i)=sin(asin((as_fl(i)-as_rl(i))/l(i)))*l_r(i)+as_rl(i); z_r(i)=sin(asin((as_fr(i)-as_rr(i))/l(i)))*l_r(i)+as_rr(i); s(i)=l_t(i)*sin(atan((l_f(i)-l_r(i))/(2*l(i)))); as_roll(i)=asin((z_r(i)-z_l(i))/(l_r(i)));%+2*s(i))); %Alkuheilahduskulman pitäisi olla nolla

19 Simulation RIDE-simulation reads first the source data and formulates some needed starting positions. In practice, this is done by setting the simulation parameters like vehicle type and simulation speed. Then reading the source data file, which is profile, geometry and speed limit data of a certain road section in 10 cm interval. 1. Reading simulation parameters means that the program reads what are the vehicle parameters which have to be used in simulation (a car or a truck) (Table 1). 2. Reading road data means that the program reads the source data which defines which road section is to be simulated and the road profile data at least from left and right wheel paths and the speed limit (to be used as a simulation speed). In mass calculations a batch procedure is useful to do so that the batch program takes a bunch of road sections and orders them one by one to be simulated and stores the results section by section. 3. Filtering road data means that roads with low-level geometry, simulation responses some times go high and a filtering (smoothing) is nessessary. Filtering parameters a and b are calculated using hilliness and curvature of a road section. Parameters are then used to filter the road profiles. 4. Left profile is calculated using average values of five laser sensors and the right profile is calculated using five laser sensors on the right side respectively. 5. The initial vertical position of a vehicle is calculated before starting the actual simulations. 6. The distance vector of the data is transformed into time domain that is time values using speed and distance intervals. 7. Simulation happens by calling the simulation procedure. Simulation is made using Simulink model (or what ever model the user has) starting from time 0 to the end of the road section. Simulink model is made using the motion equations. Main outcomes are the vertical, rolling and pitch accelerations of the vehicle chassi (CoG) and the point where the driver sits. Road load (ESAL), Load transfer ratio (LTR) and the work of shock absorbers are calculated in simulation as well using wheel loads and suspension outcomes. Simulink model has not been defined here. 8. After simulation the data of simulation is taken and the time domain is transformed back to distance domain. 9. Raw data level results are transferred to 10 m level taking averages, standard deviations etc. from each 10 m section. 10. Data is finally saved in a file with road addresses and main simulation parameters. Before starting the simulation of a road section, a pre-simulation is good to do. That means that the first values of the road are copied 1000 times and a pre-simulation is done using that smooth road so that the vehicle sets down first. Then the simulation continues from the first data point on to the end of the section. Only the real part of the road section is stored as results.

20 20 Start Read sim parameters Calculate ESAL Read Road data Calculate LTR Filter Road data Calculate left and right profiles Calculate work in shocks Calculate vehicle initial position Transfer data from time domain to spatial domain Transfer data from spatian domein to time domain Calculate 10 m data Simulate model fromt=0 to end Save data End Figure 7. Flow chart of the RIDE-simulation model. Main outcomes from the simulation part are the following: - vertical acceleration of the vehicle z - rolling acceleration of the vehicle chassi φ - pitch acceleration of the vehicle chassi at each time interval t. Outcomes of these three are calculated as a standard deviation for each 10 m interval. Combined acceleration is calculated using the formula below (2.8.6). 2.8 Outcomes Outcomes Table 2. List of outcomes from RIDE-simulations. sim_nop_ka Num 3 0 Kuorma-autosimuloinnissa käytetty nopeus (km/h) pys_ki_std Num 4 2 Kuorma-auton korin pystykiihtyvyyden hajonta (m/s2) siv_ki_std Num 3 0 Kuorma-auton korin sivuheilahduskiihtyvyyden hajonta (astetta/s2) nyö_ki_std Num 3 0 Kuorma-auton korin nyökkimiskiihtyvyyden hajonta (astetta/s2) yhd_ki_rms Num 4 2 Kuorma-auton kokonaiskiihtyvyyden RMS (m/s2) esal_std Num 4 2 Kuorma-auton tierasituksen hajonta (ESAL) ltr_std Num 4 2 Kuorma-auton pyöräpainosiirtymän hajonta

21 21 (%) Ityö_ka Num 5 0 Kuorma-auton iskunvaimentimien tekemä työ (J/10m) sim_nop_ha Num 3 0 Henkilöautosimuloinnissa käytetty nopeus (km/h) Ityö_ha Num 5 0 Henkilöauton iskunvaimentimien tekemä työ (J/10m) sim_nop_ka Simulation speed for truck (km/h) pys_ki_std The final indicator (pys_ki_std) is calculated as a standard deviation of vertical acceleration (m/s 2 ) of a chassi (VERT_a) over the reporting interval (10 m) siv_ki_std The final indicator (siv_ki_std) is calculated as a standard deviation of roll acceleration (degrees/s 2 ) of a chassi (ROLL_a) over the reporting interval (10 m) nyö_ki_std The final indicator (nyö_ki_std) is calculated as a standard deviation of pitch acceleration (degrees/s 2 ) of a chassi (PITCH_a) over the reporting interval (10 m) yhd_ki_rms Combined acceleration yhd_ki_rms is calculated as a rms-value (root mean square) of combined acceleration of a driver seat over the reporting interval (10 m). Combined acceleration has three components taken from vertical acceleration, roll acceleration and pitch acceleration calculated with the following formula: a ratax = r ROLL_a a ratay = r PITCH_a a yhd = VERT a 2 + (1.4 a ratax ) 2 + (1.4 a ratay ) 2 where r is the distance from the seat of driver to the C.o.G. For ROLL movement r = 0.8*W/2 and for PITCH movement r=0.8*lf esal_std Road load is calculated for truck with the following formula: ESAL = ( P f 80 ) 4 + ( P r 100 ) 4 where Pf is the axle load (kn) of front axle and Pr is the axle load of rear axle (kn).

22 22 The final indicator (ESAL_std) is calculated as a standard deviation over the reporting interval (10 m) ltr_std LTR is a Load Transfer ratio (%) and it is calculated for a truck with the following formula using wheel loads: LTR = 100 ( P fr + P rr P fl P rl P fr + P rr + P fl + P rl ) The final indicator (ltr_std) is calculated as a standard deviation over the reporting interval (10 m) Ityö_ka and Ityö_ha Ityö_ka is the sum of energy used in shock absorbers in truck over the reporting interval (10 m). It is calculated in each shock by multiplying the velocity of the vertical movement of a corner of chassi (m/s) by the suspension coefficient cij (Ns/m) and the displacement of the spring sij (m). Ityö_ha is the same but with car parameters. The unit is Joule/reporting interval sim_nop_ha sim_nop_ha is the simulation speed (km/h) used for car model. 2.9 Reference Data The reference road profile for left and right wheel paths are presented in the following figure. Y-axis is in mm and x-axis is in meters. The bump is 100 mm high and 5 m long. Left bump comes first and after that the right one Profile Left wheel path Right wheel path Figure 8. Reference road profile.

23 Results The vertical displacement of car body due to the bump is presented in the following figure. X-axis is in seconds and Y-axis in mm. The simulation speed is 40 km/h. 63 mm Figure 9. Vertical distance of the car body (heavy vehicle). The pitch displacement of car body due to the bump is presented in the following figure. X-axis is in seconds and Y-axis in degrees. The simulation speed is 40 km/h. ±1.9 degrees Figure 10. Pitch angle (in degrees) of the car (heavy vehicle) body Reference 2 A reference input road file has been used produce reference results. The source data and main results has been presented in an attached excel-file.

24 24 3 Litterature 1. Thomas D. Gillespie. Fundamentals of Vehicle Dynamics. Published by SAE International (1992). ISBN 10: ISBN 13: Virtala Pertti, Alanaatu Pauli, Eskola Timo (2016): Tien epätasaisuustunnusluvun kehittäminen. RIDE-ajoneuvomalli. Liikenneviraston tutkimuksia ja selvityksiä 46/ Pertti Virtala & Juho Meriläinen (2017): New Indicators of Riding Comfort From Vehicle Dynamics. World Conference on Pavement and Asset Management, WCPAM2017 Milan, Italy - June 12/16, Michael Sayers (1996): Standard Terminology for Vehicle Dynamics Simulations The University of Michigan Transportation Research Institute (UMTRI). 5. ISO 8855, Road vehicles Vehicle dynamics and road-holding ability Vocabulary (1991). 6. Abramov, S., Mannan, S., & Durieux, O. (2009): Semi-Active Suspension of Engineering Systems Modelling and Simulation, 1(2/3),

25 Liite 1 /1 (2)

Capacity Utilization

Capacity Utilization Capacity Utilization Tim Schöneberg 28th November Agenda Introduction Fixed and variable input ressources Technical capacity utilization Price based capacity utilization measure Long run and short run

Lisätiedot

1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward.

1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward. START START SIT 1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward. This is a static exercise. SIT STAND 2. SIT STAND. The

Lisätiedot

LYTH-CONS CONSISTENCY TRANSMITTER

LYTH-CONS CONSISTENCY TRANSMITTER LYTH-CONS CONSISTENCY TRANSMITTER LYTH-INSTRUMENT OY has generate new consistency transmitter with blade-system to meet high technical requirements in Pulp&Paper industries. Insurmountable advantages are

Lisätiedot

Efficiency change over time

Efficiency change over time Efficiency change over time Heikki Tikanmäki Optimointiopin seminaari 14.11.2007 Contents Introduction (11.1) Window analysis (11.2) Example, application, analysis Malmquist index (11.3) Dealing with panel

Lisätiedot

Huom. tämä kulma on yhtä suuri kuin ohjauskulman muutos. lasketaan ajoneuvon keskipisteen ympyräkaaren jänteen pituus

Huom. tämä kulma on yhtä suuri kuin ohjauskulman muutos. lasketaan ajoneuvon keskipisteen ympyräkaaren jänteen pituus AS-84.327 Paikannus- ja navigointimenetelmät Ratkaisut 2.. a) Kun kuvan ajoneuvon kumpaakin pyörää pyöritetään tasaisella nopeudella, ajoneuvon rata on ympyränkaaren segmentin muotoinen. Hitaammin kulkeva

Lisätiedot

The CCR Model and Production Correspondence

The CCR Model and Production Correspondence The CCR Model and Production Correspondence Tim Schöneberg The 19th of September Agenda Introduction Definitions Production Possiblity Set CCR Model and the Dual Problem Input excesses and output shortfalls

Lisätiedot

16. Allocation Models

16. Allocation Models 16. Allocation Models Juha Saloheimo 17.1.27 S steemianalsin Optimointiopin seminaari - Sks 27 Content Introduction Overall Efficienc with common prices and costs Cost Efficienc S steemianalsin Revenue

Lisätiedot

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs

Lisätiedot

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs

Lisätiedot

The Viking Battle - Part Version: Finnish

The Viking Battle - Part Version: Finnish The Viking Battle - Part 1 015 Version: Finnish Tehtävä 1 Olkoon kokonaisluku, ja olkoon A n joukko A n = { n k k Z, 0 k < n}. Selvitä suurin kokonaisluku M n, jota ei voi kirjoittaa yhden tai useamman

Lisätiedot

Metsälamminkankaan tuulivoimapuiston osayleiskaava

Metsälamminkankaan tuulivoimapuiston osayleiskaava VAALAN KUNTA TUULISAIMAA OY Metsälamminkankaan tuulivoimapuiston osayleiskaava Liite 3. Varjostusmallinnus FCG SUUNNITTELU JA TEKNIIKKA OY 12.5.2015 P25370 SHADOW - Main Result Assumptions for shadow calculations

Lisätiedot

( ( OX2 Perkkiö. Rakennuskanta. Varjostus. 9 x N131 x HH145

( ( OX2 Perkkiö. Rakennuskanta. Varjostus. 9 x N131 x HH145 OX2 9 x N131 x HH145 Rakennuskanta Asuinrakennus Lomarakennus Liike- tai julkinen rakennus Teollinen rakennus Kirkko tai kirkollinen rak. Muu rakennus Allas Varjostus 1 h/a 8 h/a 20 h/a 0 0,5 1 1,5 2 km

Lisätiedot

Information on preparing Presentation

Information on preparing Presentation Information on preparing Presentation Seminar on big data management Lecturer: Spring 2017 20.1.2017 1 Agenda Hints and tips on giving a good presentation Watch two videos and discussion 22.1.2017 2 Goals

Lisätiedot

Tynnyrivaara, OX2 Tuulivoimahanke. ( Layout 9 x N131 x HH145. Rakennukset Asuinrakennus Lomarakennus 9 x N131 x HH145 Varjostus 1 h/a 8 h/a 20 h/a

Tynnyrivaara, OX2 Tuulivoimahanke. ( Layout 9 x N131 x HH145. Rakennukset Asuinrakennus Lomarakennus 9 x N131 x HH145 Varjostus 1 h/a 8 h/a 20 h/a , Tuulivoimahanke Layout 9 x N131 x HH145 Rakennukset Asuinrakennus Lomarakennus 9 x N131 x HH145 Varjostus 1 h/a 8 h/a 20 h/a 0 0,5 1 1,5 km 2 SHADOW - Main Result Assumptions for shadow calculations

Lisätiedot

Other approaches to restrict multipliers

Other approaches to restrict multipliers Other approaches to restrict multipliers Heikki Tikanmäki Optimointiopin seminaari 10.10.2007 Contents Short revision (6.2) Another Assurance Region Model (6.3) Cone-Ratio Method (6.4) An Application of

Lisätiedot

Gap-filling methods for CH 4 data

Gap-filling methods for CH 4 data Gap-filling methods for CH 4 data Sigrid Dengel University of Helsinki Outline - Ecosystems known for CH 4 emissions; - Why is gap-filling of CH 4 data not as easy and straight forward as CO 2 ; - Gap-filling

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

Bounds on non-surjective cellular automata

Bounds on non-surjective cellular automata Bounds on non-surjective cellular automata Jarkko Kari Pascal Vanier Thomas Zeume University of Turku LIF Marseille Universität Hannover 27 august 2009 J. Kari, P. Vanier, T. Zeume (UTU) Bounds on non-surjective

Lisätiedot

Kvanttilaskenta - 1. tehtävät

Kvanttilaskenta - 1. tehtävät Kvanttilaskenta -. tehtävät Johannes Verwijnen January 9, 0 edx-tehtävät Vastauksissa on käytetty edx-kurssin materiaalia.. Problem False, sillä 0 0. Problem False, sillä 0 0 0 0. Problem A quantum state

Lisätiedot

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs

Lisätiedot

Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition)

Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Esko Jalkanen Click here if your download doesn"t start automatically Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Esko Jalkanen

Lisätiedot

National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007

National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007 National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007 Chapter 2.4 Jukka Räisä 1 WATER PIPES PLACEMENT 2.4.1 Regulation Water pipe and its

Lisätiedot

WindPRO version joulu 2012 Printed/Page :42 / 1. SHADOW - Main Result

WindPRO version joulu 2012 Printed/Page :42 / 1. SHADOW - Main Result SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table 13.6.2013 19:42 / 1 Minimum

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Calculation: N117 x 9 x HH141 Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

WindPRO version joulu 2012 Printed/Page :47 / 1. SHADOW - Main Result

WindPRO version joulu 2012 Printed/Page :47 / 1. SHADOW - Main Result SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG VE1 SHADOW - Main Result Calculation: 8 x Nordex N131 x HH145m Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.9.269

Lisätiedot

( ,5 1 1,5 2 km

( ,5 1 1,5 2 km Tuulivoimala Rakennukset Asuinrakennus Liikerak. tai Julkinen rak. Lomarakennus Teollinen rakennus Kirkollinen rakennus Varjostus "real case" h/a 1 h/a 8 h/a 20 h/a 4 5 3 1 2 6 7 8 9 10 0 0,5 1 1,5 2 km

Lisätiedot

KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ

KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ https://community.plm.automation.siemens.com/t5/tech-tips- Knowledge-Base-NX/How-to-simulate-any-G-code-file-in-NX- CAM/ta-p/3340 Koneistusympäristön määrittely

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table 22.12.2014 11:33 / 1 Minimum

Lisätiedot

Alternative DEA Models

Alternative DEA Models Mat-2.4142 Alternative DEA Models 19.9.2007 Table of Contents Banker-Charnes-Cooper Model Additive Model Example Data Home assignment BCC Model (Banker-Charnes-Cooper) production frontiers spanned by convex

Lisätiedot

I. Principles of Pointer Year Analysis

I. Principles of Pointer Year Analysis I. Principles of Pointer Year Analysis Fig 1. Maximum (red) and minimum (blue) pointer years. 1 Fig 2. Principle of pointer year calculation. Fig 3. Skeleton plot graph created by Kinsys/Kigraph programme.

Lisätiedot

Soil pressure calculator

Soil pressure calculator Soil pressure calculator OSCAR SEMINAR Soil and Machine Workshop 22.11. 23.11.2011 Jouko Törnqvist VTT Technical Research Centre of Finland 2 Shortly of the pressure calculator Soil pressure calculation

Lisätiedot

Network to Get Work. Tehtäviä opiskelijoille Assignments for students. www.laurea.fi

Network to Get Work. Tehtäviä opiskelijoille Assignments for students. www.laurea.fi Network to Get Work Tehtäviä opiskelijoille Assignments for students www.laurea.fi Ohje henkilöstölle Instructions for Staff Seuraavassa on esitetty joukko tehtäviä, joista voit valita opiskelijaryhmällesi

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table 5.11.2013 16:44 / 1 Minimum

Lisätiedot

MUSEOT KULTTUURIPALVELUINA

MUSEOT KULTTUURIPALVELUINA Elina Arola MUSEOT KULTTUURIPALVELUINA Tutkimuskohteena Mikkelin museot Opinnäytetyö Kulttuuripalvelujen koulutusohjelma Marraskuu 2005 KUVAILULEHTI Opinnäytetyön päivämäärä 25.11.2005 Tekijä(t) Elina

Lisätiedot

Statistical design. Tuomas Selander

Statistical design. Tuomas Selander Statistical design Tuomas Selander 28.8.2014 Introduction Biostatistician Work area KYS-erva KYS, Jyväskylä, Joensuu, Mikkeli, Savonlinna Work tasks Statistical methods, selection and quiding Data analysis

Lisätiedot

Särmäystyökalut kuvasto Press brake tools catalogue

Särmäystyökalut kuvasto Press brake tools catalogue Finnish sheet metal machinery know-how since 1978 Särmäystyökalut kuvasto Press brake tools catalogue www.aliko.fi ALIKO bending chart Required capacity in kn (T) in relation to V-opening. V R A S = plates

Lisätiedot

,0 Yes ,0 120, ,8

,0 Yes ,0 120, ,8 SHADOW - Main Result Calculation: Alue 2 ( x 9 x HH120) TuuliSaimaa kaavaluonnos Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered

Lisätiedot

S Sähkön jakelu ja markkinat S Electricity Distribution and Markets

S Sähkön jakelu ja markkinat S Electricity Distribution and Markets S-18.3153 Sähkön jakelu ja markkinat S-18.3154 Electricity Distribution and Markets Voltage Sag 1) Kolmivaiheinen vastukseton oikosulku tapahtuu 20 kv lähdöllä etäisyydellä 1 km, 3 km, 5 km, 8 km, 10 km

Lisätiedot

Exercise 1. (session: )

Exercise 1. (session: ) EEN-E3001, FUNDAMENTALS IN INDUSTRIAL ENERGY ENGINEERING Exercise 1 (session: 24.1.2017) Problem 3 will be graded. The deadline for the return is on 31.1. at 12:00 am (before the exercise session). You

Lisätiedot

FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL

FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL FinFamily PostgreSQL 1 Sisällys / Contents FinFamily PostgreSQL... 1 1. Asenna PostgreSQL tietokanta / Install PostgreSQL database... 3 1.1. PostgreSQL tietokannasta / About the PostgreSQL database...

Lisätiedot

ReFuel 70 % Emission Reduction Using Renewable High Cetane Number Paraffinic Diesel Fuel. Kalle Lehto, Aalto-yliopisto 5.5.

ReFuel 70 % Emission Reduction Using Renewable High Cetane Number Paraffinic Diesel Fuel. Kalle Lehto, Aalto-yliopisto 5.5. ReFuel 70 % Emission Reduction Using Renewable High Cetane Number Paraffinic Diesel Fuel Kalle Lehto, Aalto-yliopisto 5.5.2011 Otaniemi ReFuel a three year research project (2009-2011) goal utilize the

Lisätiedot

Constructive Alignment in Specialisation Studies in Industrial Pharmacy in Finland

Constructive Alignment in Specialisation Studies in Industrial Pharmacy in Finland Constructive Alignment in Specialisation Studies in Industrial Pharmacy in Finland Anne Mari Juppo, Nina Katajavuori University of Helsinki Faculty of Pharmacy 23.7.2012 1 Background Pedagogic research

Lisätiedot

make and make and make ThinkMath 2017

make and make and make ThinkMath 2017 Adding quantities Lukumäärienup yhdistäminen. Laske yhteensä?. Countkuinka howmonta manypalloja ballson there are altogether. and ja make and make and ja make on and ja make ThinkMath 7 on ja on on Vaihdannaisuus

Lisätiedot

1.3Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä

1.3Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä OULUN YLIOPISTO Tietojenkäsittelytieteiden laitos Johdatus ohjelmointiin 81122P (4 ov.) 30.5.2005 Ohjelmointikieli on Java. Tentissä saa olla materiaali mukana. Tenttitulokset julkaistaan aikaisintaan

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

Miksi Suomi on Suomi (Finnish Edition)

Miksi Suomi on Suomi (Finnish Edition) Miksi Suomi on Suomi (Finnish Edition) Tommi Uschanov Click here if your download doesn"t start automatically Miksi Suomi on Suomi (Finnish Edition) Tommi Uschanov Miksi Suomi on Suomi (Finnish Edition)

Lisätiedot

Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu

Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu Returns to Scale II Contents Most Productive Scale Size Further Considerations Relaxation of the Convexity Condition Useful Reminder Theorem 5.5 A DMU found to be efficient with a CCR model will also be

Lisätiedot

C++11 seminaari, kevät Johannes Koskinen

C++11 seminaari, kevät Johannes Koskinen C++11 seminaari, kevät 2012 Johannes Koskinen Sisältö Mikä onkaan ongelma? Standardidraftin luku 29: Atomiset tyypit Muistimalli Rinnakkaisuus On multicore systems, when a thread writes a value to memory,

Lisätiedot

Introduction to Automotive Structure

Introduction to Automotive Structure Supakit Rooppakhun Introduction to Automotive Structure The main purpose is to: Support all the major components and sub assemblies making up the complete vehicle Carry the passengers and/or payload in

Lisätiedot

Rakennukset Varjostus "real case" h/a 0,5 1,5

Rakennukset Varjostus real case h/a 0,5 1,5 Tuulivoimala Rakennukset Asuinrakennus Liikerak. tai Julkinen rak. Lomarakennus Teollinen rakennus Kirkollinen rakennus Varjostus "real case" h/a 1 h/a 8 h/a 20 h/a 1 2 3 5 8 4 6 7 9 10 0 0,5 1 1,5 2 km

Lisätiedot

Results on the new polydrug use questions in the Finnish TDI data

Results on the new polydrug use questions in the Finnish TDI data Results on the new polydrug use questions in the Finnish TDI data Multi-drug use, polydrug use and problematic polydrug use Martta Forsell, Finnish Focal Point 28/09/2015 Martta Forsell 1 28/09/2015 Esityksen

Lisätiedot

Tietorakenteet ja algoritmit

Tietorakenteet ja algoritmit Tietorakenteet ja algoritmit Taulukon edut Taulukon haitat Taulukon haittojen välttäminen Dynaamisesti linkattu lista Linkatun listan solmun määrittelytavat Lineaarisen listan toteutus dynaamisesti linkattuna

Lisätiedot

Digitally signed by Hans Vadbäck DN: cn=hans Vadbäck, o, ou=fcg Suunnittelu ja Tekniikka Oy, email=hans.vadback@fcg.fi, c=fi Date: 2016.12.20 15:45:35 +02'00' Jakob Kjellman Digitally signed by Jakob Kjellman

Lisätiedot

anna minun kertoa let me tell you

anna minun kertoa let me tell you anna minun kertoa let me tell you anna minun kertoa I OSA 1. Anna minun kertoa sinulle mitä oli. Tiedän että osaan. Kykenen siihen. Teen nyt niin. Minulla on oikeus. Sanani voivat olla puutteellisia mutta

Lisätiedot

Valuation of Asian Quanto- Basket Options

Valuation of Asian Quanto- Basket Options Valuation of Asian Quanto- Basket Options (Final Presentation) 21.11.2011 Thesis Instructor and Supervisor: Prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta

Lisätiedot

( N117 x HH141 ( Honkajoki N117 x 9 x HH120 tv-alueet ( ( ( ( ( ( ( ( ( ( m. Honkajoki & Kankaanpää tuulivoimahankkeet

( N117 x HH141 ( Honkajoki N117 x 9 x HH120 tv-alueet ( ( ( ( ( ( ( ( ( ( m. Honkajoki & Kankaanpää tuulivoimahankkeet Honkajoki & Kankaanpää tuulivoimahankkeet N117 x HH141 Honkajoki N117 x 9 x HH120 tv-alueet Alahonkajoki_kaava_alueen_raja_polyline Asuinrakennus Julkinen tai liiker rak. Lomarakennus Teollinen rak. Allas

Lisätiedot

7.4 Variability management

7.4 Variability management 7.4 Variability management time... space software product-line should support variability in space (different products) support variability in time (maintenance, evolution) 1 Product variation Product

Lisätiedot

3 9-VUOTIAIDEN LASTEN SUORIUTUMINEN BOSTONIN NIMENTÄTESTISTÄ

3 9-VUOTIAIDEN LASTEN SUORIUTUMINEN BOSTONIN NIMENTÄTESTISTÄ Puhe ja kieli, 27:4, 141 147 (2007) 3 9-VUOTIAIDEN LASTEN SUORIUTUMINEN BOSTONIN NIMENTÄTESTISTÄ Soile Loukusa, Oulun yliopisto, suomen kielen, informaatiotutkimuksen ja logopedian laitos & University

Lisätiedot

03 PYÖRIEN SIIRTÄMINEN

03 PYÖRIEN SIIRTÄMINEN 78 03 PYÖRIEN SIIRTÄMINEN Wheels and tyres are heavy. Their handling may involve heavy lifting at the workshop. We have developed a logical ergonomic method for transporting wheels. The focus here is our

Lisätiedot

Kysymys 5 Compared to the workload, the number of credits awarded was (1 credits equals 27 working hours): (4)

Kysymys 5 Compared to the workload, the number of credits awarded was (1 credits equals 27 working hours): (4) Tilasto T1106120-s2012palaute Kyselyn T1106120+T1106120-s2012palaute yhteenveto: vastauksia (4) Kysymys 1 Degree programme: (4) TIK: TIK 1 25% ************** INF: INF 0 0% EST: EST 0 0% TLT: TLT 0 0% BIO:

Lisätiedot

4x4cup Rastikuvien tulkinta

4x4cup Rastikuvien tulkinta 4x4cup Rastikuvien tulkinta 4x4cup Control point picture guidelines Päivitetty kauden 2010 sääntöihin Updated for 2010 rules Säännöt rastikuvista Kilpailijoiden tulee kiinnittää erityistä huomiota siihen,

Lisätiedot

KMTK lentoestetyöpaja - Osa 2

KMTK lentoestetyöpaja - Osa 2 KMTK lentoestetyöpaja - Osa 2 Veijo Pätynen 18.10.2016 Pasila YHTEISTYÖSSÄ: Ilmailun paikkatiedon hallintamalli Ilmailun paikkatiedon hallintamalli (v0.9 4.3.2016) 4.4 Maanmittauslaitoksen rooli ja vastuut...

Lisätiedot

MEETING PEOPLE COMMUNICATIVE QUESTIONS

MEETING PEOPLE COMMUNICATIVE QUESTIONS Tiistilän koulu English Grades 7-9 Heikki Raevaara MEETING PEOPLE COMMUNICATIVE QUESTIONS Meeting People Hello! Hi! Good morning! Good afternoon! How do you do? Nice to meet you. / Pleased to meet you.

Lisätiedot

Use of spatial data in the new production environment and in a data warehouse

Use of spatial data in the new production environment and in a data warehouse Use of spatial data in the new production environment and in a data warehouse Nordic Forum for Geostatistics 2007 Session 3, GI infrastructure and use of spatial database Statistics Finland, Population

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

AYYE 9/ HOUSING POLICY

AYYE 9/ HOUSING POLICY AYYE 9/12 2.10.2012 HOUSING POLICY Mission for AYY Housing? What do we want to achieve by renting apartments? 1) How many apartments do we need? 2) What kind of apartments do we need? 3) To whom do we

Lisätiedot

1.3 Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä

1.3 Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä OULUN YLIOPISTO Tietojenkäsittelytieteiden laitos Johdatus ohjelmointiin 811122P (5 op.) 12.12.2005 Ohjelmointikieli on Java. Tentissä saa olla materiaali mukana. Tenttitulokset julkaistaan aikaisintaan

Lisätiedot

1. Liikkuvat määreet

1. Liikkuvat määreet 1. Liikkuvat määreet Väitelauseen perussanajärjestys: SPOTPA (subj. + pred. + obj. + tapa + paikka + aika) Suora sanajärjestys = subjekti on ennen predikaattia tekijä tekeminen Alasääntö 1: Liikkuvat määreet

Lisätiedot

Land-Use Model for the Helsinki Metropolitan Area

Land-Use Model for the Helsinki Metropolitan Area Land-Use Model for the Helsinki Metropolitan Area Paavo Moilanen Introduction & Background Metropolitan Area Council asked 2005: What is good land use for the transport systems plan? At first a literature

Lisätiedot

T Statistical Natural Language Processing Answers 6 Collocations Version 1.0

T Statistical Natural Language Processing Answers 6 Collocations Version 1.0 T-61.5020 Statistical Natural Language Processing Answers 6 Collocations Version 1.0 1. Let s start by calculating the results for pair valkoinen, talo manually: Frequency: Bigrams valkoinen, talo occurred

Lisätiedot

Curriculum. Gym card

Curriculum. Gym card A new school year Curriculum Fast Track Final Grading Gym card TET A new school year Work Ethic Detention Own work Organisation and independence Wilma TMU Support Services Well-Being CURRICULUM FAST TRACK

Lisätiedot

FIS IMATRAN KYLPYLÄHIIHDOT Team captains meeting

FIS IMATRAN KYLPYLÄHIIHDOT Team captains meeting FIS IMATRAN KYLPYLÄHIIHDOT 8.-9.12.2018 Team captains meeting 8.12.2018 Agenda 1 Opening of the meeting 2 Presence 3 Organizer s personell 4 Jury 5 Weather forecast 6 Composition of competitors startlists

Lisätiedot

812336A C++ -kielen perusteet, 21.8.2010

812336A C++ -kielen perusteet, 21.8.2010 812336A C++ -kielen perusteet, 21.8.2010 1. Vastaa lyhyesti seuraaviin kysymyksiin (1p kaikista): a) Mitä tarkoittaa funktion ylikuormittaminen (overloading)? b) Mitä tarkoittaa jäsenfunktion ylimääritys

Lisätiedot

Travel Getting Around

Travel Getting Around - Location Olen eksyksissä. Not knowing where you are Voisitko näyttää kartalta missä sen on? Asking for a specific location on a map Mistä täällä on? Asking for a specific...wc?...pankki / rahanvaihtopiste?...hotelli?...huoltoasema?...sairaala?...apteekki?...tavaratalo?...ruokakauppa?...bussipysäkki?

Lisätiedot

Toppila/Kivistö 10.01.2013 Vastaa kaikkin neljään tehtävään, jotka kukin arvostellaan asteikolla 0-6 pistettä.

Toppila/Kivistö 10.01.2013 Vastaa kaikkin neljään tehtävään, jotka kukin arvostellaan asteikolla 0-6 pistettä. ..23 Vastaa kaikkin neljään tehtävään, jotka kukin arvostellaan asteikolla -6 pistettä. Tehtävä Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi. (a) Lineaarisen kokonaislukutehtävän

Lisätiedot

Data quality points. ICAR, Berlin,

Data quality points. ICAR, Berlin, Data quality points an immediate and motivating supervision tool ICAR, Berlin, 22.5.2014 Association of ProAgria Centres Development project of Milk Recording Project manager, Heli Wahlroos heli.wahlroos@proagria.fi

Lisätiedot

Infrastruktuurin asemoituminen kansalliseen ja kansainväliseen kenttään Outi Ala-Honkola Tiedeasiantuntija

Infrastruktuurin asemoituminen kansalliseen ja kansainväliseen kenttään Outi Ala-Honkola Tiedeasiantuntija Infrastruktuurin asemoituminen kansalliseen ja kansainväliseen kenttään Outi Ala-Honkola Tiedeasiantuntija 1 Asemoitumisen kuvaus Hakemukset parantuneet viime vuodesta, mutta paneeli toivoi edelleen asemoitumisen

Lisätiedot

Ajettavat luokat: SM: S1 (25 aika-ajon nopeinta)

Ajettavat luokat: SM: S1 (25 aika-ajon nopeinta) SUPERMOTO SM 2013 OULU Lisämääräys ja ohje Oulun Moottorikerho ry ja Oulun Formula K-125ry toivottaa SuperMoto kuljettajat osallistumaan SuperMoto SM 2013 Oulu osakilpailuun. Kilpailu ajetaan karting radalla

Lisätiedot

Salasanan vaihto uuteen / How to change password

Salasanan vaihto uuteen / How to change password Salasanan vaihto uuteen / How to change password Sisällys Salasanakäytäntö / Password policy... 2 Salasanan vaihto verkkosivulla / Change password on website... 3 Salasanan vaihto matkapuhelimella / Change

Lisätiedot

Characterization of clay using x-ray and neutron scattering at the University of Helsinki and ILL

Characterization of clay using x-ray and neutron scattering at the University of Helsinki and ILL Characterization of clay using x-ray and neutron scattering at the University of Helsinki and ILL Ville Liljeström, Micha Matusewicz, Kari Pirkkalainen, Jussi-Petteri Suuronen and Ritva Serimaa 13.3.2012

Lisätiedot

Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine Centre for Language and Communication Studies

Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine Centre for Language and Communication Studies Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine 4.1.2018 Centre for Language and Communication Studies Puhutko suomea? -Hei! -Hei hei! -Moi! -Moi moi! -Terve! -Terve

Lisätiedot

26. - 27.5.2012. Roadbook

26. - 27.5.2012. Roadbook 26. - 27.5.2012 Roadbook Sisällysluettelo - Index - 3 - Sivu Page Reittimerkkien selitteet / Route marker descriptions 4 Roadbook sivun merkintöjen selite / Roadbook entry description 6 Tehtävämerkkien

Lisätiedot

RINNAKKAINEN OHJELMOINTI A,

RINNAKKAINEN OHJELMOINTI A, RINNAKKAINEN OHJELMOINTI 815301A, 18.6.2005 1. Vastaa lyhyesti (2p kustakin): a) Mitkä ovat rinnakkaisen ohjelman oikeellisuuskriteerit? b) Mitä tarkoittaa laiska säikeen luominen? c) Mitä ovat kohtaaminen

Lisätiedot

Choose Finland-Helsinki Valitse Finland-Helsinki

Choose Finland-Helsinki Valitse Finland-Helsinki Write down the Temporary Application ID. If you do not manage to complete the form you can continue where you stopped with this ID no. Muista Temporary Application ID. Jos et onnistu täyttää lomake loppuun

Lisätiedot

Nuku hyvin, pieni susi -????????????,?????????????????. Kaksikielinen satukirja (suomi - venäjä) (www.childrens-books-bilingual.com) (Finnish Edition)

Nuku hyvin, pieni susi -????????????,?????????????????. Kaksikielinen satukirja (suomi - venäjä) (www.childrens-books-bilingual.com) (Finnish Edition) Nuku hyvin, pieni susi -????????????,?????????????????. Kaksikielinen satukirja (suomi - venäjä) (www.childrens-books-bilingual.com) (Finnish Edition) Click here if your download doesn"t start automatically

Lisätiedot

C470E9AC686C

C470E9AC686C INVENTOR 17 VALUOSAN SUUNNITTELU http://help.autodesk.com/view/invntor/2017/enu/?guid=guid-b3cd4078-8480-41c3-9c88- C470E9AC686C About Mold Design in Inventor Mold Design provides integrated mold functionality

Lisätiedot

Metal 3D. manufacturing. Kimmo K. Mäkelä Post doctoral researcher

Metal 3D. manufacturing. Kimmo K. Mäkelä Post doctoral researcher Metal 3D manufacturing Kimmo K. Mäkelä Post doctoral researcher 02.11.2016 Collaboration! 2 Oulun yliopisto Definition - What does Additive Manufacturing mean? Additive manufacturing is a manufacturing

Lisätiedot

LX 70. Ominaisuuksien mittaustulokset 1-kerroksinen 2-kerroksinen. Fyysiset ominaisuudet, nimellisarvot. Kalvon ominaisuudet

LX 70. Ominaisuuksien mittaustulokset 1-kerroksinen 2-kerroksinen. Fyysiset ominaisuudet, nimellisarvot. Kalvon ominaisuudet LX 70 % Läpäisy 36 32 % Absorptio 30 40 % Heijastus 34 28 % Läpäisy 72 65 % Heijastus ulkopuoli 9 16 % Heijastus sisäpuoli 9 13 Emissiivisyys.77.77 Auringonsuojakerroin.54.58 Auringonsäteilyn lämmönsiirtokerroin.47.50

Lisätiedot

Uusi Ajatus Löytyy Luonnosta 3 (Finnish Edition)

Uusi Ajatus Löytyy Luonnosta 3 (Finnish Edition) Uusi Ajatus Löytyy Luonnosta 3 (Finnish Edition) Esko Jalkanen Click here if your download doesn"t start automatically Uusi Ajatus Löytyy Luonnosta 3 (Finnish Edition) Esko Jalkanen Uusi Ajatus Löytyy

Lisätiedot

Research plan for masters thesis in forest sciences. The PELLETime 2009 Symposium Mervi Juntunen

Research plan for masters thesis in forest sciences. The PELLETime 2009 Symposium Mervi Juntunen Modelling tree and stand characteristics and estimating biomass removals and harvesting costs of lodgepole pine (Pinus contorta) plantations in Iceland Research plan for masters thesis in forest sciences

Lisätiedot

E80. Data Uncertainty, Data Fitting, Error Propagation. Jan. 23, 2014 Jon Roberts. Experimental Engineering

E80. Data Uncertainty, Data Fitting, Error Propagation. Jan. 23, 2014 Jon Roberts. Experimental Engineering Lecture 2 Data Uncertainty, Data Fitting, Error Propagation Jan. 23, 2014 Jon Roberts Purpose & Outline Data Uncertainty & Confidence in Measurements Data Fitting - Linear Regression Error Propagation

Lisätiedot

SIMULINK S-funktiot. SIMULINK S-funktiot

SIMULINK S-funktiot. SIMULINK S-funktiot S-funktio on ohjelmointikielellä (Matlab, C, Fortran) laadittu oma algoritmi tai dynaamisen järjestelmän kuvaus, jota voidaan käyttää Simulink-malleissa kuin mitä tahansa valmista lohkoa. S-funktion rakenne

Lisätiedot

Innovative and responsible public procurement Urban Agenda kumppanuusryhmä. public-procurement

Innovative and responsible public procurement Urban Agenda kumppanuusryhmä.   public-procurement Innovative and responsible public procurement Urban Agenda kumppanuusryhmä https://ec.europa.eu/futurium/en/ public-procurement Julkiset hankinnat liittyvät moneen Konsortio Lähtökohdat ja tavoitteet Every

Lisätiedot

ELEMET- MOCASTRO. Effect of grain size on A 3 temperatures in C-Mn and low alloyed steels - Gleeble tests and predictions. Period

ELEMET- MOCASTRO. Effect of grain size on A 3 temperatures in C-Mn and low alloyed steels - Gleeble tests and predictions. Period 1 ELEMET- MOCASTRO Effect of grain size on A 3 temperatures in C-Mn and low alloyed steels - Gleeble tests and predictions Period 20.02-25.05.2012 Diaarinumero Rahoituspäätöksen numero 1114/31/2010 502/10

Lisätiedot