S K A F T K Ä R R Energiatehokkuus kaavoituksessa

Koko: px
Aloita esitys sivulta:

Download "S K A F T K Ä R R Energiatehokkuus kaavoituksessa"

Transkriptio

1 S K A F T K Ä R R Energiatehokkuus kaavoituksessa

2 Esipuhe Kaavoituksella voidaan vaikuttaa merkittävästi alueiden energiatehokkuuteen. Tämä on keskeinen johtopäätös Suomen itsenäisyyden juhlarahaston Sitran, Porvoon kaupungin, Porvoon Energia Oy:n, Posintra Oy:n ja ympäristöministeriön yhteisessä Skaftkärr - Energiatehokkuus kaavoituksessa - hankkeessa. Energiatehokkuus kaavoituksessa -hankkeen tavoitteena on tuottaa tietoa siitä, voidaanko kaavoituksella vaikuttaa alueiden energiatehokkuuteen, mikä on erilaisten keinojen vaikuttavuus, ja onko tarpeen muuttaa suunnittelukäytäntöjä ja kaavoitusprosessia. Hankkeessa tarkastellaan kaavoituksen vaikuttamiskeinoja alueiden energiatehokkuuteen käytännön kaavoitustyön kautta. Hankkeen ensimmäisessä vaiheessa on laadittu Porvoon Skaftkärriin kaavarunko, jonka pohjalta Porvooseen nousee lähivuosina uusi energiatehokas ja vähähiilinen 6000 asukkaan kaupunginosa. Skaftkärrin kaavarunkotyössä on tutkittu vaihtoehtotarkastelujen avulla erilaisten ratkaisujen vaikutuksia alueen energiatehokkuuteen ja hiilijalanjälkeen. Keskeisiksi tekijöiksi selvityksessä nousivat liikkuminen, rakennusten energiatehokkuus sekä energian tuotantotavat. Energiatehokkuudelle ja hiilijäljen pienentämiselle on laskettu myös hintalappu. Porvoossa tiedetään nyt, mitä hiilijäljen pienentäminen Skaftkärrin alueella maksaa sekä asukkaalle että kaupungille. Keinoja on monenlaisia, kalliita ja halpoja. Hyvä uutinen asukkaan ja kunnan kannalta on se, että samalla kun hiilijälki pienenee, voivat myös asumisen kustannukset laskea nykytasosta. Kaavajärjestelmä ja siihen liittyvät välineet antavat monipuolisia mahdollisuuksia vaikuttaa joko suoraan tai epäsuorasti yhdyskuntiemme energiatehokkuuteen ja päästöihin. Energiatehokkuus kaavoituksessa -hanke osoittaa, että kaavoituksessa tarvitaan hiilitaselaskelmia. Kaavoittajien ja energia-asiantuntijoiden yhteistyö on välttämätöntä ja tulevaisuudessa arkipäivää. Energiatehokkuus ja hiilijäljen pienentäminen sekä hiilitaselaskelmat tulisikin liittää osaksi kaavoitusprosessia ja kaavan vaikutusten arviointia. Tähän raporttiin on koottu Skaftkärrin kaavarunkohankkeen lähtökohtia, tutkitut ratkaisumallit ja niistä laaditut energiatehokkuus- ja päästölaskelmat sekä tuloksista tehdyt johtopäätökset. Energiatehokkuus kaavoituksessa hanke jatkuu: kaavarungon pohjalta laaditaan Porvoon Skaftkärrin alueelle asemakaavat. Asemakaavahankkeissa tullaan testaamaan ja kehittämään edelleen tässä raportissa esitettyjä keinoja ja laskentamenetelmiä rakennetun ympäristön energiatehokkuuden lisäämiseksi sekä päästöjen vähentämiseksi. Haluamme kiittää hankkeen ensimmäisen ja keskeisen vaiheen valmistuttua suunnittelusta vastannutta Pöyryn Oy:n asiantuntijatiimiä, Porvoon kaupungin kaavoittajia sekä Porvoon Energian Oy:n ja Posintra Oy:n asiantuntijoita uraa uurtavasta työstä. Porvoossa syyskuussa 2010 Jukka Noponen Johtaja Energiaohjelma Sitra Fredrick von Schoultz apulaiskaupunginjohtaja Porvoon kaupunki

3 Tiivistelmä Skaftkärr Energiatehokkuus kaavoituksessa hankkeessa kehitetään energiatehokkuuden ohjaamiskeinoja ja suunnittelua sekä etsitään keinoja päästöjen vähentämiseksi kaavoitusprosessin eri vaiheissa. Tavoitteena on luoda uusia toimintamalleja ja ratkaisuja alueellisen ja talokohtaisen energiatehokkuuden lisäämiseksi. Hankkeessa tarkastellaan kaavoituksen vaikuttamiskeinoja alueiden energiatehokkuuteen käytännön kaavoitustyön kautta. Hankkeen ensimmäisessä vaiheessa Porvoon Skaftkärrin alueelle on laadittu kaavarunko, jossa kaavoitustyön ohessa on etsitty uusia kestävän kehityksen mukaisia ratkaisuja alueen energiahuoltoon, energiatehokkaaseen rakentamiseen ja liikennejärjestelyihin. Skaftkärrin kaavarunkoprojektin yhteydessä on koottu tietoa ja kokemuksia erilaisista energiatehokkuuteen liittyvistä mahdollisuuksista sekä esitetty laskentamalleja, joita hyödyntämällä on mahdollista parantaa kaavoitukseen liittyvää päätöksentekoa ja sen energiatietoisuutta. Lähtökohdat ja prosessi Skaftkärrin kaavarunkotyön tarkoituksena on ollut tutkia ja ideoida alueen maankäyttövaihtoehtoja, arvioida vaihtoehtojen energiatehokkuutta, taloudellisuutta, toteuttamisen vaikutuksia sekä tehdä tältä pohjalta ehdotuksia alueen maankäytön pääperiaatteista. Työ käynnistyi työohjelman ja perusselvitysten tarkennuksilla ja selvittämällä tulevaisuuden energiaratkaisuja kansainvälisten esimerkkien avulla. Maankäytön vaihtoehtotarkastelu liitettiin osaksi ratkaisumallitarkastelua, jossa arviointiin erilaisia energiaratkaisuja ja niiden yhteyttä maankäyttöön. Herkkyystarkasteluiden ja vaikutusten arvioinnin kautta voitiin luoda johtopäätöksiä ja suunnitteluperiaatteita, joiden pohjalta kaavarunko laadittiin. Keskeisiksi tekijöiksi selvityksessä nousivat liikkuminen, rakennusten energiatehokkuus sekä energian tuotantotavat. Hankkeen osana laadittiin myös suunnitteluohjeita energiatehokasta kaavoitusta varten. Kuva 1 Skaftkärr Energiatehokkuus kaavoituksessa hankkeen prosessikaavio Maankäyttö ja liikenne Maankäytön ratkaisuilla voi olla huomattava merkitys alueiden energiatehokkuuteen ja hiilitaseeseen. Alueiden keskeinen sijainti suhteessa palveluverkkoon ja keskuksiin, lähipalvelut ja sekoittunut maankäyttörakenne voivat tukea ulkoisen liikennöintitarpeen minimointia. Tehokas ja toimiva kaupunkirakenne antaa myös parhaat mahdollisuudet toimivalle joukkoliikennejärjestelmälle ja kevyen liikenteen verkostolle. Tiivis kaupunkirakenne vähentää verkostopituuksia, mikä vähentää

4 iii rakentamis- ja käyttökustannuksia ja energiankulutusta sekä parantaa verkostojen teknistä toimivuutta. Yksittäisen alueen, esimerkiksi asuinalueen rakenne ei suoraan vaikuta itse rakennusten energiatehokkuuteen merkittävässä määrin. Rakennusten suuntauksella ja sijoituksella pienilmaston kannalta optimaalisesti voidaan vaikuttaa vain vähän rakennusten energiankulutukseen. Tehokkain tapa liikenteen aiheuttaman energiakulutuksen hillitsemiseksi on vaikuttaa liikkumistarpeeseen kaavoituksen eri asteilla. Kaava-alueen sijainti keskustaan, työpaikka-alueisiin ja palveluihin nähden vaikuttaa eniten kulkutapajakaumaan. Kaupungin tiivistäminen ja nykyiseen rakenteeseen tukeutuva laajentaminen lyhentää matkojen pituuksia. Suurissa kaupungeissa joukkoliikenteellä, keskustojen rauhoittamisella ja pysäköintipolitiikalla voi olla huomattava henkilöautoliikenteen määrää rajoittava merkitys. Energiantuotanto Monet lämmitysratkaisuista sekä niiden päästö- ja kustannusvaikutukset ovat hyvin paikkaan sidottuja, joten kaikkiin kohteisiin energiavaihtoehdot on syytä tutkia erikseen kaavoituksen yhteydessä. Energiatuotannon vaihtoehdot ja niiden kilpailuasema toisiinsa nähden muuttuu nopeasti, joten energiatuotannon ratkaisuja ja oletuksia ei pidä ennakoida liian sitovasti ennen kuin aluetta ollaan todella ryhtymässä rakentamaan. Kaavoitukseen liittyvä energiatuotantotapojen selvitys on kuitenkin tärkeä tietolähde alueen tuleville asukkaille energiaratkaisun valintaan ja voi ohjata alueen toteuttamisen suunnittelua. Kun uutta aluetta ryhdytään rakentamaan, mahdollisia energiatuotannon vaihtoehtoja voi olla syytä tutkia rakennussuunnittelun yhteydessä sen hetkisen tilanteen mukaan. Määritettyjen tietojen perusteella voidaan valita kyseiseen kohteeseen paras vaihtoehto. Skaftkärrissä tällä hetkellä ympäristön ja kustannusten kannalta paras vaihtoehto lämmön tuottamiselle on kaukolämpö. Suuren biopolttoaineosuuden ja yhteistuotantosähkön ansiosta millään muulla ratkaisulla ei voida päästä edes teoriassa juurikaan kaukolämpöä pienempiin CO 2 -päästöihin. Rakentaminen Matalaenergiatason vaatiminen uusien alueiden rakentamisessa on energiantehokkuuden kannalta positiivinen ja kustannuksiltaan maltillinen vaatimus. Skaftkärrin alueella passiivirakentamisen vaatimisella alueen energiatehokkuutta voitaisiin entisestään kiristää, mutta passiivirakennusten vaatimat lisäkustannukset voivat noista liian korkeiksi alueen houkuttelevuuden kannalta. Rakennuksen energiatehokkuutta ei voida pelkästään ohjata aikaisemmin annettujen rakenteiden eristys-, tiiviys- ja ilmanvaihdon lämmön talteenotto vaatimusten perusteella. Myös rakennusten muodon ja eteenkin aukotusten vaikutus rakennuksen energiatehokkuuteen tulisi huomioida rakennuslupaprosessissa. Lämmitykselle asetettujen vaatimusten tiukentuessa asuinkiinteistöissä lämpimän käyttöveden energiakulutus muodostaa merkittävimmän osa kohteen kokonaislämmön kulutuksessa. Käyttöveden lämmitystarpeen pienentämisen helpoimmat keinot, vesiputkien eritys ja lämpimän käyttöveden kierron ohjaus, tulisi huomioida alueen rakentamiselle asetetuissa vaatimuksissa. Aurinkokeräimet, jäteveden lämmöntalteenotto ja käyttöveden lämmitys tulisijassa ovat vaihtoehtoisia lämmitystapoja korvaamaan pääosan käyttöveden lämmitystarpeesta. Näiden kannattavuus tulee kuitenkin aina tarkastella aluekohtaisesti, koska alueellisesti ei välttämättä saavuteta merkittävää säästöä CO 2 -päästöissä, mikäli rakennuksen päälämmitysmuodon ominaispäästöt ovat pienet. Ilmanvaihtojärjestelmän sähkötehokkuuden parantaminen, järjestelmän tarpeellinen ohjaus ja mitoitus tasapainoon ovat keskeisimmät keinot sähkönkulutuksen ja toisaalta myös ilmanvaihdosta aiheutuvien lämpöhäviöiden pienentämiseen. Käyttäjäsähkön osuus rakennuksen kokonaishiilidioksidipäästöistä on jo nykyisin merkittävä ja käyttäjäsähkön piiriin kuuluvien laitteiden energiankulutus korostuu entisestään, kun rakennuksen lämmitysenergiankulutukselle asetetaan rajoituksia.

5 iv Kaavoitus Kaavoituksella voidaan merkittävästi vaikuttaa alueiden energiatehokkuuteen. Yleispiirteisessä kaavoituksessa ratkaistaan seutujen, kuntien ja alueiden alue- ja yhdyskuntarakenteen kehittymisen periaatteet ja vaikutetaan oleellisesti mm. liikkumistarpeeseen ja sitä kautta liikenteen energiankulutukseen ja päästöihin. Osayleiskaavoituksessa ja asemakaavoituksessa ohjataan alueiden sisäisiä maankäyttöratkaisuja, infrastruktuuria ja rakentamista. Kaavajärjestelmä ja siihen liittyvät välineet antavat monipuolisia mahdollisuuksia vaikuttaa joko suoraan tai epäsuorasti yhdyskuntiemme energiatehokkuuteen ja päästöihin. Kuva 2 Alueen energiatehokkuuteen vaikuttavia tekijöitä

6 i Kuva 3 Suunnittelualueen rajaus Käsitteitä Keskeisiä työssä käytettyjä käsitteitä ovat: Energiatehokkuus: Rakennuksen energiatehokkuudella tarkoitetaan lasketun tai mitatun energiamäärän, joka tarvitaan rakennuksen tyypilliseen käyttöön liittyvän energiatarpeen täyttämiseen ja johon sisältyy muun muassa lämmitykseen, jäähdytykseen, ilmanvaihtoon, veden lämmitykseen ja valaistukseen käytetty energia, suhdetta rakennuksen pinta-alaan. Alueellinen energiatehokkuus muodostuu tietyn alueen sisäisten ja ulkoisten tekijöiden yhteisvaikutuksesta. Alueen sisäisiä energiatehokkuuteen vaikuttavia tekijöitä ovat sisäinen liikenne, rakennusten energiatehokkuus, sisäinen infra-verkosto ja alueellinen energiantuotanto. Alueen ulkopuolisia tekijöitä ovat alueeseen liittyvä liikennejärjestelmä, palveluiden ja työpaikkojen sijoittuminen, infra-verkosto ja energiantuotanto. Energiatehokkuuden mittana on myös käytetty energian määrän suhdetta tuotettuihin päästöihin. Energiatuotannon profiili kuvaa energiatuotannossa käytettyjä tuotantotapoja. Esimerkiksi kaukolämmön tuotannon profiili Porvoossa on vuonna 2015 arviolta 90 % biopolttoaineita ja 10 % maakaasua.

7 ii Primäärienergialla tarkoitetaan yleisesti uusiutuvista tai uusiutumattomista lähteistä peräisin olevaa energiaa, jota ei ole muunnettu millään prosessilla. Primäärienergiaa ovat mm. maaperässä oleva öljy, puu metsässä, tuuli ja uraani. Tässä raportissa käytetään primäärienergiatermiä uusiutumattomasta primäärienergiasta, joka kuvaa uusiutumattomien energialähteiden käyttöä. Ostoenergia on energia, joka ostetaan rakennukseen (mm. hankitaan rakennukseen sähköverkosta, kaukolämpöverkosta tai polttoaineena) Uusiutuvalla energialla tarkoitetaan uusiutuvista (muista kuin fossiilisista) lähteistä peräisin olevaa energiaa, kuten tuuli- ja aurinkoenergiaa, geotermistä energiaa, vesivoimaa, puupolttoaineita ja muuta biomassaa. COP (coefficient of performance) on muun muassa lämpöpumppujen hyötysuhdetta kuvaamaan käytetty lämpökerroin. Esimerkiksi COP 3 tarkoittaa, että lämpöpumppu tuottaa 1 kwh:lla sähköenergiaa 3 kwh lämpöenergiaa. Hankkeen osapuolet Hankkeen ohjausryhmään ovat työn eri vaiheissa osallistuneet seuraavat henkilöt: Porvoon kaupunki: kaupunginjohtaja Marcus Henricson (huhtikuuhun 2009), apulaiskaupunginjohtaja Jukka-Pekka Ujula (syyskuuhun 2009), apulaiskaupunginjohtaja Fredrick von Schoultz (lokakuusta 2009), kaupunkisuunnittelupäällikkö Eero Löytönen, yleiskaavoittaja Maija-Riitta Kontio Suomen itsenäisyyden juhlarahasto Sitra: ohjelmajohtaja Jukka Noponen, toimialajohtaja Juha Kostiainen (syyskuuhun 2009), johtava asiantuntija Jarek Kurnitski (lokakuusta 2009) Kehitysyhtiö Posintra Oy: projektikoordinaattori Åsa Nystedt (tammikuuhun 2010), hankekoordinaattori Arto Varis (helmikuusta 2010) Porvoon Energia Oy: sähkökauppa- ja kehitysjohtaja Akke Kuusela (tammikuuhun 2010), kaukolämpöpäällikkö Ari Raunio (helmikuusta 2010) Ympäristöministeriö: yliarkkitehti Aulis Tynkkynen Uudenmaan ELY-keskus: yliarkkitehti Tarja Laine Pöyry Finland Oy: osastopäällikkö Heikki Hirvonen, toimialajohtaja Pasi Rajala Teknisen työryhmän työhön ovat osallistuneet Porvoon kaupungilta Maarit Ståhlberg, Eero Löytönen, Maija-Riitta Kontio, Kari Hällström, Hanna Linna-Varis, Mervi Fors, Martti Kiiltomäki, Mikael Nystedt, Pirkko Paatero, Jukka Palmgren, Terhi Pöllänen, Antero Antila, Riitta Silander, Posintrasta Åsa Nystedt, sekä Pöyryltä Heikki Hirvonen, Sampo Perttula ja Elisa Lähde. Projektityöhön ovat Pöyryllä osallistuneet projektipäällikkö Heikki Hirvonen, kaavoitus Sampo Perttula, Elisa Lähde, Perttu Pulkka; laadunvarmistus Pasi Rajala; energiataselaskelmat ja rakentaminen Timo Rintala, Tiina T. Kauppinen, Karoliina Rajakallio; energiavaihtoehdot Jenni Patronen, Jouni Laukkanen, Minna Jokinen; liikennemallit ja laskennat Leo Jarmala; rakennusten energiatehokkuus Kai Wartiainen ja Sami Lauritsalo.

8 1 SISÄLTÖ 1 JOHDANTO ENERGIATEHOKKUUS LÄHTÖKOHTANA SUUNNITTELUPROSESSISSA Suunnitteluprosessi Työn eteneminen... 6 A: SELVITYKSET ENERGIANTUOTANNON VAIHTOEHDOT Lämmön ja sähkön kulutus sekä CO 2 -ominaispäästökertoimet Lämmön kulutus Sähkön kulutus Lämmitysmuotojen CO 2 -ominaispäästökerroin Sähköntuotantomuotojen CO 2 -ominaispäästökerroin Kaukolämpö Hajautettu polttoaineisiin perustuva lämmöntuotanto Sähkölämmitys Maalämpö Yleistä maalämmöstä Talokohtainen maalämmitys Keskitetty maalämpöratkaisu Ilmalämpöpumput Aurinkoenergian hyödyntäminen Aurinkosähkö Tulossa olevat teknologiat Hajautettu aurinkolämmön hyödyntäminen Kokemuksia ja toimintamalleja maailmalta Aurinkokaukolämpö Pienimuotoinen hajautettu sähkön ja lämmön yhteistuotanto Pienimuotoinen tuulivoima Polttokennot Jätteenpoltto RAKENNUKSET Matalaenergia- ja passiivirakennukset Matalaenergia- ja passiivirakennusten lämmönlähteet Rakennuksen muoto, aukotus ja suuntaus Käyttöveden lämmitys Kiinteistö- ja käyttäjäsähkön kulutus Kulutuksen ohjausjärjestelmät Elinkaaren aikaiset kustannukset rakentamisessa...33

9 2 4.7 Rakennusmateriaalit LIIKENNE Kulkumuodot Tekninen kehitys Liikkumistarve HULEVEDET JA PIENILMASTO Hulevedet Maankäytön vaikutus hulevesiin Hulevesien hallintamenetelmät Jätevesien paikallinen käsittely Pienilmaston vaikutus elinympäristön laatuun Porvoon sijainnin merkitys pienilmaston kannalta Pienilmastotekijät suunnittelualueella Tuulisuuden merkitys Keinot pienilmaston parantamiseksi B: VAIHTOEHTOTARKASTELUT JA KAAVARATKAISU ENERGIANKÄYTÖN JA PÄÄSTÖJEN VERTAILUTASOT Vertailutasona vaihtoehto Rakentamisen kokonaismäärä Alueen laajuustiedot Rakennuksen lämmitystapa Tyyppirakennus Rakennusten energiankäytön oletukset Sähkön kulutus Rakennusten energiankulutus Energiantuotannon hiilidioksidipäästöt Kaukolämmön tuotannon hiilidioksidipäästöt Sähkön tuotannon hiilidioksidipäästöt Energia uusiutumattomana primäärienergiana Liikenteen lähtökohdat Yleistä Itä-Uudenmaan henkilöliikennetutkimuksen Porvoon tuloksia Kevätkummun alue vertailukohtana Porvoolaisten liikennesuorite Emme/2 -liikennemalli Skaftkärrin liikennesuoritteet vaihtoehdossa Joukkoliikenne Liikennemuotojen ominaispäästöt Kunnallistekniikka Valaistus Yleiset rakennukset Vesihuolto... 68

10 3 7.7 Energiankulutukseen ja päästöihin vaikuttavia tekijöitä Herkkyystarkastelut rakennuksille, energialle ja liikenteelle TUTKITUT RATKAISUMALLIT Ratkaisumallien suunnittelun lähtökohtia Tutkitut mallit ENERGIA-, PÄÄSTÖ- JA KUSTANNUSVAIKUTUSTEN ARVIOINTI Vaikutusten arvioinnin periaatteet Ratkaisumallien liikenteellinen vertailu Vertailuperiaate Autoliikenteen liikennesuoritteet Mallien liikennesuoritteet, suhteelliset osuudet kulkumuodoittain Joukkoliikenne, liikennesuorite Ratkaisumallien energiantuotantovaihtoehtojen päästövertailu Lämmitysvaihtoehdot Sähköntuotantovaihtoehdot Energia- ja päästövaikutusten arviointi Ratkaisumallien kustannusvertailu eri energiantuotantovaihtoehdoilla Infrastruktuurikustannukset Mallitarkastelun johtopäätökset Johtopäätökset energiatuotantovaihtoehdoista Herkkyystarkastelut CO2-päästöille Erilaiset toteutusvaihtoehdot -35 % päästövähennyksen saavuttamiseksi vaihtoehtoon 0+ verrattuna Lämmitysvaihtoehtojen vaikutus päästöihin KAAVARUNKORATKAISU Tavoitteet Kaavarungon suunnitteluperiaatteita Kaavarungon kuvaus...97 C: JOHTOPÄÄTÖKSET JOHTOPÄÄTÖKSET JA SUUNNITTELUOHJEET Yleistä Energiatehokkuuden huomioiminen eri suunnittelutasoilla Kokemuksia Skaftkärr -projektista Aloitus ja ohjelmointi Vertailumalli ja vaihtoehdot Kaavarunko Alueiden käytön ja kaavoituksen kehittäminen energiatehokkuuden näkökulmasta Suunnitteluratkaisut Kaavoitusprosessi

11 4 Kaava-asiakirjat Muun yhteistyön kehittäminen LOPUKSI LÄHTEET Liitteet Energiatodistus, tyyppitalo Liikennesuoritteet kulkumuodoittain ja periaatemalleittain Liikennelaskennan perusteet ja oletukset

12 5 1 JOHDANTO Skaftkärrin uusi energiatehokas asuinalue tulee olemaan Porvoon pientalomaisen rakentamisen painopisteenä lähes koko 2010-luvun ajan. Tässä raportissa on esitelty Skaftkärrin kaavarunkohankkeen lähtökohtia sekä tutkitut ratkaisumallit ja niistä laaditut laskennat ja arvioinnit. Näiden selvitysten pohjalta on laadittu Skaftkärrin alueelle neljä vaihtoehtoista ratkaisumallia, jotka kuvaavat pelkistetysti erilaisia energiatehokkuuteen liittyviä alueellisia ratkaisuja ja niiden yhdistelmiä. Näille malleille suoritettuja energiatehokkuus- ja päästölaskelmia sekä herkkyystarkasteluja on hyödynnetty Skaftkärrin kaavarunkoluonnoksen laatimisessa. Tuloksista on myös haettu yleisiä johtopäätöksiä energiatehokkaan kaavoituksen edistämiseksi. 2 ENERGIATEHOKKUUS LÄHTÖKOHTANA SUUNNITTELUPROSESSISSA 2.1 Suunnitteluprosessi Porvoon kaupungin ja Sitran käynnistämän Skaftkärrin pilottihankkeen tavoitteena on ollut kaavoitustyön ohessa etsiä uusia kestävän kehityksen mukaisia ratkaisuja alueen energiahuoltoon, energiatehokkaaseen rakentamiseen ja liikennejärjestelyihin. Tarkoituksena oli tuottaa tietoa siitä, millaisilla keinoilla on suunnittelussa mahdollista vaikuttaa alueiden energiatehokkuuteen, mikä on erilaisten keinojen vaikuttavuus ja miten suunnittelukäytäntöjä olisi mahdollista tai tarpeen kehittää, jotta alueiden energiatehokkuus paranisi. Työ aloitettiin kokoamalla aluetta koskevat lähtöaineistot ja yleistä tietoa ja kansainvälisiä kokemuksia alueiden energiaratkaisuista. Ensimmäinen haaste työn alussa oli löytää energiatehokkuuden parantamisen kannalta merkittävimmät tekijät, joihin vaikuttamalla saataisiin suurin muutos aikaan. Keskeisenä työkaluna aloitusvaiheessa käytettiin alueelle 2007 laadittua kaavarunkoa (nk. vaihtoehto 0+), jonka mukaisen yhdyskuntarakenteen energiankulutus ja hiilidioksidipäästöt laskettiin. Kuva 4 Vertailutason 0+ vuotuisten uusiutumattoman primäärienergiankulutuksen ja hiilidioksidipäästöjen jakautuminen Vaihtoehdon 0+ kuvauksesta ja laskennoista laadittiin tässä vaiheessa erillisraportti. Sen pohjalta sovittiin myös jatkossa käytettävistä laskentamenetelmistä. Laskelmien tulokset paljastavat selkeästi, että suurimmat energiankulutukseen ja hiilidioksidipäästöihin vaikuttavat tekijät ovat liikenne sekä rakennusten ja asukkaiden kuluttama lämpö- ja sähköenergia. Laskennan tuloksia käytettiin vertailupohjana arvioitaessa varsinaisten suunnitelmavaihtoehtojen ja niihin sisältyvien keinovalikoimien vaikuttavuutta energiatehokkuuteen ja hiilipäästöihin.

13 6 2.2 Työn eteneminen Vaihtoehdolle 0+ suoritettujen laskelmien jälkeen laadittiin selvitykset energiantuotannon vaihtoehdoista, rakennustekniikan kehittymisestä, liikenteestä sekä maankäyttöön ja elinympäristön laatuun liittyvistä erityiskysymyksistä. Nämä selvitykset on esitetty tässä raportissa osiossa A (kappaleet 3-6). Selvitysten ja vaihtoehdolle 0+ suoritettujen laskelmien pohjalta laadittiin neljä vaihtoehtoista ratkaisumallia, jotka kuvaavat pelkistetysti erilaisia energiatehokkuuteen liittyviä alueellisia ratkaisuja ja niiden yhdistelmiä. Jokaiselle mallille määriteltiin profiili, jossa muuttujina olivat maankäytön lisäksi alueen energiantuotanto, liikenne ja rakennustekniikka. Näille malleille laadittiin samat laskelmat kuin vaihtoehdolle 0+ ja lisäksi arvioitiin mallien muita vaikutuksia. Näiden laskelmien ja arviointien pohjalta voitiin tehdä johtopäätöksiä kunkin ratkaisumallin energiatehokkuudesta sekä elinympäristön laadusta ja laatimaan niiden pohjalta kaavarunkoluonnos. Vaihtoehdon 0+ kuvaus, ratkaisumallit, kaikki laaditut laskelmat, niiden perusteet ja lopputulokset sekä kaavarunkoluonnoksen kuvaus on esitetty tämän raportin osiossa B (kappaleet 7-10). Koko prosessin pohjalta on tehty johtopäätöksiä ja laadittu suunnitteluohjeita siitä, miten energiatehokkuus tulisi alueiden käytössä ja kaavoituksessa huomioida. Ohjeet on koottu yhteen osiossa C (kappale 11), jossa käydään läpi myös maankäytön suunnittelun kehittämistarpeita energiatehokkuuden näkökulmasta. Kuva 5 Projektin jakautuminen eri vaiheisiin, jotka on kuvattu raportissa erillisinä A, B ja C osioina.

14 7 A: SELVITYKSET 3 ENERGIANTUOTANNON VAIHTOEHDOT Tässä osuudessa vertaillaan eri energiantuotantovaihtoehtojen soveltuvuutta ja niiden asettamia rajoituksia Porvoon Skaftkärrin uudella asuinalueella. Energiatuotannon vaihtoehtoselvitys on tehty alueen kaavoitusta varten, jotta jo kaavoituksessa voitaisiin ottaa huomioon energiantuotantoratkaisujen vaikutukset kaavoitukseen. Lisäksi selvitys antaa alueen tuleville asukkaille hyvän kuvan paikallisten energiaratkaisuiden eri vaikutuksista. 3.1 Lämmön ja sähkön kulutus sekä CO 2 -ominaispäästökertoimet Lämmön kulutus Alueen asukkaiden kokonaislämmönkulutus on arvioitu talotyyppien ja talojen pinta-alojen mukaan lämmön ominaiskulutuksen [kwh/m 2,a] perusteella. Kaikissa vertailtavissa kaavamalleissa asuntojen pinta-ala on m 2. Taulukossa on esitetty Skaftkärrin alueen lämmön tarve rakennusten eri energiatehokkuusluokilla. Käyttöveden lämmitykseen tarvittavaan energiankulutukseen ei vaikuta rakennustekniikka, vaan ennemminkin asukkaiden tottumukset. Käyttöveden lämmityksen energiankulutus on siten kaikilla talotyypeillä noin 35 kwh/m 2. Rakennusnormin 2010 mukaisilla taloilla lämmityksen tarve ilman käyttöveden tarvitsemaa lämpöä on 75 kwh/m 2, matalaenergiataloilla 40 kwh/m 2 ja passiivienergiataloilla 20 kwh/m 2. Taulukko 1 Lämmön tarve alueella Sähkön kulutus Kotitalouksien sähkönkulutus koostuu kiinteistö- ja käyttäjäsähköstä. Kiinteistösähkön, ilmanvaihto ja pumput, osuus sähkönkulutuksesta on noin 20 %. Kotitalouksien käyttäjäsähkönkulutuksen osalta kolme suurinta laiteryhmää ovat valaistus (22 %), kylmälaitteet (13 %) ja kodin elektroniikka (12 %). Sähkönkulutuksen alueella on arvioitu olevan ilman lämmitykseen käytettävää sähköä MWh/a. Sähkön tarpeeseen vaikuttaa eniten asukkaiden tottumukset, jolloin kaikissa vertailtavissa kaavamalleissa oletetaan sähköntarpeen pysyvän samana Lämmitysmuotojen CO 2 -ominaispäästökerroin Polttoaineilla tapahtuvalle lämmön erillistuotannolle (ei sähkön ja lämmön yhteistuotantoa) määritetään CO 2 -päästökerroin suoraan käytetyn polttoaineen ominaispäästökertoimesta ottaen huomioon lämmön tuotannon hyötysuhde ja mahdolliset verkostohäviöt. Kun lämpö tuotetaan sähkön ja lämmön yhteistuotantolaitoksessa, pitää yhteistuotantosähkön tuotannon hyvä hyötysuhde ottaa huomioon kaukolämmön ominaispäästökertoimessa, koska ilman kaukolämmön kulutusta ei yhteistuotantosähköä voida tuottaa.

15 8 Sähköä käyttävät lämmitysmuodot, kuten sähkölämmitys ja lämpöpumppuratkaisut, käyttävät verkosta ostettua sähköä lämmön tuottamiseen ellei sähköä tuoteta itse. Lämmitykseen käytetylle sähkölle määritetään ominaispäästökerroin kuten muullekin sähkölle (ks. seuraava kappale) Sähköntuotantomuotojen CO 2 -ominaispäästökerroin Sähköä kuluu kiinteistö- sekä käyttäjäsähköön. Lisäksi jotkin lämmitysmuodot käyttävät sähköä tilojen ja käyttöveden lämmittämiseen. Tällaisia lämmitysmuotoja ovat sähkölämmitys sekä erilaiset lämpöpumppuratkaisut. Huomioitavaa sähkön ominaispäästökerrointa määrittäessä on, että verkkosähköä voi ostaa myös muilta kuin oman alueen sähköyhtiöltä, jonka takia alueellisen sähköyhtiön ominaispäästöä ei voida sähkön ominaispäästönä käyttää. Mikäli sähkö ostetaan alueelle sähköverkosta eli pohjoismaisilta sähkömarkkinoilta (eli sähköä ei tuoteta itse), voidaan käytetyn sähkön päästöjä tarkastella markkinoiden marginaalituotantotavan mukaan. Useimmiten tämä on kivihiileen perustuvaa sähköntuotantoa (hiililauhdetta), osin myös maakaasuun perustuvaa ja muuta tuotantoa. Hiililauhteen hiilidioksidipäästöt ovat noin kg/mwh riippuen laitoksen hyötysuhteesta, maakaasun noin puolet siitä vähemmän. Pöyryn sähkömarkkinamallinnusten perusteella marginaalisähköntuotantomuodon päästöt ovat noin 750 kg/mwh, jolloin marginaalituotantomuotona on hiililauhteen lisäksi pienen osan vuotta kaasuun perustuva tuotanto. Keskimääräiset sähköntuotannon päästöt pohjoismaisilla sähkömarkkinoilla ovat kuitenkin huomattavasti alhaisemmat, vain noin kg/mwh. Todellisuudessa sähkön tuotannon päästöt ovat käytännössä keskimääräisen tuotantoprofiilin ja marginaalituotannon väliltä. Edellä mainittu Suomen keskimääräisen sähkön ominaispäästö sisältää myös uusiutuvalla energialla tuotetun vihreän sähkön. Kun oletetaan, että vihreän sähkön osto ei lisää vihreän sähkön tuotantoa, vaan vähentää vihreän sähkön osuutta keskimääräisestä sähköstä, ei vihreää päästötöntä sähköä voida pitää vaihtoehtona käytetylle sähkölle. Mikäli jo keskimääräiseen sähköön sisältyvää vihreää sähköä käytettäisiin vaihtoehtona, tulisi saman vihreän sähkön päästöttömyys laskettua hyödyksi kahteen kertaan vihreänä sähkönä ja mukana keskimääräisessä sähkössä. Tässä työssä on käytetty Suomen keskimääräisiä sähköntuotannon päästöjä 200 kg/mwh sähkönkulutuksen C0 2 -päästöjen laskennassa. 3.2 Kaukolämpö Kaukolämpöä tuotetaan joko erillisissä lämpökeskuksissa tai sähkön ja lämmön yhteistuotantolaitoksissa. Lämpö siirretään tuotantolaitoksesta käyttäjille kaukolämpöverkossa kuuman veden avulla. Kaukolämmön hyödyntäminen edellyttää kaukolämpöverkon rakentamista alueelle, ja verkon rakentamisen kannattavuuden edellytys on riittävä kulutus riittävän tiheällä alalla. Mikäli kaukolämpö tuotetaan yhteistuotantolaitoksessa, kulutetun lämmön avulla saadaan tuotettua yhteistuotantosähköä. Porvoossa kaukolämpö tuotetaan lähes pelkästään yhteistuotantolaitoksissa. Tuotetun sähkön määrä suhteessa lämpökuormaan riippuu laitostyypistä ja polttoaineesta. Skaftkärrissä rakennusnormin 2010 mukaisten talojen noin MWh:n (sisältää siirtohäviöt) vuotuista kokonaislämmönkulutusta kohden sähköä voitaisiin tuottaa lähes MWh biopolttoaineita käyttävässä voimalaitoksessa. Maakaasuvoimalaitoksessa sähköä voidaan tuottaa samaa lämpökuormaa vastaan tyypillisesti puolet enemmän, jolloin sähköntuotanto voisi olla jopa MWh. Yhteistuotanto säästää erillisiin tuotantotapoihin verrattuna merkittävästi energiaa. Seuraavassa kuvassa on havainnollistettu polttoaineen kulutusta saman sähkö- ja lämpömäärän tuottamiseksi erillis- ja yhteistuotannossa. Eli kun sama sähkö- ja lämpömäärä tuotetaan yhteistuotannolla erillistuotantojen sijaan, säästetään polttoainetta noin 35 %.

16 9 Kuva 6 Polttoaineen säästö lämmön ja sähkön yhteistuotannossa. Porvoon Energia tuotti vuonna % kaukolämmöstä biopolttoaineilla, 27 % maakaasulla ja 1 % öljyllä. Nykyisellä tuotantorakenteella kaukolämmön päästöt huomioiden yhteistuotannon korkean osuuden (92 % vuonna 2008) ovat noin 80 kg/mwh. Porvoon Energian tavoitteena on lisätä biopolttoaineiden osuutta tulevaisuudessa, mutta huoltovarmuuden ja puun saatavuuden vaihtelun vuoksi on mahdollista, että pieni osa kiinteistä polttoaineesta on turvetta. Kaukolämmön päästöt ovat vuonna 2015 noin 24 kg/mwh kulutettua kaukolämpöä kohden, kun biopolttoaineiden osuudeksi on arvioitu 90 % ja maakaasun 10 %. Kaukolämmön ominaispäästössä on huomioitu lämpöä vastaan tuotettu yhteistuotantosähkö. Skaftkärrin alueelle kaukolämpö voidaan tuottaa joko yhdistämällä alueen lämpöverkko Porvoon alueen muuhun kaukolämpöverkkoon, tai tuottamalla lämpö lähempänä uudella pienemmällä voimalaitoksella, lämpökeskuksella tai useammilla laitoksilla. Skaftkärr sijaitsee kuitenkin lähellä nykyistä kaukolämpöverkkoa, jolloin nykyiseen kaukolämpöverkkoon liittämisen kustannukset ovat erittäin pienet verrattuna uuden lämmöntuotantolaitoksen rakentamiskustannuksiin. Kaavoituksessa ja suunnittelussa huomioitavia asioita Kannattavuus Kaukolämmön kannattavuutta on tarkasteltava sekä kuluttajan että myyjän kannalta. Myyjän kannalta merkittävimmät asiat ovat tarvittavan putkiston investoinnit sekä myytävän lämmön määrä. Kannattavuuden selvittäminen edellyttää, että alustavat kaukolämpöputkimäärät ovat tiedossa. Kuluttajan kannattavuutta voidaan arvioida jo ilman tietoja putkistostakin Porvoon Energian kaukolämpötariffien ja lämmönjakokeskuksen hintojen perusteella. Päätökset kaukolämpöputken rakentamisesta tekee Porvoon Energia. Skaftkärriin suunnitellulla alueella, kuten pientaloalueilla yleensä, lämmön kulutuksen tehotiheys on varsin pieni. Matalaenergiaratkaisut heikentävät merkittävästi kaukolämmön kannattavuutta. Tämän vuoksi on kiinnitettävä huomiota erityisesti rakennettavan kaukolämpöjohdon investointikustannusten minimointiin, mikäli alueelle halutaan kaukolämpö. Rivitalot ja pienkerrostalot

17 10 ovat merkittävästi parempia kaukolämmön kannattavuudelle erillistaloihin verrattuna suhteellisesti pienempien verkon rakentamiskustannusten ansiosta. Kaukolämmön kannalta tärkeintä on saada energiasuhde (kaukolämpöenergia/putkimetri) mahdollisimman suureksi, jotta kaukolämpöverkon rakentaminen alueelle olisi kannattavaa. Kaukolämmön kannattavuutta alueelle on arvioitu seuraavassa vanhan kaavarungon aluejaon mukaisesti, jotta saataisiin reunaehdot kaukolämmön mahdollisuuksille ja selvitettäisiin esimerkiksi mitä alueita ei voida liittää järkevästi kaukolämpöön. Reunaehtojen arvioinnissa talotyyppien jakaumana on käytetty vaihtoehdon 0+ mukaista jakaumaa, ja oletettu että taloja on tasaisesti molemmilla puolilla tietä, jota pitkin kaukolämpöputki kulkee. Laskennassa jokaiseen pari- ja rivitaloon oletetaan tulevan oma lämmönjakokeskus. Kaukolämmön tuotannon mahdollisia uusia investointeja ei ole laskennassa huomioitu. Porvoon nykyinen tuotantokapasiteetti ja suunnitteilla olevat investoinnit todennäköisesti riittäisivät myös uuden alueen tarpeisiin. Arvioinnissa on lisäksi oletettu, että nykyisen, Skaftkärrin lähialueelle tulevan kaukolämpöverkon runkojohto olisi riittävä lämmön jakelemiseksi myös uudelle alueelle. Todennäköisesti runkojohdosta ei tule riittämään lämpöä koko alueelle ilman vahvistuksia, mutta vahvistuksien vaikutusta ei voida tämän työn puitteissa arvioida. Seuraavassa kartassa on esitetty numeroin alueet, joille kaukolämpöverkon rakentamista on arvioitu. Kartassa näkyvät myös runkoverkko, sekä sen liittymäpisteet nykyiseen kaukolämpöverkkoon. Kuva 7 Kaukolämpöverkon reunaehtojen arvioinnissa käytetty aluejako

18 11 Kartan yläpuolelle jää alue 1, jolle on laskennassa oletettu vedettävän oma runkoputki kolmannesta syöttöpisteestä alueen yläpuolella. Alueet 2, 3, 4, 5 ja 8 muodostavat oman kokonaisuuden, joissa verkko alkaa alueelta 2 ja haarautuu alueelle 4 ja alueille 3, 5 ja 8. Alueet 6, 7, ja 9 muodostavat oman kokonaisuuden. Takaisinmaksuajat alueen liittämiselle kaukolämpöön alueittain energiayhtiön kannalta on esitetty seuraavassa taulukossa. Takaisinmaksuajat on laskettu korottomina. Oletuksena on, että kaikki alueen kiinteistöt liittyisivät kaukolämpöön, joten esitetty takaisinmaksuaika on käytännössä minimiarvo. Taulukko 2 Kaukolämpöverkon korottomat takaisinmaksuajat alueittain Investoinnit [k ] Liittymismaksut [k ] Energia+perusmaksu [k /a] Tuotantokustannukset +häviöt [k /a] Koroton takaisinmaksuaika Alue Alue Alue Alue Alue Alue Alue Alue Alue Alue Alue Alue Mikäli vaihtoehto 0+ toteutuisi energiankulutuksen osalta ja lisäksi kaikki rakennukset liittyisivät kaukolämpöön, jäisi verkon rakennuksen koroton takaisinmaksuaika kaikilla alueilla alle kymmeneen vuoteen. Takaisinmaksuaika on selvästi pisin alueella 1, jolle tulisi vain omakotitaloja. Tiheimmin rakennetujen ja lähellä nykyistä verkkoa olevien alueiden 2, 3, 4 ja 5 liittäminen kaukolämpöön on kaikkein kannattavinta. Energiatehokkaammassa rakentamisessa kaukolämmön kannattavuus kuitenkin heikkenee oleellisesti, ja lisäksi kaikkien rakennusten liittyminen kaukolämpöön on epätodennäköistä, ellei tähän ole kaavassa asetettua velvoitetta. Ominaiskulutuksen vaikutusta kaukolämmön takaisinmaksuaikaan Porvoon Energian kannalta voidaan arvioida seuraavan kuvaajan avulla. Kuva antaa myös hyvin suuntaa arviolle siitä, mikä vaikutus on kaukolämpöön liittyvien osuudella. Esimerkiksi, jos vain puolet alueen lämmönkulutuksesta liittyy kaukolämpöön, voidaan takaisinmaksuajan arviona käyttää ominaiskulutusta 55 kwh/m 2.

19 12 Kuva 8 Takaisinmaksuaika eri alueilla ominaiskulutuksen muuttuessa (ominaiskulutusarvo 110 kwh/m²on normin 2010 mukaisten talojen käyttöveden 35 kwh/m² ja lämmityksen 75 kwh/m² summa.) Kuvasta nähdään, että mikäli alueen lämmönkulutus laskee keskimäärin yli 20 %, nousee verkkoinvestoinnin koroton takaisinmaksuaika yli 10 vuoteen. Kaukolämpövaihtoehdon toteutus voi olla vaikeaa, mikäli alue rakennetaan rakennusmääräyksiä energiantehokkaammaksi, eivätkä kaikki kuluttajat liity kaukolämpöverkkoon vaan valitsevat muita lämmitystapoja. Kohtuullinen takaisinmaksuaika riippuu tässä tapauksessa Porvoon Energian tavoitteista ja omistajan asettamista vaatimuksista investoinneille. Kaukolämpöverkon toteutustapa Jo kaavoitusvaiheessa tulee huomioida, että kaukolämpöputkien reiteistä saadaan mahdollisimman lyhyitä ja täten kustannukset pidettyä mahdollisimman alhaalla. Jokainen ylimääräinen putkimetri maksaa putkikoosta riippuen eli 100 m ylimääräistä putkea maksaa jo Rakennettu kaukolämpöverkko mahdollistaisi tulevaisuudessa myös uusien keskitettyjen energiantuotantoratkaisujen käyttöönoton. Suomessa normaalit kaukolämpöjohdot ovat kansainvälisestikin katsottuna edullisia, jolloin erilaisista kevennetyistä aluelämpöjärjestelmistä saatava hyöty on pieni. Samoin yleisesti käytetyt kiinnivaahdotetut teräsputket ovat tunnettua tekniikkaa. Muiden putkityyppien käytöstä on vähän pitkäaikaista kokemusta. 3.3 Hajautettu polttoaineisiin perustuva lämmöntuotanto Lämpöä voidaan tuottaa polttoaineilla myös talokohtaisesti tai korttelikohtaisesti ilman sähköntuotantoa, jolloin puhutaan erillisestä lämmöntuotannosta. Hajautetun polttoaineilla tapahtuvan lämmöntuotannon merkittävä haitta ovat mm. hiukkas- ja typenoksidipäästöt, jotka ovat suuren mittakaavan laitoksissa helpommin hallittavissa. Puupolttoaineita käyttämällä voidaan tuottaa lämpöä laskennallisesti hiilidioksidipäästöttömästi. Puupolttoaineita voidaan käyttää sekä talokohtaisessa lämmityksessä, että aluelämpökeskuksissa. Viime vuosina erityisesti pellettilämmitys on kasvanut Suomessa. Puupelletit valmistetaan sahalaitosten ja muun mekaanisen puuteollisuuden sivutuotteista, kuten sahanpuruista ja

20 13 kutterinlastusta. Pientalojen pellettilämmityksen etuina ovat muihin hajautettuihin järjestelmiin verrattuna laitteiston kohtuullinen hankintahinta, lämmityksen vaivattomuus ja vähäinen huoltotarve. Pientalon pellettilämmityksen uusinvestointi on noin euroa. Hinnat vaihtelevat paljon riippuen mm. varastoratkaisusta. Käyttökustannukset riippuvat pellettien hinnasta. Pellettejä poltetaan polttimessa, joka kytketään kattilaan vesikiertoisessa lämmitysjärjestelmässä. Pellettejä voidaan polttaa myös pellettitakassa tai kamiinassa lisälämmön lähteenä jonkin muun päälämmitysmuodon rinnalla. Puupolttoaineista hake taas soveltuu paremmin yksittäisiä taloja suurempiin ratkaisuihin, kuten korttelien tai julkisten rakennusten lämmitykseen. Hakkeen käsittely on selvästi pellettejä vaikeampaa ja tilavaatimus suurempi. Polttoainekustannukset ovat kuitenkin pellettejä alhaisemmat. Aluelämmitykseen soveltuvan noin 500 kw:n kiinteän puupolttoainekattilan vuotuinen polttoainetarve on noin MWh haketta. Hakekattila tarvitsee rinnalle öljykattilan varakattilaksi ja huipputehon tuottajaksi. Porvoon alueelle tulee maakaasuputki, ja periaatteessa olisi mahdollista vetää uudelle alueelle maakaasuverkko. Hajautetussa ratkaisussa maakaasua käyttävä toimiva lämmitysjärjestelmä koostuu talokohtaisesta lämmityskattilasta, siihen liitetystä kaasupolttimesta ja vesikiertoisesta lämmönjakojärjestelmästä. Maakaasulämmitys on hyvin samantyyppinen kuin öljylämmitys, mutta tuottaa neljänneksen vähemmän hiilidioksidipäästöjä kuin öljylämmitys. Maakaasu ei myöskään aiheuta juurikaan hiukkaspäästöjä eikä rikkipäästöjä. Keskitetyssä ratkaisussa maakaasua voitaisiin käyttää polttoaineena pienimuotoisessa sähkön ja lämmön yhteistuotannossa, jota on tarkasteltu omassa kappaleessa. Biokaasua voidaan käyttää maakaasun tapaan ja lisätä maakaasun sekaan, mikäli biokaasua on saatavilla. Raaka-aineena esim. maatilojen biojätteet ja lanta, jätevedenpuhdistamoiden liete, puunjalostus- ja elintarviketeollisuuden orgaaniset jätteet, lisäksi kaatopaikoilla muodostuu metaania orgaanisen jätteen hajotessa. Kaavoituksessa huomioitavaa Talokohtaiset lämmitysjärjestelmät mahdollistavat erilaiset kaavoitusratkaisut hyvin. Pellettejä käytettäessä rakennuksessa on oltava tilaa pellettien varastoinnille. Tonni pellettiä vaatii noin 1,5 kuutiometriä varastotilaa. Pientaloon sopiva varasto on usein noin 8 10 kuution kokoinen. Suurempi, mahdollisesti useamman talon yhteinen varasto, mahdollistaa tilaukset suuremmissa ja edullisemmissa erissä. Varaston pitäisi kuitenkin olla lähellä käyttökohdetta. Pellettivarastoa pitää sopia myös täyttämään isollakin jakeluautolla enintään 15 m etäisyydeltä. 3.4 Sähkölämmitys Sähkölämmitysjärjestelmissä sähkö muutetaan lämpöenergiaksi lämmityslaitteen sähkövastuksissa. Sähköllä voidaan lämmittää joko suoraan sähkövastuksilla (sähköpattereilla) tai vesikeskuslämmityksenä. Suorassa sähkölämmityksessä lämpö tuotetaan huonetilassa olevassa lämmityslaitteen sähkövastuksessa. Suoran sähkölämmityksen hankintahinta on hyvin edullinen verrattuna muihin lämmitysjärjestelmiin, mutta lämmitysenergian hinta on korkea muihin järjestelmiin verrattuna. Tästä syystä suora sähkölämmitys sopii kohteisiin, joissa lämmitystarve on normaalia pienempi. Matala- ja passiivienergiataloissa sähkölämmitys voi olla elinkaarikustannuksiltaan edullisin vaihtoehto pienen lämmönkulutuksen takia. Sähköä voidaan käyttää myös vesikeskuslämmityksen lämmönlähteenä. Lämmöntuottolaitteena on silloin joko sähkövastuksilla varustettu varaaja tai sähkökattila. Sähkövaraajan koko on tyypillisesti 1 2 m³ ja sillä tuotetaan sekä tilojen lämmitysenergia että lämpimän käyttöveden tarvitsema energia. Varaajan lämmönlähteenä voidaan käyttää myös esimerkiksi aurinkolämpöä tai puuta sähkölämmityksen rinnalla.

Kaavarunkovaiheen loppuraportti

Kaavarunkovaiheen loppuraportti S K A F T K Ä R R Energiatehokkuus kaavoituksessa Kaavarunkovaiheen loppuraportti Esipuhe Kaavoituksella voidaan vaikuttaa merkittävästi alueiden energiatehokkuuteen. Tämä on Suomen itsenäisyyden juhlarahasto

Lisätiedot

Energiatehokkuus kaavoituksessa

Energiatehokkuus kaavoituksessa Sitran selvityksiä 41 Energiatehokkuus kaavoituksessa Skaftkärr, Porvoo Kaavarunkovaiheen loppuraportti Pasi Rajala, Heikki Hirvonen, Sampo Perttula, Elisa Lähde, Perttu Pulkka, Leo Jarmala, Jouni Laukkanen,

Lisätiedot

Skaftkärr energiatehokasta kaupunkisuunnittelua Porvoossa. 12.1.2012 Jarek Kurnitski

Skaftkärr energiatehokasta kaupunkisuunnittelua Porvoossa. 12.1.2012 Jarek Kurnitski Skaftkärr energiatehokasta kaupunkisuunnittelua Porvoossa SIJAINTI 50 km SUUNNITTELUALUE ENERGIAMALLIT: KONSEPTIT Yhdyskunnan energiatehokkuuteen vaikuttaa usea eri tekijä. Mikään yksittäinen tekijä ei

Lisätiedot

Lisäselvitys Porvoon kaupungin asiassa 01677/16/4114 antamaan lausuntoon OMENATARHAN ALUE OSANA SKAFTKÄRRIN ENERGIATEHOKASTA KAUPUNGINOSAA

Lisäselvitys Porvoon kaupungin asiassa 01677/16/4114 antamaan lausuntoon OMENATARHAN ALUE OSANA SKAFTKÄRRIN ENERGIATEHOKASTA KAUPUNGINOSAA Helsingin hallinto-oikeus Lisäselvitys Porvoon kaupungin asiassa 01677/16/4114 antamaan lausuntoon OMENATARHAN ALUE OSANA SKAFTKÄRRIN ENERGIATEHOKASTA KAUPUNGINOSAA Hankkeen taustaa Porvoon kaupunki, Suomen

Lisätiedot

SKAFTKÄRR. Kokemuksia Porvoon energiakaavoituksesta. 18.3.2013 Maija-Riitta Kontio

SKAFTKÄRR. Kokemuksia Porvoon energiakaavoituksesta. 18.3.2013 Maija-Riitta Kontio SKAFTKÄRR Kokemuksia Porvoon energiakaavoituksesta 18.3.2013 Maija-Riitta Kontio Porvoon Skaftkärr Pinta-ala 400 ha Asukasmäärä (tavoite): yli 6000 Pääasiassa pientaloja ENERGIAKAAVA = TYÖTAPA Voidaanko

Lisätiedot

Uusiutuvan energian yhdistäminen kaasulämmitykseen

Uusiutuvan energian yhdistäminen kaasulämmitykseen Aurinko Maalämpö Kaasu Lämpöpumput Uusiutuvan energian yhdistäminen kaasulämmitykseen Kaasulämmityksessä voidaan hyödyntää uusiutuvaa energiaa käyttämällä biokaasua tai yhdistämällä lämmitysjärjestelmään

Lisätiedot

Öljyalan Palvelukeskus Oy Laskelma lämmityksen päästöistä. Loppuraportti 60K30031.02-Q210-001D 27.9.2010

Öljyalan Palvelukeskus Oy Laskelma lämmityksen päästöistä. Loppuraportti 60K30031.02-Q210-001D 27.9.2010 Öljyalan Palvelukeskus Oy Laskelma lämmityksen päästöistä Loppuraportti 60K30031.02-Q210-001D 27.9.2010 Tausta Tämän selvityksen laskelmilla oli tavoitteena arvioida viimeisimpiä energian kulutustietoja

Lisätiedot

Uudet energiatehokkuusmääräykset, E- luku

Uudet energiatehokkuusmääräykset, E- luku Tietoa uusiutuvasta energiasta lämmitysmuodon vaihtajille ja uudisrakentajille 31.1.2013/ Dunkel Harry, Savonia AMK Uudet energiatehokkuusmääräykset, E- luku TAUSTAA Euroopan unionin ilmasto- ja energiapolitiikan

Lisätiedot

PORVOON ENERGIA LUONNOLLINEN VALINTA. Mikko Ruotsalainen

PORVOON ENERGIA LUONNOLLINEN VALINTA. Mikko Ruotsalainen PORVOON ENERGIA LUONNOLLINEN VALINTA Skaftkärr Skaftkärr hankkeen tavoitteena on rakentaa Porvooseen uusi energiatehokas 400 hehtaarin suuruinen, vähintään 6000 asukkaan asuinalue. Skaftkärr Koko projekti

Lisätiedot

Lämpöpumput ja aurinko energianlähteinä Energiaehtoo

Lämpöpumput ja aurinko energianlähteinä Energiaehtoo Lämpöpumput ja aurinko energianlähteinä Energiaehtoo 5.10.2016 Keski-Suomen Energiatoimisto www.kesto.fi/energianeuvonta energianeuvonta@kesto.fi 1 Energianeuvonta Keski-Suomessa Energianeuvontaa tarjotaan

Lisätiedot

Matalaenergiarakentaminen

Matalaenergiarakentaminen Matalaenergiarakentaminen Jyri Nieminen 1 Sisältö Mitä on saavutettu: esimerkkejä Energian kokonaiskulutuksen minimointi teknologian keinoin Energiatehokkuus ja arkkitehtuuri Omatoimirakentaja Teollinen

Lisätiedot

Rakennusmääräykset. Mikko Roininen Uponor Suomi Oy

Rakennusmääräykset. Mikko Roininen Uponor Suomi Oy Talotekniikka ja uudet Rakennusmääräykset Mikko Roininen Uponor Suomi Oy Sisäilmastonhallinta MUKAVUUS ILMANVAIHTO ERISTÄVYYS TIIVEYS LÄMMITYS ENERGIA VIILENNYS KÄYTTÖVESI April 2009 Uponor 2 ULKOISET

Lisätiedot

24.5.2012 Gasum Petri Nikkanen 1

24.5.2012 Gasum Petri Nikkanen 1 24.5.2012 Gasum Petri Nikkanen 1 UUSIA OHJEITA, OPPAITA JA STANDARDEJA KAASULÄMMITYS JA UUSIUTUVA ENERGIA JOKO KAASULÄMPÖPUMPPU TULEE? 24.5.2012 Gasum Petri Nikkanen 2 Ajankohtaista: Ympäristöministeriö:

Lisätiedot

Ilmasto- tai energiakaava, Energiansäästötavoitteet ja kaavoitus

Ilmasto- tai energiakaava, Energiansäästötavoitteet ja kaavoitus Ilmasto- tai energiakaava, Energiansäästötavoitteet ja kaavoitus Energiatehokasta kaupunkisuunnittelua Porvoossa: Case Skaftkärr 06.05.2010 Eero Löytönen Porvoon Skaftkärr Pinta-ala 400 ha Asukasmäärä

Lisätiedot

Maalämpö sopii asunto-osakeyhtiöihinkin

Maalämpö sopii asunto-osakeyhtiöihinkin Maalämpö sopii asunto-osakeyhtiöihinkin Maalämpöä on pidetty omakotitalojen lämmitystapana. Maailma kehittyy ja paineet sen pelastamiseksi myös. Jatkuva ilmastonmuutos sekä kestävä kehitys vaativat lämmittäjiä

Lisätiedot

Esimerkkejä energiatehokkaista korjausratkaisuista

Esimerkkejä energiatehokkaista korjausratkaisuista Esimerkkejä energiatehokkaista korjausratkaisuista DI Petri Pylsy, Suomen Kiinteistöliitto Tee parannus!-aluekiertue Turku 18.01.2010 Tarjolla tänään Energiatehokkaita korjausratkaisuja: Ilmanvaihdon parantaminen

Lisätiedot

Tulevaisuuden kaukolämpöasuinalueen energiaratkaisut (TUKALEN) Loppuseminaari 16.10.2014

Tulevaisuuden kaukolämpöasuinalueen energiaratkaisut (TUKALEN) Loppuseminaari 16.10.2014 Tulevaisuuden kaukolämpöasuinalueen energiaratkaisut (TUKALEN) Loppuseminaari 16.10.2014 Elinkaariarvio pientalojen kaukolämpöratkaisuille Sirje Vares Sisältö Elinkaariarvio ja hiilijalanjälki Rakennuksen

Lisätiedot

AURINKOLÄMMÖN LIIKETOIMINTAMAHDOLLISUUDET KAUKOLÄMMÖN YHTEYDESSÄ SUOMESSA

AURINKOLÄMMÖN LIIKETOIMINTAMAHDOLLISUUDET KAUKOLÄMMÖN YHTEYDESSÄ SUOMESSA AURINKOLÄMMÖN LIIKETOIMINTAMAHDOLLISUUDET KAUKOLÄMMÖN YHTEYDESSÄ SUOMESSA KAUKOLÄMPÖPÄIVÄT 28-29.8.2013 KUOPIO PERTTU LAHTINEN AURINKOLÄMMÖN LIIKETOIMINTAMAHDOLLISUUDET SUOMESSA SELVITYS (10/2012-05/2013)

Lisätiedot

KAUKOLÄMMITYSJÄRJESTELMIEN KEVENTÄMISMAHDOLLISUUDET MATALAN ENERGIAN KULUTUKSEN ALUEILLA TUTKIMUS

KAUKOLÄMMITYSJÄRJESTELMIEN KEVENTÄMISMAHDOLLISUUDET MATALAN ENERGIAN KULUTUKSEN ALUEILLA TUTKIMUS KAUKOLÄMMITYSJÄRJESTELMIEN KEVENTÄMISMAHDOLLISUUDET MATALAN ENERGIAN KULUTUKSEN ALUEILLA TUTKIMUS ESITTELY JA ALUSTAVIA TULOKSIA 16ENN0271-W0001 Harri Muukkonen TAUSTAA Uusiutuvan energian hyödyntämiseen

Lisätiedot

Tiivis, Tehokas, Tutkittu. Projektipäällikkö

Tiivis, Tehokas, Tutkittu. Projektipäällikkö Tiivis, Tehokas, Tutkittu Timo Mantila Projektipäällikkö Tiivis, Tehokas, Tutkittu Suvilahden energiaomavarainen asuntoalue Tutkimuskohde Teirinkatu 1 A ja B Tutkimussuunnitelma Timo Mantila 15.4.2010

Lisätiedot

Lähes nollaenergiarakennus (nzeb) käsitteet, tavoitteet ja suuntaviivat kansallisella tasolla

Lähes nollaenergiarakennus (nzeb) käsitteet, tavoitteet ja suuntaviivat kansallisella tasolla Lähes nollaenergiarakennus (nzeb) käsitteet, tavoitteet ja suuntaviivat kansallisella tasolla 1 FinZEB hankkeen esittely Taustaa Tavoitteet Miten maailmalla Alustavia tuloksia Next steps 2 EPBD Rakennusten

Lisätiedot

RAKENTAMINEN JA ENERGIATEHOKKUUS

RAKENTAMINEN JA ENERGIATEHOKKUUS RAKENTAMINEN JA ENERGIATEHOKKUUS primäärienergia kokonaisenergia ostoenergia omavaraisenergia energiamuotokerroin E-luku nettoala bruttoala vertailulämpöhäviö Mikkelin tiedepäivä 7.4.2011 Mikkelin ammattikorkeakoulu

Lisätiedot

Rakennuksien lämmitysjärjestelmät Kontiolahti 9.5.2009

Rakennuksien lämmitysjärjestelmät Kontiolahti 9.5.2009 Rakennuksien lämmitysjärjestelmät Kontiolahti 9.5.2009 Simo Paukkunen Pohjois-Karjalan ammattikorkeakoulu liikelaitos Biotalouden keskus simo.paukkunen@pkamk.fi, 050 9131786 Lämmitysvalinnan lähtökohtia

Lisätiedot

Suomen lämpöpumppuyhdistys. SULPU ry.

Suomen lämpöpumppuyhdistys. SULPU ry. . Petri Koivula toiminnanjohtaja DI 1 Palkittua työtä Suomen hyväksi Ministeri Mauri Pekkarinen luovutti SULPUlle Vuoden 2009 energia teko- palkinnon SULPUlle. Palkinnon vastaanottivat SULPUn hallituksen

Lisätiedot

Suomen lämpöpumppuyhdistys. SULPU ry.

Suomen lämpöpumppuyhdistys. SULPU ry. . Petri Koivula toiminnanjohtaja DI 1 Energia Asteikot ja energia -Miten pakkasesta saa energiaa? Celsius-asteikko on valittu ihmisen mittapuun mukaan, ei lämpöenergian. Atomien liike pysähtyy vasta absoluuttisen

Lisätiedot

Uusien rakennusten energiamääräykset 2012 Valtioneuvoston tiedotustila 30.3.2011

Uusien rakennusten energiamääräykset 2012 Valtioneuvoston tiedotustila 30.3.2011 Uusien rakennusten energiamääräykset 2012 Valtioneuvoston tiedotustila 30.3.2011 Miksi uudistus? Ilmastotavoitteet Rakennuskannan pitkäaikaiset vaikutukset Taloudellisuus ja kustannustehokkuus Osa jatkumoa

Lisätiedot

FInZEB- laskentatuloksia Asuinkerrostalo ja toimistotalo

FInZEB- laskentatuloksia Asuinkerrostalo ja toimistotalo FInZEB- laskentatuloksia Asuinkerrostalo ja toimistotalo Erja Reinikainen, Granlund Oy FInZEB- työpaja 1 Laskentatarkastelujen tavoileet Tyyppirakennukset Herkkyystarkastelut eri asioiden vaikutuksesta

Lisätiedot

Maatilojen asuinrakennusten energiankulutuksen arviointi

Maatilojen asuinrakennusten energiankulutuksen arviointi Maatilojen asuinrakennusten energiankulutuksen arviointi Tässä esitetään yksinkertainen menetelmä maatilojen asuinrakennusten energiankulutuksen arviointiin. Vaikka asuinrakennuksia ei ole syytä ohittaa

Lisätiedot

Energianeuvonta apunasi lämmitysjärjestelmien muutokset, vertailu ja kustannukset

Energianeuvonta apunasi lämmitysjärjestelmien muutokset, vertailu ja kustannukset Energianeuvonta apunasi lämmitysjärjestelmien muutokset, vertailu ja kustannukset Remontoi energiatehokkaasti 26.11.2013, Sedu Aikuiskoulutuskeskus Johanna Hanhila, Thermopolis Oy Oletko vaihtamassa lämmitysjärjestelmää?

Lisätiedot

Jämsän energiatase Keski-Suomen Energiatoimisto/ Benet Oy

Jämsän energiatase Keski-Suomen Energiatoimisto/ Benet Oy Jämsän energiatase 2010 Keski-Suomen Energiatoimisto/ Benet Oy 1 Jämsän energiatase 2010 Öljy 398 GWh Turve 522 GWh Teollisuus 4200 GWh Sähkö 70 % Prosessilämpö 30 % Puupolttoaineet 1215 GWh Vesivoima

Lisätiedot

Sisällysluettelo: 1. Kiinteistön lämmitysjärjestelmän valinta. Simpeleen Lämpö Oy. Kaukolämpö lämmitysvaihtoehtona Simpeleellä.

Sisällysluettelo: 1. Kiinteistön lämmitysjärjestelmän valinta. Simpeleen Lämpö Oy. Kaukolämpö lämmitysvaihtoehtona Simpeleellä. 1 Sisällysluettelo: 1. Kiinteistön lämmitysjärjestelmän valinta... 1 2. Simpeleen lämpö Oy lämmön toimitus ja tuotanto... 2 3. Kaukolämmön hinta Simpeleellä, perusmaksu ja kulutusmaksu,... sekä vertailu

Lisätiedot

Maalämpöpumput suurissa kiinteistöissä mitoitus, soveltuvuus, toiminta Finlandia-talo 14.12.2011. Sami Seuna Motiva Oy

Maalämpöpumput suurissa kiinteistöissä mitoitus, soveltuvuus, toiminta Finlandia-talo 14.12.2011. Sami Seuna Motiva Oy Maalämpöpumput suurissa kiinteistöissä mitoitus, soveltuvuus, toiminta Finlandia-talo 14.12.2011 Sami Seuna Motiva Oy Lämpöpumpun toimintaperiaate Höyry puristetaan kompressorilla korkeampaan paineeseen

Lisätiedot

Mikä ihmeen E-luku? Energianeuvoja Heikki Rantula. ENEMMÄN ENERGIASTA I Kuluttajien energianeuvonta I eneuvonta.fi

Mikä ihmeen E-luku? Energianeuvoja Heikki Rantula. ENEMMÄN ENERGIASTA I Kuluttajien energianeuvonta I eneuvonta.fi Mikä ihmeen E-luku? Energianeuvoja Heikki Rantula ENEMMÄN ENERGIASTA I Kuluttajien energianeuvonta I eneuvonta.fi Kymenlaakson energianeuvonta 2012- Energianeuvoja Heikki Rantula 020 615 7449 heikki.rantula@kouvola.fi

Lisätiedot

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskettu kokonaisenergiankulutus ja ostoenergiankulutus Lämmitetty nettoala 564 m² Lämmitysjärjestelmän kuvaus Vesikiertoiset radiaattorit 60/0 C Ilmanvaihtojärjestelmän

Lisätiedot

ALUEELLISTEN ENERGIARATKAISUJEN KONSEPTIT. Pöyry Management Consulting Oy 29.3.2012 Perttu Lahtinen

ALUEELLISTEN ENERGIARATKAISUJEN KONSEPTIT. Pöyry Management Consulting Oy 29.3.2012 Perttu Lahtinen ALUEELLISTEN ENERGIARATKAISUJEN KONSEPTIT Pöyry Management Consulting Oy Perttu Lahtinen PÖYRYN VIISI TOIMIALUETTA» Kaupunkisuunnittelu» Projekti- ja kiinteistökehitys» Rakennuttaminen» Rakennussuunnittelu»

Lisätiedot

Lämpöilta taloyhtiöille. Tarmo. 30.9. 2013 Wivi Lönn Sali. Lämmitysjärjestelmien ja energiaremonttien taloustarkastelut

Lämpöilta taloyhtiöille. Tarmo. 30.9. 2013 Wivi Lönn Sali. Lämmitysjärjestelmien ja energiaremonttien taloustarkastelut Lämpöilta taloyhtiöille Tarmo 30.9. 2013 Wivi Lönn Sali Lämmitysjärjestelmien ja energiaremonttien taloustarkastelut Juhani Heljo Tampereen teknillinen yliopisto Talon koon (energiankulutuksen määrän)

Lisätiedot

ENERGIATEHOKKUUS 25.03.2009 ATT 1

ENERGIATEHOKKUUS 25.03.2009 ATT 1 ENERGIATEHOKKUUS Rakennusten energiatehokkuuden parantamisen taustalla on Kioton ilmastosopimus sekä Suomen energia ja ilmastostrategia, jonka tavoitteena on kasvihuonekaasupäästöjen vähentäminen. EU:n

Lisätiedot

Rakennuskannan energiatehokkuuden kehittyminen

Rakennuskannan energiatehokkuuden kehittyminen ASIANTUNTIJASEMINAARI: ENERGIATEHOKKUUS JA ENERGIAN SÄÄSTÖ PITKÄN AIKAVÄLIN ILMASTO- JA ENERGIASTRATEGIAN POLITIIKKASKENAARIOSSA Rakennuskannan energiatehokkuuden kehittyminen 19.12.27 Juhani Heljo Tampereen

Lisätiedot

Äänekosken energiatase Keski-Suomen Energiatoimisto/ Benet Oy

Äänekosken energiatase Keski-Suomen Energiatoimisto/ Benet Oy Äänekosken energiatase 2010 Keski-Suomen Energiatoimisto/ Benet Oy 1 Äänekosken energiatase 2010 Öljy 530 GWh Turve 145 GWh Teollisuus 4040 GWh Sähkö 20 % Prosessilämpö 80 % 2 Mustalipeä 2500 GWh Kiinteät

Lisätiedot

YLEISTIETOA LÄMPÖPUMPUISTA

YLEISTIETOA LÄMPÖPUMPUISTA YLEISTIETOA LÄMPÖPUMPUISTA Eksergia.fi Olennainen tieto energiatehokkaasta rakentamisesta Päivitetty 12.1.2015 SISÄLTÖ Yleistä lämpöpumpuista Lämpöpumppujen toimintaperiaate Lämpökerroin ja vuosilämpökerroin

Lisätiedot

Lämmityskustannusten SÄÄSTÖOPAS. asuntoyhtiöille

Lämmityskustannusten SÄÄSTÖOPAS. asuntoyhtiöille Lämmityskustannusten SÄÄSTÖOPAS asuntoyhtiöille Lämpöä sisään, lämpöä ulos Lämmön lähteet Lämpöhäviö 10-15% Aurinkoa 3-7% Asuminen 3-6% Lattiat 15-20% Seinät 25-35% Ilmanvaihto 15-20% Talotekniikka LÄMPÖÄ

Lisätiedot

Energian tuotanto ja käyttö

Energian tuotanto ja käyttö Energian tuotanto ja käyttö Mitä on energia? lämpöä sähköä liikenteen polttoaineita Mistä energiaa tuotetaan? Suomessa tärkeimpiä energian lähteitä ovat puupolttoaineet, öljy, kivihiili ja ydinvoima Kaukolämpöä

Lisätiedot

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskettu kokonaisenergiankulutus ja ostoenergiankulutus Lämmitetty nettoala.7 m² Lämmitysjärjestelmän kuvaus vesikiertoinen patterilämmitys, kaukolämpö Ilmanvaihtojärjestelmän

Lisätiedot

Uusiutuvan (lähi)energian säädösympäristö

Uusiutuvan (lähi)energian säädösympäristö Uusiutuvan (lähi)energian säädösympäristö Erja Werdi, hallitussihteeri Ympäristöministeriö/RYMO/Elinympäristö Alueelliset energiaratkaisut -klinikan tulosseminaari, Design Factory 29.3.2012 Uusiutuvan

Lisätiedot

Miten valitsen kohteeseeni sopivan lämpöpumpun Seminaari Sami Seuna, Motiva Oy. 25/10/2017 Näkökulmia lämpöpumpun elinkaarilaskentaan 1

Miten valitsen kohteeseeni sopivan lämpöpumpun Seminaari Sami Seuna, Motiva Oy. 25/10/2017 Näkökulmia lämpöpumpun elinkaarilaskentaan 1 Miten valitsen kohteeseeni sopivan lämpöpumpun Seminaari 25.10.2017 Sami Seuna, Motiva Oy 25/10/2017 Näkökulmia lämpöpumpun elinkaarilaskentaan 1 Maalämpö- ja ilma-vesilämpöpumpuille soveltuvat kohteet

Lisätiedot

Skaftkärr. Energiatehokkuus mahdollisuutena kaavoitusstrategiat uusiksi. Kaupunginjohtaja Jukka-Pekka Ujula Porvoo

Skaftkärr. Energiatehokkuus mahdollisuutena kaavoitusstrategiat uusiksi. Kaupunginjohtaja Jukka-Pekka Ujula Porvoo Skaftkärr Energiatehokkuus mahdollisuutena kaavoitusstrategiat uusiksi Kaupunginjohtaja Jukka-Pekka Ujula Porvoo Kehityshankkeen rakenne Hankkeen kesto 2008-2012 Alueen rakentuminen 2011-2020 Rahoittajat

Lisätiedot

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskettu kokonaisenergiankulutus ja ostoenergiankulutus Lämmitetty nettoala 89. m² Lämmitysjärjestelmän kuvaus Maalämpöpumppu NIBE F454 / Maalämpöpumppu NIBE

Lisätiedot

Yhteenveto kaukolämmön ja maalämmön lämmitysjärjestelmävertailusta ONE1 Oy 6.5.2015

Yhteenveto kaukolämmön ja maalämmön lämmitysjärjestelmävertailusta ONE1 Oy 6.5.2015 Yhteenveto kaukolämmön ja maalämmön lämmitysjärjestelmävertailusta ONE1 Oy 6.5.215 Sisällys 1. Johdanto... 1 2. Tyyppirakennukset... 1 3. Laskenta... 2 4.1 Uusi pientalo... 3 4.2 Vanha pientalo... 4 4.3

Lisätiedot

Nupurinkartano Kalliolämpöratkaisu. Pasi Heikkonen Asuntorakentaminen

Nupurinkartano Kalliolämpöratkaisu. Pasi Heikkonen Asuntorakentaminen Nupurinkartano Kalliolämpöratkaisu Pasi Heikkonen Asuntorakentaminen 1 Nupurinkartano Noin 600 asukkaan pientaloalue Espoossa, Nupurinjärven itäpuolella. Noin 8 km Espoonkeskuksesta pohjoiseen. Alueelle

Lisätiedot

Alue-energiamalli. Ratkaisuja alueiden energiasuunnitteluun

Alue-energiamalli. Ratkaisuja alueiden energiasuunnitteluun Alue-energiamalli Ratkaisuja alueiden energiasuunnitteluun Lähes puolet Uudenmaan kasvihuonepäästöistä aiheutuu rakennuksista Uudenmaan liitto 3 4 5 Energiaverkot keskitetty Hajautettu tuotanto hajautettu

Lisätiedot

Ilmankos Energiailta. Timo Routakangas 12.10.2010

Ilmankos Energiailta. Timo Routakangas 12.10.2010 Ilmankos Energiailta Timo Routakangas 12.10.2010 C 2 H 5 OH Esittely Timo Routakangas Yrittäjä Energiamarket Tampere Oy Energiamarket Turku Oy Energiamarket Tyrvää Oy RM Lämpöasennus Oy 044 555 0077 timo.routakangas@st1energiamarket.fi

Lisätiedot

Scanvarm SCS-sarjan lämpöpumppumallisto ratkaisu pieniin ja suuriin kiinteistöihin

Scanvarm SCS-sarjan lämpöpumppumallisto ratkaisu pieniin ja suuriin kiinteistöihin Scanvarm SCS-sarjan lämpöpumppumallisto ratkaisu pieniin ja suuriin kiinteistöihin 05/2013 SCS10-15 SCS21-31 SCS40-120 SCS10-31 Scanvarm SCS-mallisto on joustava ratkaisu erityyppisiin maaenergiajärjestelmiin.

Lisätiedot

Jyväskylän energiatase 2014

Jyväskylän energiatase 2014 Jyväskylän energiatase 2014 Jyväskylän kaupunginvaltuusto 30.5.2016 Keski-Suomen Energiatoimisto www.kesto.fi www.facebook.com/energiatoimisto 1.6.2016 Jyväskylän energiatase 2014 Öljy 27 % Teollisuus

Lisätiedot

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskettu kokonaisenergiankulutus ja ostoenergiankulutus Lämmitetty nettoala 958. m² Lämmitysjärjestelmän kuvaus Kaukolämpö.Vesikiertoiset lämmityspatterit. Ilmanvaihtojärjestelmän

Lisätiedot

Kiinteistöjen lämmitystapamuutosselvitykset

Kiinteistöjen lämmitystapamuutosselvitykset Kiinteistöjen lämmitystapamuutosselvitykset -yhteenveto Etelä-Kymenlaakson Uusiutuvan energian kuntakatselmus - projekti 12/2014 Koonneet: Hannu Sarvelainen Erja Tuliniemi Johdanto Selvitystyöt lämmitystapamuutoksista

Lisätiedot

Elenia Lämpö Kaukolämmön kilpailukykytarkastelun tulokset Yhteenveto

Elenia Lämpö Kaukolämmön kilpailukykytarkastelun tulokset Yhteenveto Elenia Lämpö Kaukolämmön kilpailukykytarkastelun tulokset Yhteenveto 30.5.2018 www.elenia.fi/lampoluotsi Kaukolämmön kilpailukykytarkastelu Tarkastelun laati puolueeton energiaratkaisujen asiantuntijayritys

Lisätiedot

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskettu kokonaisenergiankulutus ja ostoenergiankulutus Lämmitetty nettoala 690 m² Lämmitysjärjestelmän kuvaus Öljykattila/vesiradiaattori Ilmanvaihtojärjestelmän

Lisätiedot

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskettu kokonaisenergiankulutus ja ostoenergiankulutus Lämmitetty nettoala 58 m² Lämmitysjärjestelmän kuvaus Vesiradiaattorit (eristetyt jakojohdot) Ilmanvaihtojärjestelmän

Lisätiedot

Iltapäivän teeman rajaus

Iltapäivän teeman rajaus 28.8.2019 klo 12-16 Iltapäivän teemat Iltapäivän teeman rajaus Vähähiilinen lämmitys Energiatehokkuus Energiatehokkuuden parannukset (ehdotukset) Energiatehokkuudeltaan heikoimmat rakennukset Korjatut

Lisätiedot

Keski-Suomen energiatase 2016

Keski-Suomen energiatase 2016 Keski-Suomen energiatase 216 Keski-Suomen Energiatoimisto www.kesto.fi www.facebook.com/energiatoimisto Sisältö Keski-Suomen energiatase 216 Energialähteet ja energiankäyttö Uusiutuva energia Sähkönkulutus

Lisätiedot

Aurinkoenergia Suomessa

Aurinkoenergia Suomessa Aurinkoenergia Suomessa Aurinkolämmitys on ennen kaikkea vesilämmitys Aurinkoenergia Suomessa Suomessa saadaan auringonsäteilyä yleisesti luultua enemmän. Kesällä säteilyä Suomessa saadaan pitkistä päivistä

Lisätiedot

Vesikiertoinen lattialämmitys / maalämpöpumppu Koneellinen tulo- ja poistoilmanvaihto, lämmöntalteenotto. Laskettu ostoenergia. kwhe/(m² vuosi) Sähkö

Vesikiertoinen lattialämmitys / maalämpöpumppu Koneellinen tulo- ja poistoilmanvaihto, lämmöntalteenotto. Laskettu ostoenergia. kwhe/(m² vuosi) Sähkö YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskettu kokonaisenergiankulutus ja ostoenergiankulutus Lämmitetty nettoala, m² 8.0 Lämmitysjärjestelmän kuvaus Ilmanvaihtojärjestelmän kuvaus Vesikiertoinen

Lisätiedot

Pienimuotoisen energiantuotannon edistämistyöryhmän tulokset

Pienimuotoisen energiantuotannon edistämistyöryhmän tulokset Pienimuotoisen energiantuotannon edistämistyöryhmän tulokset Aimo Aalto, TEM 19.1.2015 Hajautetun energiantuotannon työpaja Vaasa Taustaa Pienimuotoinen sähköntuotanto yleistyy Suomessa Hallitus edistää

Lisätiedot

Uuraisten energiatase Keski-Suomen Energiatoimisto/ Benet Oy

Uuraisten energiatase Keski-Suomen Energiatoimisto/ Benet Oy Uuraisten energiatase 2010 Keski-Suomen Energiatoimisto/ Benet Oy 1 Uuraisten energiatase 2010 Öljy 53 GWh Puu 21 GWh Teollisuus 4 GWh Sähkö 52 % Prosessilämpö 48 % Rakennusten lämmitys 45 GWh Kaukolämpö

Lisätiedot

Esimerkkejä energiatehokkaista korjausratkaisuista

Esimerkkejä energiatehokkaista korjausratkaisuista Esimerkkejä energiatehokkaista korjausratkaisuista DI Petri Pylsy, Suomen Kiinteistöliitto Tee parannus!-aluekiertue Järvenpää 24.11.2009 Tarjolla tänään Energiatehokkaita korjausratkaisuja: Ulkorakenteiden

Lisätiedot

Lämmityskustannus vuodessa

Lämmityskustannus vuodessa Tutkimusvertailu maalämmön ja ilma/vesilämpöpumpun säästöistä Lämmityskustannukset keskiverto omakotitalossa Lämpöässä maalämpöpumppu säästää yli vuodessa verrattuna sähkö tai öljylämmitykseen keskiverto

Lisätiedot

Jyväskylän energiatase 2014

Jyväskylän energiatase 2014 Jyväskylän energiatase 2014 Keski-Suomen Energiapäivä 17.2.2016 Keski-Suomen Energiatoimisto www.kesto.fi www.facebook.com/energiatoimisto 18.2.2016 Jyväskylän energiatase 2014 Öljy 27 % Teollisuus 9 %

Lisätiedot

ristötoiminnan toiminnan neuvottelupäiv

ristötoiminnan toiminnan neuvottelupäiv Seurakuntien ympärist ristötoiminnan toiminnan neuvottelupäiv ivä - SÄÄSTÄ ENERGIAA - Pentti Kuurola, LVI-ins. LVI-Insinööritoimisto Mäkelä Oy Oulu Kuntoarviot Energiatodistukset Energiakatselmukset Hankesuunnittelu

Lisätiedot

Lämpöpumpputekniikkaa Tallinna 18.2. 2010

Lämpöpumpputekniikkaa Tallinna 18.2. 2010 Lämpöpumpputekniikkaa Tallinna 18.2. 2010 Ari Aula Chiller Oy Lämpöpumpun rakenne ja toimintaperiaate Komponentit Hyötysuhde Kytkentöjä Lämpöpumppujärjestelmän suunnittelu Integroidut lämpöpumppujärjestelmät

Lisätiedot

Plusenergiaklinikka Tulosseminaari 16.1.2014. Pellervo Matilainen, Skanska

Plusenergiaklinikka Tulosseminaari 16.1.2014. Pellervo Matilainen, Skanska Plusenergiaklinikka Tulosseminaari 16.1.2014 Pellervo Matilainen, Skanska Alueiden energiatehokkuus Kruunuvuori, Helsinki Finnoo, Espoo Kivistö, Vantaa Härmälänranta, Tampere Energiatehokkuus Energiantuotanto

Lisätiedot

Varaavan tulisijan liittäminen rakennuksen energiajärjestelmään

Varaavan tulisijan liittäminen rakennuksen energiajärjestelmään Varaavan tulisijan liittäminen rakennuksen energiajärjestelmään DI, TkT Sisältö Puulla lämmittäminen Suomessa Tulisijatyypit Tulisijan ja rakennuksessa Lämmön talteenottopiiput Veden lämmittäminen varaavalla

Lisätiedot

Energia. Energiatehokkuus. Megawatti vai Negawatti: Amory Lovins Rocky Mountain- instituutti, ympäristöystävällisyyden asiantuntija

Energia. Energiatehokkuus. Megawatti vai Negawatti: Amory Lovins Rocky Mountain- instituutti, ympäristöystävällisyyden asiantuntija Energia Energiatehokkuus Megawatti vai Negawatti: Amory Lovins Rocky Mountain- instituutti, ympäristöystävällisyyden asiantuntija Sähkön säästäminen keskimäärin kahdeksan kertaa edullisempaa kuin sen tuottaminen

Lisätiedot

KAUKOLÄMPÖ ON YMPÄRISTÖYSTÄVÄLLISTÄ ENERGIAA ENERGIAA JÄTTEESTÄ YHTEISTYÖ LUO VAKAUTTA

KAUKOLÄMPÖ ON YMPÄRISTÖYSTÄVÄLLISTÄ ENERGIAA ENERGIAA JÄTTEESTÄ YHTEISTYÖ LUO VAKAUTTA YMPÄRISTÖRAPORTTI 2014 KAUKOLÄMPÖ ON YMPÄRISTÖYSTÄVÄLLISTÄ ENERGIAA Kaukolämpö on ekologinen ja energiatehokas lämmitysmuoto. Se täyttää nykyajan kiristyneet rakennusmääräykset, joten kaukolämpötaloon

Lisätiedot

FinZEB- loppuraportti; Lähes nollaenergiarakentaminen Suomessa

FinZEB- loppuraportti; Lähes nollaenergiarakentaminen Suomessa FinZEB- loppuraportti; Lähes nollaenergiarakentaminen Suomessa Mikko Löf / Kontiotuote Asiakaspalvelu-/suunnittelupäällikkö HTT :n teknisen ryhmän puheenjohtaja FinZEB -hanke Lähes nollaenergiarakentamisen

Lisätiedot

Uusiutuvan energian kuntakatselmus Joroinen

Uusiutuvan energian kuntakatselmus Joroinen Uusiutuvan energian kuntakatselmus Joroinen Yhteenveto LCA Consulting Oy Energiankäytön nykytila - lämmitystapajakauma Joroisten alueella olevien kiinteistöjen lämmitystapajakauma käytetyn polttoaine-energian

Lisätiedot

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskettu kokonaisenergiankulutus ja ostoenergiankulutus Lämmitetty nettoala 58 m² Lämmitysjärjestelmän kuvaus Kaukolämö ja vesikiertoinen lattialämmitys. Ilmanvaihtojärjestelmän

Lisätiedot

HYVÄ SUUNNITTELU PAREMPI LOPPUTULOS SUUNNITTELUN MERKITYS ENERGIAREMONTEISSA

HYVÄ SUUNNITTELU PAREMPI LOPPUTULOS SUUNNITTELUN MERKITYS ENERGIAREMONTEISSA HYVÄ SUUNNITTELU PAREMPI LOPPUTULOS SUUNNITTELUN MERKITYS ENERGIAREMONTEISSA AJOISSA LIIKKEELLE Selvitykset tarpeista ja vaihtoehdoista ajoissa ennen päätöksiä Ei kalliita kiirekorjauksia tai vahinkojen

Lisätiedot

ÖLJYSTÄ VAPAAKSI BIOENERGIA ÖLJYLÄMMITYKSEN VAIHTOEHTONA 14.4.2011 1

ÖLJYSTÄ VAPAAKSI BIOENERGIA ÖLJYLÄMMITYKSEN VAIHTOEHTONA 14.4.2011 1 ÖLJYSTÄ VAPAAKSI BIOENERGIA ÖLJYLÄMMITYKSEN VAIHTOEHTONA 14.4.2011 1 ENERGIAN KÄYTTÖ KESKI-SUOMESSA Tyypillisen asuinkiinteistön energiankäyttö 100 vrk ei tarvita lämmitystä lämpimän käyttöveden lisäksi

Lisätiedot

Yhteenveto laskennasta. Lähiretu Loppukokous

Yhteenveto laskennasta. Lähiretu Loppukokous 1 Yhteenveto laskennasta Lähiretu Loppukokous 20.6.2017 Säästö 2 Kuvaaja I. Säästö yhteisen maalämpöjärjestelmän elinkaarikustannuksissa verrattuna erillisiin järjestelmiin eri tarkastelujaksoilla. 80%

Lisätiedot

Esimerkkejä energiatehokkaista korjausratkaisuista

Esimerkkejä energiatehokkaista korjausratkaisuista Esimerkkejä energiatehokkaista korjausratkaisuista DI Petri Pylsy, Suomen Kiinteistöliitto Tee parannus!-aluekiertue Tarjolla tänään Ilmanvaihdon parantaminen Lämpöpumppuratkaisuja Märkätilojen vesikiertoinen

Lisätiedot

Laukaan energiatase Keski-Suomen Energiatoimisto/ Benet Oy

Laukaan energiatase Keski-Suomen Energiatoimisto/ Benet Oy Laukaan energiatase 2010 Keski-Suomen Energiatoimisto/ Benet Oy 1 Laukaan energiatase 2010 Öljy 354 GWh Puu 81 GWh Teollisuus 76 GWh Sähkö 55 % Prosessilämpö 45 % Rakennusten lämmitys 245 GWh Kaukolämpö

Lisätiedot

Aurinkolämpö Kerros- ja rivitaloihin 15.2.2012. Anssi Laine Tuotepäällikkö Riihimäen Metallikaluste Oy

Aurinkolämpö Kerros- ja rivitaloihin 15.2.2012. Anssi Laine Tuotepäällikkö Riihimäen Metallikaluste Oy Aurinkolämpö Kerros- ja rivitaloihin 15.2.2012 Anssi Laine Tuotepäällikkö Riihimäen Metallikaluste Oy Riihimäen Metallikaluste Oy Perustettu 1988 Suomalainen omistus 35 Henkilöä Liikevaihto 5,7M v.2011/10kk

Lisätiedot

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskennallinen ostoenergiankulutus ja energiatehokkuuden vertailuluku (E-luku) Lämmitetty nettoala 8,8 m² Lämmitysjärjestelmän kuvaus Poistoilmalämpöpumppu,

Lisätiedot

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskettu kokonaisenergiankulutus ja ostoenergiankulutus Lämmitetty nettoala 8 m² Lämmitysjärjestelmän kuvaus Vesikiertoinen radiaattorilämmitys, kaukolämpö /

Lisätiedot

Hiilineutraalin energiatulevaisuuden haasteet

Hiilineutraalin energiatulevaisuuden haasteet Hiilineutraalin energiatulevaisuuden haasteet Jukka Leskelä Energiateollisuus ry Energiateollisuuden ympäristötutkimusseminaari 1 Energia on Suomelle hyvinvointitekijä Suuri energiankulutus Energiaintensiivinen

Lisätiedot

LUONNOS ENERGIATODISTUS. kwh E /(m 2 vuosi) energiatehokkuuden vertailuluku eli E-luku

LUONNOS ENERGIATODISTUS. kwh E /(m 2 vuosi) energiatehokkuuden vertailuluku eli E-luku LUONNOS 6.9.07 ENERGIATODISTUS Rakennuksen nimi ja osoite: Rakennustunnus: Rakennuksen valmistumisvuosi: Rakennuksen käyttötarkoitusluokka: Todistustunnus: Energiatehokkuusluokka A B C D E F G Rakennuksen

Lisätiedot

Vuores Koukkujärvi Energiavaihtoehtojen tarkastelu. Jyri Nieminen Ismo Heimonen VTT

Vuores Koukkujärvi Energiavaihtoehtojen tarkastelu. Jyri Nieminen Ismo Heimonen VTT Vuores Koukkujärvi Energiavaihtoehtojen tarkastelu Jyri Nieminen Ismo Heimonen VTT Sisältö Tausta ja lähtötiedot Tavoiteltavat tasot; matalaenergiatalojen ja passiivitalojen määrittelyt Mahdolliset järjestelmävariaatiot

Lisätiedot

Uusiutuva energia ja hajautettu energiantuotanto

Uusiutuva energia ja hajautettu energiantuotanto Uusiutuva energia ja hajautettu energiantuotanto Seminaari 6.5.2014 Veli-Pekka Reskola Maa- ja metsätalousministeriö 1 Esityksen sisältö Uudet ja uusvanhat energiamuodot: lyhyt katsaus aurinkolämpö ja

Lisätiedot

T-MALLISTO. ratkaisu T 0

T-MALLISTO. ratkaisu T 0 T-MALLISTO ratkaisu T 0 120 Maalämpö säästää rahaa ja luontoa! Sähkölämmitykseen verrattuna maksat vain joka neljännestä vuodesta. Lämmittämisen energiatarve Ilmanvaihdon 15 % jälkilämmitys Lämpimän käyttöveden

Lisätiedot

Uusiutuvan energian käyttömahdollisuudet Liikuntakeskus Pajulahdessa

Uusiutuvan energian käyttömahdollisuudet Liikuntakeskus Pajulahdessa Uusiutuvan energian käyttömahdollisuudet Liikuntakeskus Pajulahdessa Antti Takala 4.6.2014 Esityksen sisältö Tutkimuksen aihe Työn tavoitteet Vesistölämpö Aurinkosähköjärjestelmät Johtopäätökset Työssä

Lisätiedot

Kotien energia. Kotien energia Vesivarastot Norja

Kotien energia. Kotien energia Vesivarastot Norja Esitelmä : Pekka Agge Toimitusjohtaja Aura Energia Oy Tel 02-2350 915 / Mob041 504 7711 Aura Energia Oy Perustettu 2008 toiminta alkanut 2011 alussa. Nyt laajentunut energiakonsultoinnista energiajärjestelmien

Lisätiedot

Maija-Stina Tamminen / WWF ENERGIA HALTUUN! WWF:n opetusmateriaali yläkouluille ja lukioille

Maija-Stina Tamminen / WWF ENERGIA HALTUUN! WWF:n opetusmateriaali yläkouluille ja lukioille Maija-Stina Tamminen / WWF ENERGIA HALTUUN! WWF:n opetusmateriaali yläkouluille ja lukioille MITÄ ENERGIA ON? WWF-Canon / Sindre Kinnerød Energia on kyky tehdä työtä. Energia on jotakin mikä säilyy, vaikka

Lisätiedot

Hankesuunnitelman liite 11. Sipoonlahden koulu. Energiantuotantoratkaisut Page 1

Hankesuunnitelman liite 11. Sipoonlahden koulu. Energiantuotantoratkaisut Page 1 Hankesuunnitelman liite 11 Sipoonlahden koulu Energiantuotantoratkaisut 27.9.2016 Page 1 Energiatuki Kunnalle TEM:n ja ELY-keskuksen energiatuet ovat ainoat tällaisiin pienehköihin hankkeisiin. Puhelinkeskustelu

Lisätiedot

Aurinkolämpöjärjestelmät

Aurinkolämpöjärjestelmät Energiaekspertti koulutusilta Aurinkolämpöjärjestelmät 17.11.2015 Jarno Kuokkanen Sundial Finland Oy Energiaekspertti koulutusilta Aurinkolämpöjärjestelmät 1. Aurinkolämpö Suomessa 2. Aurinkolämmön rooli

Lisätiedot

Mahdollistaa nzeb rakentamisen

Mahdollistaa nzeb rakentamisen Mikä ala kyseessä? Kansalaiset sijoittivat 400M /vuosi Sijoitetun pääoman tuotto > 10 % Kauppatase + 100-200 M /vuosi Valtion tuki alalle 2012 < 50 M Valtiolle pelkkä alv-tuotto lähes 100 M /vuosi Uusiutuvaa

Lisätiedot

ATY AURINKOSEMINAARI 2014 2.10.2014. Katsaus OKT- ja rivi-/kerrostalo ratkaisuista suomen tasolla. Jarno Kuokkanen Sundial Finland Oy

ATY AURINKOSEMINAARI 2014 2.10.2014. Katsaus OKT- ja rivi-/kerrostalo ratkaisuista suomen tasolla. Jarno Kuokkanen Sundial Finland Oy ATY AURINKOSEMINAARI 2014 2.10.2014 Katsaus OKT- ja rivi-/kerrostalo ratkaisuista suomen tasolla Jarno Kuokkanen Sundial Finland Oy Aurinkoenergian potentiaali Aurinkoenergia on: Ilmaista Rajoittamattomasti

Lisätiedot

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskennallinen ostoenergiankulutus ja energiatehokkuuden vertailuluku (E-luku) Lämmitetty nettoala 7,9 m² Lämmitysjärjestelmän kuvaus Poistoilmalämpöpumppu,

Lisätiedot