Flow and Electric Conductivity Measurements During long-term Pumping of Borehole Ol-KR6

Samankaltaiset tiedostot
Flow and electric conductivity measurements during long-term pumping of borehole KR6 at the Olkiluoto site in Eurajoki

Flow and Electrical Conductivity Measurements During Long-Term Pumping of Drillhole OL-KR6 at Olkiluoto, Results from June 2010 Measurements

Flow Measurements in ONKALO at Olkiluoto

Capacity Utilization

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward.

Results on the new polydrug use questions in the Finnish TDI data

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

LYTH-CONS CONSISTENCY TRANSMITTER

National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007

Virtausmittaukset Suhangon alueella Ranualla, Kairanreiät SN-41, SUH-204, SUH-262, SUH-348, SUH-389 ja SUH- 587

Efficiency change over time

Metsälamminkankaan tuulivoimapuiston osayleiskaava

anna minun kertoa let me tell you

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG

Gap-filling methods for CH 4 data

( ( OX2 Perkkiö. Rakennuskanta. Varjostus. 9 x N131 x HH145

WindPRO version joulu 2012 Printed/Page :42 / 1. SHADOW - Main Result

Tynnyrivaara, OX2 Tuulivoimahanke. ( Layout 9 x N131 x HH145. Rakennukset Asuinrakennus Lomarakennus 9 x N131 x HH145 Varjostus 1 h/a 8 h/a 20 h/a

16. Allocation Models

MEETING PEOPLE COMMUNICATIVE QUESTIONS

( ,5 1 1,5 2 km

Exercise 1. (session: )

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG

WindPRO version joulu 2012 Printed/Page :47 / 1. SHADOW - Main Result

TM ETRS-TM35FIN-ETRS89 WTG

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

Characterization of clay using x-ray and neutron scattering at the University of Helsinki and ILL

TM ETRS-TM35FIN-ETRS89 WTG

Information on preparing Presentation

Network to Get Work. Tehtäviä opiskelijoille Assignments for students.

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine Centre for Language and Communication Studies

Information on Finnish Language Courses Spring Semester 2017 Jenni Laine

,0 Yes ,0 120, ,8

C++11 seminaari, kevät Johannes Koskinen

Other approaches to restrict multipliers

Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu

The CCR Model and Production Correspondence

7.4 Variability management

NEN PAINOVOIMAMITTAUS N:o OU 10/7b

Hydraulically Conductive fractures and Their Properties in Boreholes KR4 and KR7-KR10 at Olkiluoto Site

Choose Finland-Helsinki Valitse Finland-Helsinki

Bounds on non-surjective cellular automata

Ajettavat luokat: SM: S1 (25 aika-ajon nopeinta)

TM ETRS-TM35FIN-ETRS89 WTG

TEST REPORT Nro VTT-S Air tightness and strength tests for Furanflex exhaust air ducts

ECVETin soveltuvuus suomalaisiin tutkinnon perusteisiin. Case:Yrittäjyyskurssi matkailualan opiskelijoille englantilaisen opettajan toteuttamana

Slug-Tests in PP- and PVP-Holes at Olkiluoto in 2010

1. Liikkuvat määreet

TM ETRS-TM35FIN-ETRS89 WTG

ReFuel 70 % Emission Reduction Using Renewable High Cetane Number Paraffinic Diesel Fuel. Kalle Lehto, Aalto-yliopisto 5.5.

Rakennukset Varjostus "real case" h/a 0,5 1,5

Curriculum. Gym card

Salasanan vaihto uuteen / How to change password

Use of spatial data in the new production environment and in a data warehouse

Latauspotentiaalimittaukset Olkiluodossa keväällä 2003

The Viking Battle - Part Version: Finnish

ELEMET- MOCASTRO. Effect of grain size on A 3 temperatures in C-Mn and low alloyed steels - Gleeble tests and predictions. Period

KMTK lentoestetyöpaja - Osa 2


3 9-VUOTIAIDEN LASTEN SUORIUTUMINEN BOSTONIN NIMENTÄTESTISTÄ

Slug-Tests in PP- and PVP-Holes at Olkiluoto in 2006

Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition)

FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL

KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ

Miksi Suomi on Suomi (Finnish Edition)

You can check above like this: Start->Control Panel->Programs->find if Microsoft Lync or Microsoft Lync Attendeed is listed

Keskittämisrenkaat. Meiltä löytyy ratkaisu jokaiseen putkikokoon, 25 mm ja siitä ylöspäin.

( N117 x HH141 ( Honkajoki N117 x 9 x HH120 tv-alueet ( ( ( ( ( ( ( ( ( ( m. Honkajoki & Kankaanpää tuulivoimahankkeet

Rotarypiiri 1420 Piiriapurahoista myönnettävät stipendit

FIS IMATRAN KYLPYLÄHIIHDOT Team captains meeting

Slug-Tests in PP- and PVP-Holes at Olkiluoto in 2004

1/4. Resetointi ja vianmääritys ntr

make and make and make ThinkMath 2017

Information on Finnish Courses Autumn Semester 2017 Jenni Laine & Päivi Paukku Centre for Language and Communication Studies

Alternative DEA Models

GOOD WORK LONGER CAREER:

Working Report Heikki Hämäläinen. Geopros Oy. October Working Reports contain information on work in progress or pending completion.

MIKES, Julkaisu J3/2000 MASS COMPARISON M3. Comparison of 1 kg and 10 kg weights between MIKES and three FINAS accredited calibration laboratories

MUSEOT KULTTUURIPALVELUINA

EUROOPAN PARLAMENTTI

Group 2 - Dentego PTH Korvake. Peer Testing Report

S Sähkön jakelu ja markkinat S Electricity Distribution and Markets

I. Principles of Pointer Year Analysis

Raskan Sanomat. N:o 2, perjantaina 5. lokakuuta 2018 KARAN TALON ASIAKASLEHTI

RANTALA SARI: Sairaanhoitajan eettisten ohjeiden tunnettavuus ja niiden käyttö hoitotyön tukena sisätautien vuodeosastolla

Kalliopinnan varmistukset seismisillä linjoilla ja suunnitellun kuilun alueella syksyllä 2002

OP1. PreDP StudyPlan

Basic Flute Technique

4 MITTAUSTEN SUORITUS. 4.1 Mittausohjelma ja aikataulu

Introduction to Mathematical Economics, ORMS1030

LUONNOS RT EN AGREEMENT ON BUILDING WORKS 1 THE PARTIES. May (10)

4x4cup Rastikuvien tulkinta

Transkriptio:

Working Report 24 Flow and Electric Conductivity Measurements During longterm Pumping of Borehole OlKR6 Results from Time Period October 2october 23.Janne Pekkanen Jari Pollanen Pekka Rouhiainen April 24 POSVA OY FN276 OLKLUOTO, FNLAND Tel. +35828372 3 Fax +35828372 379

KONSUL TTYRTYS: PRGTecOy Soukanniitty 5 A 236 ESPOO TLAAJA: Posiva Oy 276 OLKLUOTO TlLAUSNUMERO: 975//HH TLAAJAN YHTEYSHENKLO: D Heikki Hinkkan n Posiva Oy KONSULTN YHTEYSHENKLO: TKT Pekka Rouhiainen PRGTee Oy Working Report 24 KRJOTTAJAT: FLOW AND ELECTRC CONDUCTVTY MEASUREMENTS DURNG LONGTERM PUMPNG OF BOREHOLE OLKR6, RESULTS FROM TME PEROD OCTOBER 2 OCTOBER 23 Janne Pekkanen ins. (AMK)_ \ ari Po Hinen VcCr Pekka Rouhiainen TKT

Working Report 24 flow and flectric Conductivity Measurements Ouring longterm Pumping of Borehole OlKRB Results from Time Period October 2ctober 23 Janne Pekkanen ari Pollanen Pekka Rouhiainen April 24

Working Report 24 flow and flectric Conductivity Measurements During longterm Pumping of Borehole OlKRB Results from Time Period October 2october 23 Janne Pekkanen Jari Pollanen Pekka Rouhiainen PRGTec Oy April 24 Base maps: National Land Survey, permission 4 /MYY/4 Working Reports contain information on work in progress or pending completion. The conclusions and viewpoints presented in the report are those of author(s) and do not necessarily coincide with those of Posiva.

Flow and electric conductivity measurements during longterm pumping ofborehole OLKR6, results from time period October 2 October 23 ABSTRACT Posiva Flow Log/Difference Flow Logging can be used for relatively fast determination of hydraulic conductivity and hydraulic head in fractures or fractured zones in cored boreholes. n this study Posiva Flow Log was used for measurements of flow and electric conductivity of water during longterm pumpmg. This report presents the principles of the method as well as the results of the measurements carried out in borehole KR6 at Olkiluoto between October 2 and October 23. The aim of the measurements presented in this report was to detect possible changes in electric conductivity of fracturespecific water during the longterm pumping period. Flow rates from fractures were also measured. The measurements in borehole KR6 were carried out at the depth intervals 24 64 m, 98 2 m and 396 424 m using the detailed flow logging mode; the flow rate into a.5 m long test section was measured using. m point intervals. The occurrence of saline water in the borehole was studied by electric conductivity measurements. The flow guide encloses also an electrode for measuring of single point resistance. t was measured with. m point intervals during the detailed flow logging. Keywords: Groundwater, flow, measurement, bedrock, borehole, electric conductivity, Posiva Flow Log, Difference Flow Logging

Virtaus ja sahkonjohtavuusmittaus pitkaaikaispumppauksen aikana kairanreiassa OLKR6, tulokset ajanjaksolta lokakuu 2 lokakuu 23 TVSTELMA Posiva Flow LogNirtauseromittausmenetelmaa voidaan kayttaa suhteellisen nopeaan vedenjohtavuuksien ja hydraulisen korkeuden maarittamiseen raoissa tai rakovyohykkeissa kairanrei' issa. Tassa tutkimuksessa menetelmaa on kaytetty virtauksien ja sahkonjohtavuuksien pitkaaikaisseurantaan pumppauksen aikana. Raportti esittaa menetelman periaatteen ja tulokset mittauksista, jotka tehtiin vuoden 2 lokakuun ja vuoden 23 lokakuun valisena aikana kairanreiassa KR6. Raportissa esitettyjen mittausten tarkoituksena oli havaita muutoksia veden sahkonjohtavuudessa ja virtauksissa tietyissa raoissa reian KR6 pitkaaikaisen pumppauksen aikana. Kairanreiasta KR6 mitattiin syvyysvalit 24 64 m, 98 2 m ja 396 424 m kayttaen niin kutsuttua rakohakumenetelmaa. Virtaus kalliosta reikaan mitattiin kayttaen.5 m mittausvalia. m valein. Veden sahkonjohtavuutta (EC) mitattiin valittujen rakojen kohdalla. Raot valittiin aiempien mittausten mukaisesti, seka raosta reikaan mitatun virtauksen perusteella. Raportti sisaltaa mittausten menetelmakuvaukset ja mittaustulokset. A vainsanat: Pohjavesi, virtaus, mittaus, peruskallio, kairanreika, sahkonjohtavuus, Posiva Flow Log.

TABLE OF CONTENTS ABSTRACT TVSTELMA Contents NTRODUCTON 2 PRNCPLES OF OPERATON 3 EQUPMENT SPECFCATONS 4 FELD WORK AND RESULTS 4. Borehole EC 4.2 Detailed flow logging 4.3 Fracture specific EC 5 CONCLUSONS REFERENCES 3 5 7 9 3 5 APPENDCES Appendix Appendices 2. 2.3 Appendices 3. 3.5 Appendices 4. 4.3 Appendices 5. 5.5 Appendices 6. 6.6 Appendices 7. 7.4 Appendices 8. 8.4 Appendices 9. 9.6 Appendices..5 Appendices..5 Appendices 2. 2.3 Appendix 3 Borehole OLKR6, EC of borehole water Borehole OLKR6, Repeated flow measurements at some depths Borehole OLKR6, Flow rates during detailed flow logging Borehole OLKR6, EC of borehole water and fractures Borehole OLKR6, EC Time series, first set Borehole OLKR6, EC Time series, second set Borehole OLKR6, EC Time series, third set Borehole OLKR6, EC Time series, fourth set Borehole OLKR6, EC Time series, fifth set Borehole OLKR6, EC Time series, sixth set Borehole OLKR6, EC Time series, seventh set Fracture specific electric conductivity and flows Fracture specific electric conductivities of water (table) 7 8 2 26 29 34 4 44 48 54 59 64 67

2

3 NTRODUCTON The measurements were carried out in borehole KR6 at Olkiluoto between October 2 and October 23. The aim of the measurements presented in this report was to detect changes in electric conductivity and flow rates during longterm pumping period. Pumping test was started on March 22, 2. Measurements were also started in March 2. Measurements before October 2 have been already reported earlier (PolHinen and Rouhiainen 22). This report presents the results that were obtained between October 2 and October 23. Borehole KR6 was selected for the test, because it was measured earlier several times using detailed flow logging method. For the first time it was measured in 999 (Rouhiainen 999), when the length of the borehole was about 3 m. Borehole KR6 was then extended to the depth of about 6 m by core drilling in the year 2. After the extension, the borehole was measured once again (Pollanen and Rouhiainen 2). There were some differences in flow rates at respective depths between the measurements in the year before and after the extension drilling. The measurements in borehole KR6 were carried out at depth intervals 24 64 m, 98 2 m and 396 424 m using the detailed flow logging mode; the flow rate into a.5 m long test section was measured using. m point intervals. The locations of the boreholes at the Olkiluoto site are shown in Figure. The equipment can be used in boreholes with a diameter of 56 mm or larger and with a depth less than 5 m. The equipment consists of a trailermounted winch and a cable, a downhole probe and a PC computer.

4 5275 me 526 me "' \ Figure. Locations ofboreholes at the Olkiluoto site.

5 2 PRNCPLES OF OPERATON The Posiva Flow Log consists of the Transverse flowmeter and the Difference flowmeter. Only the Difference flowmeter is discussed in this report. Ordinary borehole flowmeters measure the accumulated flow along the borehole. However, the incremental changes of flow along the borehole are generally very small and can easily be missed unless they are measured directly. The name "Difference flowmeter" comes from the fact that this flowmeter directly measures differences of flow rates. These differences of flow are seepages from the bedrock into the borehole or flows from the borehole into the bedrock. With the flow guide the Difference flowmeter, the flow into or out from the borehole in the test section is the only flow that passes through the flow sensor. Flow along the borehole outside the test section is directed so that it does not come into contact with the flow sensor. A set of rubber disks is used at both ends of the equipment to isolate the test section from the borehole and to guide the flow to be measured, see Figure 2. The Difference flowmeter can be used in two modes, in normal and detailed flow logging modes. The normal mode is used for determination of hydraulic conductivity and head (Ohberg and Rouhiainen 2). The detailed mode is mostly used to determine the exact location of hydraulically conductive fractures and to classify them by flow rates. n the normal mode, the flow rate is measured by thermal pulse and thermal dilution method. n the detailed mode, only thermal dilution method is used. The thermal pulse and thermal dilution methods have to be calibrated to known flow rates. The EC electrode was calibrated to known concentrations ofnacl. The single point resistance measurement (grounding resistance) is another parameter that is possible to measure with the flowmeter tool. The electrode of the single point resistance tool is located within the upper rubber disks, see Figure 2. This sensitive method is used for high resolution depth determination of fractures and geological structures.

6 (J) "' L... u (J) (J) L... Vl + c (J) u w Vl (J) "' L... + u (J) (J) '+= (J) + "' c (J)..c a L... :J Q. Vl (J) (J) {)) (J) L...... ;..c L... (J) _QVl..o :J. "' (J) + {)) c u....c u c Figure 2. Schematic description of the downhole equipment used in difference flowmeter in normal mode.

7 3 EQUPMENT SPECFCATONS Type of instrument: Logging computer: Winch: Borehole diameters: Geometry of measurement: Method of flow measurement: Speed of measurement: Range of flow rate: Accuracy of flow rate: Temperature: Single point resistance: Electric conductivity of water: Difference flowmeter PC, Windows 2/XP Mount Sopris Wna,.55 kw, 22 V/5 Hz. 56 mm, 66 mm and 76 mm A variable length of test section can be used Thermal pulse and thermal dilution methods Depends on the rate of flows to be measured. 5 ml/min, both directions when both thermal pulse and thermal dilution methods are used 5 ml/min when only thermal dilution method is used + % of the current result. 4 C, accuracy+/. oc Ohm Four point graphite electrode,.2 S/m, accuracy +/ 5 % of the current result

8

9 4 FELD WORK AND RESULTS The field work was done in a few periods in borehole KR6 between October 2 and October 23. The activity schedule is presented in Table 4. Technical information on borehole KR6 is presented in Table 42. Table 4. Measurements in borehole KR6. Activity schedule. Borehole Date Activity Appendices KR6 3..2 EC in the borehole with pumping. KR6 3. Detailed flow logging and EC from 2. 2.3, 3. 3.5, 4. 2..2 selected fractures. 4.3, 5. 5.5, 2. 2.3 KR6 9.2.22 EC in the borehole with pumping. KR6 92.2.22 Detailed flow logging and EC from 2. 2.3, 3. 3.5, 4. selected fractures. 4.3, 6. 6.6, 2. 2.3 KR6 35.6.22 Detailed flow logging and EC from 2. 2.3, 3. 3.5, 4. selected fractures. 4.3, 7. 7.4, 2. 2.3 KR6 5.6.22 EC in the borehole with pumping. KR6 28 29.8.22 Detailed flow logging and EC from 2. 2.3, 3. 3.5, 4. selected fractures. 4.3, 8. 8.4, 2. 2.3 KR6 29.8.22 EC in the borehole with pumping. KR6 2 3.2.22 Detailed flow logging and EC from 2. 2.3, 3. 3.5, 4. selected fractures. 4.3, 9. 9.6, 2. 2.3 KR6 3.2.22 EC in the borehole with pumping. KR6.4.23 EC in the borehole with pumping. 2. 2.3, 3. 3.5, 4. Detailed flow logging and EC from KR6 4.4.23 4.3,..5, 2. selected fractures. 2.3 KR6 4..23 EC in the borehole with pumping. 2. 2.3, 3. 3.5, 4. Detailed flow logging and EC from KR6 5 6..23 4.3,..5, 2. selected fractures. 2.3 Table 42. Technical information on borehole KR6. Borehole Z Ztop of nclination Diameter Depth Casing ground castng (degrees) (mm) (m) (m) level (m) (m) KR6 2.28 2.69 5. 76 6.77 5.25 Pumping in the borehole was started 22.3.2. Pumping rate is presented in Figure 4. Water level in the borehole before pumping was.63 m above the sea level. Water level during pumping is also presented in Figure 4. Water level has not been constant all the time. t has varied between 3.7 4.7 meter below

sea level. Corresponding drawdown has been changed between 5.3 6.3 m and pumping rate between 7.5 24 /min, respectively. There has been some problems with pumping a few times. Pumping stopped due to power failure or problems with pump and this caused rises in water level, see Figure 4. 4 Cl) t:s! S 2 _+r_+ +r + + + r r r + +_+ j 2 r f E 4! j; li, t A L H j j f/..;; rn :: ::.a._ " +++H+++,_++ 6 27! r! r,_ r!. loo..._ +! A ['!'liil.._.... + 2 tvjjjjjjjtlli = r = =._._ =* : :: ri =.s 8! r F_ s 5 +++4++++4++++ ) r r r.s 2 +f_+,_+r_rr++++r= J,_+++++j! +!++!+t4, ++ +L+.d:4++++ Pull ping r<te 9! r r! r r 6 ++++r++++rr++++4! r r!! t 3 ++++,_4+++,_+++! r! r r o +++r+++++rr++++4 Figure 4. Pumping rate and water level in borehole KR6. 4. Borehole EC Electric conductivity of borehole water has always been measured both downwards and upwards, see Appendix. Borehole EC measurements have been repeated seven times during the pumping period. Measurements have been carried out without the lower rubber disks. This measuring geometry is then much more representative to borehole water since the flow guide in its normal configuration (with both upper and lower rubber disks) may carry water with the tool making the results less representative, especially if the section length is long. Temperature of borehole water has always been measured during the EC measurements. The EC values are temperature corrected to 25 C to make them more comparable with other EC measurements (Heikkonen et al. 2).

4.2 Detailed flow logging The detailed flow logging was performed with a.5 m section length and with. m depth increments. The method gives the depth and the thickness of the conductive zones with a depth resolution of. m. To make measurements more quickly, only the thermal dilution method is used for flow determination. The test section length determines the width of a flow anomaly of a single fracture. f the distance between flowing fractures is less than the section length, the anomalies will be overlapped resulting in a stepwise flow anomaly. Measurements were carried out seven times during two years in the depth intervals 3862 m, 98 2 m and 396424 m, see Appendices 2. 2.3. The aim of this measurement was to find out whether there is longterm variation in flow rate. Any remarkable trends of change could not be found. The depths of fractures with water flow are marked with lines in the appendices of the detailed flow logs. Long line represents the depth of a leaky fracture, short line denotes that the existence of a leaky fracture is uncertain. 4.3 Fracturespecific EC Electric conductivity of fracturespecific water was measured during the detailed flow logging. The results of these measurements are presented in Appendices 4. 4.3. "Noise" in the results is caused by the flow guide carrying water with it along the borehole since both upper and lower rubber disks were used, compare with Appendix. This geometry is not good for measurement of borehole water but it is well adapted to measurement of fracturespecific water. For measurement of fracture specific EC, the flow guide is stopped on a target fracture, which can be found on the basis of the measured flow rate. Flow rate determines also measuring time on a given fracture. Measuring time is usually chosen long enough so that the water volume within the section is flushed at least three times. Electric conductivity of fracturespecific water was measured seven times from selected fractures between the depths 38 62 m, 98 2 m and 396 424 m. The last point in these measurements is the most representative result of fracture specific water, marked with crosses in Appendices 4. 4.3. EC transients as a function of time at these depths are presented in Appendices 5..5. Last points of fracture specific EC during the pumping period and measured flows are also presented in Appendices 2. 2.3. The longterm pumping has not caused any clear trends in the fracture specific EC. However, there is an anomaly in fracturespecific EC between the depths 28

2 m and m in December 22, see appendices 2. 2.3. The reason is not known yet. Fracture specific EC was "normal" below m in the same test in December 22.

3 5 CONCLUSONS n this study groundwater flow and fracturespecific EC was measured during longterm pumping in KR6. EC and temperature of borehole water was also measured during loggings. n addition to this, single point resistance was measured during the flow loggings. Electric conductivity measurements were carried out during the thermal dilution method with.5 m section length. EC was measured from the borehole water and fracturespecific water. An aim of the measurements was to detect possible changes in electric conductivity of fracture specific water and also changes in flow rates during the longterm pumping period. There were small changes in measured flow rates at some depths. However any remarkable longterm variation were not found. Measured fracturespecific EC values were relatively constant during the pumping period. However, trends in EC were detected at some depths.

4

5 REFERENCES Heikkonen, J., Heikkinen, E and Mantynen, M. 2. Mathematical modelling of temperature adjustment algorithm for groundwater electrical conductivity on basis of synthetic water sample analysis (in Finnish). Helsinki, Posiva Oy. Working report 22. Pollanen, J. and Rouhiainen, P. 2. Difference flow and electric conductivity measurements at the Olkiluoto site in Eurajoki, Boreholes KR6, KR7 and KR2. Helsinki, Finland: Posiva Oy. Working Report 2 5. Pollanen, J. and Rouhiainen, P. 22. Flow and electric conductivity measurements during longterm pumping ofborehole KR6 at the Olkiluoto site in Eurajoki. Helsinki, Finland: Posiva Oy. Working Report 243. Rouhiainen, P. 999. Electric conductivity and detailed flow logging at the Olkiluoto site in Eurajoki, Boreholes KRlKRll. Helsinki, Finland: Posiva Oy. Working Report 9972. Ohberg, A. and Rouhiainen, P. 2. Posiva groundwater flow measuring techniques. Helsinki, Finland: Posiva Oy. POSV A 22.

6

' 7 Appendix Electric conductivity of borehole water Olkiluoto, borehole KR6 '\7 Measured downwards L. Measured upwards " With pumping. 23 With pumping. 2223 6. With pumping. 23 With pumping. 2223 With pumping. 2229 With pumping. 234 " " 6. With pumping. 2229 6. With pumping. 234 " With pumping. 2265 V With pumping. 23 4 6. With pumping. 2265 6. With pumping. 23 4 " With pumping. 22829 6. With pumping. 22829 5 5................ _...... : : '.!.! : : : : : ;....... o o.......,....... E'....c. +J a. Q) 2 25 3 35 4 45 5 55 ' ' '......,.,,,.,. '... '.. o,,,., _... _._... : : :!,,, T,,,, "'i,, T............. ' : : : : :,...,'..._,_.. '..... :_ _.:.,,,., ' ' ',,T.....,_.. : : : : : 7 ' ' ' '. ' '',..,,..... ' '..............,,,_... _.,.,..._,_.._ : : : : : :. : : : : : ' ',.,...ot ' ' _....... : : : : : &::. : : :..: _.._ :,,,;,,,7 ' ' l!j.. : : '.!!..._ :. _.._ : ' '.,,;,. ' ; ',, '. 6.. Electric conductivity (S/m, 25 C)

8 Appendix 2. r Repeated flow measurements at some depths Olkiluoto, borehole KR6. _..,....,.... _,_ ;. ±,.... 42.7m 45.2m :_ L??... < : ttttt++++++ > S>GJ :: Jl48H/ : << 47.2m T _L L_ 2 m ro E Q) > Q) ' Q) 2... 3 4 5 A.. l r ft,...,. '\ V tl V'...J" 'J l.i,.... "J ftjw 6

9 Appendix 2.2. Repeated flow measurements at some depths Olkiluoto, borehole KR6 r..... r,....,_ =: i 7 :G=2 : 59m =l:=::::=ttt==::li:tt:r===j :} >... T> :?i:f : : >< L,..... /v f=..!.l :> = ====== ==================== ====== ==== ======= = ====== ============= 99.8m 52.6m 55.2m 57 m 49.m 56.5m r+++++ ; trstj;?::?. <: / 54.4m 2... (/) m E Q) > Q).. Q)... 2 4 6 3 5 \, "(V A l r 'V " L i r " '4 ''lot

2 Appendix 2.3 Repeated flow measurements at some depths Olkiluoto, borehole KR6,,...,..,...,,_ +++++++ ++:!i : E :i _. s_;:r. ::. : : _ : :: k ':"":............. :E....J,....._...,.:..i! oooo ++4 rf +++++++++ 28.8m F l ;;:!!!! : :::::, + 423.6m.... +"' tt'" _+ + + + + + + + + + + + _ ;;...;;...o.oj 6.3m 7< ; << > <: < < " 2 en m s Q) > Q) L... 2 2 4 6 3 5 \ '{V A.. l r j n tt l 'J V" 'fl t '"#"' '' "'

2 Appendix 3. Flow rate, with pumping section.5 m, step. m 23 22. 2229 2222. 2263 2265. 22828 22829. 2222 2223. 234 2344. 235236. g.s::. 24 26 28 3 32 a. 34 Q) 36 38 4 42 44 [ < H r _ J J ll, rl _ J J _ < H H = = == = ====;,,, n r r T J _ J J Ll l i ; i i === == =J= =JC =====c=l=l=l=l}l l l_ j JL [ ) < < H r ",,,,, r, J J J l L L _ l J, n J [ <J N _\ ill, J [! l_[j! LJ _ J _l _lj Ll [_l_l_l_ljl nnl :m H i'f!z : i:iu lili u mm : C"t i rh++++rli ihh r H w:::t " < ( + < + " < l l_j JL l j_l_l_l_ljl j_j Lll_l! j l_ll!lj _ J l:_'j, L jl i H + i + t _; +iiiii.i==;;ii!:! + H ======J==J ===c=====} _===}=J ==,_. _,,,,lll "'> L J J..J ll.l. l.... J L _J_ J ' l L l J_ l J J LJ _., n,,,, r r r,, r r r r n, r T r r = ===== j = = j lt ===== i _ J,,, i i,,, i i i,,_, _, _,,,,, _,_,_ + _, _,_, +f+ rua,,_., li,, fl, f T fll : :: = = = = (= :: :=: : : ll = = == = = = = = >r = r = = : = = = = ; = = : ll lj', r,, r L J J ll j j; t i tl === == J=_J [ = = ulll ' J _l_l J ll r,, r === == === = ][ +, r,, r _ J J ll _ J J [ ; li H r,, r ; r J _ LUJ J llllij t t i j t t t ''! ===J = ==[}}CJ J JL [ _] _ J _ J J Ll l J ; t r t = =====J = =}C l 'l fl il;tt + === == =J = = JC === = =c=l=l= l = l}l L J. J J Ll l.... 4 4 rl r J J L! < l < H r <,, n, r,,,,h _ j _ j J Ll l 4; r ; === == =}==}C === ==c= l = l _ l _ l!l...j r r T l l_j JL L jl H fl ' J J J j Ll, _,_ 4 4 rl l l_ j _l _ljl_l _ L _ l _l _ l_l _l J = = = '= = =' ='=' =' r ) < H, n r r,,, l l_j JU l ] l l_j _l _l jl_l i<h r H,,, r n r r,,!, 24. 24.8 26.8 28.4 29.4 3.4 3.6 32.8 33.6 33.9 35.6 36.4 37.8 38.9 4.7 4.2 42.7 43.6 E+OOO E+ E+2 E+3 E+4 E+5 E+6 Flow rate (ml/h)

22 Appendix 3.2 Flow rate, with pumping section.5 m, step. m 23 22. 22292222. 2263 2265. 22828 22829. 22222223. 234 2344. 235236. :[..c:. Q) 44 46 48 5 52 54 56 58 _ J J Ll r r _ J J ll tlirl }=Y J J Ll tlrl lfl L J J ll i i rl l,_ == =="" ====!LJ : :: : = = = := :=: = = = = == = = = = r = = = = _ r = = = t J,// = = = C = r = = =2 C = T _pk_cl, r r _ J J ll l _ l _l_l_l_lj J l LU J l LJ i i tl t li t i t t = = = = = = J ==} === === == = : i,r r = =}== = } Ll. J L..:::: ' _7 '(_ 'LCLil l ljjcij, llrl rr rrnr,rttrn _ J J! J L ll Lll : : : : ; = = : : : : : ; : _ J J Ll J L ll L J l\ ' f ll T..J ) 'J.J " f l T f _ J! Ll _ L! H ==== ==: =:: = = =c = ==== 2 _ J _ J J Ll L _ l l t t r t r n[ =====c== J _ J J ll L J l l t, llfl r.l J J J J L L _ L _l_l_l_l J 4 4 r r r r llfl lil / =_= ==rl_l i =_== = ====2 l l_l_l_l_ljl t ; r t r = = == == = = = = == = c = == =. L J j J cl L c J L r r nll! f H,llfl = = = = = = l = J l Ll = = = L = L = ===Jl i r r t JJJl LH _ J _l_lj ll l J l LU l J LJ i H YH ">i llfllf flifll = _ = = = = = = c = ===.L J J J Ll L L J = = : :lj: : =: := = i: == ==ll t H : = = = :: 2 ::' ::' 2 = : : : : : ==2 r J _ J J Ll L J J l" l l)ol,_rt j l l LJlliJ l JJ C J r ' (,rrrn,lrr rllrr l l_j JL l t_l_l_l_l!l l j < rr r r _ J J J Ll L 44.9 46.4 47.2 48. 48.8 5.4 5. 52. 52.6 54.4 55.2 55.8 56.5 57. 58. 59. 6. 6. 45.2 45.6 49. 49.5 6 62 64 : : := =_ J J ljl =: = = = ==} c J J J Ll r y = = = = = L = === L rr r r nll _ J J Ll l l_j _l_ljl_l L _ J i tl ll fl t it H t ltl r r nr 62.8 63.2 E+OOO E+ E+2 E+3 E+4 E+5 E+6 Flow rate (mllh)

23 Appendix 3.3 Flow rate, with pumping section.5 m, step. m 2322. 2229 2222. 2263 2265. 22828 22829. 2222 2223. 234 2344. 235 236. 98 2 4 6 g 8..c a. Q) 2 : : : : J : l : :: i : : r ll r r r = = == :c J :,:,J Ll = = :L = L :,:,_,:,J L =! = j :,:, :,t = = j = :,: l j l L,J l fl "., JL = = == == J = = J J J Ll = = == == J = = J H = = === = J = = J r ===== ( J == J [ fl = = = = = c J == J [ lfl = = == = ( J == J [ i J _J J Ll L _ L J r = = == = = = ==! r _ L J J Ll L _ L... J r n T = = = = = J Q = = == = L ====JL J J Ll L J n r r J J Ll L H ==== == J ==}C r TT H = = == = = === l L = = == == J = =} Cl = = = == c = ===! = = == == J = = J [ = = == = [ = === H H ===(= = J ))} [ = = == = [ ==((} H H l l_j_l_ljl_l L jl i ; t f j l l_j JL L jl ==== == ==' ===== =l= l = l = lt _ J _ J J Ll L _ L ] = = ='= = _ '= J =': J J J Ll = = ='= L = _ L =l= _l_l_l_lll l = l =lt r r = = = = = = J J Ll ===== L ==== J l r r.jjl L J ::= := =J :} }C fyt j _J j Ll === = = L === j l J.JJL L ll === = ==] n!c =: : : :C:=(=} H L J =: := == J = = J [ = = = ( = [ ==::! H f J lll i H l l_j_l_ljl_l f lltl :::::c:::: i i H : = = = = = === t l l_j JL L jl i i t t i _ J _l _lj L _ L ] l l_j JL L jl r r ' J.JJJ Ll l _,_,_l_lll,,,,,, n, r,,n ll 99.8 4. _ L J _\J J ll L L _\_LU ll 4 6 8 l n r n J J Ll L J n r J.JJL L J = = == == := = } Cl = = = = = c = ==:! fl f J ::= == =]= =}C ====:C:: : :! ===(= = J ==} [t = = =( = [ ====} H J i i i l l_j ]L L jl i ; i fl f l l_j_l_ljll t _ J JJJ Ll l ] 6.3 8.4 2 ll l ll! l l TTTTTT l l T fllt : : : : :: : : :' 2 = : : : : :: : : r T E+OOO E+ E+2 E+3 E+4 E+5 E+6 Flow rate (ml/h)

24 Appendix 3.4 Flow rate, with pumping section.5 m, step. m 23 22. 2229 2222. 2263 2265. 22828 22829. 2222 2223. 2342344. 235 236. 2 J 4 < fl r r _ J j [ < 4 < H T l llrl _ j _ j J Ll i " " i i 22 = = = = = = l = =} [ rl _J jl_l < H r r _ J J J J L L _l_l_l _l l 24 ll < f. [ j j <l<f.l f. r r r _ J J Ll _ J _ J J Ll l _l_l_l_lj Jirl iiill llil 26 = = == == ] = : J j j ll fl [ ll<fl === :: = = = c ===:=c: : = =.l.jl 26.2 llfl _ J _l _l J ll 27.4..c 28 3 a. (]) 32 llirl ::=== : ] :=J J.. _. J.. J uj ii;==r= :::=:c==== <.. r r n r J [ l l_j JL L _j l _ J _ j J Ll i "" "" l l _l _l_ l_ljl === :: =}= =}[! J. l. ;ttih l i, L l L L L Lll J _.. l l LJ.. J.J J Ll. L... l 28.8 29.8 3.4 3.6 34, rl lr l rttfl rl r tl l j_j [L_] _[jj[j l l_j_l_lj[l l [ _l _l_l _ljl + 4.j. l..f T,r r rnr r r l r r r T _ J _lj J L L r =: =: =( J =: } [ ===== [ = === Jl..JJL L r r rn r, r rn 36 l _ J _ L L L Lll J.. l J l l J L jl 36. r r r r r n l J l [_! J L l l L J _ J _l _lj [ '".j. l 38 r, r rnr, r r, l lrt _ l _ J llul J l J llij _ J _ J J Ll = = l == [ [ : = = : = : ::!! J = = : : = : l : = [ L..ll l.j J..l. r r rn r r r,, n! J L L _! J L J j!j J _ J j Ll 4 E+OOO E+ E+2 E+3 E+4 E+5 E+6 Flow rate (ml/h)

25 Appendix 3.5 Flow rate, with pumping section.5 m, step. m 23 22. 2229 2222. 2263 2265. 22828 22829. 2222 2223. 2342344. 235236. 396 398 4 42 44 46 48 :[ 4..c: a. Q) 42 44 46 48 42 = = = = = = = = = = = = = = :: :_: fl : llf a : :.:.:.] ]L [_.:_H C::TJ [ ::C:... L J J Ll... l.... J..l J 4 4. 4 4. 4 4' H iiit : : :: :: ::t ::t : : :: :: : ::t tl.j : : : : : :::: > : : : : : :::: > "" " o rl : : :: :: J : J} [ : : : : : [ :::: : : :: : ( ] : J ] ( : : : C : [ :: Till :::: :c J :)] ( ::: c: [ :::: :::: :C J JJ] [ :: :C: [ :::: J..l..lJ. l..lll J..lH. l ll..l 4. > = = ='= :t:: :; :: :':: :':': ' :'! : : :: :: ::t ::f tl : : : : : t ::::! ::::::J:::t!C :::::t::::! :: : : :: J J J} [ ::::: [ ::: : :::::CJJJH :::C:C:::: :::: :C] )j] [ :: :C: [ :::: ::::: [ ::::}( :::::c:=== i H H iih t li l : : :: :: : ::t J : : : : : ::::! ::::::J::t::t!C :::::t::::! :: :: :: J J J J [ ::::: [ ::::! Tll rl " " r """" = = = = = = = = = = = = = r = = = :: :: :C] :)] [ ::: (: [ :::: l :::::CJjj][ :::c:c):cj] :: :: ::] : J] Ll ::::: L ::::i.. J.... J L.... J H :H: nh: H: H::::i lit t lil : : :: :: J : J J tj : : : : : ::::! :: :: :: J J J J [ ::: :: [ :::: :::::: J :J] [ ::::: [ ::: :: :: :: J :)] ( ::: (: [ :::: 397.2 48.2 4. 422 424 426 ::: C: L :::: J..lJ. : : : : C H. ' 4' H : : : : : :: ' 4' H lit tlil :: :: :: J ::t ::f! : : :: : t ::::! " rl r """" ::::::J.J][ :: :::[ :='![ ::::::J:='J[ :::::CT:J :::: :C J :J] [ :: :C: [ :::: :::::CJJ)][ :::C:CJ:C:J 423.6 E+OOO E+ E+2 E+3 E+4 E+5 E+6 Flow rate (mvh)

26 Appendix 4. Electrical conductivity of borehole water During detailed flow logging Measured with.5 m depth increments in the borehole, 2322 Q Last in time series, fracture specific water, 23 22 Measured with.5 m depth increments in the borehole, 2229 2222 Last in time series, fracture specific water, 22292222 Measured with.5 m depth increments in the borehole, 2263 2265 [> Last in time series, fracture specific water, 2263 2265 Measured with.5 m depth increments in the borehole, 2282822829 <] Last in time series, fracture specific water, 22828 22829 Measured with.5 m depth increments in the borehole, 22222223 6. Last in time series, fracture specific water, 2222 2223 Measured with.5 m depth increments in the borehole, 2342344 \ Last in time series, fracture specific water, 234 2344 Measured with.5 m depth increments in the borehole, 235 236 {? Last in time series, fracture specific water, 235 236 24 26 28 3 32 34 36 38 4 E 42....c. 44 a. (]) Cl 46 48 5 52 54 56 58 6 62 64... ::: (re=;;;:::;:=;::;:::..... ' ' ' Trr;T,T,. '.. ;. ;. ;. ; 7 : 7.... : :.:.. _!..!,._.!_... ; ;. :!,,!_ '... o o. ' '.!.!.!..!.!..!.........,... _... _ '................. t o!...!.....!.!.!.. _,.. _.,._ o o.. o o o o ;;;....., ;;;;,;;!. '.!.. ' ' ' '.... Electrical conductivity (S/m, 25 C)......

o o 27 Appendix 4.2 Electrical conductivity of borehole water During detailed flow logging Measured with.5 m depth increments in the borehole, 23 22 Last in time series, fracture specific water, 23 22 Measured with.5 m depth increments in the borehole, 22292222 Last in time series, fracture specific water, 2229 2222 Measured with.5 m depth increments in the borehole, 22632265 t> Last in time series, fracture specific water, 2263 2265 Measured with.5 m depth increments in the borehole, 22828 22829 <l Last in time series, fracture specific water, 22828 22829 Measured with.5 m depth increments in the borehole, 2222 2223 6 Last in time series, fracture specific water, 2222 2223... Measured with.5 m depth increments in the borehole, 2342344 V Last in time series, fracture specific water, 234 2344 Measured with.5 m depth increments in the borehole, 235 236 c:? Last in time series, fracture specific water, 235 236... E.r:.... a. Q) 98 2 4 6 8 2 4 6 8 2 22 24 26 28 3 32 34 36 38 4 ' '... ;;;;_;_.. _....... ' '. ;.;.7c7:7;........ :: : :::....,.,.,., 7:7;.. '... ' ' '.'.'.' ;; "73:: 7:.. ; : : : :... : : : : :.. '! : : : : : : ::. '..... '. 777c7:;.;. ;.;.;.;.!! '. '....... ' ' ''... _.,_...' : ; _:!....... :.. ' :,.._,!.. _ : : : : '.......... ' ;.77;. 7:7;._:i..: t t:. '.. ' ' ' ' :.......... 7; ; ;. ; : ;_;_ ]: :i:: :. '. : : :... : ' '.. : :::, ; ":t:::: : :! f f : ; ;... :r :... :;. : : : :.... ' ' ' '.. : : :..... : : : : ' ' : ; l o o : ;.. ' ; : : '. o : ;..,',.,,',.',_,_. i ; i i i i i i.. ; '... : : : :.... k. '.. '......... '. t :.! :...! i i i i Electrical conductivity (S/m, 25 C).

28 Appendix 4.3 Electrical conductivity of borehole water During detailed flow logging Measured with.5 m depth increments in the borehole, 23 22 Last in time series, fracture specific water, 23 22 Measured with.5 m depth increments in the borehole, 2229 2222 Last in time series, fracture specific water, 22292222 Measured with.5 m depth increments in the borehole, 2263 2265 > Last in time series, fracture specific water, 2263 2265 Measured with.5 m depth increments in the borehole, 22828 22829 <l Last in time series, fracture specific water, 22828 22829 Measured with.5 m depth increments in the borehole, 2222 2223.6. Last in time series, fracture specific water, 2222 2223 Measured with.5 m depth increments in the borehole, 2342344 \ Last in time series, fracture specific water, 234 2344 Measured with.5 m depth increments in the borehole, 235236 Last in time series, fracture specific water, 235236 396 398 4 42 44 46..._ 48 _.. E.s::::.... 4 a. (J) 42 44 46 48 42 422 424 " '. :.... "" :: _...:....... "' "; ll _;; "'. ' _,_ }*...... "' ""... : "' t*. : :.. ' ' ;... : :..._ :: : : : :... ; ; _ ; ; ::_: _; l ' 4 ' ' ' ' ' :..... :... ' ' ;; :A <ill.... :... : :... ; ; :..,..... :...!: ; ; :.,.. ' ' :.... :.. 4 ' ;. ;; :......... ; ;....,... 4 '. '.... "' ;; :...... :... :....... _ ;; _:_... :..... : '. ; _...... :.,... '... * '*...... :...,.. ' ; ; * ; ; i i i. Electrical conductivity (S/m, 25 C).

29 Appendix 5. Time series of electric conductivity 23 22.3 j _ L _j L l. L, r j L t 44;8;8 n :! j L, _j _ l. _ L _j _..2 <;t ' \J t t t t t t + t t.sssam :! L! _! _j! j _.L L :.. +.._ J, ft, t f t f ; t, r + ;.;)..) Som '""! JJL +..L...,.,..J.«;.;,... 'Nf,:.x. pj',..';tt;j "loll4 r; ' l...j.o.,. r.. r!._ J. _! J _!_ J '.!.. _ ' _ ; + j f + J _!_ J _.!..!. j + T. ';. ' "q.":\.j.. ; j +.!..,..._,... L.. 't,.,..._.,;:"_j._"""'_:;...,.'t...!. T T.!. _J L.!. l l..!. L,,,, r T r.!.!. J L l..l o T o r. T T T T 3 6 9 2 5 8 2 24 27 Time from the start of the measurement (s) 3

3 Appendix 5.2 Time series of electric conductivity 23 22. E : "' c.:: Q) w.7.6.5.4.3.2.. i t f t J. _J _ L _ L _J j _ L _ l....! _ L _ : :... :'i+..v" F,;.. #' "t 99 ;.58Jl A= = = := = = = = =: = =:= = = = : = = := : '*: J. _J _ L L..J L T + l j J t 4 j ) _ T.., i J.., + l _! J l r L _ L _ L r L r r " r l.l _..J.! _! j t l L J _ r!.. _! r, t _ f r l L..J!.. J _ r r j ""_... ':'.::..:.'i..,...,...,.j..._...j...j,"""* 48 ;rrn _! r L _ r L _ r t r,..,,, T,.. f = = = = ==:/; f.. j L _.. =. ; i = = _ f L...! L _ f! _ r _ L f r r + _, t _, t l.j _ L _!.....! _ L _ r.., +4 r L..J L,.., r; + l r r 3 6 9 2 5 Time from the start of the measurement (s)

3 Appendix 5.3 Time series of electric conductivity 23 22.4 6 LO.2..8.6 :8,38m,,,,,,,,,, T,.,, rsro, ;aah), n.;. + tt r t+ rt / : \ '* ' tt+ ) '' + tt t t Ji l : ll t ll ll ll ll ll ll ll ll r :t. + j l "lor"!;is t t+ // < T...,.. "=). il m t :. + + t t t + t l "tl +: l+ + t+ t+ tl t l f, >t+ t +itt t+ t j;. t + t + i t + + t i.t tl. t +i tt ++ t + ;,+ t + t'tl! r!'+ + +... + + +++ + + + + + f. f. f. + + ++ + l + + + l + + +4 + 4 + + l l f. l l f. + + + + + + + + + l + + f. + + f. + + + + 4 ++ l f 4 + +++ + + +,_ 4 + + + + + + l l l.l. +..J.L. + + + + + + + +.L.!,_ j_.l.j. _ L.! J...J L J_ L _ L J _ J l _ l _ L L.! _,_ J L L J..J L _ L L L L L _ L.! L J..l..J LL.J J.J..l LLL L.L J. L J..l _ L.L.! L L J_.l..J l_l L L.L.J.J _ ' ' j_ j_.l ' _ L L 2 3 4 5 6 7 8 9 Time from the start of the measurement (s)

32 Appendix 5.4 Time series of electric conductivity 2322..8.7.6.5.4.3.2 L L L L r r rr L _ L r r L L r r L L r L L L t t _L L_, r r L r L L_ ' L ' L r t L L t L t L t L t L t L t L L L t _ L _ L r t r r r r r J_ ' _ r J_ ',, ' L ' ' L L t L t L L ' ' L.L.L T T j j j_ t L.L.L T T t t t L.L.L T T j t + L _L.L l + L ++ + r.l r + ++!.. l _.L r.l r.. r r r r r ++ l l T +.!._.!._.L.L TT ++ rr.l T.L.L 3 6 9 Time from the start of the measurement (s) 2

33 Appendix 5.5 Time series of electric conductivity 23 22 2.5 T, r,, T, r r, r To r, T o To T.., r r T; r T ; r r 2.4 T; t t LO E' :;; :g :::J "'" c "i:: Q) m 2.3 +.., t t t t t + i t t +i t t +it + i + ""'._ t l l l l l l [ J $.L! l l ' ' :!, 2.2.. l ' _j J _j_.l L.. J L j j J J L _ L l l_.l l _ L.. J L _j J l l L 2. _j J L l l.j.. J L 3 6 9 2 5 Time from the start of the measurement (s)

34 Appendix 6. Time series of electric conductivity 2229 2222.3 +.A.. 4.5 tm :;.. J. _y,... " L r L,:t : ' r.'.. y4t _j L...! ' <>,..,/' T f T.25 "'"';....,.J_ 42 "'4m..,...,) f L _j _!_ J _!_.!.. J ' LO.2.5 T j_.j.:. : :. _ r _ r + +. ::. :...:: '/ t ::... er:4:i :;;;:)\,(/. fir 33?4._.,.,k':... ' ':&::' :.:..!. :.;... dv : _c._ :.'. L.t:.,. :. : :* J:. '. ""T :, 3 34m. ( /. ',.,;)., T r r r r L _. _j L _! T j r. J ' T r f T r + i f t i.5 6 2 8 24 Time from the start of the measurement (s) 3

35 Appendix 6.2 Time series of electric conductivity 2229 2222.3.'.,..,?: :_... "'+ ::. :t 5..4 m :.)5 :: ::: +,: : :t:.?.,..; + ' l /':,;( ;.J!. ) Jt,,,,.25 / "" +... " "".'!'+" "V...; Vv::...:.. ::...r:... :""+ 58.6 m J J J u LO.2,..._...,j...:..:+ 4as rr. :...:...,...:..,.:.:... \,..+ 48.9 m _,_.. r..,."t_ ",...'\.,.l l l ".5 _J.J _J.J J _l ' _ L _. 3 6 9 2 5 8 Time from the start of the measurement (s)

36 Appendix 6.3 Time series of electric conductivity 2229 2222.7.69 ' ' T.68 j T.67 + + 6..66 i +!..! + + +......l...65... j... :.: + +.64.63 '";.62 _j l.l.6 L _j L J _.L _.6 2 3 4 5 6 7 8 9 Time from the start of the measurement (s)

37 Appendix 6.4 Time series of electric conductivity 2229 2222.25 _j j _.2 f " :... _J... :28.34nl _! _..5..., J...,. j.5 j..., i. 6 2 8 Time from the start of the measurement (s)

38 Appendix 6.5 Time series of electric conductivity 2229 2222.74.73 t f + f +.72 i : : _.. f "" 4..:... ++ t ++.. _...!...i..!......!.. + l l_r+ + :..".. 9....... 4 l +f+,.7 '.J. L J.7 2 3 4 5 6 7 8 Time from the start of the measurement (s) 9

39 Appendix 6.6 Time series of electric conductivity 2229 2222 2.6 L L L j.l j j j_.l j_ L!L!! t t t 2.5.() E' :; t5 ::J 'U c: u c Q) iii L _ L!._!.!.!._!! T ++ T 2.4 rr l ' ' T r,, T 2.3 2 3 4 Time from the start of the measurement (s)

4 Appendix 7. Time series of electric conductivity 2263 2265.3, L L 6 LO.2 :{ : \::.<:. :. :) :;;t: E fl :; ;.: +. ;,.. :.:::. :,.: ;::;_,:... :;.,, l ', ' C '\. + '* +.. ;... ''. :_, 3Z 96tn' :...' +.. +... ' t+ 33.76hl r.;.. ::..:: ; :....... :... : :.. r<..,.:.:.;.. : :.. :.: :...:..:..,:":.. :.: :...,.. r..... "'" :r. J. + _....!._ "!_...t.!, ; _.... +, :... ' _..... +... t _..,,...,.,,, ',,.._ e. L T.., r.,. T T 5 5 2 25 Time from the start of the measurement (s)

4 Appendix 7.2 Time series of electric conductivity 2263 2265.3 T, 58.66 r r r. : "tf,... :... \ 44.96.2 : + t _, _ L. 5 5 Time from the start of the measurement (s) 2 25

42 Appendix 7.3 Time series of electric conductivity 2263 2265.3.2 _...,.'!':".:::i.,."wv.:._...."'"..: t 28 36 2s.sn <++... :!_...!. _ f _,.... +..,_:.. + 35.76 T +;4 f._ l,. ;; J. t r f L.J _ L. : + l._.j u L{)..!! +t r _ f.!.....! + t ' t ; ' J. t t L l l L.J _ L.9 l.!!!...! _ ' +t t.8 '.J L.! _!!.7 _l.j._ _ L L J L f ;.6 3 6 9 2 5 Time from the start of the measurement (s)

43 Appendix 7.4 Time series of electric conductivity 2263 2265 2.2 T r, r 2. t :. "i '" r " t t 6m LO t t ; t + ; + ; t t 2. 4 + f l! + + + f j! l + + f..j l + + + f..j!.9..l L _J L J ' _.L L J _J J L _...J.L L J J. L J L J ' _).8 5 5 2 25 3 35 4 45 Time from the start of the measurement (s)

44 Appendix 8. Time series of electric conductivity 22828 22829.3 l..j_ 4o sam L...,...._.,... : V......,:...,...,..V,:. ' f......; :......, 42.3f m.::7:k,:::;;, ";)i.:tj; ;_:.;,,,,:. :; : L :,/..:i.9am.. \.. j_... _ L : _.L J L.2. ""'....,.. LO t.!. _ ; J!.... r! r., r. 5 5 2 25 Time from the start of the measurement (s)

45 Appendix 8.2 Time series of electric conductivity 22828 22829.3 T., r... J /f"" l+ to+\.. : +..,v... r. '*,....... =+ss:.ian, r.... + 5S.68rn.:... +t.. t. T r, r ; f + l + t f.,.2 ). \ +.:", + r... ' :... :2Sm J _J_. 3 6 9 Time from the start of the measurement (s) 2 5

46 Appendix 8.3 Time series of electric conductivity 22828 22829.9.8.7.6.5.4.3.2...9.8.7 +L + + r L if" t L ' r L L L L L L L.... r r _ U_H_l) L L L L L L L ' r r r L L!_ L!_!_!_!_ t r l j_ T l j_ T T "t "t L L l_ l l l _!! rr L L L.... r r!_!_ r r!_!_ r l_ "t "t L l "t "t L l + + ++ = :+=al58dn,...... ;...r sssrn T T / L : i ;' :_... '' t _ ' r r L _ L == :... _!!_!_!_ _ '!_!_,, +!_!_ +!_,,.!. T +.!. + T T.!. + T...!. T.. r,, L....... + 99.48m l l _ L L r,, T T 3 6 9 Time from the start of the measurement (s) 2

47 Appendix 8.4 Time series of electric conductivity 22828 22829 2.4 r r r t r r r t r r r t t r r u. l l + f+ + t 2.3 j + flt+ + 423. 8m +!+ + f J. _ L 2.2 5 5 2 25 3 35 Time from the start of the measurement (s)

48 Appendix 9. Time series of electric conductivity 2222 2223.5 r ;.4.r t._ '. + ).3 + + t.,...,....,. + t.,. +... _ ij_.. +:t + +..... t '+.. + + t;.. + +....!. ' ::..: :: _!.,_ _ :'.... ±. : t:.... :.. t........ :... "'".. f ; _ +:!.._ L, +,+.2.. + t +.. t... #. ' _. L... :_ J...... '= LL L. 5 Time from the start of the measurement (s)

49 Appendix 9.2 Time series of electric conductivity 2222 2223.4 r T l{)........ r, ".t:...,......., + + :...... :... : t... ' T t,..,...3..f: <:.. :: >::.. :..:....; : :. ::: :.:: /,:..:...". ". : :.: ': q.. 2. Om.... +.,...!......,, :.!.! L L.L.2 5 Time from the start of the measurement (s)

5 Appendix 9.3 Time series of electric conductivity 2222 2223.5 L L.L J_ r r r L L L _[_ 58.5m.4.. ++..... t L{) E' :;: u :::J " c c Q) iii tt ++!!!..! _.3, ',',;, ' l ' ' : "" ' ' t... J :.:to 56.m r r r.2 5 Time from the start of the measurement (s)

5 Appendix 9.4 Time series of electric conductivity 2222 2223.4 L L.3 r t t L L.L.L.2 +!_ ' ' LO. t t ++,, L L _.L.L.!!! +!_ ' t + t.9!.8! + + L L!!_.7 r r r T 5 Time from the start of the measurement (s)

52 Appendix 9.5 Time series of electric conductivity 2222 2223.9, r r r r r r T r r r r r ; r r r T r + r j t r + r + t t t j t t t.8.... t J. + + j f + + _j_.._ + L._. j _ l.. _j_._.._.7 T l T T 2 3 4 5 6 7 8 9 Time from the start of the measurement (s)

53 Appendix 9.6 Time series of electric conductivity 2222 2223 2.3,,, "" j. 2.25 j J i i 2.2 i i i i i l l 2.5 _..J _J j j _j ' j _ 2. 5 5 2 25 3 Time from the start of the measurement (s)

54 Appendix. Time series of fracturespecific EC 234 2344.3 j 4 f i._. ' : : :.,, '.:. :.{. : ' t :; ::' :..:_... (... \.,_.;J_.. "\.. :.. l ti.:;\.y..."' \.J) i'""+..,,.,... :: : ":::_: _.. f'./_ ' :....!f. ::., [.,..:: L ' j:., ;;.:: ;, : : :_,._ ;_i '. :. \._ t +.t : t l"j."'::f++t:..?..\.......,; f4!... l..;_ t:,. '/)l\ :'t+$ \ Jt" \... / /:.. +.. 4tf:t.),. :.,,: '"... t... r. :: ; '"' """""" ' t';: ',, s&.7o 56.7 f 42.3 52.3 _54.9!,,, T o,.2 _.!.L L..j....J! _ J, r,!. 2 3 4 5 6 7 8 9 Time from the start of the measurement (s)

55 Appendix.2 Time series of fracturespecific EC 234 234.4 "i t L L _J _[ L L _[.3,,,,,,, ' o 6. E' @, :;:.2 u ::J '" c:: (.).g t5 Q) m. [ L L j _ ' ' ' J o. 2 3 4 5 6 7 8 9 Time from the start of the measurement (s)

56 Appendix.3 Time series of fracturespecific EC 234 2344.4.3 _ L r _ ' L l l l _ r l _ l l j _j _j r L r L _j _j.2 r r j L _j... rf.a 8.5,m 7"_''"_ " J _ 7._ :' _;s um _ "' t:: ":_ G LO...9.8 _ J l _ J t t t J l_ J l J _,, l_ l J J! j J! _!,, _!! _! _ f _! '' _!!_, r _!.! _! f o r,,,,,, '.7 2 3 4 5 6 7 8 9 Time from the start of the measurement (s)

57 Appendix.4 Time series of fracturespecific EC 234 2344.64 J! 6 LO E :;: u :::J " c c w.62......,.... " l........................ "..... '... l.... :. 396.6 m.6 Time from the start of the measurement (s) 3

58 Appendix.5 Time series of fracturespecific EC 234 2344 2.4,, _ L l l J _ m J r.., _,,.! '_j 2.3 6 L() E' z. "> u :::::J " c: c Q) w r r T,,,! _.! l L L..J f l + < ',,, T l, '_! L J l J _ 2.2 T L J. '_j t t t + T, r _! l!. j 2. 288 576 864 52 44 728 26 234 2592 288 Time from the start of the measurement (s)

59 Appendix. Time series of fracturespecific EC 235236.4 r, J....J J L......!.!.....!.3 l,,,,, 4.64 ' J...!. N E :;; t5 :::::s "' c c Q) jjj.2,_,...!.,.,. L _.J L J L L 7' m.j J,, ' o r t l +. 2 3 4 5 6 7 8 9 Time from the start of the measurement (s)

6 Appendix.2 Time series of fracturespecific EC 235 236.4 _ J L _j, _..!!.. _ J.3 t.2 _l,t+...;.4i+f...;...j.o.;...+: ' i/..t J " L...,...: o...;...._v,.;...,._,... w..t...... w...,..._...,"" 4it54m _..j...;... l 4 _32.84n... N"'.... t 33.24n : : : :,' : : ::: 3.44m!.. J..!!.. _. 2 3 4 5 6 7 8 9 Time from the start of the measurement (s)

6 Appendix.3 Time series of fracturespecific EC 235236.4.3 L L, r.,... _j r _j r _ L _ J L L _ J _ L _ J L L _ J 28.64m 435.84 _ J L J.2 _j _!.L j _! r t t _!.L _!. J, _! J J J _ J. _ J f.9 ' _ ' l!, _.8 L ' r L r gs'.64 m,.7 L L L j 2 3 4 5 6 7 8 9 Time from the start of the measurement (s)

62 Appendix.4 Time series of fracturespecific EC 235236.9 l f l! l j L L _l.88.. _j_ j_ ".. J..!.!!. LO.86 T r r,, + t f l!.84 _j.l l l l _j J H.:of \';:.J.... t.4m....82 T r ++> i!.8 T T l T 3 6 9 Time from the start of the measurement (s)

63 Appendix.5 Time series of fracturespecific EC 235 236 2.4 + _j L _j 2.38 J!. J. e ::; 3 ::::J " c: c Q) w 2.36 2.34 j L _j, l 2.32 r 2.3 4 8 2 6 2 24 28 32 36 Time from the start of the measurement (s)

64 Appendix 2..4 Fracture specific electric conductivity and flows from the fracture to borehole Olkiluoto, borehole KR6 28.4 m 32.8m 33.6 m 4.7 m 42.7 m 45.2m G.3 LO N E ::;.?: u ::l "' c: (.) (.) c t5 Q) jjj.2. r:::.....o.. :::S:.H+lSrrs < >< _,, r = :::::: ::::::::?+ :::: :: : : : :: :::::_:_::::

65 Appendix 2.2.4 Fracture specific electric conductivity and flows from the fracture to borehole 48.8m Olkiluoto, borehole KR6 49. m 52.6m 55.2 m 56.5m 57.m 6. N E s; u ::::: " r::: (.) (.) c u Q) iii.3.2. :2 u:: = :::: ::::::i:: :: ::: :_ : _ : :.J.o_... :_:_ : :_:_ ::: ::: ":! ::+ : :: :::: v...,... _...,..... +... al ;.,...,. ::_..,.., _ H = _:t ::' _..a........... 6f. / _. :_::_:: _ :: ::_:::_:_::.:::::::....

66 Appendix 2.3 2.4 2.2 2 G.8.() N E.6.4 s; u ::J ".2 c: (.) (.) Fracture specific electric conductivity and flows from the fracture to borehole Olkiluoto, borehole KR6 59. m 99.8 m 28.8 m 36. m 397.2 m 423.6 m =... =....._. /...,. i = y V = "i:: = Q) w.8.6.4.2 =.> = /...... =.., = "" = R =... = _....& = 'f/"... = A = = =.. =..L = V... =. "T _;:_ ==== <<,.. _........;.,_..ef..

67 Appendix 3 Depth Measured EClast S/m Measured EClastS/m Measured EClast S/m Measured EClastS/m Measured EClastS/m Measured EClastS/m Measured EClastS/m of the depth 2 depth 2229 depth 2264. depth 22828. depth 2222. depth 234. depth 235. fracture 22 2222 2265 22829 2223 2342 236 28.4 29.48.66 28.4.7699 28.6.796 28.8.7673 27.8.2485 28..264 28.4.98 32.8 33.98.3982 32.54.427 32.56.3978 32.58.4738 32.3.2623 32.5.5984 32.44.7536 33.6 34.68.7248 33.34.689 33.36.768 33.8.7788 33.3.26968 33.2.8263 33.24.9645 4.7 42.8.294 4.54.28669 4.56.2945 4.58.28648 4.4.3757 4.6.27776 4.64.29964 42.7 43.78.2567 42.34.24447 42.36.24798 42.38.252 42..322 42.3.2488 42.34.26666 45.2 46.28.2953 44.94.252 44.96.2643 44.98.225887 44.8.3568 44.9.2247 44.94.23954 48.8 49.98.96 48.54.8759 48.56.8992 48.58.9932 48.4.25396 48.6.2236 48.54.2928 49. 5.38.992 48.94.8232 48.96.855 48.98.997 48.8.2553 49..2297 48.94.2368 52.6 53.68.2487 52.34.237 52.26.2498 52.28.2456 52..2999 52.3.24383 52.24.26427 55.2 56.28.2777 54.84.252 54.86.2438 54.88.23535 54.8.3745 54.9.24268 54.84.2576 56.5 57.58.4678 56.34.393 56.26.443 56.28.593 56..2287 56.3.9824 56.24.8832 57. 58.8.2453 56.74.232 56.66.24526 56.68.2687 56.5.335 56.7.27344 56.64.29463 59. 6.8.2594 58.64.25473 58.66.2744 58.78.2783 58.5.485 58.7.27694 58.74.2974 99.8.98.659 99.64.65227 99.46.73393 99.48.77997 99.5.86779 99.6.72948 99.64.842 28.8 29.78. 28.34.99 28.36.284 28.58.34768 28.5.33594 28.5.238 28.64.3692 36. 37.28.2247 35.74.277 35.76.24999 35.88.344939 35.8.343734 35.7.22 35.84.34993 397.2 398.48.76483 397.4.784 397.6.9484 397.8.798 397..79647 396.6.6225 397.4.8432 423.6 425.8 2.389 423.54 2.37274 423.56 2.784 423.68 2.28288 423.74 2.2446 423. 2.265766 423.74 2.3888