Linkkikerros Kirja 102-128, 135-151, 170-180
Johdanto Luennon tavoitteena on oppia linkkitason teknologiaan liittyviä käsitteitä kuten Kehystys Ylemmän tason datan kapselointi Jaetun median käyttö Jaetun median hallinta (medium access control) Verkkotopologiat Tietokoneet käsittelevät tavuja, IP-kerros paketteja, fyysinen kerros bittejä Linkkikerros yhdistää nämä kehystämällä ja kapseloimalla ylemmän tason datan siirrettäväksi fyysisen median ylitse
Kerrostetut yhteyskäytännöt Yhteyskäytännöt (protokollat) yhdistävät oman tasonsa olioita Ylemmät kerrokset käyttävät alemman kerroksen palveluita Kerrokset ovat riippumattomia muista kerroksista Kunkin kerroksen määrittelee sen ylemmälle kerrokselle tarjoama palvelurajapinta ja sen alemmalta kerrokselta vaatima palvelu Olio toteuttaa (tarjoaa) rajapinnan Olio Olio Olio hyödyntää rajapintaa Protokolla Vertaisoliolio Oliot viestivät vaihtaen viestejä (Protocol Data Unit, PDU) saman tason olioiden kanssa
OSI-malli Kaksi N-tason oliota eri järjestelmissä kommunikoi keskenään käyttäen N-tason yhteyskäytäntöä N-kerroksen N+1-kerrokselle tarjoamat palvelut toteutetaan N- kerroksella kapseloimalla (encapsulation) Kapselointi tarkoittaa ylemmän kerroksen datan (Service Data Unit, SDU) sisällyttämistä sitä alemman kerroksen viesteihin (Protocol Data Unit, PDU) Saman kerroksen oliot ovat vertaisia (peer) N+1 tason oliot hyödyntävät N-tason tarjoamia palveluita rajapinnan (Service Access Point, SAP) kautta Yksi N+1-tason olio voi olla samanaikaisesti yhteydessä yhteen tai useampaan N-tason SAPiin Yksi N-tason SAP on yhteydessä yhteen N-tason olioon
Tietoverkkojen topologiat Verkko voi olla rakenteeltaan rengas, väylä, tähti tai hybridi Lähiverkot usein tähti- tai väylämäisiä Kampus- ja alueelliset verkot usein kaksoisrenkaita (vikasietoinen ratkaisu) Eri kerroksilla saattaa olla erilainen topologia Koaksaali-Ethernet on fyysinen ja looginen väylä Keskitin-Ethernet on fyysinen tähti, looginen väylä Käytetty media voi olla usean osapuolen jakama tai vain kahden olion väline
Linkkikerros (Data Link Layer) Tällä kerroksella toteutetaan Lähiverkot Ethernet, WLAN, Token Ring, ATM (paikallinen) Pisteiden väliset yhteydet Tietokoneita tai lähiverkkoja yhdistävät HDLC, PPP, SLIP, ATM Perinteinen tele-infra: Sonet, SDH, PDH, ATM Käsitellään IV periodilla Myös Kampusverkot tai MAN (Metropolitan Area Network) FDDI, HIPPI, ATM, optiset reknaat Langattomat mobiliverkot GPRS, UMTS Ja muuta teknologiaa Kaapelimodemit, Bluetooth
Kehystys Koska linkkikerroksen tehtävänä on ylemmän tason SDUden siirtäminen omien PDUden sisällä ja linkkikerroksen alapuolella on fyysinen kerros (joka siis oletusarvoisesti siirtää yhden bitin), on likkikerroksen käytettävä fyysistä kerrosta tavalla, joka mahdollistaa datan tunnistamisen vastaanottajalle Tätä kutsutaan kehystykseksi, eri likkikerroksen protokollat toimivat eri tavoi, mutta yleensä ne toteuttavat kehyksen, esimerkiksi merkitsemällä PDUn alun ja lopun Linkkikerros voi lisäksi sisältää muita toimintoja
Bitti- ja tavuorientoitunut kehystys HDLC (High-level Data Link Control) Linkkikerroksen bittiorientoitunut protokolla HDLC-kehyksen aloittaa lippu (flag) 01111110 Datan alku- ja loppumerkki Tavu 01111110 voidaan siirtää bit stuffing -tekniikalla Jokaisen kuvion 11111 perään lisätään 0 SLIP (Serial Line IP) Yksinkertainen tavuorientoitunut protokolla IP-pakettien kehystämiseen Edellyttää 8-bittisen siirtotien Kehystäminen toteutetaan lähettämällä jokaisen IP-paketin jälkeen END-merkki (tavu 192) Datassa olevat END-merkit lähetetään ESC-merkin (tavu 219) avulla, END = 219 220, ESC=219 221 (byte stuffing) Vanhentunut teknologia, kuvataan RFC 1055:ssä
Pääteyhteys ja modeemi Hieman historiaa: Halpojen mikrotietokoneiden yleistyessä 1980-luvulla niiden ensisijainen tietoliikennevarustus oli RS-232 -sarjaliikenneportti Suunniteltu siirtämään ASCII-merkkejä päätteille/päätteiltä Kehystää 7 tai 8 bittiä alku- ja loppubiteillä Voidaan käyttää pariteettibittiä siirtovirheiden tunnistamiseen Modeemin avulla sarjayhteys voitiin jatkaa etäämmälle käyttäen puhelinverkkoa Tietokoneessa käytettiin tyypillisesti pääteemulaattoriohjelmistoa, joka pysty noudattamaan varsinaisten päätelaitteiden ohjauskoodeja Tavukoodeja, esim. ASCII 10 rivinvaihto, ASCII 13 vaununpalautus Modeemi ja sarjayhteys tarjoavat siis tavan siirtää tavuja tietokoneelta toiselle Tämä tekniikka ei noudattanut yleensä OSI-mallia
PPP-protokolla (Point to Point Protocol) Määritelty standardeissa RFC 1661,1662, 1663 ym. Monipuolinen Suunniteltu IP:n ja muiden verkkotason protokollien siirtämiseen sarjayhteyksien ylitse Käytetään IP-liikenteeseen erilaisten yhteyksien ylitse Muodostamaan modeemiyhteyksiä Internetiin Yksinkertaisiin VPN-toteutuksiin "PPP over SSH" (SSH tarjoaa salauksen) xdsl-yhteyksien tarjoamiseen, PPP "over Ethernet" tai ATM Tukee erilaisia tarpeita Osapuolten tunnistaminen ja todentaminen IP-osoitteiden ja muun verkkokonfiguraation siirto (korvaa DHCP:n) Ylläolevan takia PPP:n käyttö muiden linkkikerroksen protokollien ylitse on mielekästä
PPP-istunto Yksinkertaistettu tilamalli: Dead Up Established Opened Authenticate Success/ None Fail Fail Down Terminate Closing Network Istunnon avaus- ja sulkutapahtumaa ei näytetä tässä (laitteistoohjautuva tai manuaalinen) Tilakone on usein käytetty tapa määritellä protokollatoteutuksen käyttäytyminen
Digitaaliset tilaajaliittymät (laajakaistaiset) Asiakasliittymien tekniset ominaisuudet eivät salli tavallisten digitaalisten teletekniikoidan hyödyntämisen PDH/SDH, kerrotaan lisää IV periodilla Halu hyödyntää olemassa olevia infrastruktuuri-investointeja on suuri On olemassa joukko erilaisia tekniikoita tai standardeja POTSasiakasliittymien (Plain Old Telephone System) vanhan kaapeloinnin hyödyntämiseen Tällä hetkellä suosituin ratkaisu on ADSL, muitakin on Yleisemmin ongelma tunnetaan nimellä "last mile problem" Ne, joilla ei ole mahdollisuutta tai halua hyödyntää televerkkoa yrittävät käyttää kaapeli-tv-verkkoa, sähköverkkoa, langattomia tekniikoita (IEEE 802.11, 802.16) jne. Tai pohtivat oman verkon rakentamista
Asymmetric Digital Subscriber Line Käyttää yhtä kierrettyä paria, tarjoaa sen ylitse yhden simplexyhteyden kumpaankin suuntaan sekä sallii analogisen duplexyhteyden puheelle Asiakasliittymän taajuusspektri voidaan jakaa puheelle ja korkeammille signaalitaajuuksille Yhteyden alussa ADSLn käyttämä spektri jaetaan kapeisiin alikanaviin, joiden siirtokapasiteetti analysoidaan Näin pyritään hyödyntämään siirtotien tarjoama kapasiteetti mahdollisimman hyvin ADSL versio ITU-T G.992.1 tarjoaa 6.144Mbps alaspäin and 640kbps ylöspäin ADSL:n ylitse voidaan ajaa eri protokollia Usein PPP over ATM tai Ethernet Riippuu palveluntarjoajan arkkitehtuurista ADSL
Kaapelimodeemit Kaapelitelevisioverkko on rakennettu yksisuuntaista yhteislähetystä varten, eikä ole osa televerkkoa Se tarjoaa laajakaistaisen koaksaaliyhteyden kuluttajan kotiin Kaapeli-TV-verkko voidaan päivittää kaksisuuntaista liikennettä varten, jolloin sen kautta voidaan siirtää myös dataa Linkkitasolla talon asukkaat jakavat yhteistä antenniverkkoa
Digitaaliset televisiolähetykset Analoginen televisiosignaali voidaan digitalisoida Käytössä on useita standardeja DVB-S (satellite) satelliittilähetyksille DVB-T (terrestrial) maanpäällisille radioliikenteelle DVB-C (cable) kaapeli-tv-käyttöön DVB-H (handheld) mobiililaitteita varten Voidaan käyttää muunkin datan siirtoon Regulaation puitteissa Yksisuuntainen yhteislähetys Käyttäminen käyttäjäkohtaiseen tietoliikenteeseen ei ole kustannustehokasta Voidaan käyttää laajempaa vastaanottajajoukkoa kiinnostavan datan siirtoon Interaktiiviset palvelut vaativat kuluttajalle tavallisen Internetyhteyden
Lähiverkko Yksityinen oma, ei ulkopuolista sääntelyä Lyhyt etäisyys (~1km) koneiden välillä edullinen nopeaa, melko virheetöntä tiedonsiirtoa ei tarvita monipuolista virheenkorjausta Koneita siirretään paikasta toiseen Koneiden sijainnin hallinta työlästä Annetaan joka koneelle oma osoite Viestit lähetetään yleislähetyksenä kaikille lähiverkossa Tarvitaan menetelmä jakaa siirtomedia: medium access control protocol
Tyypillinen lähiverkko Siirtotie Verkkokortti (Network Interface Card) Uniikki osoite MAC-osoite RAM Ethernet Processor RAM ROM
Viestintä jaetulla siirtotiellä Kaikki asemat ovat saman johdon ääressä Siirtotiellä käytetään yleislähetystä (broadcast) Kaikki asemat kuulevat yhteiselle medialle lähetetyn viestin Jos kaksi asemaa lähettää yhtä aikaa tapahtuu törmäys Signaalit sekoittuvat ja lähetys menee sekaisin Eli pelkkä kehystys ei riitä
Eri tapoja jakaa yhteinen siirtotie Kanavajako (channelization) kanavajako (channelization) ja kanavointi (multiplexing) jokainen asema saa oman osansa jaetusta siirtotiestä sopii jatkuvaan lähetykseen eri lähetykset voidaan erotella esim. signaalin taajuuden mukaan (FDM) tai kullakin asemalla on oma aikaikkuna (TDM) jolloin se saa lähettää käsitellään tarkemmin IV periodilla teletekniikan yhteydessä Dynaaminen varaus (MAC schemes) asemat lähettävät tarpeen mukaan, törmäykset havaitaan tai niitä vältetään sovitulla tavalla sopii purskeiselle datalle
Jaettu kanavoimaton väylä Crash!! Mikä tahansa asema voi lähettää tarvittaessa Joten törmäykset ovat mahdollisia, tarvitaan strategia niiden ratkaisemiseksi Vuorottelu Kilpailu ja uudelleenlähetys
Vuorottelu (Scheduling) Kilpavaraus on tehoton suurilla liikennemäärillä Vuorottelu (scheduling) on organisoidumpi tapa jakaa vuoroja varaus (reservation) kysely (polling) valtuuden välitys (token passing)
Vuorottelu: Kysely (polling) Yksi laite hallitsee mediaa, muut lähettävät vain kysyttäessä Käytetään mm. joissakin kenttäväyläverkoissa CAN (autot), LON (rakennukset) jne. Myös korkeamman tason protokollat käyttävät kyselyä IMAP ja POP, "olenko saanut uutta sähköpostia" Data from 1 Data from 2 Inbound line Data to M Poll 1 Host computer Poll 2 1 2 3 Outbound line M Stations
Vuorottelu: Valtuuden välitys Rengasverkko token Data to M token Token, eli lupa lähettää, kiertää verkossa Asema jolla on token hallussaan on valtuutus lähettää
Kilpavaraus (random access) Ei sovittuja lähetysvuoroja lähetys satunnaisesti silloin kun on lähetettävää Törmäysten havaitseminen Tapa välttää uudet törmäykset uudelleenlähetyksessä
CSMA Carrier Sense Multiple Access Vältetään selvät törmäykset kuuntelemalla siirtotietä Törmäyksiä tapahtuu ainoastaan lähetyksen alussa Kun lähetys ei vielä ole levinnyt koko mediaan Haavoittuvuusaika on t prop eli siirtoviive päästä päähän Miten vältetään useampi samanaikainen lähetys kun siirtotie vapautuu? Lähetetään heti Jos varattu, uudelleenlähetys ajan t kuluttua Jos vapaa, lähetä (todennäköisyydellä p) tai odota (1-p) Valittu tapa vaikuttaa keskimääräiseen viiveeseen ja tehokkuus riippuu liikenteen luonteesta
CSMA-CD Carrier Sense Multiple Access with Collision Detection Havaitaan törmäykset Säästetään kaistaa lopettamalla törmännyt lähetys heti Törmäyksen havaitseminen tapahtuu viipeellä A B A B A B
MAC-yhteyskäytännöt Medium Access Control -protokollat toteuttavat edellä kerrottuja algoritmeja Tyypillisesti linkkikerroksen protokollia Hyvän MAC-protokollan ominaisuuksia pieni siirtoviive oikeudenmukaisuus (yksi asema ei pysty valtaamaan verkkoa) luotettavuus ominaisuudet vastaavat liikenteen ominaisuuksia palvelunlaatu (Quality of service, QoS) skaalatutuvuus hinta (ei protokollan, vaan sen toteuttamisen hinta)
LAN standardeja Ethernet, Token ring, FDDI, WLAN MAC käytäntö kehysrakenne fyysinen siirtotie Tässä käydään läpi Ethernet ja WLAN
Vähän historiaa 1970 ALOHAnet radioverkko käyttöön Hawajin saarilla 1973 Metcalf ja Boggs kehittävät ideasta Ethernetin, kilpavarausverkon 1979 DIX Ethernet II Standard 1985 IEEE 802.3 LAN Standard (10 Mbps) 1995 Fast Ethernet (100 Mbps) 1998 Gigabit Ethernet 2002 10 Gigabit Ethernet Tänään Ethernet on hallitseva lähiverkkostandardi Metcalf s Sketch:
Ethernet Standardi IEEE 802.3 Lyhyen kantaman lähiverkko Määrittelee protokollan ja kaapelointioptiot Useita vaihtoehtoja fyysiselle verkolle Koaksiaalikaapeli 10Base5 ja 10Base2, nykyään historiaa Kaikki asemat samassa kaapelissa Parikaapeli 10BaseT, 100BaseT, 1000BaseT, 10GBaseT... Keskittimet tai kytkimet yhdistävät asemat Optinen 100BaseFX
IEEE 802.3 - Kehysrakenne 7 1 6 6 2 variable 4 Preamble SD Destination Address Source Address Length Information Pad FCS bytes Total 64 to 1518 Bytes Preamble toistaa 10101010-kuviota SD aloittaa itse kehyksen tavulla 10101011 Vastaanottajan ja lähettäjän osoitteet ovat 6 tavua Pituus on informaatio-kentän pituus tavuissa Padding varmistaa, että kehys on vähintään 64 tavua Tarkistussumma on CCITT 32-bit CRC kattaen osoitteen, pituuden, informaation ja paddingin
Ethernetin osoitteet Jokaisella verkkokortilla (NIC) on uniikki osoite (MAC-osoite) valmistajan kiinteästi asettama tai ohjelmistollisesti vaihdettava 1. bitti kertoo onko kyseessä täsmälähetys (0) vai ryhmälähetys (1) 2. bitti kertoo onko kyseessä paikallinen (0) vai globaali (1) osoite 3 ensimmäistä tavua (miinus kaksi ensimmäistä bittiä) on Organizationally Unique Identifier (OUI) 3 viimeistä tavua on valmistajan valittavissa yleislähetys on osoitteelle ff:ff:ff:ff:ff:ff (kaikki bitit 1) saman osoitteen sattuminen kahdelle verkkokortille samassa verkossa on harvinaista, mutta mahdollista Asema voi lähettää täsmälähetyksiä, ryhmmälähetyksiä tai yleislähetyksiä IP ja muut protokollat tarvitsevat yleislähetyksiä muiden samassa lähiverkossa olevien asemien (ARP) tai verkkoasetuksia tarjoavien palveluiden (DHCP) löytämiseen Tavallinen liikenne on täsmälähetyksiä
IEEE 802.3 laitteisto Keskitin (hub) tähtiverkko, toistaa kaiken liikenteen kaikille asemille kaikki asemat saman siirtotien ääressä liikenteen määrä rajoittaa asemien määrää Ethernet kytkin (switch) tähtiverkko, toistaa vain tarvittavan liikenteen oppii mikä MAC-osoite on missäkin liittymässä erilliset törmäysalueet suurempi siirtokapasiteetti kuin keskitin-pohjaisella verkolla Silta yhdistää Ethernet-lähiverkkoja (ei välttämättä hyvä idea) mahdollistaa pitkän kantaman yhteydet kehys otetaan vastaan kokonaan ja välitetään toiseen verkkoon välittää vain tarpeellisen liikenteen (myös yleislähetykset)
Ethernet-kytkimet ja -keskittimet Yhtenäinen törmäysalue (a) (b) Nopea sisäinen väylä ~10x linjanopeus Yksinkertainen ja halpa Nykyään väistymässä Topologiana tähti Skaalautuu Erilliset törmäysalueet tai kehyksien puskurointi
Langaton viestintä Langaton viestintä on suosittua Lähiverkoissa helppo asennettavuus (ei kaapeleita) Liikkuvuus sekä lähiverkossa että globaalimmin Radiosignaali (ohjaamaton media) Signaalin voimakkuus vaihtelee ajan ja paikan mukaan Signaali kenen tahansa kuunneltavissa, salakuuntelu, tietomurto, palveluesto mahdollisia Taajuuskaistan rajallisuus ja viranomaisrajoitukset vaikuttavat kaistan käyttöön IP:n näkökulmasta langattomat verkot ovat linkkikerrosta, vaikka esim. GPRS sisältää monta tasoa sisällään
Tämän hetken hallitseva lähiverkkostandardi, IEEE 802.11 Ethernetin tapainen radioverkko Tukiasema korvaa keskittimen Kantama ~60 m Kapasiteetti 1-54 Mbps Tärkeimmät versiot 802.11b (2-4 Mbps) ja 802.11g (~20 Mbps) Markkinointinimenä Wi-Fi Hyödyntää lupavapaata 2,4 GHz taajuusaluetta Voidaan käyttää ilman tukiasemaa AdHoc-tilasssa Tukiaseman kanssa CSMA-CD ei toimi WLAN
"Hidden Node" -ongelma (a) A Datakehys C A lähettää kehyksen B C näkee vapaan median, koska A:n signaali ei ulotu C:lle saakka (b) Datakehys B Datakehys C A C lähettää kehyksen, joka törmää B:ssä A:n kehyksen kanssa, C ei huomaa törmäystä Tarvitaan uusi MAC-algoritmi: CSMA with Collision Avoidance
"Hidden Node" -ongelma CSMA/CA Carrier Sense Multiple Access With Collision Avoidance Korvaa Ethernetin törmäyksen tunnistamisen törmäyksen välttämisellä Koaksiaali- ja keskitinpohjaisissa Ethernet-verkoissa asemat näkevät toisensa Radioverkossa signaali ei välttämättä kuulu kaikille Joten lähettävä asema lähettää ensin Request To Send (RTS) - viestin tukiasemalle Jos tukiasema on vapaa, se vastaa Clear To Send (CTS) - viestillä Lähetyksen lopuksi tukiasema kuittaa ACK-viestillä WLAN ei käytä aina, asetettavissa
Yhteenveto Linkkikerros on lähellä fyysistä kerrosta ja osa fyysisen kerroksen ongelmista ratkaistaan linkkikerroksessa Linkkikerros kehystää ja kapseloi ylempien kerroksien viestejä (tämän kurssin puitteissa ensisijaisesti IPkerroksen) Saman kerroksen vertaisoliot viestivät keskenään molempien tuntemalla protokollalla, käyttäen alempien kerroksien palveluita IP ei tiedä eikä välitä käyttääkö se WLANia, Ethernetiä tai PPP:tä