Mukautuvat järjestämisalgoritmit

Koko: px
Aloita esitys sivulta:

Download "Mukautuvat järjestämisalgoritmit"

Transkriptio

1 1 Mukautuvat järjestämisalgoritmit Riku Saikkonen TIK-päivä,

2 2 Mukautuva järjestäminen minkä tahansa vertailuihin perustuvan järjestämisalgoritmin täytyy tehdä pahimmassa tapauksessa vähintään Ω(n log n) vertailua esim. lomitusjärjestäminen (merge sort) on O(n log n) mutta osa tapauksista voidaan järjestää tätä nopeammin esim. lisäysjärjestäminen (insertion sort) järjestää valmiiksi järjestyksessä olevan jonon ajassa O(n) mukautuva järjestäminen (adaptive sorting) tutkii tätä mitä tarkempaa voidaan sanoa kuin että algoritmi on pahimmassa tapauksessa O(n log n) uusia järjestämisalgoritmeja, jotka järjestävät melkein järjestyksessä olevia jonoja nopeammin useita määritelmiä melkein järjestyksessä olemiselle

3 3 Melkein järjestyksessä: mukautuvuusmittarit mikä syöte on melkein järjestyksessä? voi mitata usealla tavalla esim. inversiot: 0.. (n 2 n)/2 väärin päin olevaa alkioparia Esimerkkejä Inv-mittarista Inv = Inv = Inv = Inv = 55 mukautuvat järjestämisalgoritmit ovat optimaalisia tiettyjen mittarien suhteen aikavaativuus = vertailujen vähimmäismäärä mittarille esim. Inv-optimaalinen jos aika on O(n log(inv/n)) pahimmassa tapauksessa aina O(n log n) mittareita on esitetty n. 15 kpl, ja niillä on yhteyksiä esim. kaikki Loc-optimaaliset algoritmit ovat myös Inv-optimaalisia

4 4 Mukautuvat puujärjestämisalgoritmit lisäysjärjestämisestä voi tehdä mukautuvan käyttämällä taulukon sijaan hakupuuta eli lisätään alkiot yksi kerrallaan hakupuuhun ja luetaan järjestys siitä lopuksi seuraavaa lisäyskohtaa ei haeta hakupuun juuresta eli alkioiden keskeltä lähtien, vaan: suurimmasta alkiosta Inv-optimaalinen algoritmi edellisestä lisäyskohdasta Loc-optimaalinen algoritmi puussa pitää liikkua ylös ja sivulle; vaihtoehtoja: muokatut AVL-puut (ei pääse sivulle vain Inv-opt.) finger-puut (B-puu isä- ja sisaruslinkeillä) splay-puut (josta Splaysort, parhaita näistä algoritmeista) myös lomitusjärjestämisen voi tehdä hakupuilla

5 5 Bulkkipuu Block-mittari: montako alijonoa, jotka eivät muutu järjestettäessa? oma bulkkipuumme tallettaa näitä alijonoja alijono käyttäytyy kuin se olisi yksi alkio alijono pitää jakaa, jos sen sisään lisätään Jono (Block ) (4 ) Bulkkipuu splay-puusta [4, 5, 6, 7, 8] [1, 2, 3] [10, 11] [9]

6 5 Bulkkipuu Block-mittari: montako alijonoa, jotka eivät muutu järjestettäessa? oma bulkkipuumme tallettaa näitä alijonoja alijono käyttäytyy kuin se olisi yksi alkio alijono pitää jakaa, jos sen sisään lisätään Jono (Block, Inv Block rep ) (4, 3) (4, 6) Bulkkipuu splay-puusta [4, 5, 6, 7, 8] [1, 2, 3] [10, 11] [9] tähän perustuva lisäysjärjestäminen on mm. Inv-, Loc-, Block-, Inv Block rep - ja Loc Block rep -optimaalinen Inv Block rep mittaa Block-mittarin laskemien alijonojen keskinäistä järjestystä Inv:lla

7 6 Vähän koetuloksia Running time (s) Suoritusaikoja eri Block-mittarin arvoilla, n = Block(X) Block(X) Splaysort Bulk-tree sort Quicksort Merge sort

8 7 Lisää koetuloksia Vertailujen määrä eri Block-mittarin arvoilla, n = Comparisons/N Block(X) Splaysort Bulk-tree sort Quicksort Merge sort

9 8 Lopuksi mukautuvaa järjestämistä voisi käyttää missä vain mutta tavallisia järjestämisalgoritmeja parempi vain jos suuri osa syötejonoista on melkein järjestyksessä muuta tähän liittyvää tutkimusryhmämme tutkimusta: bulkkipuu toimii myös yleiskäyttöisenä hakupuuna, jossa on tehokkaat monen alkion lisäys ja poisto jonkin verran muokattuna se sopii hyvin SSD-levyjä käyttävän tietokannan hakemistorakenteeksi aihepiiriä lähimmät pääaineet ja kurssit: Ohjelmisto- T Algoritmien suunnittelu ja analyysi järjestelmät T Transaktionhallinta tietokantajärjestelmissä T String Algorithms Tietojen- T Principles of Algorithmic Techniques käsittelyteoria T Advanced Course in Algorithms

58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut

58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 1. Palautetaan vielä mieleen O-notaation määritelmä. Olkoon f ja g funktioita luonnollisilta luvuilta positiivisille

Lisätiedot

9 Erilaisia tapoja järjestää

9 Erilaisia tapoja järjestää TIE-20100 Tietorakenteet ja algoritmit 198 9 Erilaisia tapoja järjestää Käsitellään seuraavaksi järjestämisalgoritmeja, jotka perustuvat muihin kuin vertailuun alkioiden oikean järjestyksen saamiseksi.

Lisätiedot

On annettu jono lukuja tai muita alkioita, joiden välille on määritelty suuruusjärjestys. Tehtävänä on saattaa alkiot suuruusjärjestykseen.

On annettu jono lukuja tai muita alkioita, joiden välille on määritelty suuruusjärjestys. Tehtävänä on saattaa alkiot suuruusjärjestykseen. 6. Järjestäminen On annettu jono lukuja tai muita alkioita, joiden välille on määritelty suuruusjärjestys. Tehtävänä on saattaa alkiot suuruusjärjestykseen. Tämä on eräs klassisimpia tietojenkäsittelyongelmia,

Lisätiedot

TKT20001 Tietorakenteet ja algoritmit Erilliskoe , malliratkaisut (Jyrki Kivinen)

TKT20001 Tietorakenteet ja algoritmit Erilliskoe , malliratkaisut (Jyrki Kivinen) TKT0001 Tietorakenteet ja algoritmit Erilliskoe 5.1.01, malliratkaisut (Jyrki Kivinen) 1. [1 pistettä] (a) Esitä algoritmi, joka poistaa kahteen suuntaan linkitetystä järjestämättömästä tunnussolmullisesta

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, , vastauksia

58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, , vastauksia 58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, 652013, vastauksia 1 [6 pistettä] Vastaa jokaisesta alla olevasta väittämästä onko se tosi vai epätosi ja anna lyhyt perustelu Jokaisesta kohdasta

Lisätiedot

Hakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina

Hakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina Hakupuut tässä luvussa tarkastelemme puita tiedon tallennusrakenteina hakupuun avulla voidaan toteuttaa kaikki joukko-tietotyypin operaatiot (myös succ ja pred) pahimman tapauksen aikavaativuus on tavallisella

Lisätiedot

v 1 v 2 v 3 v 4 d lapsisolmua d 1 avainta lapsen v i alipuun avaimet k i 1 ja k i k 0 =, k d = Sisäsolmuissa vähint. yksi avain vähint.

v 1 v 2 v 3 v 4 d lapsisolmua d 1 avainta lapsen v i alipuun avaimet k i 1 ja k i k 0 =, k d = Sisäsolmuissa vähint. yksi avain vähint. Yleiset hakupuut 4 Monitiehakupuu: Binäärihakupuu 0 1 3 5 6 7 8 v k 1 k k 3 v v 3 v 4 k 1 k 3 k 1 k k k 3 d lapsisolmua d 1 avainta Yleinen hakupuu? Tietorakenteet, syksy 007 1 Esimerkki monitiehakupuusta

Lisätiedot

Algoritmit 2. Luento 2 Ke Timo Männikkö

Algoritmit 2. Luento 2 Ke Timo Männikkö Algoritmit 2 Luento 2 Ke 15.3.2017 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2017 Luento

Lisätiedot

Tietorakenteet, laskuharjoitus 10, ratkaisuja. 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:

Tietorakenteet, laskuharjoitus 10, ratkaisuja. 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] = = T [i + 1] 4 return True 5

Lisätiedot

Algoritmit 2. Luento 2 To Timo Männikkö

Algoritmit 2. Luento 2 To Timo Männikkö Algoritmit 2 Luento 2 To 14.3.2019 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2019 Luento

Lisätiedot

Algoritmit 2. Luento 7 Ti Timo Männikkö

Algoritmit 2. Luento 7 Ti Timo Männikkö Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26

Lisätiedot

A TIETORAKENTEET JA ALGORITMIT

A TIETORAKENTEET JA ALGORITMIT A274105 TIETORAKENTEET JA ALGORITMIT HARJOITUSTEHTÄVÄT 6 DEADLINE 1.4.2009 KLO 9:00 Kynätehtävät tehdään kirjallisesti ja esitetään harjoituksissa. Välivaiheet näkyviin! Ohjelmointitehtävät sähköisesti

Lisätiedot

Tietorakenteet ja algoritmit - syksy 2015 1

Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 2 Tietorakenteet ja algoritmit Johdanto Ari Korhonen Tietorakenteet ja algoritmit - syksy 2015 1. JOHDANTO 1.1 Määritelmiä

Lisätiedot

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari 1 1. JOHDANTO 1.1 Määritelmiä 1.2 Tietorakenteen ja algoritmin valinta 1.3 Algoritmit ja tiedon määrä 1.4 Tietorakenteet ja toiminnot 1.5 Esimerkki:

Lisätiedot

Kierros 2: Järjestämisalgoritmeja

Kierros 2: Järjestämisalgoritmeja Kierros : Järjestämisalgoritmeja Tommi Junttila Aalto University School of Science Department of Computer Science CS-A4 Data Structures and Algorithms Autumn 7 Tommi Junttila (Aalto University) Kierros

Lisätiedot

Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö

Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö Algoritmit 1 Luento 14 Ke 25.2.2015 Timo Männikkö Luento 14 Heuristiset menetelmät Heuristiikkoja kapsäkkiongelmalle Kauppamatkustajan ongelma Lähimmän naapurin menetelmä Kertaus ja tenttivinkit Algoritmit

Lisätiedot

A TIETORAKENTEET JA ALGORITMIT

A TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT LISÄÄ JÄRJESTÄMISESTÄ JÄRJESTÄMISEN TEORIAA Inversio taulukossa a[] on lukupari (a[i],a[j]) siten, että i < j mutta a[i] > a[j] Esimerkki Taulukko a[] = [2, 4, 1, 3]

Lisätiedot

Algoritmit 2. Luento 5 Ti Timo Männikkö

Algoritmit 2. Luento 5 Ti Timo Männikkö Algoritmit 2 Luento 5 Ti 28.3.2017 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot Algoritmit 2 Kevät 2017 Luento 5 Ti 28.3.2017 2/29 B-puu Algoritmit 2 Kevät 2017 Luento 5 Ti

Lisätiedot

Tietorakenteet ja algoritmit. Järjestäminen. Ari Korhonen

Tietorakenteet ja algoritmit. Järjestäminen. Ari Korhonen Tietorakenteet ja algoritmit Järjestäminen Ari Korhonen 6.10.2015 1 6. Järjestäminen (sor0ng) 6.1 Johdanto 6.2 Yksinkertaiset menetelmät 6.2.1 Valintajärjestäminen 6.2.2 Lisäysjärjestäminen 6.3 Lomitusjärjestäminen

Lisätiedot

CS-A1140 Tietorakenteet ja algoritmit

CS-A1140 Tietorakenteet ja algoritmit CS-A1140 Tietorakenteet ja algoritmit Kierros 2: Järjestämisalgoritmeja Tommi Junttila Aalto-yliopisto Perustieteiden korkeakoulu Tietotekniikan laitos Syksy 2016 Materiaali Kirjassa Introduction to Algorithms,

Lisätiedot

Algoritmit 1. Luento 5 Ti Timo Männikkö

Algoritmit 1. Luento 5 Ti Timo Männikkö Algoritmit 1 Luento 5 Ti 24.1.2017 Timo Männikkö Luento 5 Järjestetty lista Järjestetyn listan operaatiot Listan toteutus taulukolla Binäärihaku Binäärihaun vaativuus Algoritmit 1 Kevät 2017 Luento 5 Ti

Lisätiedot

Algoritmit 1. Luento 3 Ti Timo Männikkö

Algoritmit 1. Luento 3 Ti Timo Männikkö Algoritmit 1 Luento 3 Ti 17.1.2017 Timo Männikkö Luento 3 Algoritmin analysointi Rekursio Lomituslajittelu Aikavaativuus Tietorakenteet Pino Algoritmit 1 Kevät 2017 Luento 3 Ti 17.1.2017 2/27 Algoritmien

Lisätiedot

TIE Tietorakenteet ja algoritmit 1. TIE Tietorakenteet ja algoritmit

TIE Tietorakenteet ja algoritmit 1. TIE Tietorakenteet ja algoritmit TIE-20100 Tietorakenteet ja algoritmit 1 TIE-20100 Tietorakenteet ja algoritmit TIE-20100 Tietorakenteet ja algoritmit 2 Lähteet Luentomoniste pohjautuu vahvasti prof. Antti Valmarin vanhaan luentomonisteeseen

Lisätiedot

Tietorakenteet, laskuharjoitus 7, ratkaisuja

Tietorakenteet, laskuharjoitus 7, ratkaisuja Tietorakenteet, laskuharjoitus, ratkaisuja. Seuraava kuvasarja näyttää B + -puun muutokset lisäysten jälkeen. Avaimet ja 5 mahtuvat lehtisolmuihin, joten niiden lisäys ei muuta puun rakennetta. Avain 9

Lisätiedot

4 Tehokkuus ja algoritmien suunnittelu

4 Tehokkuus ja algoritmien suunnittelu TIE-20100 Tietorakenteet ja algoritmit 52 4 Tehokkuus ja algoritmien suunnittelu Tässä luvussa pohditaan tehokkuuden käsitettä ja esitellään kurssilla käytetty kertaluokkanotaatio, jolla kuvataan algoritmin

Lisätiedot

58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen)

58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen) 58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen) 1. Lisäysjärjestämisessä järjestetään ensin taulukon kaksi ensimmäistä lukua, sitten kolme ensimmäistä lukua, sitten neljä ensimmäistä

Lisätiedot

useampi ns. avain (tai vertailuavain) esim. opiskelijaa kuvaavassa alkiossa vaikkapa opintopistemäärä tai opiskelijanumero

useampi ns. avain (tai vertailuavain) esim. opiskelijaa kuvaavassa alkiossa vaikkapa opintopistemäärä tai opiskelijanumero Alkioiden avaimet Usein tietoalkioille on mielekästä määrittää yksi tai useampi ns. avain (tai vertailuavain) esim. opiskelijaa kuvaavassa alkiossa vaikkapa opintopistemäärä tai opiskelijanumero 80 op

Lisätiedot

Algoritmit 1. Luento 12 Ke Timo Männikkö

Algoritmit 1. Luento 12 Ke Timo Männikkö Algoritmit 1 Luento 12 Ke 15.2.2017 Timo Männikkö Luento 12 Pikalajittelu Pikalajittelun vaativuus Osittamisen tasapainoisuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu

Lisätiedot

Algoritmit 2. Luento 5 Ti Timo Männikkö

Algoritmit 2. Luento 5 Ti Timo Männikkö Algoritmit 2 Luento 5 Ti 26.3.2019 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot B-puun muunnelmia Algoritmit 2 Kevät 2019 Luento 5 Ti 26.3.2019 2/34 B-puu B-puut ovat tasapainoisia

Lisätiedot

Olkoon S(n) kutsun merge-sort(a, p, q) tilavaativuus kun p q + 1 = n. Oletetaan merge toteutetuksi vakiotyötilassa (ei-triviaalia mutta mahdollista).

Olkoon S(n) kutsun merge-sort(a, p, q) tilavaativuus kun p q + 1 = n. Oletetaan merge toteutetuksi vakiotyötilassa (ei-triviaalia mutta mahdollista). Esimerkki Lomitusjärjestäminen merge-sort(a, p, q): var k % paikallinen muuttuja, vakiotila 1. if p < q then 2. r := (p + q)/2 3. merge-sort(a, p, r) 4. merge-sort(a, r + 1, q) 5. merge(a, p, r, q) Olkoon

Lisätiedot

Algoritmit 1. Luento 10 Ke Timo Männikkö

Algoritmit 1. Luento 10 Ke Timo Männikkö Algoritmit 1 Luento 10 Ke 14.2.2018 Timo Männikkö Luento 10 Algoritminen ongelmanratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Lisäyslajittelu Valintalajittelu Permutaatiot

Lisätiedot

ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2

ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2 Johdatus diskreettiin matematiikkaan Harjoitus 4, 7.10.2015 1. Olkoot c 0, c 1 R siten, että polynomilla r 2 c 1 r c 0 on kaksinkertainen juuri. Määritä rekursioyhtälön x n+2 = c 1 x n+1 + c 0 x n, n N,

Lisätiedot

Algoritmit 1. Luento 12 Ti Timo Männikkö

Algoritmit 1. Luento 12 Ti Timo Männikkö Algoritmit 1 Luento 12 Ti 19.2.2019 Timo Männikkö Luento 12 Osittamisen tasapainoisuus Pikalajittelun vaativuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu Algoritmit

Lisätiedot

AVL-puut. eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta

AVL-puut. eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta AVL-puut eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta pohjana jo esitetyt binäärihakupuiden operaatiot tasapainotus vie pahimmillaan lisäajan lisäys- ja

Lisätiedot

lähtokohta: kahden O(h) korkuisen keon yhdistäminen uudella juurella vie O(h) operaatiota vrt. RemoveMinElem() keossa

lähtokohta: kahden O(h) korkuisen keon yhdistäminen uudella juurella vie O(h) operaatiota vrt. RemoveMinElem() keossa Kekolajittelu Prioriteettijonolla toteutettu keko InsertItem ja RemoveMinElem: O(log(n)) Lajittelu prioriteettijonolla: PriorityQueueSort(lajiteltava sekvenssi S) alusta prioriteettijono P while S.IsEmpty()

Lisätiedot

TIE Tietorakenteet ja algoritmit 25

TIE Tietorakenteet ja algoritmit 25 TIE-20100 Tietorakenteet ja algoritmit 25 Tällä kurssilla keskitytään algoritmien ideoihin ja algoritmit esitetään useimmiten pseudokoodina ilman laillisuustarkistuksia, virheiden käsittelyä yms. Otetaan

Lisätiedot

Binäärihaun vertailujärjestys

Binäärihaun vertailujärjestys Järjestetyn sanakirjan tehokas toteutus: binäärihaku Binäärihaku (esimerkkikuassa aain = nimi) op Eea 5 op 5 op op 8 op 5 6 7 8 op Eea 5 op 5 op op 8 op 5 6 7 8 op Eea 5 op 5 op op 8 op 5 6 7 8 op Eea

Lisätiedot

4. Joukkojen käsittely

4. Joukkojen käsittely 4 Joukkojen käsittely Tämän luvun jälkeen opiskelija osaa soveltaa lomittuvien kasojen operaatioita tuntee lomittuvien kasojen toteutuksen binomi- ja Fibonacci-kasoina sekä näiden totetutusten analyysiperiaatteet

Lisätiedot

Algoritmien suunnittelu ja analyysi (kevät 2004) 1. välikoe, ratkaisuja

Algoritmien suunnittelu ja analyysi (kevät 2004) 1. välikoe, ratkaisuja 58053-7 Algoritmien suunnittelu ja analyysi (kevät 2004) 1. välikoe, ratkaisuja Malliratkaisut ja pisteytysohje: Jyrki Kivinen Tentin arvostelu: Jouni Siren (tehtävät 1 ja 2) ja Jyrki Kivinen (tehtävät

Lisätiedot

Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia

Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Kukin alkio (viite) talletettuna solmuun (node) vastaa paikan käsitettä

Lisätiedot

Tämä on helpompi ymmärtää, kun tulkitaan keko täydellisesti tasapainotetuksi binääripuuksi, jonka juuri on talletettu taulukon paikkaan

Tämä on helpompi ymmärtää, kun tulkitaan keko täydellisesti tasapainotetuksi binääripuuksi, jonka juuri on talletettu taulukon paikkaan TIE-20100 Tietorakenteet ja algoritmit 178 Keko Taulukko A[1... n] on keko, jos A[i] A[2i] ja A[i] A[2i + 1] aina kun 1 i n 2 (ja 2i + 1 n). Tämä on helpompi ymmärtää, kun tulkitaan keko täydellisesti

Lisätiedot

V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen

V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen Luento omatoimisen luennan tueksi algoritmiikan tutkimusseminaarissa 23.9.2002. 1 Sisältö Esitellään ongelmat Steiner-puu Kauppamatkustajan

Lisätiedot

Algoritmit 2. Luento 6 Ke Timo Männikkö

Algoritmit 2. Luento 6 Ke Timo Männikkö Algoritmit 2 Luento 6 Ke 29.3.2017 Timo Männikkö Luento 6 B-puun operaatiot B-puun muunnelmia Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2017 Luento 6 Ke 29.3.2017 2/31 B-puu

Lisätiedot

Miten käydä läpi puun alkiot (traversal)?

Miten käydä läpi puun alkiot (traversal)? inääripuut ieman lisää aidon binääripuun ominaisuuksia lehtisolmuja on yksi enemmän kuin sisäsolmuja inääripuut tasolla d on korkeintaan 2 d solmua pätee myös epäaidolle binääripuulle taso 0: 2 0 = 1 solmu

Lisätiedot

58131 Tietorakenteet ja algoritmit (syksy 2015) Toinen välikoe, malliratkaisut

58131 Tietorakenteet ja algoritmit (syksy 2015) Toinen välikoe, malliratkaisut Tietorakenteet ja algoritmit (syksy 0) Toinen välikoe, malliratkaisut. (a) Alussa puu näyttää tältä: Lisätään 4: 4 Tasapaino rikkoutuu solmussa. Tehdään kaksoiskierto ensin oikealle solmusta ja sitten

Lisätiedot

Tiraka, yhteenveto tenttiinlukua varten

Tiraka, yhteenveto tenttiinlukua varten Tiraka, yhteenveto tenttiinlukua varten TERMEJÄ Tietorakenne Tietorakenne on tapa tallettaa tietoa niin, että tietoa voidaan lisätä, poistaa, muokata ja hakea. Tietorakenteet siis säilövät tiedon niin,

Lisätiedot

Algoritmit 1. Luento 8 Ke Timo Männikkö

Algoritmit 1. Luento 8 Ke Timo Männikkö Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 1 25.-26.1.2017 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka laskee kahden kokonaisluvun välisen jakojäännöksen käyttämättä lainkaan jakolaskuja Jaettava m, jakaja n Vähennetään luku

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia 58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli

Lisätiedot

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 1.1. (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m,

Lisätiedot

3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin.

3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin. 3. Hakupuut Hakupuu on listaa tehokkaampi dynaamisen joukon toteutus. Erityisesti suurilla tietomäärillä hakupuu kannattaa tasapainottaa, jolloin päivitysoperaatioista tulee hankalampia toteuttaa mutta

Lisätiedot

Anna Kuikka Pyöräkatu 9 B Kuopio GSM: Opiskelijanro: 60219K. Prioriteettijonot

Anna Kuikka Pyöräkatu 9 B Kuopio GSM: Opiskelijanro: 60219K. Prioriteettijonot Anna Kuikka Pyöräkatu 9 B 68 70600 Kuopio GSM: 040-734 9266 akuikka@cc.hut.fi Opiskelijanro: 60219K Prioriteettijonot PRIORITEETTIJONOT...1 1. JOHDANTO...3 2. TOTEUTUKSET...3 1.2 Keon toteutus...4 1.3

Lisätiedot

Algoritmit 2. Luento 4 Ke Timo Männikkö

Algoritmit 2. Luento 4 Ke Timo Männikkö Algoritmit 2 Luento 4 Ke 22.3.2017 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2017 Luento 4

Lisätiedot

811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit

811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit 811312A Tietorakenteet ja algoritmit 2015-2016 V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit Sisältö 1. Johdanto 2. Leveyshaku 3. Syvyyshaku 4. Kruskalin algoritmi 5. Dijkstran algoritmi

Lisätiedot

TAMPEREEN TEKNILLINEN YLIOPISTO

TAMPEREEN TEKNILLINEN YLIOPISTO TAMPEREEN TEKNILLINEN YLIOPISTO Digitaali- ja Tietokonetekniikan laitos TKT-3200 Tietokonetekniikka ASSEMBLER: QSORT 11.08.2010 Ryhmä 00 nimi1 email1 opnro1 nimi2 email2 opnro2 nimi3 email3 opnro3 1. TEHTÄVÄ

Lisätiedot

Tietorakenteet, laskuharjoitus 3, ratkaisuja

Tietorakenteet, laskuharjoitus 3, ratkaisuja Tietorakenteet, laskuharjoitus 3, ratkaisuja 1. (a) Toistolauseen runko-osassa tehdään yksi laskuoperaatio, runko on siis vakioaikainen. Jos syöte on n, suoritetaan runko n kertaa, eli aikavaativuus kokonaisuudessaan

Lisätiedot

Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003

Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003 Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003 Matti Nykänen 5. joulukuuta 2003 1 Satelliitit Muunnetaan luennoilla luonnosteltua toteutusta seuraavaksi: Korvataan puusolmun p kentät p. key ja

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT PUURAKENTEET, BINÄÄRIPUU, TASAPAINOTETUT PUUT MIKÄ ON PUUTIETORAKENNE? Esim. Viereinen kuva esittää erästä puuta. Tietojenkäsittelytieteessä puut kasvavat alaspäin.

Lisätiedot

58131 Tietorakenteet ja algoritmit Uusinta- ja erilliskoe malliratkaisut ja arvosteluperusteet

58131 Tietorakenteet ja algoritmit Uusinta- ja erilliskoe malliratkaisut ja arvosteluperusteet 58131 Tietorakenteet ja algoritmit Uusinta- ja erilliskoe 15.6.2018 malliratkaisut ja arvosteluperusteet 1. [10 pistettä] Hakemistorakenteet. Vertaa linkitettyjen listojen, tasapainoisten hakupuiden ja

Lisätiedot

Algoritmit 2. Demot Timo Männikkö

Algoritmit 2. Demot Timo Männikkö Algoritmit 2 Demot 1 27.-28.3.2019 Timo Männikkö Tehtävä 1 (a) 4n 2 + n + 4 = O(n 2 ) c, n 0 > 0 : 0 4n 2 + n + 4 cn 2 n n 0 Vasen aina tosi Oikea tosi, jos (c 4)n 2 n 4 0, joten oltava c > 4 Kokeillaan

Lisätiedot

8. Lajittelu, joukot ja valinta

8. Lajittelu, joukot ja valinta 8. Lajittelu, joukot ja valinta Yksi tietojenkäsittelyn klassisista tehtävistä on lajittelu (järjestäminen) (sorting) jo mekaanisten tietojenkäsittelylaitteiden ajalta. Lajiteltua tietoa tarvitaan lukemattomissa

Lisätiedot

Algoritmit 1. Luento 2 Ke Timo Männikkö

Algoritmit 1. Luento 2 Ke Timo Männikkö Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät

Lisätiedot

Paikkatiedon käsittely 5. Paikkatiedon indeksointi

Paikkatiedon käsittely 5. Paikkatiedon indeksointi HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Paikkatiedon käsittely 5. Paikkatiedon indeksointi Antti Leino antti.leino@cs.helsinki.fi 29.1.2007 Tietojenkäsittelytieteen laitos Mistä

Lisätiedot

Algoritmit 2. Luento 3 Ti Timo Männikkö

Algoritmit 2. Luento 3 Ti Timo Männikkö Algoritmit 2 Luento 3 Ti 21.3.2017 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2017 Luento 3 Ti 21.3.2017

Lisätiedot

TAMPEREEN TEKNILLINEN YLIOPISTO

TAMPEREEN TEKNILLINEN YLIOPISTO TAMPEREEN TEKNILLINEN YLIOPISTO Digitaali- ja Tietokonetekniikan laitos TKT-3200 Tietokonetekniikka ASSEMBLER: QSORT 06.09.2005 Ryhmä 00 nimi1 email1 opnro1 nimi2 email2 opnro2 nimi3 email3 opnro3 1. TEHTÄVÄ

Lisätiedot

Algoritmit 1. Luento 6 Ke Timo Männikkö

Algoritmit 1. Luento 6 Ke Timo Männikkö Algoritmit 1 Luento 6 Ke 25.1.2017 Timo Männikkö Luento 6 Järjestetty lista Listan toteutus dynaamisesti Linkitetyn listan operaatiot Vaihtoehtoisia listarakenteita Puurakenteet Binääripuu Järjestetty

Lisätiedot

Algoritmit 2. Luento 3 Ti Timo Männikkö

Algoritmit 2. Luento 3 Ti Timo Männikkö Algoritmit 2 Luento 3 Ti 20.3.2018 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2018 Luento 3 Ti 20.3.2018

Lisätiedot

Ongelma 1: Ovatko kaikki tehtävät/ongelmat deterministisiä?

Ongelma 1: Ovatko kaikki tehtävät/ongelmat deterministisiä? Ongelma 1: Ovatko kaikki tehtävät/ongelmat deterministisiä? 2013-2014 Lasse Lensu 2 Ongelma 2: Milloin ongelmat muuttuvat oikeasti hankaliksi? 2013-2014 Lasse Lensu 3 Ongelma 3: Miten hankalia ongelmia

Lisätiedot

58131 Tietorakenteet ja algoritmit Uusinta- ja erilliskoe ratkaisuja (Jyrki Kivinen)

58131 Tietorakenteet ja algoritmit Uusinta- ja erilliskoe ratkaisuja (Jyrki Kivinen) 58131 Tietorakenteet ja algoritmit Uusinta- ja erilliskoe 12.9.2018 ratkaisuja (Jyrki Kivinen) 1. [10 pistettä] Iso-O-merkintä. (a) Pitääkö paikkansa, että n 3 + 5 = O(n 3 )? Ratkaisu: Pitää paikkansa.

Lisätiedot

Ongelma 1: Ovatko kaikki tehtävät/ongelmat deterministisiä?

Ongelma 1: Ovatko kaikki tehtävät/ongelmat deterministisiä? Ongelma 1: Ovatko kaikki tehtävät/ongelmat deterministisiä? 2012-2013 Lasse Lensu 2 Ongelma 2: Milloin ongelmat muuttuvat oikeasti hankaliksi? 2012-2013 Lasse Lensu 3 Ongelma 3: Miten hankalia ongelmia

Lisätiedot

Luku 4. Tietorakenteet funktio-ohjelmoinnissa. 4.1 Äärelliset kuvaukset

Luku 4. Tietorakenteet funktio-ohjelmoinnissa. 4.1 Äärelliset kuvaukset Luku 4 Tietorakenteet funktio-ohjelmoinnissa Koska funktio-ohjelmoinnissa ei käytetä tuhoavaa päivitystä (sijoituslausetta ja sen johdannaisia), eivät läheskään kaikki valtavirtaohjelmoinnista tutut tietorakenteet

Lisätiedot

58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen)

58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen) 58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen) 1. Avaimet 1, 2, 3 ja 4 mahtuvat samaan lehtisolmuun. Tässä tapauksessa puussa on vain yksi solmu, joka on samaan aikaan juurisolmu

Lisätiedot

Algoritmit 1. Luento 11 Ti Timo Männikkö

Algoritmit 1. Luento 11 Ti Timo Männikkö Algoritmit 1 Luento 11 Ti 14.2.2017 Timo Männikkö Luento 11 Algoritminen ongelmanratkaisu Osittaminen Lomituslajittelu Lomituslajittelun vaativuus Rekursioyhtälöt Pikalajittelu Algoritmit 1 Kevät 2017

Lisätiedot

Algoritmit 1. Luento 7 Ti Timo Männikkö

Algoritmit 1. Luento 7 Ti Timo Männikkö Algoritmit 1 Luento 7 Ti 31.1.2017 Timo Männikkö Luento 7 Järjestetty binääripuu Binääripuiden termejä Binääripuiden operaatiot Solmun haku, lisäys, poisto Algoritmit 1 Kevät 2017 Luento 7 Ti 31.1.2017

Lisätiedot

2.3 Keskimääräisen tapauksen analyysi

2.3 Keskimääräisen tapauksen analyysi 2.3 Keskimääräisen tapauksen analyysi Muistetaan T ave (n) = x =n P n (x)t (x) missä x on tapauksen x koko ja P n jakauma kokoa n oleville tapauksille. Siis T ave (n) on satunnaismuuttujan T (x) odotusarvo

Lisätiedot

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] == T [i + 1] 4 return True 5 return

Lisätiedot

1 Erilaisia tapoja järjestää

1 Erilaisia tapoja järjestää TIE-20100 Tietorakenteet ja algoritmit 1 1 Erilaisia tapoja järjestää Käsitellään seuraavaksi järjestämisalgoritmeja, jotka perustuvat muihin kuin vertailuun alkioiden oikean järjestyksen saamiseksi. Lisäksi

Lisätiedot

1 Puu, Keko ja Prioriteettijono

1 Puu, Keko ja Prioriteettijono TIE-20100 Tietorakenteet ja algoritmit 1 1 Puu, Keko ja Prioriteettijono Tässä luvussa käsitellään algoritmien suunnitteluperiaatetta muunna ja hallitse (transform and conquer) Lisäksi esitellään binääripuun

Lisätiedot

58131 Tietorakenteet Erilliskoe , ratkaisuja (Jyrki Kivinen)

58131 Tietorakenteet Erilliskoe , ratkaisuja (Jyrki Kivinen) 58131 Tietorakenteet Erilliskoe 11.11.2008, ratkaisuja (Jyrki Kivinen) 1. (a) Koska halutaan DELETEMAX mahdollisimman nopeaksi, käytetään järjestettyä linkitettyä listaa, jossa suurin alkio on listan kärjessä.

Lisätiedot

Algoritmien suunnittelu ja analyysi

Algoritmien suunnittelu ja analyysi Algoritmien suunnittelu ja analyysi luennot kevätlukukaudella 2004 Jyrki Kivinen 58053-7 Algoritmien suunnittelu ja analyysi, 5 ov tietojenkäsittelytieteen laudatur-kurssi pakollinen algoritmien erikoistumislinjalla

Lisätiedot

14 Tasapainotetut puurakenteet

14 Tasapainotetut puurakenteet TIE-20100 Tietorakenteet ja algoritmit 308 14 Tasapainotetut puurakenteet Binäärihakupuu toteuttaa kaikki dynaamisen joukon operaatiot O(h) ajassa Kääntöpuolena on, että puu voi joskus litistyä listaksi,

Lisätiedot

1.4 Funktioiden kertaluokat

1.4 Funktioiden kertaluokat 1.4 Funktioiden kertaluokat f on kertaluokkaa O(g), merk. f = O(g), jos joillain c > 0, m N pätee f(n) cg(n) aina kun n m f on samaa kertaluokkaa kuin g, merk. f = Θ(g), jos joillain a, b > 0, m N pätee

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

5 Kertaluokkamerkinnät

5 Kertaluokkamerkinnät TIE-20100 Tietorakenteet ja algoritmit 75 5 Kertaluokkamerkinnät Tässä luvussa käsitellään asymptoottisessa analyysissa käytettyjä matemaattisia merkintätapoja Määritellään tarkemmin Θ, sekä kaksi muuta

Lisätiedot

3. Binääripuu, Java-toteutus

3. Binääripuu, Java-toteutus 3. Binääripuu, Java-toteutus /*-------------------------------------------------------------/ / Rajapinta SearchTree: binäärisen hakupuun käsittelyrajapinta / / Metodit: / / void insert( Comparable x );

Lisätiedot

7. Tasapainoitetut hakupuut

7. Tasapainoitetut hakupuut 7. Tasapainoitetut hakupuut Tässä luvussa jatketaan järjestetyn sanakirjan tarkastelua esittämällä kehittynyt puutietorakenne. Luvussa 7.1. esitetään monitiehakupuun käsite. Se on järjestetty puu, jonka

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT ALGORITMIEN ANALYYSISTÄ 1.ratkaisu Laskentaaika hakkeri - optimoitu ALGORITMIANALYYSIÄ hyvä algoritmi hakkeri -optimoitu hyvä algoritmi Tehtävän koko Kuva mukailtu

Lisätiedot

Kierros 4: Binäärihakupuut

Kierros 4: Binäärihakupuut Kierros 4: Binäärihakupuut Tommi Junttila Aalto University School of Science Department of Computer Science CS-A1140 Data Structures and Algorithms Autumn 2017 Tommi Junttila (Aalto University) Kierros

Lisätiedot

Tietorakenteet ja algoritmit Hakurakenteet Ari Korhonen

Tietorakenteet ja algoritmit Hakurakenteet Ari Korhonen Tietorakenteet ja algoritmit Hakurakenteet Ari Korhonen 27.10. & 3.11.2015 Tietorakenteet ja algoritmit - syksy 2015 1 8. HAKURAKENTEET (dictionaries) 8.1 Haku (vrt. sanakirjahaku) 8.2 Listat tallennusrakenteina

Lisätiedot

Tietotekniikan laitos T /1223 Tietorakenteet ja algoritmit T/Y

Tietotekniikan laitos T /1223 Tietorakenteet ja algoritmit T/Y Aalto-yliopiston teknillinen korkeakoulu 11.5.2010 TENTIN ARVIOINTIOHJE Tietotekniikan laitos 12.5.2010 T-106.1220/1223 Tietorakenteet ja algoritmit T/Y Tämä arviointiohje pyrkii luonnehtimaan millaisista

Lisätiedot

Luentorunko keskiviikolle Hierarkkinen ryvästäminen

Luentorunko keskiviikolle Hierarkkinen ryvästäminen Luentorunko keskiviikolle 3.12.2008 Hierarkkinen ryvästäminen Ryvästyshierarkia & dendrogrammi Hierarkkinen ryvästäminen tuottaa yhden ryvästyksen sijasta sarjan ryvästyksiä Tulos voidaan visualisoida

Lisätiedot

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n))

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n)) Määritelmä: on O(g(n)), jos on olemassa vakioarvot n 0 > 0 ja c > 0 siten, että c g(n) kun n > n 0 O eli iso-o tai ordo ilmaisee asymptoottisen ylärajan resurssivaatimusten kasvun suuruusluokalle Samankaltaisia

Lisätiedot

Silmukkaoptimoinnista

Silmukkaoptimoinnista sta TIE448 Kääntäjätekniikka, syksy 2009 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 8. joulukuuta 2009 Sisällys Sisällys Seuraava deadline Vaihe F maanantai 14.12. klo 12 rekisteriallokaatio Arvostelukappale

Lisätiedot

Alaraja vertailuihin perustuvalle järjestämiselle

Alaraja vertailuihin perustuvalle järjestämiselle Alaraja vertailuihin perustuvalle järjestämiselle Edellä esitetyt järjestämisalgoritmit ovat kaikki vertailuihin perustuvia: ne käsittelevät järjestettäviä arvoja vain testaamalla järjestysehtoja A[i]

Lisätiedot

Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö

Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö Algoritmit 1 Luento 10 Ke 11.2.2015 Timo Männikkö Luento 10 Algoritminen ongelman ratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Väliinsijoituslajittelu Valintalajittelu

Lisätiedot

TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA)

TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA) JOHDATUS TEKOÄLYYN TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA) KONEOPPIMISEN LAJIT OHJATTU OPPIMINEN: - ESIMERKIT OVAT PAREJA (X, Y), TAVOITTEENA ON OPPIA ENNUSTAMAAN Y ANNETTUNA X.

Lisätiedot

Algoritmit 2. Luento 6 To Timo Männikkö

Algoritmit 2. Luento 6 To Timo Männikkö Algoritmit 2 Luento 6 To 28.3.2019 Timo Männikkö Luento 6 B-puun operaatiot Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2019 Luento 6 To 28.3.2019 2/30 B-puu 40 60 80 130 90 100

Lisätiedot

private TreeMap<String, Opiskelija> nimella; private TreeMap<String, Opiskelija> numerolla;

private TreeMap<String, Opiskelija> nimella; private TreeMap<String, Opiskelija> numerolla; Tietorakenteet, laskuharjoitus 7, ratkaisuja 1. Opiskelijarekisteri-luokka saadaan toteutetuksi käyttämällä kahta tasapainotettua binäärihakupuuta. Toisen binäärihakupuun avaimina pidetään opiskelijoiden

Lisätiedot

2) Aliohjelma, jonka toiminta perustuu sivuvaikutuksiin: aliohjelma muuttaa parametrejaan tai globaaleja muuttujia, tulostaa jotakin jne.

2) Aliohjelma, jonka toiminta perustuu sivuvaikutuksiin: aliohjelma muuttaa parametrejaan tai globaaleja muuttujia, tulostaa jotakin jne. Proseduurit Proseduuri voi olla 1) Funktio, joka palauttaa jonkin arvon: real function sinc(x) real x sinc = sin(x)/x... y = sinc(1.5) 2) Aliohjelma, jonka toiminta perustuu sivuvaikutuksiin: aliohjelma

Lisätiedot