Liitosesimerkki Tietokannan hallinta, kevät 2006, J.Li 1
|
|
- Elina Halonen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Liitosesimerkki Tietokannan hallinta, kevät 2006, J.Li 1
2 Esim R1 R2 yhteinen attribuutti C T(R1) = 10,000 riviä T(R2) = 5,000 riviä S(R1) = S(R2) = 1/10 lohkoa Puskuritilaa = 101 lohkoa Tietokannan hallinta, kevät 2006, J.Li 2
3 Vaihtoehdot Liitosjärjestys: R1 R2, R2 R1 Liitosalgoritmit: Sisäkkäiset silmukat Sort merge liitos Hakemistoliitos Hajautusliitos Tietokannan hallinta, kevät 2006, J.Li 3
4 Sisäkkäiset silmukat for each r R1 do for each s R2 do if r.c = s.c then output {r,s} pair Tietokannan hallinta, kevät 2006, J.Li 4
5 Sort merge liitos (1) Jos R1 tai R2 ei ole lajiteltu, lajittele se (2) i 1; j 1; While (i T(R1)) (j T(R2)) do if R1{ i }.C = R2{ j }.C then outputtuples else if R1{ i }.C > R2{ j }.C then j j+1 else if R1{ i }.C < R2{ j }.C then i i Tietokannan hallinta, kevät 2006, J.Li 5
6 Procedure Output Tuples While (R1{ i }.C = R2{ j }.C) (i T(R1)) do [jj j; while (R1{ i }.C = R2{ jj }.C) (jj T(R2)) do [output pair R1{ i }, R2{ jj }; jj jj+1 ] i i+1 ] Tietokannan hallinta, kevät 2006, J.Li 6
7 Esimerkki i R1{i}.C R2{j}.C j Tietokannan hallinta, kevät 2006, J.Li 7
8 Hakemistoliitos For each r R1 do [ X index (R2, C, r.c) Oletus R2.C hakemistossa for each s X do output {r,s} pair] Huom: X index(rel, attr, value) then X = set of rel tuples with attr = value Tietokannan hallinta, kevät 2006, J.Li 8
9 Hajautusliitos Hajautusfunktio h, arvoalue 0 k Solut R1: G0, G1,... Gk Solut R2: H0, H1,... Hk Algoritmi (1) Hajauta R1 tietueet soluihin G (2) Hajauta R2 tietueet soluihin H (3) For i = 0 to k do vertaa tietueita soluissa Gi, Hi Tietokannan hallinta, kevät 2006, J.Li 9
10 Esimerkkihajautus R1 R2 Solut 2 5 Parilliset 4 4 R1 R Parittomat Tietokannan hallinta, kevät 2006, J.Li 10
11 Esim 1(a): sisäkkäiset silmukat R1 R2 Relaatiot eivät ole peräkkäisiä T(R1) = 10,000 T(R2) = 5,000 S(R1) = S(R2) =1/10 lohkoa Muistia=101 lohkoa Kustannus: jokaiselle R1:n tietueelle [lue tietue + lue R2] Yhteensä =10,000 [1+5000]=50,010,000 I/O:ta Tietokannan hallinta, kevät 2006, J.Li 11
12 Voidaanko tehdä paremmin? Käytetään muistia (1) Luetaan 100 lohkoa R:tä (2) Luetaan kokonaan R2 (1 lohko) + liitos (3) Toistetaan kunnes valmista Tietokannan hallinta, kevät 2006, J.Li 12
13 Kustannus: jokaiselle R1 lohkolle Lue lohkot: 1000 IOs Lue R2: 5000 IOs 6000 Yht = 10,000 x 6000 = 60,000 IOs 1, Tietokannan hallinta, kevät 2006, J.Li 13
14 Voidaanko parantaa? Vaihdetaan järjestys: R2 R1 Yht = 5000 x ( ,000) = x 11,000 = 55,000 IOs Tietokannan hallinta, kevät 2006, J.Li 14
15 Esim 1(b): sisäkkäiset silmukat R2 R1 Relaatiot peräkkäisiä Kustannus jokaiselle R2 palalle: Lue lohkot: 100 IOs Lue R1: 1000 IOs 1,100 Yhteensä= 5 palaa x 1,100 = 5,500 IOs Tietokannan hallinta, kevät 2006, J.Li 15
16 Esim 1(c): Lomitusliitos (Merge Join) Molemmat R1, R2 järjestetty C:n mukaan ; relaatiot peräkkäisiä Muisti R1.. R1 R2.. R2 Kustannus: Lue R1 + Lue R2 = = 1,500 IOs Tietokannan hallinta, kevät 2006, J.Li 16
17 Esim 1(d): Sort Merge liitos R1, R2 eivät järjestettyjä, mutta peräkkäisiä > Lajitellaan R1, R2 ensin. Kuinka? Tietokannan hallinta, kevät 2006, J.Li 17
18 Merge Sort (i) Jokaiselle 100 lohkon palalle R:ää R1 R2 Lue lohkot Lajittelele muistissa Kirjoita levylle Muisti... lajitellut palat Tietokannan hallinta, kevät 2006, J.Li 18
19 (ii) Lue kaikki palat + liitä + kirjoita Lajiteltu Muisti Lajiteltu pala Tietokannan hallinta, kevät 2006, J.Li 19
20 Kustannus: Lajittelu Jokainen tietue luetaan, kirjoitetaan, luetaan, kirjoitetaan siis... R1 lajittelukustannus: 4 x 1,000 = 4,000 R2 lajittelukustannus: 4 x 500 = 2, Tietokannan hallinta, kevät 2006, J.Li 20
21 Esim 1(d): Sort Merge liitos jatkoa Kokonaiskustannus = järjestys + liitos = 6, ,500 = 7,500 IOs Mutta: sisäkkäiset silmukat = 5,500 ei kannata siis! Tietokannan hallinta, kevät 2006, J.Li 21
22 Oletetaan R1 = 10,000 lohkoa peräkkäin R2 = 5,000 lohkoa, ei järjestetty Silmukat: 5000 x (100+10,000) = 50 x 10, = 505,000 IOs Sort Merge: 5(10,000+5,000) = 75,000 IOs Sort Merge parempi! Tietokannan hallinta, kevät 2006, J.Li 22
23 Esim 1(e): Hakemistoliitos Oletetaan R1.C hakemisto; 2 tasoa Oletetaan R2 peräkkäin, järjestämätön Oletetaan R1.C hakemisto mahtuu muistiin Tietokannan hallinta, kevät 2006, J.Li 23
24 Kustannus: Lukeminen: 500 IOs jokaiselle R2 tietueelle: läpikäy hakemisto ilmaista jos löytyy, lue R1 tietue: 1 IO Tietokannan hallinta, kevät 2006, J.Li 24
25 Kuinka monta yhteistä tietuetta? (a) Olkoon R1.C avain ja R2.C viiteavain, tällöin = 1 (b) Olkoon V(R1,C) = 5000, T(R1) = 10,000 tasaisen jakauman oletuksella keskimäärin = 10,000/5,000 = 2 ( V(R,C) = C attribuutin arvojen lkm R:ssä) Tietokannan hallinta, kevät 2006, J.Li 25
26 Kuinka monta yhteistä arvoa? (c) Olkoon DOM(R1, C)=1,000,000 T(R1) = 10,000 tällä oletuksella yhteisiä = 10,000 = 1 1,000, ( DOM(R,C) = C:n arvoalue R:ssä ) Tietokannan hallinta, kevät 2006, J.Li 26
27 Hakemistoliitoksen kokonaiskustannus (a) Yhteensä = (1)1 = 5,500 (b) Yhteensä = (2)1 = 10,500 (c) Yhteensä = (1/100)1= Tietokannan hallinta, kevät 2006, J.Li 27
28 Entä jos hakemisto ei mahdu muistiin? Esim: Olkoon R1.C hakemiston koko 201 lohkoa Pidä juuri + 99 lehtitason solmua muistissa Jokaisen läpikäynnin odotettu kustannus E = (0) 99 + (1) Tietokannan hallinta, kevät 2006, J.Li 28
29 Kokonaiskustannus = [läpikäynti + tietueen luku] = [0.5+2] tasainen jakauma oletuksena = ,500 = 13,000 (tapaus b) Tapaus (c): = [ (1/100) 1] = = 3050 IOs Tietokannan hallinta, kevät 2006, J.Li 29
30 Eli tähänmennessä tiedetään että ei peräkkäin peräkkäin Sisäkkäin R2 R1 55,000 (paras) Lomitusliitos Sort Merge liitos R1.C hakemisto R2.C hakemisto Sisäkkäin R2 R Lomitusliitos 1500 Sort Merge liitos R1.C hakemisto R2.C hakemisto Tietokannan hallinta, kevät 2006, J.Li 30
31 Esim 1(f): Hajautusliitos R1, R2 peräkkäisiä, järjestämättömi Käytetään 100 solua Lue R1, hajauta, + kirjoita solut R lohkoa Tietokannan hallinta, kevät 2006, J.Li 31
32 > Samoin R2 > Lue yksi R1 solu; rakenna solutaulukko > Lue vastaavat R2 solut + hajauta + tutki R2 R1 R muisti Toista kaikille soluille Tietokannan hallinta, kevät 2006, J.Li 32
33 Kustannus: Soluittain: Lue R1 + kirjoita Lue R2 + kirjoita Liitos: Lue R1, R2 Yhteensä = 3 x [ ] = Tietokannan hallinta, kevät 2006, J.Li 33
34 Yhteenveto Sisäkkäiset silmukat menetelmä sopii pienille relaatioille (verrattuna keskusmuistiin). Hajautusliitos yleensä paras yhtäsuuruusliitokseen, missä relaatiot eivät ole järjestetty eikä hakemistoja ole. Sort Mege on hyvä jos ehtona ei yhtäsuuruus (esim, R1.C > R2.C). Jos relaatiot jo järjestetty, käytä lomitusliitosta. Jos hakemistoja on, ovat yleensä hyödyllisiä (riippuu siitä kuinka rajaava liitosehto on) Tietokannan hallinta, kevät 2006, J.Li 34
Liitosesimerkki. Esim R1 R2 yhteinen attribuutti C. Vaihtoehdot
Esim yhteinen attribuutti C Liitosesimerkki T() = 10,000 riviä T() = 5,000 riviä S() = S() = 1/10 lohkoa Puskuritilaa = 101 lohkoa 1 2 Vaihtoehdot Sisäkkäiset silmukat Liitosjärjestys:, Liitosalgoritmit:
1. a) Laadi suoraviivaisesti kyselyä vastaava optimoimaton kyselypuu.
Helsingin yliopisto, Tietojenkäsittelytieteen laitos Kyselykielet, s 2006, Harjoitus 5 (7.12.2006) Tietokannassa on tietoa tavaroista ja niiden toimittajista: Supplier(sid,sname,city,address,phone,etc);
Algoritmit 1. Luento 10 Ke Timo Männikkö
Algoritmit 1 Luento 10 Ke 14.2.2018 Timo Männikkö Luento 10 Algoritminen ongelmanratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Lisäyslajittelu Valintalajittelu Permutaatiot
Lisätään avainarvo 1, joka mahtuu lehtitasolle:
Helsingin Yliopisto, Tietojenkäsittelytieteen laitos Tietokannan hallinta, kurssikoe 14.5.2004, J. Lindström Ratkaisuehdotuksia 1. Hakemistorakenteet, 15p. Tutkitaan tyhjää B+-puuta, jossa jokaiselle hakemistosivulle
Helsingin yliopisto/ tktl DO Tietokantojen perusteet, s 2000 Relaatioalgebra 14.9.2000. Harri Laine 1. Relaatioalgebra
DO NOT PRINT THIS DOCUMENT operaatiot, joilla relaatioista voidaan muodostaa uusia relaatioita joukko opin perusoperaatiot yhdiste, erotus, ristitulo, leikkaus erityisiä relaatioalgebran operaatioita projektio,
Algoritmit 1. Luento 12 Ti Timo Männikkö
Algoritmit 1 Luento 12 Ti 19.2.2019 Timo Männikkö Luento 12 Osittamisen tasapainoisuus Pikalajittelun vaativuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu Algoritmit
Algoritmit 1. Luento 12 Ke Timo Männikkö
Algoritmit 1 Luento 12 Ke 15.2.2017 Timo Männikkö Luento 12 Pikalajittelu Pikalajittelun vaativuus Osittamisen tasapainoisuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu
Relaatioalgebra. Kyselyt:
Relaatioalgebra Relaatiomalliin liittyy malli tietokannan käsittelystä Tietokannasta pitää pystyä hakemaan tietoa ja toisaalta tietokantaa on ylläpidettävä Tietokannan käsittelyn malli relaatioalgebra
Relaatioalgebra. Relaatioalgebra. Relaatioalgebra. Relaatioalgebra - erotus (set difference) Kyselyt:
Relaatiomalliin liittyy malli tietokannan käsittelystä Tietokannasta pitää pystyä hakemaan tietoa ja toisaalta tietokantaa on ylläpidettävä Tietokannan käsittelyn malli relaatioalgebra määrittelee operaatiot,
Algoritmit 2. Luento 3 Ti Timo Männikkö
Algoritmit 2 Luento 3 Ti 21.3.2017 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2017 Luento 3 Ti 21.3.2017
Algoritmit 2. Luento 3 Ti Timo Männikkö
Algoritmit 2 Luento 3 Ti 20.3.2018 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2018 Luento 3 Ti 20.3.2018
Kyselyt: Lähtökohtana joukko lukuja Laskukaava kertoo miten luvuista lasketaan tulos soveltamalla laskentaoperaatioita
Relaatioalgebra Relaatiomalliin liittyy malli tietokannan käsittelystä Tietokannasta pitää pystyä hakemaan tietoa ja toisaalta tietokantaa on ylläpidettävä Tietokannan käsittelyn malli relaatioalgebra
Helsingin yliopisto/tktl Kyselykielet, s 2006 Tietokantaoperaatioiden toteutuksesta Harri Laine 1. Kyselyjen käsittely
Kyselyjen käsittely Kyselyn käsittelyn vaiheet: TKHJ ottaa vastaan kyselyn asiakasohjelmalta Kysely selataan ja jäsennetään tarkistetaan kyselyn rakenteellinen oikeellisuus Jäsennetty kysely muunnetaan
4 Tehokkuus ja algoritmien suunnittelu
TIE-20100 Tietorakenteet ja algoritmit 52 4 Tehokkuus ja algoritmien suunnittelu Tässä luvussa pohditaan tehokkuuden käsitettä ja esitellään kurssilla käytetty kertaluokkanotaatio, jolla kuvataan algoritmin
11. Javan toistorakenteet 11.1
11. Javan toistorakenteet 11.1 Sisällys Laskuri- ja lippumuuttujat. Sisäkkäiset silmukat. Tyypillisiä ohjelmointivirheitä: Silmukan rajat asetettu kierroksen verran väärin. Ikuinen silmukka. Silmukoinnin
Lohkot. if (ehto1) { if (ehto2) { lause 1;... lause n; } } else { lause 1;... lause m; } 16.3
16. Lohkot 16.1 Sisällys Tutustutaan lohkoihin. Muuttujien ja vakioiden näkyvyys sekä elinikä erityisesti operaation lohkossa. Nimikonfliktit. Muuttujat operaation alussa vai myöhemmin? 16.2 Lohkot Kaarisulut
Kyselyiden käsittely. R & G Chapter Tietokannan hallinta, kevät 2006, Jan 1
Kyselyiden käsittely R & G Chapter 12 15 16.02.06 Tietokannan hallinta, kevät 2006, Jan 1 Kyselyjen käsittely ja optimointi Kyselyn käsittelyn vaiheet: TKHJ ottaa vastaan kyselyn asiakasohjelmalta Kysely
f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n))
Määritelmä: on O(g(n)), jos on olemassa vakioarvot n 0 > 0 ja c > 0 siten, että c g(n) kun n > n 0 O eli iso-o tai ordo ilmaisee asymptoottisen ylärajan resurssivaatimusten kasvun suuruusluokalle Samankaltaisia
joukko operaatioita, joilla relaatioista voidaan muodostaa uusia relaatioita joukko opin perusoperaatiot yhdiste, erotus, ristitulo, leikkaus
DO NOT PRINT THIS DOCUMENT joukko operaatioita, joilla relaatioista voidaan muodostaa uusia relaatioita joukko opin perusoperaatiot yhdiste, erotus, ristitulo, leikkaus erityisiä relaatioalgebran operaatioita
12. Javan toistorakenteet 12.1
12. Javan toistorakenteet 12.1 Sisällys Yleistä toistorakenteista. Laskurimuuttujat. While-, do-while- ja for-lauseet. Laskuri- ja lippumuuttujat. Tyypillisiä ohjelmointivirheitä. Silmukan rajat asetettu
Helsingin yliopisto/tktl Tietokannan hallinta, s Harri Laine 1 D B. Kyselyjen käsittely ja optimointi
Kyselyn käsittelyn vaiheet: TKHJ ottaa vastaan kyselyn asiakasohjelmalta Kysely selataan ja jäsennetään tarkistetaan kyselyn rakenteellinen oikeellisuus Jäsennetty kysely muunnetaan relaatiolausekkeiksi
D B. Kyselyjen käsittely ja optimointi. Kyselyjen käsittely ja optimointi
Kyselyn käsittelyn vaiheet: TKHJ ottaa vastaan kyselyn asiakasohjelmalta Kysely selataan ja jäsennetään tarkistetaan kyselyn rakenteellen oikeellisuus Jäsennetty kysely muunnetaan relaatiolausekkeiksi
Algoritmit 1. Luento 11 Ti Timo Männikkö
Algoritmit 1 Luento 11 Ti 14.2.2017 Timo Männikkö Luento 11 Algoritminen ongelmanratkaisu Osittaminen Lomituslajittelu Lomituslajittelun vaativuus Rekursioyhtälöt Pikalajittelu Algoritmit 1 Kevät 2017
Helsingin yliopisto/ tktl D Tietokantojen perusteet, s 2000 Relaatioalgebra. Harri Laine 1. Relaatioalgebra.
Tietokantaoperaatiot tiedon haku kyselyt miten märitellään haettava tieto ylläpito-operaatiot lisäys, poisto, muuttaminen Kyselyt: lähtökohtana tietokannan tila joukkona relaatioita kyselyn tuloksena yksi
Tarkennamme geneeristä painamiskorotusalgoritmia
Korotus-eteen-algoritmi (relabel-to-front) Tarkennamme geneeristä painamiskorotusalgoritmia kiinnittämällä tarkasti, missä järjestyksessä Push- ja Raise-operaatioita suoritetaan. Algoritmin peruskomponentiksi
Dynaaminen ohjelmointi ja vaikutuskaaviot
Dynaaminen ohjelmointi ja vaikutuskaaviot. Taustaa 2. Vaikutuskaaviot ja superarvosolmut 3. Vaikutuskaavion ratkaiseminen 4. Vaikutuskaavio ja dynaaminen ohjelmointi: 5. Yhteenveto Esitelmän sisältö Optimointiopin
Hajautusrakenteet. R&G Chapter Tietokannan hallinta, kevät 2006, Jan 1
Hajautusrakenteet R&G Chapter 11 16.02.06 Tietokannan hallinta, kevät 2006, Jan 1 Hajautukseen perustuvat tiedostorakenteet Hajautukseen perustuvissa tiedostorakenteissa on tavoitteena yksittäisen tietueen
Algoritmit 1. Luento 5 Ti Timo Männikkö
Algoritmit 1 Luento 5 Ti 24.1.2017 Timo Männikkö Luento 5 Järjestetty lista Järjestetyn listan operaatiot Listan toteutus taulukolla Binäärihaku Binäärihaun vaativuus Algoritmit 1 Kevät 2017 Luento 5 Ti
Helsingin yliopisto/tktl Kyselykielet, s 2006 Optimointi Harri Laine 1. Kyselyn optimointi. Kyselyn optimointi
Miksi optimoidaan Relaatiotietokannan kyselyt esitetään käytännössä SQLkielellä. Kieli määrittää halutun tuloksen, ei sitä miten tulos muodostetaan (deklaratiivinen kyselykieli) Tietokannan käsittelyoperaatiot
Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö
Algoritmit 1 Luento 10 Ke 11.2.2015 Timo Männikkö Luento 10 Algoritminen ongelman ratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Väliinsijoituslajittelu Valintalajittelu
Algoritmit 2. Luento 7 Ti Timo Männikkö
Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26
4.3. Matemaattinen induktio
4.3. Matemaattinen induktio Matemaattinen induktio: Deduktion laji Soveltuu, kun ominaisuus on osoitettava olevan voimassa luonnollisilla luvuilla. Suppea muoto P(n) : Ominaisuus, joka joka riippuu luvusta
8. Lajittelu, joukot ja valinta
8. Lajittelu, joukot ja valinta Yksi tietojenkäsittelyn klassisista tehtävistä on lajittelu (järjestäminen) (sorting) jo mekaanisten tietojenkäsittelylaitteiden ajalta. Lajiteltua tietoa tarvitaan lukemattomissa
Perusteet. Pasi Sarolahti Aalto University School of Electrical Engineering. C-ohjelmointi Kevät Pasi Sarolahti
C! Perusteet 19.1.2017 Palautteesta (1. kierros toistaiseksi) Toistaiseksi helppoa Miksi vain puolet pisteistä? Vaikeinta oli ohjelmointiympäristön asennus ja käyttö Vaikeaa eroavuudet Pythonin ja C:n
12. Javan toistorakenteet 12.1
12. Javan toistorakenteet 12.1 Sisällys Yleistä toistorakenteista. Laskurimuuttujat. While-, do-while- ja for-lauseet. Laskuri- ja lippumuuttujat. Tyypillisiä ohjelmointivirheitä. Silmukan rajat asetettu
Algoritmit 2. Luento 8 To Timo Männikkö
Algoritmit 2 Luento 8 To 4.4.2019 Timo Männikkö Luento 8 Algoritmien analysointi Algoritmien suunnittelu Rekursio Osittaminen Rekursioyhtälöt Rekursioyhtälön ratkaiseminen Master-lause Algoritmit 2 Kevät
D B. Kyselyjen käsittely ja optimointi. Kyselyn käsittelyn vaiheet:
Kyselyjen käsittely ja optimointi Kyselyn käsittelyn vaiheet: TKHJ ottaa vastaan kyselyn asiakasohjelmalta Kysely selataan ja jäsennetään tarkistetaan kyselyn rakenteellinen oikeellisuus Jäsennetty kysely
Algoritmi on periaatteellisella tasolla seuraava:
Algoritmi on periaatteellisella tasolla seuraava: Dijkstra(V, E, l, v 0 ): S := { v 0 } D[v 0 ] := 0 for v V S do D[v] := l(v 0, v) end for while S V do valitse v V S jolle D[v] on minimaalinen S := S
HELIA 1 (15) Outi Virkki Tiedonhallinta
HELIA 1 (15) Luento Suorituskyvyn optimointi... 2 Tiedonhallintajärjestelmän rakenne... 3 Suunnittele... 4 SQL-komentojen viritys... 5 Tekninen ympäristö... 6 Fyysisen tason ratkaisut... 7 Indeksit...
Sisällys. 16. Lohkot. Lohkot. Lohkot
Sisällys 16. ohkot Tutustutaan lohkoihin. Muuttujien ja vakioiden näkyvyys sekä elinikä erityisesti operaation lohkossa. Nimikonfliktit. Muuttujat operaation alussa vai myöhemmin? 16.1 16.2 ohkot aarisulut
Lohkot. if (ehto1) { if (ehto2) { lause 1;... lause n; } } else { lause 1;... lause m; } 15.3
15. Lohkot 15.1 Sisällys Tutustutaan lohkoihin. Muuttujien ja vakioiden näkyvyys sekä elinikä erityisesti operaation lohkossa. Nimikonfliktit. Muuttujat operaation alussa vai myöhemmin? 15.2 Lohkot Aaltosulkeet
TKT20001 Tietorakenteet ja algoritmit Erilliskoe , malliratkaisut (Jyrki Kivinen)
TKT0001 Tietorakenteet ja algoritmit Erilliskoe 5.1.01, malliratkaisut (Jyrki Kivinen) 1. [1 pistettä] (a) Esitä algoritmi, joka poistaa kahteen suuntaan linkitetystä järjestämättömästä tunnussolmullisesta
Algoritmit 1. Luento 13 Ma Timo Männikkö
Algoritmit 1 Luento 13 Ma 26.2.2018 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin
TKHJ:ssä on yleensä komento create index, jolla taululle voidaan luoda hakemisto
Indeksin luonti ja hävitys TKHJ:ssä on yleensä komento create index, jolla taululle voidaan luoda hakemisto Komentoa ei ole standardoitu ja niinpä sen muoto vaihtelee järjestelmäkohtaisesti Indeksi voidaan
Hajautusrakenteet. Hajautukseen perustuvat tiedostorakenteet. Hajautukseen perustuvat tiedostorakenteet. Hajautukseen perustuvat tiedostorakenteet
Hajautusrakenteet R&G Chapter Hajautukseen perustuvissa tiedostorakenteissa on tavoitteena yksittäisen tietueen nopea haku. Tähän pyritään siten, että tietueen sijoituspaikan eli solun (cell, bucket) osoite
811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit
811312A Tietorakenteet ja algoritmit 2015-2016 V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit Sisältö 1. Johdanto 2. Leveyshaku 3. Syvyyshaku 4. Kruskalin algoritmi 5. Dijkstran algoritmi
Tiedostorakenteet. R&G Chapter Tietokannan hallinta, kevät 2006, Jan 1
Tiedostorakenteet R&G Chapter 9 16.02.06 Tietokannan hallinta, kevät 2006, Jan 1 Tiedostorakenteet Tiedostojen tehokkuutta yhtä kyselyä kohti arvioidaan usein tarvittavien levyhakujen määrällä. kuten levykäsittelyn
Perusteet. Pasi Sarolahti Aalto University School of Electrical Engineering. C-ohjelmointi Kevät Pasi Sarolahti
C! Perusteet 19.1.2017 Palautteesta (1. kierros toistaiseksi) (Erittäin) helppoa Miksi vain puolet pisteistä? Vaikeinta oli ohjelmointiympäristön asennus ja käyttö Ei selvää että main funktion pitikin
Ohjausrakenteet. Valinta:
Ohjausrakenteet Luento antaa yleiskuvan siitä kuinka ohjelmassa suorittaan vaihtoehtoisia tehtäviä valintarakenteiden avulla ja kuinka samanlaisia ohjelma-askeleita toistetaan toistorakenteiden avulla
Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö
Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin
Sisällys. 12. Javan toistorakenteet. Yleistä. Laskurimuuttujat
Sisällys 12. Javan toistorakenteet Ylstä toistorakentsta. Laskurimuuttujat. While-, do-while- ja for-lauseet. Laskuri- ja lippumuuttujat. Tyypillisiä ohjelmointivirhtä. Silmukan rajat asetettu kierroksen
Algoritmit 1. Luento 9 Ti Timo Männikkö
Algoritmit 1 Luento 9 Ti 7.2.2017 Timo Männikkö Luento 9 Graafit ja verkot Kaaritaulukko, bittimatriisi, pituusmatriisi Verkon lyhimmät polut Floydin menetelmä Lähtevien ja tulevien kaarien listat Forward
A TIETORAKENTEET JA ALGORITMIT
A274105 TIETORAKENTEET JA ALGORITMIT HARJOITUSTEHTÄVÄT 6 DEADLINE 1.4.2009 KLO 9:00 Kynätehtävät tehdään kirjallisesti ja esitetään harjoituksissa. Välivaiheet näkyviin! Ohjelmointitehtävät sähköisesti
Sisällys. 15. Lohkot. Lohkot. Lohkot
Sisällys 15. Lohkot Tutustutaan lohkoihin. Muuttujien ja vakioiden näkyvyys sekä elinikä erityisesti operaation lohkossa. Nimikonfliktit. Muuttujat operaation alussa vai myöhemmin? 15.1 15.2 Lohkot Aaltosulkeet
9 Erilaisia tapoja järjestää
TIE-20100 Tietorakenteet ja algoritmit 198 9 Erilaisia tapoja järjestää Käsitellään seuraavaksi järjestämisalgoritmeja, jotka perustuvat muihin kuin vertailuun alkioiden oikean järjestyksen saamiseksi.
Algoritmit 2. Luento 4 Ke Timo Männikkö
Algoritmit 2 Luento 4 Ke 22.3.2017 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2017 Luento 4
Helsingin yliopisto/tktl Kyselykielet, s 2006 Tietokantaoperaatioiden toteutuksesta Harri Laine 1. Tiedostorakenteet.
Tiedostorakenteet Tiedostorakenne määrittelee miten tietueet tallennetaan tiedostoon miten tietoja haetaan Tiedostorakenne on yksitasoinen (flat), jos se muodostuu pelkästään datatietueista. Tiedostorakenne
lähtokohta: kahden O(h) korkuisen keon yhdistäminen uudella juurella vie O(h) operaatiota vrt. RemoveMinElem() keossa
Kekolajittelu Prioriteettijonolla toteutettu keko InsertItem ja RemoveMinElem: O(log(n)) Lajittelu prioriteettijonolla: PriorityQueueSort(lajiteltava sekvenssi S) alusta prioriteettijono P while S.IsEmpty()
Käsitellyt hakemistot (hajautus, ISAM): hakemisto-osa on staattinen eli ei muutu muuten kuin uudelleenorganisoinnissa.
Tietokannan hallinta 35 3. Tietokannan 3.3 Dynaamiset Käsitellyt hakemistot (hajautus, ISAM): hakemisto-osa on staattinen eli ei muutu muuten kuin uudelleenorganisoinnissa. Ajan mittaan epätasapainoa:
Relaation ominaisuuksia. Ominaisuuksia koskevia lauseita Sulkeumat. Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,
Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos xrx kaikilla x X, (ir) irrefleksiivinen, jos x Rx kaikilla x X, Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos
Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,
Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos xrx kaikilla x X, (ir) irrefleksiivinen, jos x Rx kaikilla x X, (s) symmetrinen, jos xry yrx, (as) antisymmetrinen, jos xry yrx x =
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 11.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 11.2.2009 1 / 33 Kertausta: listat Tyhjä uusi lista luodaan kirjoittamalla esimerkiksi lampotilat = [] (jolloin
Yksitasoisia talletusrakenteita käytetään lähinnä datatietueiden talletukseen
Yksitasoiset talletusrakenteet Yksitasoisia talletusrakenteita käytetään lähinnä datatietueiden talletukseen järjestämätön peräkkäisrakenne (kasa, heap) järjestetty peräkkäisrakenne (sequential file) hajautusrakenne
Algoritmit 1. Luento 3 Ti Timo Männikkö
Algoritmit 1 Luento 3 Ti 17.1.2017 Timo Männikkö Luento 3 Algoritmin analysointi Rekursio Lomituslajittelu Aikavaativuus Tietorakenteet Pino Algoritmit 1 Kevät 2017 Luento 3 Ti 17.1.2017 2/27 Algoritmien
Sisällys. 11. Javan toistorakenteet. Laskurimuuttujat. Yleistä
Sisällys 11. Javan toistorakenteet Laskuri- ja lippumuuttujat.. Tyypillisiä ohjelmointivirheitä: Silmukan rajat asetettu kierroksen verran väärin. Ikuinen silmukka. Silmukoinnin lopettaminen break-lauseella.
58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut
58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 1. Palautetaan vielä mieleen O-notaation määritelmä. Olkoon f ja g funktioita luonnollisilta luvuilta positiivisille
Luento 2: Tiedostot ja tiedon varastointi
HELIA 1 (19) Luento 2: Tiedostot ja tiedon varastointi Muistit... 2 Päämuisti (Primary storage)... 2 Apumuisti (Secondary storage)... 2 Tiedon tallennuksen yksiköitä... 3 Looginen taso... 3 Fyysinen taso...
Algoritmit 2. Luento 4 To Timo Männikkö
Algoritmit 2 Luento 4 To 21.3.2019 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2019 Luento 4
Algoritmit 1. Demot Timo Männikkö
Algoritmit 1 Demot 1 31.1.-1.2.2018 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka tutkii onko kokonaisluku tasan jaollinen jollain toisella kokonaisluvulla siten, että ei käytetä lainkaan jakolaskuja Jaettava
811312A Tietorakenteet ja algoritmit, 2015-2016. VI Algoritmien suunnitteluparadigmoja
811312A Tietorakenteet ja algoritmit, 2015-2016 VI Algoritmien suunnitteluparadigmoja Sisältö 1. Hajota ja hallitse-menetelmä 2. Dynaaminen taulukointi 3. Ahneet algoritmit 4. Peruuttavat algoritmit 811312A
Tietuetyypin määrittely toteutetaan C-kielessä struct-rakenteena seuraavalla tavalla:
KERTAUSTEHTÄVIÄ Tietue Tietuetyypin määrittely toteutetaan C-kielessä struct-rakenteena seuraavalla tavalla: struct henkilotiedot char nimi [20]; int ika; char puh [10]; ; Edellä esitetty kuvaus määrittelee
1 Erilaisia tapoja järjestää
TIE-20100 Tietorakenteet ja algoritmit 1 1 Erilaisia tapoja järjestää Käsitellään seuraavaksi järjestämisalgoritmeja, jotka perustuvat muihin kuin vertailuun alkioiden oikean järjestyksen saamiseksi. Lisäksi
SQL - STRUCTURED QUERY LANGUAGE
SQL Peruskomentoja SQL - STRUCTURED QUERY LANGUAGE SQL on tietokantojen käsittelyyn kehitetty kieli Esimerkkejä kielellä hoidettavistaa toiminnoista: Tietokannan rakenteen määrittely ja muuttaminen Kyselyt
Luento 5. Timo Savola. 28. huhtikuuta 2006
UNIX-käyttöjärjestelmä Luento 5 Timo Savola 28. huhtikuuta 2006 Osa I Shell-ohjelmointi Ehtolause Lausekkeet suoritetaan jos ehtolausekkeen paluuarvo on 0 if ehtolauseke then lauseke
Johdanto ja esimerkki. Pseudokoodi lauseina. Kommentointi ja sisentäminen. Ohjausrakenteet:
3. Pseudokoodi 3.1 Sisällys Johdanto ja esimerkki. Pseudokoodi lauseina. Kommentointi ja sisentäminen. Ohjausrakenteet: Valinta if- ja if-else-rakenteilla. Toisto while-, do-while- ja for-rakenteilla.
HELIA 1 (21) Outi Virkki Tietokantasuunnittelu
HELIA 1 (21) Luento 3.1 Suorituskyvyn optimointi... 2 Suunnittele... 3 Tiedonhallintajärjestelmän rakenne... 4 SQL-käsittelijä... 5 Parsinta... 5 Optimointi... 5 Tilan käsittelijä... 5 Puskurin käsittelijä
Tietorakenteet, laskuharjoitus 7, ratkaisuja
Tietorakenteet, laskuharjoitus, ratkaisuja. Seuraava kuvasarja näyttää B + -puun muutokset lisäysten jälkeen. Avaimet ja 5 mahtuvat lehtisolmuihin, joten niiden lisäys ei muuta puun rakennetta. Avain 9
811312A Tietorakenteet ja algoritmit , Harjoitus 2 ratkaisu
811312A Tietorakenteet ja algoritmit 2017-2018, Harjoitus 2 ratkaisu Harjoituksen aiheena on algoritmien oikeellisuus. Tehtävä 2.1 Kahvipurkkiongelma. Kahvipurkissa P on valkoisia ja mustia kahvipapuja,
1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.
Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i
Algoritmit 2. Luento 2 To Timo Männikkö
Algoritmit 2 Luento 2 To 14.3.2019 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2019 Luento
oheishakemistoja voi tiedostoon liittyä useita eri perustein muodostettuja
Tietokantojen hakemistorakenteet Hakemistorakenteiden (indeksien) tarkoituksena on nopeuttaa tietojen hakua tietokannasta. Hakemisto voi olla ylimääräinen oheishakemisto (secondary index), esimerkiksi
Sisällys. 3. Pseudokoodi. Johdanto. Johdanto. Johdanto ja esimerkki. Pseudokoodi lauseina. Kommentointi ja sisentäminen.
Sisällys 3. Pseudokoodi Johdanto ja esimerkki. Pseudokoodi lauseina. Kommentointi ja sisentäminen. Ohjausrakenteet: Valinta if- ja if--rakenteilla. oisto while-, do-while- ja for-rakenteilla. 3.1 3.2 Johdanto
811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 1. Algoritmeista 1.1 Algoritmin käsite Algoritmi keskeinen laskennassa Määrittelee prosessin, joka suorittaa annetun tehtävän Esimerkiksi Nimien järjestäminen aakkosjärjestykseen
List-luokan soveltamista. Listaan lisääminen Listan läpikäynti Listasta etsiminen Listan sisällön muuttaminen Listasta poistaminen Listan kopioiminen
1 List-luokan soveltamista List-luokan metodeja Listaan lisääminen Listan läpikäynti Listasta etsiminen Listan sisällön muuttaminen Listasta poistaminen Listan kopioiminen 1 List-luokan metodeja List-luokan
Helsingin yliopisto/tktl Tietokannan hallinta kevät Harri Laine 1 D B. Yksitasoiset talletusrakenteet
Yksitasoiset talletusrakenteet Yksitasoisia talletusrakenteita käytetään lähinnä datatietueiden talletukseen järjestämätön peräkkäisrakenne (kasa, heap) järjestetty peräkkäisrakenne (sequential file) hajautusrakenne
Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö
Algoritmit 1 Luento 14 Ke 25.2.2015 Timo Männikkö Luento 14 Heuristiset menetelmät Heuristiikkoja kapsäkkiongelmalle Kauppamatkustajan ongelma Lähimmän naapurin menetelmä Kertaus ja tenttivinkit Algoritmit
D B. Tietokannan hallinta kertaus
TKHJ:n pääkomponentit metadata TKHJ:ssä Tiedostojen käsittely puskurien rooli tiedostokäsittelyssä levymuistin rakenne ja käsittely mistä tekijöistä hakuaika muodostuu jonotus jos useita samanaikaisia
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden
(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,
Java-kielen perusteita
Java-kielen perusteita Toistorakenne (while, do-while, for) 1 While- lause while-lauseen rakenne on seuraava: while (ehtolauseke) lause Kun ehtolausekkeen arvo on totta, lause suoritetaan. Lause suoritetaan
D B. Harvat hakemistot. Harvat hakemistot
Harvassa hakemistossa on ei ole hakemistomerkintöjä jokaista tietuetta kohden vaan yksi merkintä jotain isompaa kokonaisuutta esimerkiksi sivua tai sivujoukkoa (esim. saman uran sivut) kohti Harvan hakemiston
Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9
Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon
Algoritmit 2. Luento 11 Ti Timo Männikkö
Algoritmit 2 Luento 11 Ti 24.4.2018 Timo Männikkö Luento 11 Rajoitehaku Kapsäkkiongelma Kauppamatkustajan ongelma Paikallinen etsintä Lyhin virittävä puu Vaihtoalgoritmit Algoritmit 2 Kevät 2018 Luento
6.4. Järjestyssuhteet
6.4. Järjestyssuhteet Joukon suhteilla voidaan kuvata myös alkioiden järjestystä tietyn ominaisuuden suhteen. Järjestys on myös kaksipaikkainen suhde (ja on monia erilaisia järjestyksiä). Suhde R joukossa
Anna Kuikka Pyöräkatu 9 B Kuopio GSM: Opiskelijanro: 60219K. Prioriteettijonot
Anna Kuikka Pyöräkatu 9 B 68 70600 Kuopio GSM: 040-734 9266 akuikka@cc.hut.fi Opiskelijanro: 60219K Prioriteettijonot PRIORITEETTIJONOT...1 1. JOHDANTO...3 2. TOTEUTUKSET...3 1.2 Keon toteutus...4 1.3
Pythonin Kertaus. Cse-a1130. Tietotekniikka Sovelluksissa. Versio 0.01b
Pythonin Kertaus Cse-a1130 Tietotekniikka Sovelluksissa Versio 0.01b Listat 1/2 esimerkkejä listan peruskäytöstä. > lista=['kala','kukko','kissa','koira'] ['kala','kukko','kissa','koira'] >lista.append('kana')
Ohjelmoinnin peruskurssi Y1
Ohjelmoinnin peruskurssi Y1 CSE-A1111 30.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 30.9.2015 1 / 27 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.
1.4 Funktioiden kertaluokat
1.4 Funktioiden kertaluokat f on kertaluokkaa O(g), merk. f = O(g), jos joillain c > 0, m N pätee f(n) cg(n) aina kun n m f on samaa kertaluokkaa kuin g, merk. f = Θ(g), jos joillain a, b > 0, m N pätee
Algoritmit 2. Luento 14 Ke Timo Männikkö
Algoritmit 2 Luento 14 Ke 3.5.2017 Timo Männikkö Luento 14 Ositus ja rekursio Rekursion toteutus Kertaus ja tenttivinkit Algoritmit 2 Kevät 2017 Luento 14 Ke 3.5.2017 2/30 Ositus Tehtävän esiintymä ositetaan
Numeeriset menetelmät
Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä: