Hajautusrakenteet. Hajautukseen perustuvat tiedostorakenteet. Hajautukseen perustuvat tiedostorakenteet. Hajautukseen perustuvat tiedostorakenteet
|
|
- Jorma Korpela
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Hajautusrakenteet R&G Chapter Hajautukseen perustuvissa tiedostorakenteissa on tavoitteena yksittäisen tietueen nopea haku. Tähän pyritään siten, että tietueen sijoituspaikan eli solun (cell, bucket) osoite lasketaan jonkin tietueessa olevan tiedon eli hajautusavaimen (hash key) perusteella. Parhaassa tapauksessa solu olisi tietty tiedoston lohko. Yleensä solu kuitenkin muodostuu useasta lohkosta. Solun osoitteena on joko kotilohkon osoite (tällöin ei käytetä soluhakemistoa) tai soluhakemiston indeksi soluhakemisto on taulukko, jonka alkioina on kotilohkojen osoitteita Mahdolliset soluosoitteet muodostavat osoiteavaruuden (address space) soluhakemistoa käytettäessä saadaan pienellä lisätilalla kasvatettua osoiteavaruutta moninkertaiseksi. Osoitteen laskentaan käytetään hajautusfunktiota (hajautinta) (hash function, randomizing function). Olkoon h(x) hajautus funktio ja R K tietue, jonka hajautusavain on K. Tällöin R K :n sijoitussolun osoite = h(k). Solujen sisällä tietueet sijoitetaan kasarakenteen tapaan eli lisäykset loppuun. 4
2 Optimitapauksessa tietue löytyy yhdellä levyhaulla eli solun kotilohkosta*. Tämä edellyttää, että hajautusfunktio jakaa tietueet tasaisesti osoiteavaruuden osoitteisiin osoiteavaruus on määritelty riittävän isoksi niin, että kaikki tietueet voidaan sijoittaa solujen kotilohkoihin * soluhakemistoa käytettäessä joudutaan satunnaisesti hakemaan myös soluhakemiston sivuja 5 Haku avaimella K: lasketaan hajautusfuktiolla solun osoite s=h(k) jos käytössä on soluhakemisto haetaan kotilohkon osoite sieltä p=h[s] muuten käytetään kotilohkon osoitteena solun osoitetta p=s. haetaan sivu lohkosta s ellei tietuetta löydy käydään läpi solun muut lohkot Jos hajautusavain ei ole tietueen avain on haussa käytävä läpi kaikki solun sivut. 6 Hajautusfunktio on tyypillisesti muotoa h(k) = int(k) mod B missä int(k) muuntaa hajautusavaimen kokonaisluvuksi Hyvältä hajautusfunktiolta edellytetään, että se jakaa hajautusavaimen arvot tasaisesti osoiteavaruuteen laskennan nopeus ei ole yhtä oleellista kuin keskusmuistihajautuksessa rakenteet nopeuttavat hakua vain kyselyissä, joissa tietueita haetaan hajautusavaimeen perustuvan yhtäsuuruusehdon avulla. 7 Oletetaan, että tiedosto mahtuisi kasarakenteena N sivulle ja hajautusavaimella olisi k erilaista arvoa. Olkoon osoiteavaruus 0,..B- Tällöin tulisi valita B<=k (muuten varataan tilaa soluille, jotka välttämättä jäävät tyhjiksi), Vain, jos B>=N, voidaan päästä yhteen levyhakuun tietuetta haettaessa B:n kokoon vaikuttavat mm. hajautusfunktio hajautusavaimen rakenne käytetäänkö soluhakemistoa, jolloin osoiteavaruuden koon kasvattaminen on kevyempää 8
3 A) Solun osoite on soluhakemiston indeksi () (9) soluhakemiston sivu B) Solun osoitteena on kotilohkon osoite () Talletukseen varattu perustila - kotilohkot lohko x solu 9 solu Lohkot käyttävissä koti- tai ylivuotolohkoiksi Tyhjille soluille varataan tilaa vain soluhakemiston alkion verran Soluhakemisto on haettava erikseen Yleisimmin käytetty ratkaisu 9 Tyhjätkin solut varaavat tilaa yhden lohkon verran Ylivuotolohkoille oma alueensa 0 Staattinen hajautus Perussolmujen lukumäärä kiinteä, varataan peräkkäin, soluja ei vapauteta; ylivuotosoluja tarpeen mukaan. h(k) modm= solu mihin avaimen k omaava tietue kuuluu. (M = solujen lkm). h(k) mod M avain h Pääsolut 0 M- Ylivuotosivut Dynaamiset hajautusratkaisut Aiemmin käsitelty hajautusrakenne perustui siihen, että tietueelle laskettiin soluosoite hajautusavaimen perusteella. Hajautusfunktio oli kiinteä ja sen arvoalue (osoiteavaruus) piti kiinnittää funktiota määriteltäessä. Tällöin ei välttämättä ole riittävää tietoa siitä, miten hajautusfunktio jakaa tietueet todellisessa käyttötilanteessa eikä välttämättä edes tietoa siitä, miten nopeasti tietueiden määrä kasvaa. Solua laajentavan ylivuotoketjun pituutta ei voida hallita ja ainakin alussa täytyy varata tilaa paljon yli todellisen tarpeen.
4 Dynaamiset hajautusratkaisut B+ -puussa hakupolun pituus pidetään hallinnassa puolittamalla sivu ja pitämällä kummatkin puolikkaat samanmittaisen hakupolun päässä. Sivun puolituksen ideaa sovelletaan myös dynaamisissa hajautusrakenteissa. Tunnetuimpia näistä ovat laajeneva hajautus (extendible hashing) ja lineaarinen hajautus (linearhashing) Laajeneva hajautus Soluille varattu tila tulee täyteen. Miksi ei organisoida tiedostoa siten että tila tuplaantuu? Kaikkien sivujen lukeminen ja kirjoittaminen kallista! Ajatus: Käytetään osoitinhakemistoa soluihin. Tuplataan solujen määrä tuplaamalla hakemiston koko jakamalla täyteen tullut solu. Hakemisto on paljon pienempi kuin tiedosto joten sen lukeminen ja kirjoittaminen on edullisempaa. Vain yksi tietosolu joudutaan jakamaan. Ongelmana kuinka hajautusfunktiota muutetaan. 4 Laajeneva hajautus Laajeneva hajautus Soluhakemiston koko on siis, 4, 8,. solua Olkoon rakenteen globaali syvyys d. Tällöin avaimen k solu (siis soluhakemiston indeksi) saadaan eristämällä hajautusfunktion antaman osoitteen lopusta d bitin pituinen osa tail_bits(h(k),d). Jos d= otetaan viimeinen bitti => {0,} Jos d= otetaan viimeistä bittiä => {00,0,0,} Lisäysten käsittely Jos soluhakemistosta löytyvässä kotilohkossa on tilaa tietue lisätään sinne kuten aiemmin käsitellyssä hajautuksessa Jos kotilohko (olkoon sen solutunnus binäärisenä {b}) on täynnä, otetaan käyttöön uusi lohko ja jaetaan ylivuotavan kotilohkon tietueet kotilohkon ja uuden lohkon välillä kotilohkolla on paikallinen syvyys (local depth) p (monenko bitin perusteella tietueet on sijoitettu lohkoon) 5 6 4
5 Laajeneva hajautus Lisäyksen käsittely jatkuu tietueille tehdään uusi sijoittelu ottamalla käyttöön hajauttimen tuottaman osoitteen lopusta päin p+:s bitti ne tietueet, joilla tämä bitti on 0, jäävät kotilohkoon ja muut siirtyvät (oletetaan, että kaikki eivät menneet samaan lohkoon, näinkin voisi käydä L ) kotilohkon ja uuden lohkon paikalliseksi syvyydeksi asetetaan p+ soluhakemiston alkiot, joiden indeksin p+ viimeistä bittiä ovat {b} asetetaan osoittamaan uuteen lohkoon Esimerkki Soluhakemiston koko 4. Solun r löytämiseen, eristä globaalin syvyyden lukumäärä bittejä. Merkitään tätä h(r). Jos h(r) = 5 = binäärisenä 0, oikean solun osoite löytyy siis solusta 0. Paikallinen syvyys Globaali syvyys * 5* * * Lisäys: Jos solu on täynnä, halkaise se (varaa uusi sivu ja sijoita arvot uudestaan) Soluhakemisto 4* * * 0* 5* 7* 9* tietohakemisto Solu A Solu B Solu C Solu D 7 8 Lisätään h(r)=0 Huomioita Paikallinen syvyys Globaali syvyys Hakemisto Solu A * * 5* ** Solu B 0* 5* 7* 9* Solu C Solu D Paikallinen syvyys Globaali syvyys 4* * 0* Solu A Hakemisto (`uusi sivu ja puolet solusta A) * 7* 9* * Solu A * 5* ** Solu B 0* 4* * 0* Solu C Solu D Solu A 9 0 = binäärisenä 000. Viimeiset bittiä (00) kertoo että r kuuluu soluun A tai A. Viimeiset bittiä kertoo kumpaan. Hakemiston globaali syvyys: Kuinka monta bittiä tarvitaan oikean solun etsimiseen. Solun paikallinen syvyys: kuinka monta bittiä tarvitaan selvittämään kuuluuko arvo tähän soluun. Milloin solun halkaisu aiheuttaa hakemiston kasvatuksen? Ennen lisäystä solun paikallinen syvyys = globaali syvyys ja lisäys aiheuttaa tilanteen, jossa solun paikallinen syvyys > globaali syvyys. 0 5
6 Hakemiston kasvatus Esimerkki : /4 Miksi käytää vähiten merkitseviä bittejä? Sallii kasvatuksen kopioinnilla! globaali syvyys 6 = = lisätään: Vähitenmerkitsevät vs Eniten merkitsevät täynnä 00 Esimerkki : /4 Esimerkki : / globaali syvyys globaali syvyys lisätään: siirretään ne, joilla. viimeinen bitti on siirretään ne, joilla. viimeinen bitti on vanhan ja uuden paikallinen syvyys vaihdetaan ne soluosoittimet, joiden indeksi loppuu..0 osittamaan uuteen 4 6
7 Esimerkki : 4/4 Laajeneva hajautus globaali syvyys Rakenne laajenee sykäyksittäin Jos jakokohtaan osuvissa avaimissa on yhtenäinen bittisekvenssi, voidaan joutua tekemään monta jakoa ennen kuin tietueet saadaan jaettua Jos soluhakemisto kasvaa isoksi eikä sitä voida pitää keskusmuistissa voidaan hakuun tarvita levyhakua Jako ja tuplaus voivat edellyttää useita hakuja. siirretään ne, joilla. viimeinen bitti on vaihdetaan ne soluosoittimet, joiden indeksi loppuu..0 osittamaan uuteen 5 6 Lineaarisessa hajautuksessa (kotimaista alkuperää Per Larsson) ei välttämättä tarvita soluhakemistoa. Hajautusaluetta laajennetaan solu kerrallaan jakamalla jakovuorossa olevan solun sisältö solun itsensä ja uuden solun kesken. Solut saavat jakovuoronsa järjestyksessä, eikä jaettava solu ole suinkaan välttämättä se jonka kohdalla ylivuoto tapahtuu soluihin voidaan ylivuotavia tietueita varten liittää ylivuotolista. Solun osoitteen määräämiseksi käytössä on sarja hajauttimia h 0,h,h,... Nämä ovat muotoa h i = hh(k) mod ( i i N). N voidaan valita kakkosen potenssiksi d, tällöin h i eristäisi d+i bittiä perushajauttimen tuottaman arvon lopusta. jos d=5, niin h 0 eristää 5 bittiä, h 6 bittiä jne tietueen haussa tarvitaan perushajauttimen lisäksi kahta hajautinta h taso ja h taso
8 Haku laske osoite h taso (h(k)), eli ota d+taso bittiä lopusta jos kyseessä on jakamaton solu, etsi tietuetta solusta. jos kyseessä on jaettu solu muodosta uusi osoite h taso+ (h(k)), eli ota d++taso bittiä lopusta etsi tietuetta saadusta solusta Solu on jakamaton, jos sen indeksi on suurempi tai yhtä suuri kuin jakovuorossa olevan solun indeksi. Olkoon d=, taso=, eli h antaa osoitteet 0..7 ja h osoitteet 0..5 jaettuja jakovuorossa jaon tuloksena syntyneitä seuraavan tason soluja 9 0 Lisäyksessä, solmu lisätään haun määräämään lohkoon Jos solmu ei mahdu kotilohkoon, se lisätään ylivuotoketjuun. Ylivuoto käynnistää jako-operaation. Olkoon jakovuorossa olevan solun taso+d bitistä muodostuva osoite {b}. Otetaan käyttöön uusi solu jonka osoite on {b}. jakovuorossa olevan solun tietueet jaetaan alkuperäisen soluun ja uuden solun kesken käyttäen hajautinta h taso+. Jos jakovuorossa oli tason viimeinen solu siirtyy jakovuoro soluun 0 ja tasoa kasvatetaan yhdellä, muuten jakovuoro siirtyy seuraavaan soluun. Olkoon d=, taso=, eli h antaa osoitteet 0..7 ja h osoitteet 0..5 jaettuja jakovuorossa jaon vastaanottajat 8
9 Kullakin tasolla jaetaan vuorollaan jokainen tason solu. Kun kaikki on jaettu, on hajautusalue tuplautunut ja siirrytään seuraavalle tasolle. Rakenteessa voi olla pitkiäkin ylivuotoketjuja, mutta ne lyhenevät kun taso kasvaa. 9
Hajautusrakenteet. R&G Chapter Tietokannan hallinta, kevät 2006, Jan 1
Hajautusrakenteet R&G Chapter 11 16.02.06 Tietokannan hallinta, kevät 2006, Jan 1 Hajautukseen perustuvat tiedostorakenteet Hajautukseen perustuvissa tiedostorakenteissa on tavoitteena yksittäisen tietueen
TKHJ:ssä on yleensä komento create index, jolla taululle voidaan luoda hakemisto
Indeksin luonti ja hävitys TKHJ:ssä on yleensä komento create index, jolla taululle voidaan luoda hakemisto Komentoa ei ole standardoitu ja niinpä sen muoto vaihtelee järjestelmäkohtaisesti Indeksi voidaan
D B. B+ -puun tasapainotus poistossa. B+ -puun tasapainotus poistossa. Poistot. B+ -puun tasapainotus poistossa. B+ -puun tasapainotus poistossa
Poistot Alkuperäisen B+ -puun idean mukaisesti tasapainotusta tehdään myös poistossa 50 Jos datasivun täyttösuhde laskee alle puoleen ja sivun ja sen velisivun (sibling, saman isäsivun alla oleva vierussivu)
Yksitasoisia talletusrakenteita käytetään lähinnä datatietueiden talletukseen
Yksitasoiset talletusrakenteet Yksitasoisia talletusrakenteita käytetään lähinnä datatietueiden talletukseen järjestämätön peräkkäisrakenne (kasa, heap) järjestetty peräkkäisrakenne (sequential file) hajautusrakenne
Helsingin yliopisto/tktl Tietokannan hallinta kevät Harri Laine 1 D B. Yksitasoiset talletusrakenteet
Yksitasoiset talletusrakenteet Yksitasoisia talletusrakenteita käytetään lähinnä datatietueiden talletukseen järjestämätön peräkkäisrakenne (kasa, heap) järjestetty peräkkäisrakenne (sequential file) hajautusrakenne
Helsingin yliopisto/tktl Kyselykielet, s 2006 Tietokantaoperaatioiden toteutuksesta Harri Laine 1. Tiedostorakenteet.
Tiedostorakenteet Tiedostorakenne määrittelee miten tietueet tallennetaan tiedostoon miten tietoja haetaan Tiedostorakenne on yksitasoinen (flat), jos se muodostuu pelkästään datatietueista. Tiedostorakenne
Algoritmit 2. Luento 3 Ti Timo Männikkö
Algoritmit 2 Luento 3 Ti 20.3.2018 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2018 Luento 3 Ti 20.3.2018
Algoritmit 2. Luento 3 Ti Timo Männikkö
Algoritmit 2 Luento 3 Ti 21.3.2017 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2017 Luento 3 Ti 21.3.2017
Algoritmit 2. Luento 4 To Timo Männikkö
Algoritmit 2 Luento 4 To 21.3.2019 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2019 Luento 4
Tiedostorakenteet. R&G Chapter Tietokannan hallinta, kevät 2006, Jan 1
Tiedostorakenteet R&G Chapter 9 16.02.06 Tietokannan hallinta, kevät 2006, Jan 1 Tiedostorakenteet Tiedostojen tehokkuutta yhtä kyselyä kohti arvioidaan usein tarvittavien levyhakujen määrällä. kuten levykäsittelyn
Hakemistorakenteet. R & G Chapter Tietokannan hallinta, kevät 2006, Jan 1
Hakemistorakenteet R & G Chapter 10 16.02.06 Tietokannan hallinta, kevät 2006, Jan 1 Hakemistotyypeistä Hakemistomerkintä sisältää hakemistoavaimen (indexing key) muodostusperustan määrittelemänä tietueesta
Algoritmit 2. Luento 4 Ke Timo Männikkö
Algoritmit 2 Luento 4 Ke 22.3.2017 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2017 Luento 4
Hakemistotyypeistä. Hakemistorakenteet. Hakemiston toteutuksesta. Hakemiston toteutuksesta
Hakemistotyypeistä Hakemistorakenteet R & G Chapter 10 Hakemistomerkintä sisältää hakemistoavaimen (indexing key) muodostusperustan määrittelemänä tietueesta tai tietuejoukosta tuotettu tunnus yleensä
Luento 2: Tiedostot ja tiedon varastointi
HELIA 1 (19) Luento 2: Tiedostot ja tiedon varastointi Muistit... 2 Päämuisti (Primary storage)... 2 Apumuisti (Secondary storage)... 2 Tiedon tallennuksen yksiköitä... 3 Looginen taso... 3 Fyysinen taso...
Jokaisella tiedostolla on otsake (header), joka sisältää tiedostoon liittyvää hallintatietoa
Tietojen tallennusrakenteet Jokaisella tiedostolla on otsake (header), joka sisältää tiedostoon liittyvää hallintatietoa tiedot tiedostoon kuuluvista lohkoista esim. taulukkona, joka voi muodostua ketjutetuista
D B. Harvat hakemistot. Harvat hakemistot
Harvassa hakemistossa on ei ole hakemistomerkintöjä jokaista tietuetta kohden vaan yksi merkintä jotain isompaa kokonaisuutta esimerkiksi sivua tai sivujoukkoa (esim. saman uran sivut) kohti Harvan hakemiston
oheishakemistoja voi tiedostoon liittyä useita eri perustein muodostettuja
Tietokantojen hakemistorakenteet Hakemistorakenteiden (indeksien) tarkoituksena on nopeuttaa tietojen hakua tietokannasta. Hakemisto voi olla ylimääräinen oheishakemisto (secondary index), esimerkiksi
Algoritmit 2. Luento 5 Ti Timo Männikkö
Algoritmit 2 Luento 5 Ti 26.3.2019 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot B-puun muunnelmia Algoritmit 2 Kevät 2019 Luento 5 Ti 26.3.2019 2/34 B-puu B-puut ovat tasapainoisia
Algoritmit 2. Luento 6 Ke Timo Männikkö
Algoritmit 2 Luento 6 Ke 29.3.2017 Timo Männikkö Luento 6 B-puun operaatiot B-puun muunnelmia Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2017 Luento 6 Ke 29.3.2017 2/31 B-puu
5. Hajautus. Tarkastellaan edelleen sivulla 161 esitellyn joukkotietotyypin toteuttamista
5. Hajautus Tarkastellaan edelleen sivulla 161 esitellyn joukkotietotyypin toteuttamista Useissa sovelluksissa riittää että operaatiot insert, delete ja search toimivat nopeasti esim. sivun 30 puhelinluetteloesimerkissä
Hajautus. operaatiot insert ja search pyritään tekemään erittäin nopeiksi
Hajautus eräs (osittainen) toteutus joukko-tietotyypille operaatiot insert ja search pyritään tekemään erittäin nopeiksi tärkeä tekniikka käytännön ohjelmoinnissa valmiita toteutuksia on, mutta väärät
Luku 8. Aluekyselyt. 8.1 Summataulukko
Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa
Algoritmit 2. Luento 6 To Timo Männikkö
Algoritmit 2 Luento 6 To 28.3.2019 Timo Männikkö Luento 6 B-puun operaatiot Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2019 Luento 6 To 28.3.2019 2/30 B-puu 40 60 80 130 90 100
B-puu. 3.3 Dynaamiset hakemistorakenteet
Tietokannan hallinta 2 3. Tietokannan hakemistorakenteet 3.3 Dynaamiset hakemistorakenteet Käsitellyt hakemistot (hajautus, ISAM): hakemisto-osa on staattinen eli ei muutu muuten kuin uudelleenorganisoinnissa.
Käsitellyt hakemistot (hajautus, ISAM): hakemisto-osa on staattinen eli ei muutu muuten kuin uudelleenorganisoinnissa.
Tietokannan hallinta 35 3. Tietokannan 3.3 Dynaamiset Käsitellyt hakemistot (hajautus, ISAM): hakemisto-osa on staattinen eli ei muutu muuten kuin uudelleenorganisoinnissa. Ajan mittaan epätasapainoa:
Tietorakenteet, laskuharjoitus 7, ratkaisuja
Tietorakenteet, laskuharjoitus, ratkaisuja. Seuraava kuvasarja näyttää B + -puun muutokset lisäysten jälkeen. Avaimet ja 5 mahtuvat lehtisolmuihin, joten niiden lisäys ei muuta puun rakennetta. Avain 9
Algoritmit 2. Luento 5 Ti Timo Männikkö
Algoritmit 2 Luento 5 Ti 28.3.2017 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot Algoritmit 2 Kevät 2017 Luento 5 Ti 28.3.2017 2/29 B-puu Algoritmit 2 Kevät 2017 Luento 5 Ti
D B. Tiedostojen käsittely
Tietokantojen tietoja säilytetään yleensä apumuistissa, lähinnä levymuisteissa Apumuistiin tallentamisen merkittäviä etuja keskusmuistiin nähden ovat tiedon säilyvyys (virtakatkon yli) säilytyskapasiteetin
D B. Tietokannan hallinta kertaus
TKHJ:n pääkomponentit metadata TKHJ:ssä Tiedostojen käsittely puskurien rooli tiedostokäsittelyssä levymuistin rakenne ja käsittely mistä tekijöistä hakuaika muodostuu jonotus jos useita samanaikaisia
Algoritmit 1. Luento 5 Ti Timo Männikkö
Algoritmit 1 Luento 5 Ti 24.1.2017 Timo Männikkö Luento 5 Järjestetty lista Järjestetyn listan operaatiot Listan toteutus taulukolla Binäärihaku Binäärihaun vaativuus Algoritmit 1 Kevät 2017 Luento 5 Ti
Algoritmit 2. Luento 2 To Timo Männikkö
Algoritmit 2 Luento 2 To 14.3.2019 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2019 Luento
D B. Harvat hakemistot
Harvat hakemistot Harvassa hakemistossa on ei ole hakemistomerkintöjä jokaista tietuetta kohden vaan yksi merkintä jotain isompaa kokonaisuutta esimerkiksi sivua tai sivujoukkoa (esim. saman uran sivut)
Algoritmit 1. Luento 7 Ti Timo Männikkö
Algoritmit 1 Luento 7 Ti 31.1.2017 Timo Männikkö Luento 7 Järjestetty binääripuu Binääripuiden termejä Binääripuiden operaatiot Solmun haku, lisäys, poisto Algoritmit 1 Kevät 2017 Luento 7 Ti 31.1.2017
Liitosesimerkki Tietokannan hallinta, kevät 2006, J.Li 1
Liitosesimerkki 16.02.06 Tietokannan hallinta, kevät 2006, J.Li 1 Esim R1 R2 yhteinen attribuutti C T(R1) = 10,000 riviä T(R2) = 5,000 riviä S(R1) = S(R2) = 1/10 lohkoa Puskuritilaa = 101 lohkoa 16.02.06
Liitosesimerkki. Esim R1 R2 yhteinen attribuutti C. Vaihtoehdot
Esim yhteinen attribuutti C Liitosesimerkki T() = 10,000 riviä T() = 5,000 riviä S() = S() = 1/10 lohkoa Puskuritilaa = 101 lohkoa 1 2 Vaihtoehdot Sisäkkäiset silmukat Liitosjärjestys:, Liitosalgoritmit:
Helsingin yliopisto /TKTL Tietokannan hallinta Harri Laine 1 D B. Harvat hakemistot. Harvat hakemistot
Harvassa hakemistossa on ei ole hakemistomerkintöjä jokaista tietuetta kohden vaan yksi merkintä jotain isompaa kokonaisuutta esimerkiksi sivua tai sivujoukkoa (esim. saman uran sivut) kohti Harvan hakemiston
815338A Ohjelmointikielten periaatteet Harjoitus 3 vastaukset
815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 3 vastaukset Harjoituksen aiheena ovat imperatiivisten kielten muuttujiin liittyvät kysymykset. Tehtävä 1. Määritä muuttujien max_num, lista,
Tietorakenteet ja algoritmit - syksy 2015 1
Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 2 Tietorakenteet ja algoritmit Johdanto Ari Korhonen Tietorakenteet ja algoritmit - syksy 2015 1. JOHDANTO 1.1 Määritelmiä
Tietorakenteet ja algoritmit. Hajautus. Ari Korhonen Tietorakenteet ja algoritmit - syksy
Tietorakenteet ja algoritmit Hajautus Ari Korhonen 10.11.2015 Tietorakenteet ja algoritmit - syksy 2015 1 9 Hajautus 9.1 Yleistä 9.2 Hajautusfunktio 9.3 Erillinen ketjutus 9.4 Avoin osoitus 9.4.1 Lineaarinen
Algoritmit 2. Luento 7 Ti Timo Männikkö
Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26
58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen)
58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen) 1. Avaimet 1, 2, 3 ja 4 mahtuvat samaan lehtisolmuun. Tässä tapauksessa puussa on vain yksi solmu, joka on samaan aikaan juurisolmu
v 1 v 2 v 3 v 4 d lapsisolmua d 1 avainta lapsen v i alipuun avaimet k i 1 ja k i k 0 =, k d = Sisäsolmuissa vähint. yksi avain vähint.
Yleiset hakupuut 4 Monitiehakupuu: Binäärihakupuu 0 1 3 5 6 7 8 v k 1 k k 3 v v 3 v 4 k 1 k 3 k 1 k k k 3 d lapsisolmua d 1 avainta Yleinen hakupuu? Tietorakenteet, syksy 007 1 Esimerkki monitiehakupuusta
A274101 TIETORAKENTEET JA ALGORITMIT
A274101 TIETORAKENTEET JA ALGORITMIT HAJAUTUS, JÄRJESTÄMISESTÄ HAJAUTTAMISEN IDEA Jos avaimet (tai data) ovat kokonaislukuja välillä 1 N, voidaan niitä käyttää suoraan indeksointiin Järkevä rakenne on
2. Tietokannan tallennusrakenteet
Tietokannan hallinta 1 2. Tietokannan tallennusrakenteet 2. Tietokannan tallennusrakenteet 2.1 Levymuisti ja sen käyttö Muistilaitteiden hierarkia: ainakin keskusmuisti levymuisti (+ muita tukimuisteja,
4. Hajautus. Hajautus (hashing) on vaihtoehto tasapainoisille puille dynaamisen joukon toteuttamisessa:
4. Hajautus Hajautus (hashing) on vaihtoehto tasapainoisille puille dynaamisen joukon toteuttamisessa: Search, Insert ja Delete yleensä ajassa O(1) (tasapainoisella puulla O(log n)) pahimmassa tapauksessa
Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen
Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari 1 1. JOHDANTO 1.1 Määritelmiä 1.2 Tietorakenteen ja algoritmin valinta 1.3 Algoritmit ja tiedon määrä 1.4 Tietorakenteet ja toiminnot 1.5 Esimerkki:
58131 Tietorakenteet ja algoritmit (syksy 2015) Toinen välikoe, malliratkaisut
Tietorakenteet ja algoritmit (syksy 0) Toinen välikoe, malliratkaisut. (a) Alussa puu näyttää tältä: Lisätään 4: 4 Tasapaino rikkoutuu solmussa. Tehdään kaksoiskierto ensin oikealle solmusta ja sitten
2. Tietokannan tallennusrakenteet
2. Tietokannan tallennusrakenteet - tallennusrakenne = säilytysrakenne 2.1 Levymuisti ja sen käyttö 2.2 Puskurointi 2.3 Tietokannan tiedostorakenne 2.4 Järjestämätön peräkkäistiedosto (kasa) 2.5 Järjestetty
D B. Levykön rakenne. pyöriviä levyjä ura. lohko. Hakuvarsi. sektori. luku-/kirjoituspää
Levyn rakenne Levykössä (disk drive) on useita samankeskisiä levyjä (disk) Levyissä on magneettinen pinta (disk surface) kummallakin puolella levyä Levyllä on osoitettavissa olevia uria (track), muutamasta
Algoritmit 1. Luento 8 Ke Timo Männikkö
Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin
Ohjelmoinnin peruskurssi Y1
Ohjelmoinnin peruskurssi Y1 CSE-A1111 30.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 30.9.2015 1 / 27 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.
Algoritmit 1. Luento 11 Ti Timo Männikkö
Algoritmit 1 Luento 11 Ti 14.2.2017 Timo Männikkö Luento 11 Algoritminen ongelmanratkaisu Osittaminen Lomituslajittelu Lomituslajittelun vaativuus Rekursioyhtälöt Pikalajittelu Algoritmit 1 Kevät 2017
811312A Tietorakenteet ja algoritmit, , Harjoitus 5, Ratkaisu
1312A Tietorakenteet ja algoritmit, 2018-2019, Harjoitus 5, Ratkaisu Harjoituksen aihe ovat hash-taulukot ja binääriset etsintäpuut Tehtävä 5.1 Tallenna avaimet 10,22,31,4,15,28,17 ja 59 hash-taulukkoon,
Helsingin yliopisto/tktl Kyselykielet, s 2006 Optimointi Harri Laine 1. Kyselyn optimointi. Kyselyn optimointi
Miksi optimoidaan Relaatiotietokannan kyselyt esitetään käytännössä SQLkielellä. Kieli määrittää halutun tuloksen, ei sitä miten tulos muodostetaan (deklaratiivinen kyselykieli) Tietokannan käsittelyoperaatiot
Helsingin yliopisto/tktl Tietokantojen perusteet, s 2006 Tietokantaoperaatioiden toteutuksesta 3. Harri Laine 1
Tietokantojen hakemistorakenteet Hakemistorakenteiden (indeksien) tarkoituksena on nopeuttaa tietojen hakua tietokannasta. Hakemisto voi olla ylimääräinen oheishakemisto (secondary index), esimerkiksi
A TIETORAKENTEET JA ALGORITMIT
A274105 TIETORAKENTEET JA ALGORITMIT HARJOITUSTEHTÄVÄT 6 DEADLINE 1.4.2009 KLO 9:00 Kynätehtävät tehdään kirjallisesti ja esitetään harjoituksissa. Välivaiheet näkyviin! Ohjelmointitehtävät sähköisesti
Tietokannan indeksointi: B puun ja hajautusindeksin tehokkuus
Tietokannan indeksointi: B puun ja hajautusindeksin tehokkuus Tuomas Kortelainen 28.4.2008 Joensuun yliopisto Tietojenkäsittelytiede Pro gradu tutkielma Tiivistelmä Tässä tutkielmassa esitellään tietokannan
811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 2. Lukujen esittäminen ja aritmetiikka 2.1 Kantajärjestelmät ja lukujen esittäminen Käytettävät lukujoukot: Luonnolliset luvut IN = {0,1,2,3,... } Positiiviset kokonaisluvut
ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012
ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 1.1. (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m,
Algoritmit 1. Luento 12 Ti Timo Männikkö
Algoritmit 1 Luento 12 Ti 19.2.2019 Timo Männikkö Luento 12 Osittamisen tasapainoisuus Pikalajittelun vaativuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu Algoritmit
Algoritmit 2. Luento 2 Ke Timo Männikkö
Algoritmit 2 Luento 2 Ke 15.3.2017 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2017 Luento
Algoritmit 2. Demot Timo Männikkö
Algoritmit 2 Demot 2 3.-4.4.2019 Timo Männikkö Tehtävä 1 Avoin osoitteenmuodostus: Hajautustaulukko t (koko m) Erikoisarvot VAPAA ja POISTETTU Hajautusfunktio h(k,i) Operaatiot: lisaa etsi poista Algoritmit
Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003
Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003 Matti Nykänen 5. joulukuuta 2003 1 Satelliitit Muunnetaan luennoilla luonnosteltua toteutusta seuraavaksi: Korvataan puusolmun p kentät p. key ja
811312A Tietorakenteet ja algoritmit, 2014-2015, Harjoitus 7, ratkaisu
832A Tietorakenteet ja algoritmit, 204-205, Harjoitus 7, ratkaisu Hajota ja hallitse-menetelmä: Tehtävä 7.. Muodosta hajota ja hallitse-menetelmää käyttäen algoritmi TULOSTA_PUU_LASKEVA, joka tulostaa
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 11.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 11.2.2009 1 / 33 Kertausta: listat Tyhjä uusi lista luodaan kirjoittamalla esimerkiksi lampotilat = [] (jolloin
Algoritmit 1. Luento 9 Ti Timo Männikkö
Algoritmit 1 Luento 9 Ti 7.2.2017 Timo Männikkö Luento 9 Graafit ja verkot Kaaritaulukko, bittimatriisi, pituusmatriisi Verkon lyhimmät polut Floydin menetelmä Lähtevien ja tulevien kaarien listat Forward
Algoritmit 1. Luento 6 Ke Timo Männikkö
Algoritmit 1 Luento 6 Ke 25.1.2017 Timo Männikkö Luento 6 Järjestetty lista Listan toteutus dynaamisesti Linkitetyn listan operaatiot Vaihtoehtoisia listarakenteita Puurakenteet Binääripuu Järjestetty
PERUSLASKUJA. Kirjoita muuten sama, mutta ota välilyönti 4:n jälkeen 3/4 +5^2
PERUSLASKUJA Matemaattisten lausekkeiden syöttäminen: Kirjoita ilman välilyöntejä /+^2 Kirjoita muuten sama, mutta ota välilyönti :n jälkeen / +^2 Kopioi molemmat matematiikka-alueet ja liiku alueen sisällä
Algoritmit 2. Luento 14 Ke Timo Männikkö
Algoritmit 2 Luento 14 Ke 3.5.2017 Timo Männikkö Luento 14 Ositus ja rekursio Rekursion toteutus Kertaus ja tenttivinkit Algoritmit 2 Kevät 2017 Luento 14 Ke 3.5.2017 2/30 Ositus Tehtävän esiintymä ositetaan
811312A Tietorakenteet ja algoritmit, , Harjoitus 5, Ratkaisu
1312A Tietorakenteet ja algoritmit, 2016-2017, Harjoitus 5, Ratkaisu Harjoituksen aihe ovat hash-taulukot ja binääriset etsintäpuut Tehtävä 5.1 Tallenna avaimet 10,22,31,4,15,28,17 ja 59 hash-taulukkoon,
Jaetun muistin muuntaminen viestin välitykseksi. 15. lokakuuta 2007
Jaetun muistin muuntaminen viestin välitykseksi Otto Räsänen 15. lokakuuta 2007 1 Motivaatio 2 Valtuuden välitys Peruskäsitteitä 3 Kolme algoritmia Valtuuden välitys käyttäen laskuria ilman ylärajaa Valtuuden
Lineaarinen optimointitehtävä
Lineaarinen optimointitehtävä Minimointitehtävä yhtälörajoittein: min kun n j=1 n j=1 c j x j a ij x j = b i x j 0 j = 1,..., n i = 1,..., m Merkitään: z = alkuperäisen objektifunktion arvo käsiteltävänä
(a) L on listan tunnussolmu, joten se ei voi olla null. Algoritmi lisäämiselle loppuun:
Tietorakenteet ja algoritmit, kevät 201 Kurssikoe 1, ratkaisuja 1. Tehtävästä sai yhden pisteen per kohta. (a) Invariantteja voidaan käyttää algoritmin oikeellisuustodistuksissa Jokin väittämä osoitetaan
Algoritmit 1. Luento 1 Ti Timo Männikkö
Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017
Algoritmit 1. Luento 12 Ke Timo Männikkö
Algoritmit 1 Luento 12 Ke 15.2.2017 Timo Männikkö Luento 12 Pikalajittelu Pikalajittelun vaativuus Osittamisen tasapainoisuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu
Tietorakenteet ja algoritmit syksy Laskuharjoitus 1
Tietorakenteet ja algoritmit syksy 2012 Laskuharjoitus 1 1. Tietojenkäsittelijä voi ajatella logaritmia usein seuraavasti: a-kantainen logaritmi log a n kertoo, kuinka monta kertaa luku n pitää jakaa a:lla,
Ohjelmassa muuttujalla on nimi ja arvo. Kääntäjä ja linkkeri varaavat muistilohkon, jonne muuttujan arvo talletetaan.
Osoittimet Ohjelmassa muuttujalla on nimi ja arvo. Kääntäjä ja linkkeri varaavat muistilohkon, jonne muuttujan arvo talletetaan. Muistilohkon koko riippuu muuttujan tyypistä, eli kuinka suuria arvoja muuttujan
7.4 Sormenjälkitekniikka
7.4 Sormenjälkitekniikka Tarkastellaan ensimmäisenä esimerkkinä pitkien merkkijonojen vertailua. Ongelma: Ajatellaan, että kaksi n-bittistä (n 1) tiedostoa x ja y sijaitsee eri tietokoneilla. Halutaan
Kirjoita ohjelma jossa luetaan kokonaislukuja taulukkoon (saat itse päättää taulun koon, kunhan koko on vähintään 10)
Tehtävä 40. Kirjoita ohjelma, jossa luetaan 20 lukua, joiden arvot ovat välillä 10 100. Kun taulukko on täytetty, ohjelma tulostaa vain ne taulukon arvot, jotka esiintyvät taulukossa vain kerran. Tehtävä
Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}.
Jaetaan ryhmä G = Z 17 n H = 4 sivuluokkiin. Ratkaisu: Koska 17 on alkuluku, #G = 16, alkiona jäännösluokat a, a = 1, 2,..., 16. Määrätään ensin n H alkiot: H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4
A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.
Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =
1. a) Laadi suoraviivaisesti kyselyä vastaava optimoimaton kyselypuu.
Helsingin yliopisto, Tietojenkäsittelytieteen laitos Kyselykielet, s 2006, Harjoitus 5 (7.12.2006) Tietokannassa on tietoa tavaroista ja niiden toimittajista: Supplier(sid,sname,city,address,phone,etc);
A TIETORAKENTEET JA ALGORITMIT KORVAAVAT HARJOITUSTEHTÄVÄT 3, DEADLINE KLO 12:00
A274101 TIETORAKENTEET JA ALGORITMIT KORVAAVAT HARJOITUSTEHTÄVÄT 3, DEADLINE 9.2.2005 KLO 12:00 PISTETILANNE: www.kyamk.fi/~atesa/tirak/harjoituspisteet-2005.pdf Kynätehtävät palautetaan kirjallisesti
Datatähti 2019 loppu
Datatähti 2019 loppu task type time limit memory limit A Summa standard 1.00 s 512 MB B Bittijono standard 1.00 s 512 MB C Auringonlasku standard 1.00 s 512 MB D Binääripuu standard 1.00 s 512 MB E Funktio
Kirjoita oma versio funktioista strcpy ja strcat, jotka saavat parametrinaan kaksi merkkiosoitinta.
Tehtävä 63. Kirjoita oma versio funktiosta strcmp(),joka saa parametrinaan kaksi merkkiosoitinta. Tee ohjelma, jossa luetaan kaksi merkkijonoa, joita sitten verrataan ko. funktiolla. Tehtävä 64. Kirjoita
private TreeMap<String, Opiskelija> nimella; private TreeMap<String, Opiskelija> numerolla;
Tietorakenteet, laskuharjoitus 7, ratkaisuja 1. Opiskelijarekisteri-luokka saadaan toteutetuksi käyttämällä kahta tasapainotettua binäärihakupuuta. Toisen binäärihakupuun avaimina pidetään opiskelijoiden
jotakin käyttötarkoitusta varten laadittu kokoelma toisiinsa liittyviä säilytettäviä tietoja
Tietokanta Tietokanta (database) jotakin käyttötarkoitusta varten laadittu kokoelma toisiinsa liittyviä säilytettäviä tietoja mikä tahansa tietokokoelma? --> erityispiirteitä Tietokanta vs. tiedosto 1
Tietorakenteet, laskuharjoitus 8, malliratkaisut
Tietorakenteet, laskuharjoitus 8, malliratkaisut 1. Seuraavassa on yksi tapa toteuttaa metodit hashcode ja equals: public int hashcode() { return this.x * 31 + this.y; public boolean equals(object o) {
Tietokanta (database)
Tietokanta Tietokanta (database) jotakin käyttötarkoitusta varten laadittu kokoelma toisiinsa liittyviä säilytettäviä tietoja 1 Tiedosto Ohjelmointikielissä apumuistiin tallennettuja tietoja käsitellään
Kääreluokat (oppikirjan luku 9.4) (Wrapper-classes)
Kääreluokat (oppikirjan luku 9.4) (Wrapper-classes) Kääreluokista Javan alkeistietotyypit ja vastaavat kääreluokat Autoboxing Integer-luokka Double-luokka Kääreluokista Alkeistietotyyppiset muuttujat (esimerkiksi
Algoritmit 1. Demot Timo Männikkö
Algoritmit 1 Demot 1 25.-26.1.2017 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka laskee kahden kokonaisluvun välisen jakojäännöksen käyttämättä lainkaan jakolaskuja Jaettava m, jakaja n Vähennetään luku
Yleistä. Nyt käsitellään vain taulukko (array), joka on saman tyyppisten muuttujien eli alkioiden (element) kokoelma.
2. Taulukot 2.1 Sisältö Yleistä. Esittely ja luominen. Alkioiden käsittely. Kaksiulotteinen taulukko. Taulukko operaation parametrina. Taulukko ja HelloWorld-ohjelma. Taulukko paluuarvona. 2.2 Yleistä
A274101 TIETORAKENTEET JA ALGORITMIT
A274101 TIETORAKENTEET JA ALGORITMIT PUURAKENTEET, BINÄÄRIPUU, TASAPAINOTETUT PUUT MIKÄ ON PUUTIETORAKENNE? Esim. Viereinen kuva esittää erästä puuta. Tietojenkäsittelytieteessä puut kasvavat alaspäin.
1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.
Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i
Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin
Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin jaetaan muut alkiot kahteen ryhmään: L: alkiot, jotka eivät suurempia kuin pivot G : alkiot, jotka suurempia kuin pivot 6 1 4 3 7 2
Perusteet. Pasi Sarolahti Aalto University School of Electrical Engineering. C-ohjelmointi Kevät Pasi Sarolahti
C! Perusteet 19.1.2017 Palautteesta (1. kierros toistaiseksi) (Erittäin) helppoa Miksi vain puolet pisteistä? Vaikeinta oli ohjelmointiympäristön asennus ja käyttö Ei selvää että main funktion pitikin
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 25.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 25.2.2009 1 / 34 Syötteessä useita lukuja samalla rivillä Seuraavassa esimerkissä käyttäjä antaa useita lukuja samalla
Algoritmit 1. Luento 10 Ke Timo Männikkö
Algoritmit 1 Luento 10 Ke 14.2.2018 Timo Männikkö Luento 10 Algoritminen ongelmanratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Lisäyslajittelu Valintalajittelu Permutaatiot
Algoritmit 2. Luento 9 Ti Timo Männikkö
Algoritmit 2 Luento 9 Ti 19.4.2016 Timo Männikkö Luento 9 Merkkitiedon tiivistäminen LZW-menetelmä Taulukointi Editointietäisyys Peruutus Verkon 3-väritys Algoritmit 2 Kevät 2016 Luento 9 Ti 19.4.2016
Algoritmit 1. Luento 2 Ke Timo Männikkö
Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät