GPS operations at Olkiluoto. Kivetty and Romuvaara for 1998

Koko: px
Aloita esitys sivulta:

Download "GPS operations at Olkiluoto. Kivetty and Romuvaara for 1998"

Transkriptio

1 Working Report GPS operations at Olkiluoto. Kivetty and Romuvaara for 1998 Matti Ollikainen Juhani Kakkuri April 1999 POSIVA OY Mikonkatu 15 A, FIN-1 HELSINKI, FINLAND Tel Fax

2 GPS OPERA TIONS AT OLKILUOTO, KIVETTY, AND ROMUV AARA FOR 1998 AUTHORS: ~td!t/ ~ Matti llikainen J ~-~ ~-.,L q"\t'\.r-_ Juhani Kakkuri Geodeettinen Laitos The Finnish Geodetic Institute March 1998.

3 Working Report GPS operations at Olkiluoto, Kivetty and Romuvaara for 1998 Matti Ollikainen Juhani Kakkuri April 1999

4 Working Report GPS operations at Olkiluoto, Kivetty and Romuvaara for 1998 Matti Ollikainen Juhani Kakkuri The Finnish Geodetic Institute April 1999 Working Reports contain information on work in progress or pending completion. The conclusions and viewpoints presented in the report are those of author(s} and do not necessarily coincide with those of Posiva.

5 GPS operations at Olkiluoto, Kivetty and Romuvaara for 1998 Abstract The operations of the perrnanent GPS stations at the POSIV A investigation areas have been continued four years for Olkiluoto, and 2.6 years for Kivetty and Romuvaara. The continuously tracked GPS data are processed routinely together with the GPS data from other two permanent stations of Metsähovi and Tuoda. The seven-day solutions show that the movements relative to the IGS station Metsähovi are in the order of a few millimetres. The uplift rates deduced from GPS agree well with that obtained from precise levelling. As the time span is not sufficiently long, more reliable results can be obtained in a few years. For the local GPS monitoring networks, eight measurements have been perforrned for Olkiluoto, while six measurements have been perforrned for Kivetty and Romuvaara. The local movements are generally rather small (less than.5 mm/yr). lt is rather difficult to identify such small movements for a time span of less than 4 years. Nevertheless, some deformation signals can be revealed already. For the Olkiluoto investigation area, it is likely that GPS9 is moving to the east, and GPS1 is moving to the west. The opposite movements of GPS9 and GPS 1 indicate that it is feasible that a slip rate of.4-.5 mm/yr occurs along the fracture zone between GPS9 and GPS 1. For the Kivetty investigation area no statistically significant movement was found. For the Romuvaara investigation area, there exists indications that GPS5 is moving to the east. Same kind of indications show that GPS3 is moving to south-east direction. The size of the change rate is about.6-.7 mm/yr. All these interesting phenomena are need to be investigated in details by performing more repeated measurements in the coming years. Keywords: Permanent GPS stations, GPS measurements, crustal deformations.

6 Olkiluodossa, Kivetyssä ja Romuvaaran alueella vuonna 1998 tehtyjen GPS-mittausten tulokset Tiivistelmä Geodeettisia GPS-satelliittimittauksia on jatkettu neljän vuoden ajan Olkiluodon ja noin kahden ja puolen vuoden ajan Kivetyn ja Romuvaaran asemilla. Jatkuvista rekisteröinneistä muodostettuja viiden vuorokauden keskiarvoja on verrattu Metsähovin ja Tuodan GPSasemien vastaavaan dataan. Vertaukset osoittavat, että asemien välimatkat pitenevät Metsähoviin nähden muutamia millimetrejä vuodessa. Tämä merkitsee, että maankuori laajenee Metsähovin, Tuorlan, Olkiluodon, Kivetyn ja Romuvaaran asemien rajaamaha alueella, mikä on sopusoinnussa Fennoskandian alueella tapahtuvan maankohoamisen kanssa. Korkeussuunnassa havaitut liikkeen ovat yhdenmukaisia pitkäaikaisten tarkkavaaitusten antamien maannousutulosten kanssa. Luotettavaroman kuvan saamiseksi on GPS-mittauksia kuitenkin jatkettava vielä usean vuoden ajan. Olkiluodon, Kivetyn ja Romuvaaran paikallisverkoissa on myös suoritettu GPS-mittauksia siten, että Olkiluoto on mitattu kahdeksaan kertaan ja sekä Kivetty että Romuvaara kuuteen kertaan. Paikalliset maankuoren relatiiviset liikkeet mittausalueiden sisällä ovat yleisesti ottaen vähäisiä ( <.5 mm/v) ja kolme-neljä vuotta pitkä havaintojakso on vielä liian lyhyt, jotta niin verkkaiset liikkeet saataisiin luotettavasti määritetyiksi. Kuitenkin selviä merkkejä liikuntojen olemassaolosta on havaittavissa. Niinpä Olkiluodon alueella pisteiden 9 ja 1 vastakkaissuuntainen liike.4-.5 mm/v viittaisi siihen, että pisteet erottavaa ruhjevyöhykettä pitkin tapahtuisi lohkoliikettä. Kivetyn alueella tilastollisesti merkittäviä liikkeitä ei voida havaita. Sen sijaan Romuvaaran alueella piste numero 5 näyttää liikkuvan itään ja piste 3 kaakkoon. Pisteiden liikenopeus on n mm/v. Edellä mainittujen liikuntojen varmistamiseksi lisämittauksia on tehtävä vielä usean vuoden aja. Avainsanat: Pysyvät GPS-asemat, GPS-mittaukset, maankuoren deformaatio.

7 CONTENTS: Changes in the processing of the GPS observations 1. The new GPS software 2. Ionospheric modelling GPS OPERATIONS AT OLKILUOTO 1. Operation of the Permanent GPS Station 2. The Measurements of the Local GPS network 2.1 The first measurement of the local GPS network 2.2 The second measurement of the local GPS network 3. Data Analysis and Local Movements GPS OPERATIONS AT KIVETTY 1. The Operations of the Permanent GPS Station 2. The Measurements of the Local GPS network 2.1 The First Measurement of the Local GPS Network 2.2 The Second Measurement of the Local GPS Network 3. Data Analysis and Preliminary Result GPS OPERATIONS AT ROMUVAARA 1. The Operation of the Permanent GPS Station 2. The Measurements of the Local GPS network 2.1 The First Measurement of the Local GPS Network 2.2 The Second Measurement of the Local GPS Network 3. Data Analysis and Preliminary Results REGIONAL DEFORMATIONS SUMMARY Acknow ledgements References Appendix 1. Appendix II. Appendix III. Results of eight measurements at Olkiluoto (Zero epoch, 1995.) Final result of the first measurements at Olkiluoto in 1998 Final result of the second measurements at Olkiluoto in 1998 Appendix IV. Results of six measurements at Kivetty (Zero epoch, 1996.) 79 Appendix V. Final result of the first measurements at Kivetty in Appendix VI. Final result of the second measurements at Kivetty in Appendix VII. Results of six measurements at Romuvaara (Zero epoch, 1996.) 17 Appendix VIII. Final result of the first measurements at Romuvaara in Appendix IX. Final result ofthe second measurements at Romuvaara in

8 2 CHANGES IN THE PROCESSING OF THE GPS OBSERVATIONS 1. The new GPS software The GPS observations made in in all three POSIV A's micronetworks were processed using the Bemese (ver 3.5) software. Thenew version of the Bemese software (ver 4.) was released already in September 1996 (Rothacher et al. 1996). The main part of thenewversion is based on theversion 3.5, but it includes some new features, too. E.g. the orbit part and the ionospheric modelling part were completely revised, the processing speed of the version 4. was improved compared to the older versions, etc. Because the routinely computations of the Finnish Permanent GPS Network (FinnRef) observations were continuously made by the version 4. it was decided to take the new version also in use in the processing of the GPS observations made in POSIV A's micronetworks. The observations were processed according to the same principles as followed in the previous GPS computations (Chen and Kakkuri 1996): Observations were processed using independent L 1 and L2 observations, rather than any linear-combinations, in order to obtain lower measurement noises and smaller effects of the multipath errors. The ionospheric refraction was modelled and Ll and L2 observations were corrected with the estimated ionospheric models in order to remove the absolute scale errors resulted from the ionospheric refraction. A global standard atmospheric model, which approximately represents the atmospheric conditions at the observation time, was used to correct the tropospheric refraction in order to remove the scale errors. Local tropospheric parameters were solved in the final solution in order to obtain an unbiased estimation of the height component. In order to confirm that the processing algorithms of both versions of the software are working similarly the GPS observations made at Romuvaara in 1997 were processed again with the new version. The results, i.e. the baseline lengths, were compared with those published in (Chen and Kakkuri 1998). The differences of the baseline lengths (Table 1) show that no difference, which is coming from different versions of the software, exists in the solutions.

9 3 Table 1. Testing two versions of the Bernese software. Differences of the vector lengths computed with Bernese v. 3.5 and Bernese v. 4.. The data used for the test computation: A = Romuvaara, the first measurement 1997 B = Romuvaara, the second measurement 1997 Vector Differences in mm Vector Differences in mm A B A B GPS1-GPS2..1 GPS3-GPS GPS1-GPS3.1. GPS3-GPS GPS1-GPS4.. GPS4-GPS5.. GPS1-GPS5.2. GPS4-GPS6.. GPS1-GPS6.. GPS4-GPS7.1. GPS1-GPS7.. GPS5-GPS6..1 GPS2-GPS3.1. GPS5-GPS7..1 GPS2-GPS GPS6-GPS7.1. GPS2-GPS5.. GPS2-GPS Mean:..2 GPS2-GPS St. dev:.8.4 GPS3-GPS4.. RMS:.8.5 GPS3-GPS5.. n: Ionospheric modelling The ionospheric distance correction to be added to the GPS observations may be computed according the following formula (Wild 1994): ~. = TEC Pwn - /2 ' (1) where TEC is the total electron content along the ray path and the + sign signifies code observations and the - sign phase observations. Typical daytime values of vertical TEC is for mid-latitude sites are of the order of electrons per m2. The corresponding night time values are of the order of 1 17 electrons per m2. The dimensions of the constant 4.3 are s- 2 m 3. The simple Eq. (1) has one problematic term: TEC, which is dependent on the state of the ionosphere, location of the observation station, observation time, etc. One of the main principles of the GPS is to eliminate ionospheric effects by using two frequencies. This may be done by forming the ionospheric-free linear combination (L3). Using the ionospheric-free linear combination has, however, some disadvantages compared with those observations computed using the basic frequencies alone. The observation noise becomes three times as large as when using the L 1 frequency alone.

10 4 When we try to obtain the extreme accuracy of short baseline measurements with GPS the best method is to use both frequencies separately and correct the observations with a local TEC model. The model can be derived from the GPS observations using the so called geometry free combination (L4) of the two frequencies, which is independent of receiver clocks and geometry. The Bemese software gives the local TEC model in the following form: where nmax mmax E({3' s) = L LE nm ({3 - {3 r ( s - s ) m ' n=o m=o are the maximum degrees of the two dimensional Taylor series expansion in latitude f3 and in longitude s. are the TEC coefficients of the Taylor series i.e. the local ionosphere model parameters. are the coordinates of the origin of the development. (2) The user of the Bemese software has to define himself the degree of the development, i.e. the degree of the TEC coefficients (Enm), which will be used for the ionospheric model. Because TEC is highly variable both temporally and spatially it is difficult to conclude the degree of the coefficients. The compilers of the software recommend the following values: 1 for latitude, 2 for time and 2 for mixed coefficients. In the previous years the ionospheric models were solved, however, using higher values for the degrees of the development. The degrees of the development were 3 for latitude, 5 for longitude and 5 for mixed terms. The purpose was to determine the ionospheric delay as accurate as possible in the GPS solutions, but in some cases the use of the higher order terms may lead to erroneous results. It is probable that during normal ionospheric conditions the ionospheric delay may be computed more accurate using a higher degree ionospheric model. The state of the ionosphere is, however, varying and today the ionospheric disturbances are coming more and more common because of the increasing solar activity. The example which is shown here describes the ionospheric situation during a calm day (1998 May ) and during another day with disturbed ionosphere (1998 Oct ). Thestate of the ionospehere is described in Figs. 1. and 2. by Ionosperic Derivative (IOD), which shows the rate of the ionospheric delay (m/s). During normal circumstances the values of IOD varies from -.3 m/s to.3 m/s (Fig. 1), but during the disturbances the values of IOD varies rapidly from -1 m/s to 1 m/s (Fig. 2). It can be seen in Fig. 2 that the ionospheric disturbances start at 14 o'clock in Oct. 2 and continues until the next day to 4 o'clock.

11 5 lonospheric derivative (1) at Romuvaara, 1998 May ~... E c Q Time [h] Fig. 1. The ionospheric derivative (IOD) at Romuvaara in 1998 May Software: TEQC, ver (UNAVCO 1997). lonospheric derivative (1) at Romuvaara 1998 Oct i c Q Time [h] Fig. 2. The ionospheric derivative (IOD) at Romuvaara in 1998 Oct Software: TEQC, ver (UNAVCO 1997). The ionospheric models were derived using the data from the permanent GPS station with IONEST program of the Bernese software. Two types of ionospheric models were derived for both days. The degrees of the coefficients were in the first model 1 for latitude, 2 for time and 2 for mixed coefficients. In the second model the degrees of the coefficients were 3 for latitude, 5 for longitude and 5 for mixed terms. The quality of the coefficients determined can be seen from the standard deviations of the coefficients which are shown in Figs. 3a-4b. During the calm day the standard deviations of the coefficients are practically the same independent of the degree of the development (Figs. 3a and 3b ). The situation is different during ionospheric disturbances. The lower degree coefficients were determined by a reasonable accuracy (Fig. 4a), but thestandard deviations of the higher order coefficients increase rapidly during the ionospheric disturbances. The maximum values of the standard deviations are approximately 1 times the normal values.

12 6 1. St.devs. of the ionospheric model coefficients, Romuvaara 1998 May Degree of the development: Time 2, Latitude 1, Mixed 2. :> Cl) c.,; en o &-+2 ~1+ ~ Time [h] Fig. 3a. Standard deviation of the ionospheric model coefficients at Romuvaara in 1998 May Degree of the development: 1 for latitude, 2 for time and 2 for the mixed terms :>.1 Cl) "C.,;.1 en.. St.devs. of the ionospheric model coefficients, Romuvaara 1998 May Degree of the development: Time 5, Latitude 3, Mixed Time [h] & ~ o Fig. 3b. Standard deviation of the ionospheric model coefficients at Romuvaara in 1998 May Degree ofthe development: 3 for latitude, 5 for time and 3 for the mixed terms. 1. St.devs. of the ionospheric model coefficients, Romuvaara 1998 Oct Degree of the development: Time 2, Latitude 1, Mixed 2. :> Cl) "C.,; en o ~1+ -X Time [h] 35 Fig. 4a. Standard deviation of the ionospheric model coefficients at Romuvaara in 1998 Oct Degree of the development: 1 for latitude, 2 for time and 2 for the mixed terms.

13 7 1. St.devs. of the ionospheric model coefficients, Romuvaara 1998 Oct Degree of the development: Time 5, Latitude 3, Mixed G A :> Q), en ~+5 -t Time [h] 3 35 Fig. 4a. Standard deviation of the ionospheric model coefficients at Romuvaara in 1998 Oct Degree of the development: 3 for latitude, 5 for time and 5 for the mixed terms fl 1.6 ~ 1.4! 'E 1.2 '6 8: 1 :5 ~.8 C) :ii.6...j.4.2 Differences caused by the ienespheric medel te the baseline length as a functien ef azimuth, Remuvaara BO Azimuth [degrees) Differences caused by the ienespheric medel te the baseline length as a functien ef azimuth, Remuvaara ~ ~ W 1 1~ 1~ 1W 1 Azimuth [degrees) Fig. 5a. The differences caused by the ionospheric model to the baseline length at Romuvaara in 1998 May The higher order ionospheric model yield longer baseline lengths. The minimum differences occur on the east-west baselines. Fig. 5b. The differences caused by the ionospheric model to the baseline length at Romuvaara in 1998 Oct The higher order ionospheric model yield longer baseline lengths. The minimum differences occur on the east-west baselines. Both ionospheric models were used in computing the coordinates and the vector lengths from the observations at Romuvaara. As expected the differences caused by the different ionospheric models are small during calm ionosphere, but remarkable during ionospheric disturbances. The differences in the vector lengths were arranged according to the azimuth of the baseline (Fig. 5a and 5b ). The use of the higher order ionospheric model yielded longer baseline length in almost all cases. In the case of the calm ionosphere the baseline lengths are almost independent of the ionospheric model used. On the contrary the effect of the ionospheric model used is remarkable during disturbed ionospheric conditions.

14 8 The difference in the baseline lengths is clearly dependent of the azimuth of the baseline. The largest differences, which are about 2 ppm, were obtained on the northsouth baselines (Fig. 5b ). On the east-west baselines the choice of the ionosphere model has the minimum effect. The different ionospheric models introduce an azimuth dependent scale difference to the GPS solution. If we try to use the GPS observations to monitor the baselines with different azimuths it is extremely important that we use similar ionosphere model in each solution. The difficulty which we met here is that during ionospheric disturbances the solution of the higher order terms is not reliable, but in order to maintain the consistency of the solution we can not change the degree of the ionospheric model. The comparison of the solutions obtained by different ionospheric models shows the differences and their dependence of the azimuth of the baseline but does not tell which one of the solutions is closer to the reality. We may suspect according to the standard deviations of the ionospheric model coefficients that during ionospheric disturbances the lower order ionospheric model yields more reliable result. In order to get more information about the effect of the ionospheric models to the baseline lengths we solved all the observations at Olkiluoto, Kivetty and Romuvaara using two different ionospheric models. The mean of the deviations at all baselines of the network in different observation sessions describes the mean scale factor of the session. The scale factors obtained using different ionospheric models at Romuvaara are shown in Fig. 6. In previous observation sessions the effect of the used ionosphere model is only.1-.2 ppm, but in the last session the difference is.6 ppm. Because the lower order ionospheric model yielded the value which is closer to the mean of all observations we decided to compute again the previous observations made in at Olkiluoto and at Kivetty using lower order ionospheric model. The ionospheric disturbances are in close connection to the sunspot numbers. The electron density of the ionosphere is dependent of the charged particles which are coming from the sun to the upper atmosphere. The number of sunspots is varying in a 11 years cycle (Fig. 7). The next maximum will taken place in April 2 (Thompson 1998). The increasing number of the sunspots may cause some troubles in high precision GPS positioning. The ionospheric modelling has to be done with ultimate care so that the effects which are coming from the ionospheric disturbances are not confused to baseline length variations.

15 E' a ll... -(.) m -C1) -.25 m (.) -.5 en Scale factor at Remuvaara Year ~ lonospheric rrodel degree:(1+2) -o- lonospheric rrodel degree: (3+5) Fig. 6. The scale factor of different measurements at Romuvaara obtained using to different ionospheric models. The scale factors were obtained by computing the mean of the deviations of the baseline lengths from their mean value. 2 ll... C1).c 15 E ::::s t: 1 - a. U) t: ::::s en 5 Sunspot numbers Obsen.ed -Predicted Year i~ '. i l ' 1,t '! \ \ \J Fig. 7. Sunspot numbers according to Thompson (1996, 1998) from 19 to 21.

16 1 GPS OPERATIONS AT OLKILUOTO The permanent GPS station at Olkiluoto has been operating for more than four years since October, It worked normally without any problem in the course of The continuous tracking GPS data was analyzed routinely in connection with other FinnRef stations by Mr. Hannu Koivula. The software used for the GPS processing of the FinnRef data is continuously Bemese ver. 4.. The network of the permanent GPS stations of the FGI is described in (Ollikainen et al. 1997). The principles of the processing of the GPS observations is described in details in (Koivula 1997). The local GPS network was observed two times during The first measurement was performed in May, 7.-8., while the second measurement was performed in October, Both measurements were successful without any problem. The data were analyzed with the Bemese ver. 4. software according to the same processing principles as used for the previous years. According to four years continuous observations, the movement of the permanent GPS station at Olkiluoto (relative to the IGS, Intemational Geodynamics Service, station at Metsähovi) has been derived. The relative horizontal movements obtained are less than two millimeters, while the vertical movement is about mm/yr, which is about twice as much as that from precise levelling. But the vertical movements shows a correct trend though the GPS result is still a bit scatter. 1. Operation of the Permanent GPS Station The permanent GPS station at Olkiluoto worked normally in the course of Only a few days interruptions occurred during The firmware of the receiver was updated (Version: CBOO) in November 17. The new firmware may be used in connection with Vaisala meteorological sensors and transmitter which are planned to be connected to the receiver on February The mast for the meteorological sensors was erected at the station in autumn The GPS data have been downloaded automati-

17 11 cally via the computer at the Finnish Geodetic Institute at Masala. Details on the operation of the permanent stations can he referred to the annual project reports of the previous years (Chen and Kakkuri, 1995, 1996, 1997, 1998; Ollikanen et al., 1997). Five permanent GPS stations of Metsähovi, Olkiluoto, Kivetty, Romuvaara and Tuorla are included in our regular processing procedure of 12 FinnRef stations. The processing procedure includes two parts: the daily solutions and the comhination adjustments. The daily solutions are firstly ohtained. The normal equation of each daily solution is stored, and then used for the comhination adjustments which are performed for every seven days. The results of the comhination adjustments are used for the investigation of crustal deformations. Results from the analysis of ahout 4 years continuous GPS tracking data at Olkiluoto show some trendin coordinates of the station. The velocity components relative to the IGS station at Metsähovi are.6 ±.2 mm/yr for the horizontal distance, -.4 ±.1 mm/yr for the north component, -1. ±.2 mm/yr for the east component, and 1.7 ±.4 mm/yr for the height component. Details of the movements of each component are shown in Figs. 8, 9, 1, and 11. Compared to the previous determinations (Chen and Kakkuri 1997) the new values are somewhat smaller, which may he due to the short ohservation period used for the previous determination. The magnitude of the difference of the uplift rate ohtained from GPS (1.7 mm/yr) is close to the value, 3.1 mm/yr, ohtained from tide gauge records and precise levelling (Kakkuri and Poutanen 1997). The change ohtained from the GPS is, however, that of ellipsoidal height difference whereas the change obtained from tidegauge/levelling is that of orthometric heights. The continuous GPS tracking data from the permanent GPS station at Tuorla, which is about 11 kilometers south from Olkiluoto, are also processed. The variations of the horizontal distance, the north component, the east component and the height component are.8 ±.2 mm/yr, -.4 ±.1 mm/yr, -.6 ±.1 mm/yr and 1.1 ±.2 mm/yr respectively, as shown in Figs. 12, 13, 14, and 15. The vertical component is 1.1 mm/yr which agrees well with the result ohtained from precise levelling and tide gauge records, 1.2 mm/yr (Kakkuri and Poutanen 1997). As the system operates continuously, more precise results will he ohtained in the coming years.

18 12 variåtion ofthe Horizontal Oistance between Metsähoviand Olldluoto 1T---~--~--~~----~------~--~--~----~~------~ 5 ~~~~~~~~~~~~~~ -5 Fig. 8. V ariations of the horizontal distance between the IGS station Metsähovi and the permanent GPS station at Olkiluoto. Fig. 9. Variations of the north component between the IGS station Metsähovi and the permanent GPS station at Olkiluoto. variation ot the Mt!tsällovi and Olrdluoto ':g~mp~~~~, ~~~-~.-. Fig. 1. Variations of the east component between the IGS station Metsähovi and the permanent GPS station at Olkiluoto.

19 13 ~~li~~ic>o <»~!~~ ~~~~~~ A~~~?.,~~t ~~m ~~ Metsähovi and Oikiluoto Fig. 11. Variations of the height component between the IGS station Metsähovi and the permanent GPS station at Olkiluoto. Fig. 12. V ariations of the horizontal distance between the IGS station Metsähovi and the permanent GPS station at Tuorla. \;ätiåtic)g9jlfie! N()ijh Oöfflpp~en~ ~~~E!ijl'l Metsähovi and.tuorla Fig. 13. V ariations of the north component between the IGS station Metsähovi and the permanent GPS station at Tuorla.

20 14 ~ r, t~9~ 9f l'-'' ~ ~teqmp9o ijt ~~~~~" Metsähovi and Tuorla Fig. 14. Variations of the east component between the IGS station Metsähovi and the permanent GPS station at Tuorla. Fig. 15. V ariations of the height component between the IGS station Metsähovi and the permanent GPS station at Tuorla. The velocity components of the permanent stations at Olkiluoto and Tuorla are summarized in Table 2. Table 2. Velocity components of the permanent stations at Olkiluoto and Tuorla. Components Olkiluoto Tuorla mm/yr mmlyr Horizontal distance.6 ±.2.8 ±.2 North -.4 ± ±.1 East -1. ± ±.1 Height 1.7 ± ±.2

21 15 2. The Measurements of the Local GPS network The local GPS monitoring network at Olkiluoto (see Fig. 16) has been measured twice as planned during the year The first measurement was performed at the beginning of May, while the second one was performed at the beginning of October. During the first measurement only five Dome Margolin antennas were available for the observations, but during the second measurements seven antennas were available for the observations. The observation sessions were, however, somewhat longer than in the previous years. As previous years meteorological data were not observed, because they are not used in the computation. 1 KM Local Stations / Fractures.Å Boreholes Fig. 16. The local GPS monitoring network at Olkiluoto. 2.1 The first measurement of the local GPS network The first measurement of the local GPS monitoring network at Olkiluoto was performed during 7.-8., May, As mentioned above, the observations were made using 5 receiver/antenna pairs. The minimum session length for a baseline was 7 hours. The observation sessions are summarized in Table 3, while the antenna/receiver pairs for each station are listed in Table 4.

22 16 Table 3. Observation windows for the first measurement of 1998 at Olkiluoto. Session Observation day Observation Status of the Number Calendar day GPS day windows (UT) GPS data 1 7. May :3-24: OK 2 8. May :-9: OK Table 4. Receiver/Antenna pairs used for the first measurement of 1998 at Olkiluoto. RCV 1 ANT pair Receiver S/N Antenna S/N Stations occuied 11) GPS1 2 LP GPS2, GPS1 3 LP GPS3, GPS GPS4, GPS GPS GPS6, GPS9 1 ) Permanent GPS station. 2.2 The second measurement of the local GPS network The second measurement was performed during 6.-7., October, The number of the receiver/antenna pairs used in the measurement was 7. Two sessions, about 1 hours each, were performed for this measurement. The observation windows are listed in Table 5, while the receiver/antenna pairs used for this measurement are listed in Table 6. Table 5. Observation windows for the second measurement of 1998 at Olkiluoto. Session Number 1 2 Observation day Calendar day GPS day 6. Oct Oct Observation windows (UT) 8:-24: :-9: Status of the GPS data OK OK Table 6. Receiver/ Antenna pairs used for the second measurement of 1998 at Olkiluoto. RCV 1 ANT pair 11) Receiver S/N 418 LP LP LP995 Antenna S/N Stations occupied GPSI GPS2 GPS3, GPS8 GPS4, GPS1 GPS5 GPS6 GPS7 GPS9 1) Permanent GPS station.

23 17 3. Data Analysis and Local Movements As the local GPS network at Olkiluoto has been observed for four years with eight repeated measurements, we attempt to model the deformation based on the results of eight measurements. The first step is to investigate the change rates of the baselines between two stations. As we have ten stations in the investigation area, 45 baselines can be formed but these baselines are not statistically independent. In order to estimate the change rates in length of the baselines, the observation equations with v=ax-1 (1) VI ti- to St v2 t2- to s2 V= A= X = [::] and 1= V; t;- t S; vn tn- to sn are established. Here s; is the observed baseline length for the i-th measurement, s is the baseline length at the zero epoch t which is in our case, vs is the change rate of the baseline, t; is the observation epoch of the i-th measurement, n equals to 8 as we have eight measurements. The observations are weighted equally as similar observation procedures are used for all the measurements. The parameter vector x can be solved by least squares as following: with x=qatpi Here P is an identity matrix as the observations are weighted equally. The posterior variance factor can then be estimated with <Jo-- -+JvTPv -- n-2 and the estimated error of the baseline length at zero epoch and the change rates can be obtained by (J,\'o =(J.JCi:: (J Vs =(J ~' where q 11 and q 22 are the diagonal elements of Q. The estimated change rates and their errors are listed in Table 7.

24 18 Table 7. Summary of the change rates of 45 baselines at Olkiluoto. The change rates and the estimated errors are obtained from least squares solutions from the results of eight measurements performed in 1995, 1996, 1997 and Baselines with change rates of statistically significant at the confidence level of 95% are highlighted. Baseline Change St. dev. Length of the St. dev. rate Baseline at zero epoch (1995.) (mrnly) (mrnly) (mm) (mm) GPS1-GPS ± ±.45 GPS1-GPS GPS1-GPS GPS1-GPS GPS1-GPS GPS1-GPS GPS1-GPS GPS1-GPS GPS1-GPS GPS2-GPS GPS2-GPS GPS2-GPS GPS2-GPS GPS2-GPS GPS2-GPS GPS2-GPS GPS2-GPS GPS3-GPS GPS3-GPS GPS3-GPS GPS3-GPS GPS3-GPS GPS3-GPS GPS3-GPS GPS4-GPS GPS4-GPS GPS4-GPS GPS4-GPS GPS4-GPS GPS4-GPS GPS5-GPS GPS5-GPS GPS5-GPS GPS5-GPS GPS5-GPS GPS6-GPS GPS6-GPS GPS6-GPS GPS6-GPS GPS7-GPS GPS7-GPS GPS7-GPS GPS8-GPS GPS8-GPS GPS9-GPS RMS: ±.27 ±.62

25 19 The maximum change +.53 mm/yr is obtained from the baseline between GPS 1 and GPS 1. Of 45 baselines, only 4 have the change rates of statistically significant at the confidence level of 95%. The results of eight measurements for these 4 baselines are shown in Fig. 17, while the results for all the baselines are given in Appendix 1. The output files of the final adjustments from the Bemese software for the first and the second measurements are given in Appendixes II and 111, respectively. As described in Chap. 1.2 all measurements since 1995 were reprocessed using the lower order ionospheric model. The results of the present solution and the previous solution are given in Appendix 1. The results of the both solutions are also shown in Figs. 17. The statistic distribution of the change rates of the baselines are summarized in Table 8. Fig 17. Measurement results of four baselines which have statistically significant change rates. The comparison of the statistics in Table 8. with the previous one (Chen and Kakkuri 1998) show some remarkable changes. The number of the baselines with largest changes of rates (lvl>.5 mm/yr) has decreased from 1 to 2, which indicates that computing of the change of rate from the observations of very short period yield unreliable results. The four baselines which has regarded to have statistically significant changes of rates here are shown in Figs. 18 and 19.

26 2 Table 8. Statistic distribution of the change rates of 45 baselines from the local GPS measurements. Change rates Number of Baselines % lvl <.2 mmlyr %.2 < lvl <.35 mmlyr %.35 < lvl <.5 mmlyr %.5 < lvl <.65 mmlyr % lvl >.65 mmlyr..% Total 45 JOO% Local Stations + Olkiluotovesi.Å Boreholes Fig. 18. Significant change rates in length for the baselines connected to GPS 1. A slight extension can he noticed on the baselines marked on the map. Local Stations + Olkiluotovesi.Å Boreholes Fig. 19. Significant change rates in length for the baselines connected to GPS9. A weak compression on the baselines marked on the map is noticed.

27 21 Eurajoensalmi / Fractures "- Boreholes + Olkiluotovesi Fig. 2. A feasible slip along the fracture separates GPS6, GPS9 and GPSlO. If we consider Figs. 18 and 19 simultaneously, we may notice that it is possihle that the GPS stations 9 and 1 are moving to opposite directions; GPS9 is moving to the east, and GPS 1 is moving to the west. The opposite movements of GPS9 and GPS 1 indicate that there may he a slip along the fracture zone which separates these two stations. The situation ahout the possihle slip of this fracture is shown in Fig. 2. As the movements are so small, eight measurements on a time span of four years are not enough to make a firm conclusion. A more reliahle conclusion can he made after some years ohservations.

28 22 GPS OPERATIONS AT KIVETTY The GPS operations at the Kivetty investigation area during 1998 included the operation of the permanent GPS station and two measurements of the local GPS monitoring network. The continuous tracking GPS data was analyzed routinely in connection with other FinnRef stations by Mr. Hannu Koivula. The software used for the GPS processing of the FinnRef data is continuously Bernese ver The Operations of the Permanent GPS Station The permanent station has been Operated for about 2.5 years since sth of March, Although a Åskar lightning protection device has been installed at the permanent station, the device and the modem was watched carefully during the summer. The telephone connection was tumed off during most week -ends in summertime in order to minimize the risk of the lightning. The data collected during the week-ends was transferred from the receiver to Finnish Geodetic Institute after the week-ends. The data of some days was loosed in autumn due to the malfunctioning of the receiver. That is why the receiver was changed on Oct. 28. The S/N of the new receiver is LPO 181. The firmware of the new receiver is CBOO. The new firmware can be used to download the data from Vaisala meteorological sensors, which were installed at the station on Oct. 28. The models of the meteorological sensors are humidity and temperature probe HMP45A-P and pressure transmitter PTU2AAA1AA. A special antenna mast with a mounting set (Vaisala PTU2MIK) was erected at the station. The temperature and humidity sensors are inside the radiation screen (Vaisala DTR13). The project reports of previous years (Chen and Kakkuri, 1996, 1997, 1998) give details on the operation of the permanent GPS station. GPS data are automatically downloaded by the computer at the Finnish Geodetic Institute at Masala. The continuous tracking data are routinely processed with the data collected from the FinnRef stations by a standard processing procedure. The tracking data are firstly processed day by day, and the combination adjustments are then performed for every seven days on the basis of the normal equations of the daily solutions. The variations of the baseline

29 23 length, the north component, the east component, and the height difference are showed in Figs. 21, 22, 23 and 24. The small, but clear drift to west ( -1. mm/yr, Fig. 23) may be noticed in the east coordinate difference between Kivetty and Metsähovi. The ellipsoidal height difference between Kivetty and Metsähovi is changing 3. mm/yr (Fig. 24), which agrees exactly with the value, 3. mm/yr obtained by precise levelling (Kakkuri and Poutanen 1997). Fig. 21. V ariations of the baseline length between the IGS station at Metsähovi and the permanent GPS station at Kivetty. Fig. 22. V ariations of the north component between the IGS station at Metsähovi and the permanent GPS station at Kivetty.

30 24 Fig. 23. V ariations of the east component between the IGS station at Metsähovi and the permanent GPS station at Kivetty. Jtit~atiq~ P~ t~e~~i9htq()ml>()ll~lit ~~~~~~ Metsällpvi and ~i\fetty Fig. 24. V ariations of the height difference between the IGS station at Metsähovi and the permanent GPS station at Kivetty. 2. The Measurements of the Local GPS network 2.1 The First Measurement of the Local GPS Network The first measurement of the local GPS monitoring network at Kivetty (Fig. 25) was performed during 11-12, May, As there were six receivers with Choke-Ring antennae available, only one session was required for the measurement. The occupation time varied from 18 to 2 hours on five station, but was 7 hours at GPS5 because of electrical power loss. The observation window is given in Table 9, while the receiver/antenna pairs used for this measurement are listed in Table 1.

31 25 Table 9. Observation windows for the first measurement of 1998 at Kivetty. Session Observation day Observation Status of Number Calendar day GPS day windows (UT) GPS data May :-24: OK May :-7:3 OK the Table 1. Receiver/ Antenna pairs used for the first measurement of 1998 at Kivetty. RCV 1 ANT pair Receiver S/N LP LP Antenna S/N Stations occuied GPS1 GPS2 GPS3 GPS4 GPS5 GPS6 GPS7 1) Permanent GPS station. PERMANENT GPS STATION e LOCAL GPS STATION Fig. 25. The local GPS monitoring network at the investigation area of Kivetty.

32 ~~~-~ The Second Measurement of the Local GPS Network The second measurement at Kivetty was performed during 4-6., October The observations were made in two sessions because of an electrical power loss after one hour observations at the station GPS7. The observations were continued over the next night at that station, while the other receivers were transported to Olkiluoto. After the reobservation of the station GPS7 the occupation time varied from 21 to 23 hours. The observation window is given in Table 11, while the receiver/antenna pairs used for this measurement are listed in Table 12. Table 11. Observation windows for the second measurement of 1998 at Kivetty. Session Observation day Observation Status of the Number Calendar day GPS day windows (UT) GPS data 1 4. Oct :-24: Only one hour data for GPS Oct :-8: No observations for GPS Oct :-24: Reobservation of GPS Oct :-5: Reobservation of GPS 7 Table 12. Receiver/ Antenna pairs used for the second measurement of 1998 at Kivetty. RCV/ANT pair Receiver S/N Antenna S/N Stations occuied 11) GPS1 2 LP GPS GPS3 4 LP GPS4 5 LP GPS GPS GPS7 1) Permanent GPS station. 3. Data Analysis and Preliminary Result The GPS data have been processed with the Bemese GPS software 4.. The processing procedure is similar to that for the local GPS network at Olkiluoto. Also at Kivetty the measurements made since 1996 were reprocessed in order to investigate the effect of the ionospheric models for the baseline lengths. The results of the present as well as the previous computations are presented in Appendix IV. The output files of the final adjustments from the Bemese software for the first and the second measurements are given in Appendixes V and VI, respectively. Six measurements have been performed for the local GPS network at Kivetty. The measurement results show that the investigation area is rather stable. Although the

33 27 time span is still too short, change rates of the baselines have been estimated by using the same mathematical model (Eq. 1) as for Olkiluoto. The estimated change rates and their errors are summarized in Table 13. As seen in Table 13, all change rates are statistically insignificant. As noticed already by Chen and Kakkuri (1998) the estimated errors at Kivetty are larger than those for the local GPS monitoring network at Olkiluoto. This was supposed to be a consequence of smaller amount of measurements available. W e compared the previous computations of the baseline lengths with the new solutions at those stations which had the largest change rates after the fourth measurement (GPS2- GPS3, GPS5-GPS6). It can be seen in Fig. 26 that when the change rates are computed using all six measurements now available the resulting values of the change rates are considerably smaller than when only four observations were used for the determination. We may now conclude that the change rates derived from measurements of two years only may lead to erroneous results. Table 13. Change rates of 21 baselines for the local GPS network at Kivetty. The change rates and the estimated errors are obtained from least squares solutions of six measurements performed in 1996, 1997 and Baseline Change St. dev. Length of the St. dev. rate Baseline at zero epoch (1995.) (mm/y) (mm/y) (mm) (mm) GPS1-GPS2 -.2 ± ±.53 GPS1-GPS GPS1-GPS GPS1-GPS GPS1-GPS GPS1-GPS GPS2-GPS GPS2-GPS GPS2-GPS GPS2-GPS GPS2-GPS GPS3-GPS GPS3-GPS GPS3-GPS GPS3-GPS GPS4-GPS GPS4-GPS GPS4-GPS GPS5-GPS GPS5-GPS GPS6-GPS RMS: ±.33 ±.58

34 ~~~ ~ {7.Q. Present solution o Previous solution -Linear (Present solution)... Linear (Previous solution) Fig 26. Measurement results of the baselines GPS2-GPS3 and GPS5-GPS6.

35 29 GPS OPERATIONS AT ROMUVAARA GPS operations at Romuvaara included the operation of the permanent station and two measurements of the local GPS monitoring network. The operation of the permanent station has been two and a half years since the ih May, The continuous tracking GPS data was analyzed routinely in connection with other FinnRef stations by Mr. Hannu Koivula. The software used for the GPS processing of the FinnRef data is continuously Bemese ver. 4.. The measurements of the local GPS monitoring network were performed in May and October, respectively during the year The Operation of the Permanent GPS Station The permanent GPS station at Romuvaara worked normally in the course of Only a few days interruptions occurred. The receiver was changed on November 2., 1998 due to the malfunctioning of the receiver during the firmware update. The S/N of the new receiver is 43 equipped with the firmware CBOO. Thenew firmware may be used in connection with Vaisala meteorological sensors and transmitter which are planned to be connected the to receiver on February The mast for the meteorological sensors was erected at the station in autumn The GPS data have been downloaded automatically via the computer at the Finnish Geodetic Institute at Masala. Details on the operation of the permanent stations can be referred to the annual project reports of the previous years (Chen and Kakkuri, 1995, 1996, 1997, 1998; Ollikainen et al., 1997). As Romuvaara is far away from the nearest normal telephone Iine, a PMP-TDMA digital subscriber radio system (SR 5) is used instead of a normal phone Iine. Details about the radio system for data transmission are given in the annual report of 1996 (Chen and Kakkuri, 1997). The radio system works quite well, the GPS data can be downloaded at the baud rate of 96 bps without any problem. The GPS tracking data of 2.5 years have been collected at the station. The data are analyzed routinely together with the data of other FinnRef stations. Results show that

36 3 the relative movements between the IGS station Metsähovi and the permanent station at Romuvaara are in the order of a few millimeters. The variations of the baseline length, the north component, the east component and the height component are shown in Figs. 26, 27, 28 and 29. The time span of two and a half years is still too short to make a reliable conclusions, but some trends can already be seen. The change rate of the north component is.7 mm/yr and the change rate of theeast component is -.9 mm/yr, which means that Romuvaara is moving compared to Metsähoviinnorth-west direction approximately 1 mm/yr. The change rate of the ellipsoidal height difference between Romuvaara and Metsähovi is 1.2 mm/yr, which is smaller than the value, 2.6 mm/yr, obtained from precise levelling (Kakkuri and Poutanen 1997). Fig. 27. V ariations of the horizontal distance between the IGS station at Metsähovi and the permanent GPS station at Romuvaara. mm VariatiQt1 C)f th' N9tth corop()nentb~tweer) Metsähovi and Romuvaara Fig. 28. V ariations of the north component between the IGS station at Metsähovi and the permanent GPS station at Romuvaara.

37 31 Fig. 29. Variations of the east component between the IGS station at Metsähovi and the permanent GPS station at Romuvaara. Y~l'i~tiqo qf t~~ l-1~~gfl~ Q~OOP9n~~~ ~~~e~" Metsäho'Vi andromuvaara Fig. 3. V ariations of the height component between the IGS station at Metsähovi and the permanent GPS station at Romuvaara. 2. The Measurements of the Local GPS network 2.1 The First Measurement of the Local GPS Network The first measurement for the local GPS network at Romuvaara (Fig. 31) was performed during , May, The observations were made with six receivers. The observation time at each station varied from 21 to 23 hours. The receiver/antenna pairs used for this measurement are listed in Table 14, while the observation windows are listed in Table 15.

38 , ~-- 32 Table 14. Observation windows for the first measurement of 1998 at Romuvaara. Session Observation day Observation Status of the Number Calendar day GPS day windows GPS data (UT) May :-24: OK May :-8: OK Table 15. Receiver/ Antenna pairs used for the first measurement of 1998 at Romuvaara. RCV 1 ANT pair tl) Receiver S/N LP16U 2 LP LP ) Permanent GPS station. Antenna S/N Stations occuied GPS1 GPS2 GPS3 GPS4 GPS5 GPS6 GPS7 " PERMANENT GPS STATION e LOCAL GPS STATION Fig. 31. The local GPS monitoring network at Romuvaara.

39 The Second Measurement of the Local GPS Network The second measurement at Romuvaara was performed during 2.-3., October, The observation time at each station varied from 21 to 23.5 hours. The observation window is given in Table 16, while the receiver/antenna pairs used for this measurement are listed in Table 17. Table 16. Observation windows for the second measurement of 1998 at Romuvaara. Session Number 1 2 Observation day Calendar day GPS day 2. Oct Oct Observation windows (UT) 9:3-24: :-1: Status of the GPS data OK OK Table 17. Receiver/Antenna pairs used for the second measurement of 1998 at Romuvaara. RCV 1 ANT pair Receiver S/N Antenna S/N Stations occuied JO LP16U GPS1 2 LP GPS2 3 LP GPS GPS4 5 LP GPS GPS GPS7 1) Permanent GPS station. 3. Data Analysis and Preliminary Results The GPS data have been processed with the Bernese GPS software 4.. The processing procedure was similar with the procedure used for the local GPS networks at Olkiluoto and Kivetty. Six measurements have been performed for the local GPS network since May, Change rates of 21 baselines and their errors have been estimated. The results are summarized in Table 2. As we can see from Table 2, there are six baselines the change rates of which are statistically significant at the confidence level of 95%. Details of the measurement results of these six baselines are given in Fig. 32. The locations and the change rates of these baselines are shown in Figs. 33 and 34. The measurement results for all the baselines are given in Appendix VII. As suspected already by (Chen and Kakkuri 1998) there are some movements which can be confirmed by the new measurements. A clear compression of the net-

40 34 work can be seen on the baselines which are connected to the stations GPS3 and GPS5. The compression can be explained if the station GPS3 is moving to the south and the station GPS5 to theeast as suspected by (Chen and Kakkuri 1998). The output files of the final adjustments from the Bemese software for the first and the second measurements are given in Appendixes VIII and IX, respectively. Table 2. Change rates of 21 baselines for the local GPS network at Romuvaara. The change rates and the estimated errors are obtained from least squares solutions of six measurements performed in 1996, 1997 and Baselines with change rates of statistically significant at the confidence level of 95% are highlighted. Baseline Change St. dev. Length of the St. dev. rate Baseline at zero epoch (1995.) (mm/y) (mm/y) (mm) (mm) GPS1-GPS2.9 ± ±.92 GPS1-GPS GPS1-GPS GPS1-GPS GPS1-GPS GPS1-GPS GPS2-GPS GPS2-GPS GPS2-GPS GPS2-GPS GPS2-GPS GPS3-GPS GPS3-GPS GPS3-GPS GPS3-GPS GPS4-GPS GPS4-GPS GPS4-GPS GPS5-GPS GPS5-GPS GPS6-GPS RMS: ±.46 ±.82

41 35 Fig 32. Measurement results of s1x baselines which have statistically significant change rates.

42 36 PERMANENT GPS STATION LOCAL GPS STATION Fig. 33. Significant change rates in length for the baselines connected to GPS3. A clear compression on the baselines marked on the map is noticed. Units of the movements mm/yr. PERMANENT GPS STATION LOCAL GPS STATION Fig. 34. Significant change rates in length for the baselines connected to GPS5. A clear compression on the baselines marked on the map is noticed. Units of the movements mm/yr.

43 37 REGIONAL DEFORMATIONS The permanent GPS station at Olkiluoto has been in operation continuously for four years already, while the operations for the stations at Kivetty and Romuvaara are about two and half a years. The continuously tracking GPS data are analyzed routinely. GPS data from these stations are included in the daily solutions of the permanent GPS network of the Finnish Geodetic Institute (FinnRef). The analysis of the GPS data shows that the movements relative to the IGS station Metsähovi are in the order of a few millimeters. Using the adjusted change rate values of different components we computed the movements over a time span of 3 years. They are summarized in Table 21. Table 21. Summary of the relative movements of the permanent GPS stations at Tuorla, Olkiluoto, Kivetty and Romuvaara Station North East Height component (mm) Dis- Component Component From From Diff. tances (mm) (mm) GPS Levelling (mm) Tuorla Olkiluoto Kivetty Romuvaara Time Span (year) The rate of the relative motion with regard to themetsähovi station was compared with the values obtained according to the Nuvel-1A model (McCarthy 1996). The comparison is shown in Table 22. The differences between the observed rates and those computed according to the model show small residuals at the southemmost stations (Tuorla, Olkiluoto and Kivetty). This means that the stations are moving to the west at a velocity, which is about 1 mrnly greater than predicted in the Nuvel-lA model (Figs. 35, 36 and 37). Table 22. Comparison of the observed rates of the horizontal movements with the Nuvel-lA model. Station Observed Nuvel-1A model Difference North East North East dn de mm/y mm/y mm/y mm/y mm/y mm/y Tuorla Olkiluoto Kivetty Romuvaara

44 38 6' Fig 35. The observed relative movements of the stations with regard to Metsähovi station. Fig 36. The relative movements of the stations with regard to Metsähovi station according to the Nuvel-lA model. 6' 2" 25' 3' Fig. 37. The differences the relative movements of the stations between the observed movements (Fig. 35) and the movements computed according to the Nuvel-lA model (Fig. 36). The changes in baseline lengths are positive in each cases. This is quite opposite result than reported in (Chen and Kakkuri 1998). The reason to the different results of the baseline length changes come understandable when we look at the Figs. 8, 12, 21 and 27, in which the observations of the baseline lengths are shown. A slight periodic change of the baseline lengths may be seen in the figures. The period of the change is appr. 1 year. The reason of the periodic change is not clear, but might be the improper modelling of the troposphere. W e hope to get more information of this phenomenon in near future when the meteorological observation from the permanent GPS stations will

45 39 be available. The annual variation in baseline lengths is canceled out, if the period used for the determination of the change rate contains observations of full periods. This was not the case in the previous report in which the time span used for the determinations were 1.5 and 2.6 years. The determination of the inter-station distances show lengthening of the baselines. The change rates and strain rates are summarized in Table 23. Taking into account the short observation period and the opposite results obtained in successive reports we did not make any further deformation analysis of the change in baseline lengths. Table 23. Strain rates of the baselines connected to Metsähovi. Baseline Change rates Baseline length Strain rates (mrnlyr) (m) (micro strain) Metsähovi - Tuorla Metsähovi - Olkiluoto Metsähovi- Kivetty Metsähovi - Romuvaara The differences of the uplift rates obtained by GPS show the same trends as that obtained from the precise levelling (Fig. 38). Taking into account the short time span of the GPS observations, the discrepancy between GPS determinations and precise levelling may be considered astonishly small. Fig. 38. Comparison of the land uplift differences obtained from GPS and precise levelling.

46 4 SUMMARY The GPS operations performed in 1998 mainly consist of: the operations of the permanent GPS stations at Olkiluoto, Kivetty and Romuvaara; two measurements for the local GPS monitoring network at Olkiluoto; two measurements for the local GPS monitoring network at Kivetty, and two measurements for the local GPS monitoring network at Romuvaara. The analysis of the GPS data shows that the regional movements between the investigation areas and the IGS station Metsähovi are in the order of a few millimeters. The characters of the regional deformations can be summarized as following: the magnitudes of the regional deformations are in the order of a few millimeters; all observations made in the micro-networks since 1995 were recomputed using lower order ionospheric model, which is recommended to be used in future observations because of the expected ionospheric disturbances in coming years, the strain analysis gave opposite result compared with the previous report; this is probably due to the tropospheric modelling in the processing of the GPS observations, which will be improved, when the meteorological observations from the permanent GPS stations will be available in coming years, the uplift differences obtained from GPS agree well with that obtained from precise levelling. As the observation time span of 2.5 years (for Kivetty and Romuvaara) is still too short, more reliable results will be obtained with a longer observation time span. The local GPS monitoring network at Olkiluoto has been observed for eight times since The analysis of the GPS data shows that the investigation area is stable as expected. About 4% of the baselines have change rates of less than.2 rnrnlyr. Most of the baselines (about 9%) have change rates of less than.5 rnrnlyr. Some interesting phenomena are also revealed from the pattern of the change rates of the baselines. lt is likely GPS9 are moving to the east and GPS 1 is moving to the west. The opposite movements of GPS9 and GPS 1 indicate that there may be a slip along the fracture zone which separate these two stations. The

47 41 slip rate is about mm/yr. More investigations about the local movements will be carried out with repeated measurements in the coming years. The local GPS monitoring network at Kivetty has been observed for six times since May, Generally speaking, it is too early to make any conclusion on the local movements because most of the change rates of the baselines are statistically insignificant. Results from six measurements do not give any hints of the local movements. The local GPS monitoring network at Romuvaara has also been observed for six times only. Despite of the short time span there exists indications that GPS5 is moving to the east because all the baselines connected to it show a negative change rate. Same kind of indications show that GPS3 is moving to the south-east direction. The size of the change rate is about mrnlyr. In next few years the ionospheric disturbances will exist more and more frequently due to the increasing activity of the sun. lt is probable that the precision of the GPS determinations will deerease during the sunspot maximum, which will probably happen in the year 2. That is why we suggest to keep a brake of some years in the observations of the local micronetworks in Olkiluoto, Kivetty and Romuvaara after the GPS observations in 1999, which will be done following the same routine as in the previous years. Acknowledgements The authors are acknowledged to Mr. HANNU KOIVULA, FGI, for processing the GPS data of the permanent GPS stations dealt with in this report.

48 42 References Chen. R. and J. Kakkuri (1995). GPS Work at Olkiluoto for the Year of Project Report of TVO (Teollisuuden Voima OY), 11 pages. Chen. R. and J. Kakkuri (1996). GPS Operations at Olkiluoto, Kivetty, and Romuvaara in Work report PATU-96-7e. POSIVA Oy. Helsinki. 68 pages. Chen. R. and J. Kakkuri (1997). GPS Operations at Olkiluoto, Kivetty, and Romuvaara for Project Report of TVO (Teollisuuden Voima OY)/POSIV A, 139 pages. Chen, Rand J. Kakkuri (1998). GPS operations at Olkiluoto, Kivetty and Romuvaara for Working Report PATU-98-8e. POSIV A Oy. Helsinki. Kakkuri J. and M. Poutanen (1997): Geodetic determination of the surface topography of the Baltic Sea. Marine Geodesy, 2, no. 4, Koivula H. (1997). Suomen valtakunnallinen GPS-verkko FinnNet. Maanmittaustieteiden päivät , Otaniemi. Maanmittaustieteiden Seuran julkaisu n:o 34 (Toim. J. Santala ja J. Järvinen). Pp McCarthy, D.D. (1996): IERS Technical Note 21, IERS Conventions (1996), pp Paris. Ollikainen M, H. Koivula, M. Poutanen and R. Chen (1997). Suomen kiinteiden GPS-asemien verkko. Geodeettinen Laitos, tiedote 16. Rothacher, M and L. Mervart (Eds.) (1996): Bernese GPS Software Version 4.. Astronomical Institute, University of Bern, Switzerland. Thompson, R. (1996). Yearly Mean Sunspot Numbers. IPS Radio & Space Services, Sydney, Australia. / Thompson, R. (1998). Observed And Predicted Sunspot Numbers. IPS Radio & Space Services, Sydney, Australia. / UNAVCO (1997). TEQC, version Copyright (c) Rational Systems, Inc Wild, U. (1994 ). Ionosphere and Geodetic Satellite Systems: Permanent GPS Tracking Data for Modelling and Monitoring. Geodätisch-geophysikalische Arbeiten in der Schweiz. Voi 48. Schweitzerischen Geodätischen Kommission. Ziirich.

49 43 Å(!(!endix 1. Results of eight measurements at Olkiluoto (Zero epoch, 1995.) Saseli ne Observ- Baseline Length Differation New Previous ence epoch solutien solutien (Year) (m) (m) (mm) GPS1-GPS GPS1-GPS GPS1-GPS GPS1-GPS GPS1-GPS

50 44 GPS1-GPS GPS1-GPS GPS1-GPS GPS1-GPS GPS2-GPS GPS2-GPS

51 45 GPS2-GPS GPS2-GPS GPS2-GPS GPS2-GPS GPS2-GPS GPS2-GPS

52 ~- -~-~- 46 GPS3-GPS GPS3-GPS GPS3-GPS GPS3-GPS GPS3-GPS GPS3-GPS

53 47 GPS3-GPS GPS4-GPS GPS4-GPS GPS4-GPS GPS4-GPS GPS4-GPS

54 48 GPS4-GPS GPS5-GPS GPS5-GPS GPS5-GPS GPS5-GPS GPS5-GPS

55 49 GPS6-GPS GPS6-GPS GPS6-GPS GPS6-GPS GPS7-GPS GPS7-GPS

56 5 GPS7-GPS GPS8-GPS GPS8-GPS GPS9-GPS

57 Appendix II. Final result of the first measurements at Olldluoto in LKI981 D: OLKI981 PROGRAM GPSEST 18-DEC-98 13:33 BERNESE GPS SOFTWARE VERSION 4. TABLE OF CONTENTS 1. CAMPAIGNS 2. OBSERVATION FILES 3. GENERAL OPTIONS 4. STATIONS 5. SATELLITE ORBITS 6. ATMOSPHERE 7. RECEIVER CLOCK PARAMETERS 8. POLE COORDINATES AND TIME INFORMATION 9. ANTENNA PHASE CENTERS 1. CONSTANTS 11. PARAMETER CHARACTERIZATION LIST 12. TEST OUTPUT 13. RESULTS (PART 1) 14. RESULTS (PART 2) 1LKI981 D: OLKI981 PROGRAM GPSEST 18-DEC-98 13:33 BERNESE GPS SOFTWARE VERSION 4. LIST OF INPUT AND OUTPUT FILENAMES GENERAL CONSTANTS POLE INFORMATION LOCAL GEODETIC DATUM SATELLITE INFO SATELLITE PROBLEMS PHASE CENTER ECCENTRICITIES APRIORI COORDINATES STANDARD ORBITS RADIATION PRESSURE COEFF. IONOSPHERE MODELS SITE ECCENTRICITIES SATELLITE CLOCKS ANTENNA ORIENTATIONS COORDINATE RESULTS X: [GEN]CONST. X: [GEN]RAP_1998.ERP X: [ GEN] DATUM. X: [GEN]SATELLIT.TTT X: [GEN]SAT_1998.CRX X: [GEN] PHASITRF. U: [OLKI981.STA]OLKI981.CRD U: [OLKI981.RB]OLKI981.STD U: [OLKI981.RB]OLKI981.RPR U: [OLKI981.ATM]OLKI9811.ION U: [OLKI981.RB]OLKI981.CLK 51

58 ORBIT RESULTS IONOSPHERE RESULTS IONEX OUTPUT FILE VAR/COVAR MATRIX COORD. VAR/COVAR MATRIX TOTAL NORMAL EQUATIONS RESIDUALS EARTH ROTATION PARAMETERS IERS FORMAT ERP OUTPUT TROPOSPHERE CORRECTIONS GRID PHASE CENTER OUTPUT HARM. PHASE CENTER OUTPUT 1LKI981 D: OLKI981 PROGRAM GPSEST 18-DEC-98 13:33 BERNESE GPS SOFTWARE VERSION CAMPAIGNS CAMPAIGN NAME NUM STATION NAME NUM STATION NAME NUM STATION NAME NUM STATION NAME NUM STATION NAME OLKI981 1 GPS1 6 GPS6 2 GPS2 7 GPS7 3 GPS3 9 GPS9 4 GPS4 8 GPS8 5 GPS5 1 GPlO 2. OBSERVATION FILES ---- OLKI MAIN CHARACTERISTICS: AMB.I.+S. #CLUSTERS FILE TYP FREQ. STATION 1 STATION 2 SESS FIRST OBSERV.TIME #EPO DT #EF #CLK ARC #SAT w 12 #AMB L1 L2 L5 RM p L1,L2 GPS1 GPS :17: E E 1 21 N y N p L1,L2 GPS1 GPS :33: E E 1 23 N y N p L1,L2 GPS1 GPS : E E 1 23 N y N p L1,L2 GPS1 GPS : E E 1 16 N y N p L1,L2 GPS1 GPS : E E 1 22 N y N p L1,L2 GPS1 GPS : E E 1 18 N y N p L1,L2 GPS1 GPS : E E 1 25 N y N p L1,L2 GPS7 GPS : E E 1 18 N y N p L1,L2 GPS7 GPS : E E 1 19 N y N

59 1 P L1,L2 11 P L1,L2 12 P L1,L2 GPS8 GPS8 GPS9 GPS7 GPS7 GP : : : E E 1 E E 1 E E N N N Y N Y N Y N SATELLITES: FILE #SAT SATELLITES OBSERVATION SELECTION: SAMPLING RATE : 3 SEC ELEVATION CUT-OFF ANGLE : 2 DEGREES 1LKI981 D: OLKI GENERAL OPTIONS A PRIORI SIGMA: A PRIORI SIGMA :.1 M (ZERO-DIFF. L1 PHASE) PROGRAM GPSEST 18-DEC-98 13:33 BERNESE GPS SOFTWARE VERSION 4. CORRELATIONS AND SESSIONS: STRATEGY : CORRELATIONS CORRECTLY MODELLED TIME INTERVAL : 1. SEC (TO IDENTIFY EPOCH) 53

60 SESS #FILE FILE NUMBERS AMBIGUITY RESOLUTION STRATEGY: AMBIGUITIES PRE-ELIMINATED SYNCHRONIZATION ERRORS: STRATEGY : SYNCHRONIZATION ERRORS NOT APPLIED 1LKI981 D: OLKI981 PROGRAM GPSEST 18-DEC-98 13:33 BERNESE GPS SOFTWARE VERSION STATIONS LOCAL GEODETIC DATUM: DATUM NAME ELL. PARAM./ SCALE SHIFTS TO WGS-84 ROTATIONS TO WGS-84 WGS - 84 A 1/F= se = M O.OOOOOD+OO DX DY DZ. M. M. M RX RY RZ. ". ". " A PRIORI STATION COORDINATES: U: [OLKI981.STA]OLKI981.CRD WGS-84 COORDINATES IN METERS ELLIPSOIDAL COORDINATES IN LOCAL DATUM NUM STATION NAME OBS E/F/C X y z LATITUDE LONGITUDE HEIGHT (M) GPS1 y FIXED GPS2 y ESTIM GPS3 y ESTIM GPS4 y ESTIM GPS5 y ESTIM GPS6 y ESTIM GPS7 y ESTIM GPS9 y ESTIM

61 8 GPS8 1 GP1 Y Y ESTIM ESTIM LKI981 D: OLKI981 PROGRAM GPSEST 18-DEC-98 13:33 BERNESE GPS SOFTWARE VERSION SATELLITE ORBITS ARC CHARACTERISTICS: ARC START OF ARC END OF ARC SOURCE #SAT SATELLITES :: :: PR OSCULATING ELEMENTS: U: [OLKI981.RB]OLKI981.STD REFERENCE SYSTEM: J2. REFERENCE EPOCH : MJD ( ) SAT S.MAJ.AXIS ECCENTRIC. INCLINAT. NODE PERIGEE M. ANOMALY PER.PASS.TIME

62 SATELLITE PROBLEMS: SAT PROBLEM TYPE ACTION FROM TO 11 BAD PHASE+CODE 2 BAD PHASE+CODE 28 BAD PHASE+CODE 13 BAD PHASE+CODE OBS. REMOVED OBS. REMOVED OBS. REMOVED OBS. REMOVED :: :: :: :: LKI981 D: OLKI981 PROGRAM GPSEST 18-DEC-98 13:33 BERNESE GPS SOFTWARE VERSION ATMOSPHERE TROPOSPHERE MODEL: TROPOSPHERE MODEL: SAASTAMOINEN METEO VALUES : EXTRAPOLATED REFERENCE HEIGHT :. M TEMPERATURE AT REF. HEIGHT: PRESSURE AT REF. HEIGHT: HUMIDITY AT REF. HEIGHT: 18. c MBAR 5. % TROPOSPHERE PARAMETERS FOR INDIVIDUAL STATIONS: MAPPING FUNCTION USED FOR DELAY ESTIMATION: 1/COS(ZENITH-DISTANCE) PAR STATION NAME VALIDITY START VALIDITY END SIGMA (M) ABS/REL GPS ABS 2 GPS ABS 3 GPS ABS 4 GPS ABS 5 GPS ABS 56

63 6 GPS7 7 GPS9 8 GPS8 9 GP ABS ABS ABS ABS IONOSPHERE MODELS: U: [OLKI981.ATM]OLKI9811.ION TYPE OF IONOSPHERE MODELS RADIUS OF THE EARTH LOCAL KM DEG. OF DEVELOP. ORIGIN OF DEVELOPMENT HEIGHT MODEL TIME LAT. MIXED VALIDITY START VALIDITY END LOCAL TIME LAT. (D) LONG. (D) (KM) NORMAIZATION FACTORS TIME(H) LAT. (D) ELE.CONT D D D D D+18 POL. DEGREE IN MODEL TERM TIME LATIT. COEFFICIENT SIGMA E E E-1.164E E E E E E E E E E E E E E E E E E E E E E E E E E E E+.6549E E E E E E E E E E E-2 57

64 E E E E E E E E-2 1LKI981 D: OLKI981 PROGRAM GPSEST 18-DEC-98 13:33 BERNESE GPS SOFTWARE VERSION POLE COORDINATES AND TIME INFORMATION A PRIORI POLE AND TIME INFORMATION FORM THE POLE FILE: DATUM TIME X-POLE (II) Y-POLE (II) UT1-UTC (S) GPS-UTC (S) RMS XP (II) RMS yp (II) RMS DT (S) EP-CPO ( II) PS-CPO (II ) RMS EP ( II ) RMS PS ( II ) :: :: :: CELESTIAL POLE OFFSET MODEL: NO MODEL 1LKI981 D: OLKI981 PROGRAM GPSEST 18-DEC-98 13:33 BERNESE GPS SOFTWARE VERSION TEST OUTPUT MAXIMUM SYNCHRONIZATION ERRORS: SESS FILE STATION NAME 1 STATION NAME 2 SYNCH. ERROR (NS) GPS1 2 GPS1 3 GPS1 4 GPS1 GPS2 GPS3 GPS4 GPS

65 GPS1 GPS1 GPS1 GPS7 GPS7 GPS8 GPS8 GPS9 GPS6 GPS7 GPS7 GPS9 GPS9 GPS7 GPS7 GP LKI981 D: OLKI981 PROGRAM GPSEST 18-DEC-98 13:33 BERNESE GPS SOFTWARE VERSION RESULTS (PART 1) NUMBER OF PARAMETERS (PART 1): PARAMETER TYPE #PARAMETERS #PRE-ELIMINATED #SET-UP #NO-OBS #REF #SINGULAR STATION COORDINATES AMBIGUITIES TROPOSPHERE PARAMETERS FOR INDIVIDUAL STATIONS (BEFORE INV) TOTAL NUMBER OF PARAMETERS NUMBER OF DOUBLE DIFFERENCE OBSERVATIONS (PART 1): TYPE FREQUENCY FILE #OBSERVATIONS PHASE PHASE L1 L2 ALL ALL TOTAL NUMBER OF DOUBLE DIFF. OBSERVATIONS 8778 SIGMA OF SINGLE DIFFERENCE OBSERVATION (PART 1): SIGMA OF SINGLE DIFFERENCE OBSERVATION:.46 M (CONVERTED TO L1 PHASE) 59

66 DEGREE OF FREEDOM : LKI981 PROGRAM GPSEST 18-DEC-98 13:33 D: OLKI981 BERNESE GPS SOFTWARE VERSION STATION COORDINATES: (NOT SAVED) NUM STATION NAME PARAMETER A PRIORI VALUE NEW VALUE NEW- A PRIORI RMS ERROR 3-D ELLIPSOID 2-D ELLIPSE GPS2 X y z HEIGHT LATITUDE LONGITUDE GPS3 X y z HEIGHT LATITUDE LONGITUDE GPS4 X y z HEIGHT LATITUDE LONGITUDE GPS5 X y z HEIGHT LATITUDE LONGITUDE GPS6 X y z

67 HEIGHT LATITUDE LONGITUDE GPS7 X y z HEIGHT LATITUDE LONGITUDE GPS9 X y z HEIGHT LATITUDE LONGITUDE GPS8 X y z HEIGHT LATITUDE LONGITUDE GP1 X y z HEIGHT LATITUDE LONGITUDE LKI981 PROGRAM GPSEST 18-DEC-98 13:33 D: OLKI981 BERNESE GPS SOFTWARE VERSION TROPOSPHERE PARAMETERS FOR INDIVIDUAL STATIONS: REQUEST STATION NAME ZENITH CORR. (M) RMS (M) GPS GPS GPS

68 4 GPS GPS GPS GPS GPS GP LKI981 PROGRAM GPSEST 18-DEC-98 13:33 D: OLKI981 BERNESE GPS SOFTWARE VERSION RMS ERRORS OF ELLIPS. COORDINATES AND COORDINATE DIFFER. IN MM (PART 1): ~ NUM B L H B L H B L H B L H B L H B L H ~

69 1 1 ~ LKI981 D: OLKI981 PROGRAM GPSEST 18-DEC-98 13:33 BERNESE GPS SOFTWARE VERSION 4. SLOPE DISTANCES AND RMS ERRORS IN M (PART 1): NUM N 4 N 5 N 6 N 7 N 9 N 8 N 1 N N N RMS N N RMS N N RMS N N RMS N N RMS N N RMS N N RMS N N RMS.1 1 N N 63

70 IRMSI 1LKI981 D: OLKI981 PROGRAM GPSEST 18-DEC-98 13:33 BERNESE GPS SOFTWARE VERSION 4. SLOPE DISTANCES AND RMS ERRORS IN M (PART 1): CONTINUATION NUM 1 1 F N N RMS N N RMS N N RMS N N RMS N N RMS N N RMS N N RMS N N RMS N N RMS.2 64

71 Appendix 111. Final result of the second measurements at Olkiluoto in LKI982 F: OLKI982 PROGRAM GPSEST 18-DEC-98 13:36 BERNESE GPS SOFTWARE VERSION 4. TABLE OF CONTENTS 1. CAMPAIGNS 2. OBSERVATION FILES 3. GENERAL OPTIONS 4. STATIONS 5. SATELLITE ORBITS 6. ATMOSPHERE 7. RECEIVER CLOCK PARAMETERS 8. POLE COORDINATES AND TIME INFORMATION 9. ANTENNA PHASE CENTERS 1. CONSTANTS 11. PARAMETER CHARACTERIZATION LIST 12. TEST OUTPUT 13. RESULTS (PART 1) 14. RESULTS (PART 2) 1LKI982 F: OLKI982 PROGRAM GPSEST 18-DEC-98 13:36 BERNESE GPS SOFTWARE VERSION 4. LIST OF INPUT AND OUTPUT FILENAMES GENERAL CONSTANTS POLE INFORMATION LOCAL GEODETIC DATUM SATELLITE INFO SATELLITE PROBLEMS PHASE CENTER ECCENTRICITIES APRIORI COORDINATES STANDARD ORBITS RADIATION PRESSURE COEFF. IONOSPHERE MODELS SITE ECCENTRICITIES SATELLITE CLOCKS ANTENNA ORIENTATIONS COORDINATE RESULTS ORBIT RESULTS X: [GEN]CONST. X: [GEN]RAP_1998.ERP X: [ GEN] DATUM. X: [GEN]SATELLIT.TTT X: [GEN]SAT_1998.CRX X: [GEN] PHASITRF. U: [OLKI982.STA]OLKI982.CRD U: [OLKI982.RB]OLKI982.STD U: [OLKI982.RB]OLKI982.RPR U: [OLKI982.ATM]OLKI9821.ION U: [OLKI982.RB]OLKI982.CLK 65

72 IONOSPHERE RESULTS IONEX OUTPUT FILE VAR/COVAR MATRIX COORD. VAR/COVAR MATRIX TOTAL NORMAL EQUATIONS RESIDUALS EARTH ROTATION PARAMETERS IERS FORMAT ERP OUTPUT TROPOSPHERE CORRECTIONS GRID PHASE CENTER OUTPUT HARM. PHASE CENTER OUTPUT 1LKI982 F: OLKI982 PROGRAM GPSEST 18-DEC-98 13:36 BERNESE GPS SOFTWARE VERSION CAMPAIGNS CAMPAIGN NAME NUM STATION NAME NUM STATION NAME NUM STATION NAME NUM STATION NAME NUM STATION NAME OLKI982 1 GPS1 6 GPS6 2 GPS2 7 GPS7 3 GPS3 8 GPS8 4 GPS4 9 GPS9 5 GPS5 1 GP1 2. OBSERVATION FILES ---- OLKI MAIN CHARACTERISTICS: AMB.I.+S. #CLUSTERS FILE TYP FREQ. STATION 1 STATION 2 SESS FIRST OBSERV.TIME #EPO DT #EF #CLK ARC #SAT w 12 #AMB L1 L2 L5 RM p L1,L2 GPS1 GPS :46: E E 1 27 N y N p L1,L2 GPS1 GPS :: E E 1 24 N y N p L1,L2 GPS1 GPS :3: E E 1 23 N y N p L1,L2 GPS1 GPS : E E 1 21 N y N p L1,L2 GPS1 GPS : E E 1 27 N y N p L1,L2 GPS1 GPS : E E 1 23 N y N p L1, L2 GPS1 GPS : E E 1 27 N y N p L1,L2 GPS1 GPS : E E 1 27 N y N p L1,L2 GPS1 GPS : E E 1 27 N y N p L1,L2 GPS1 GPS : E E 1 26 N y N

73 11 p L1,L2 GPS7 GPS :5: E E 1 26 N y N p L1,L2 GPS7 GPS :: 17 3 E E 1 26 N y N p L1,L2 GPS7 GPS :44: E E 1 27 N y N p L1,L2 GPS7 GPS :: E E 1 25 N y N p L1,L2 GPS9 GP :1: E E 1 25 N y N p L1,L2 GPS9 GP :: E E 1 25 N y N SATELLITES: FILE #SAT SATELLITES OBSERVATION SELECTION: SAMPLING RATE : 3 SEC ELEVATION CUT-OFF ANGLE : 2 DEGREES 1LKI982 PROGRAM GPSEST 18-DEC-98 13:36 F: OLKI982 BERNESE GPS SOFTWARE VERSION GENERAL OPTIONS A PRIORI SIGMA: A PRIORI SIGMA :.1 M (ZERO-DIFF. L1 PHASE) 67

74 CORRELATIONS AND SESSIONS: STRATEGY TIME INTERVAL CORRELATIONS CORRECTLY MODELLED 1. SEC (TO IDENTIFY EPOCH) SESS #FILE FILE NUMBERS AMBIGUITY RESOLUTION STRATEGY: AMBIGUITIES PRE-ELIMINATED SYNCHRONIZATION ERRORS: STRATEGY : SYNCHRONIZATION ERRORS NOT APPLIED 1LKI982 F: OLKI982 PROGRAM GPSEST 18-DEC-98 13:36 BERNESE GPS SOFTWARE VERSION STATIONS LOCAL GEODETIC DATUM: DATUM NAME ELL. PARAM./ SCALE SHIFTS TO WGS-84 ROTATIONS TO WGS-84 WGS - 84 A 1/F= se = M O.OOOOOD+OO DX DY DZ. M. M. M RX RY RZ. ". ". " A PRIORI STATION COORDINATES: NUM STATION NAME OBS E/F/C X U: [OLKI982.STA]OLKI982.CRD WGS-84 COORDINATES IN METERS ELLIPSOIDAL COORDINATES IN LOCAL DATUM y z LATITUDE LONGITUDE HEIGHT (M) GPS1 y FIXED GPS2 y ESTIM GPS3 y ESTIM GPS4 y ESTIM

75 5 GPSS 6 GPS6 7 GPS7 8 GPS8 9 GPS9 1 GP1 Y Y Y Y Y Y ESTIM ESTIM ESTIM ESTIM ESTIM ESTIM LKI982 F: OLKI982 PROGRAM GPSEST 18-DEC-98 13:36 BERNESE GPS SOFTWARE VERSION SATELLITE ORBITS ARC CHARACTERISTICS: ARC START OF ARC END OF ARC SOURCE #SAT SATELLITES :: :: PR OSCULATING ELEMENTS: U: [OLKI982.RB]OLKI982.STD REFERENCE SYSTEM: J2. REFERENCE EPOCH : MJD ( ) SAT S.MAJ.AXIS ECCENTRIC. INCLINAT. NODE PERIGEE M. ANOMALY PER.PASS.TIME

76 SATELLITE PROBLEMS: SAT PROBLEM TYPE ACTION FROM TO 11 BAD PHASE+CODE 2 BAD PHASE+CODE 28 BAD PHASE+CODE OBS. REMOVED OBS. REMOVED OBS. REMOVED :: :: :: :: :: :: 1LKI982 F: OLKI982 PROGRAM GPSEST 18-DEC-98 13:36 BERNESE GPS SOFTWARE VERSION ATMOSPHERE TROPOSPHERE MODEL: TROPOSPHERE MODEL: SAASTAMOINEN METEO VALUES : EXTRAPOLATED REFERENCE HEIGHT :. M TEMPERATURE AT REF. HEIGHT: PRESSURE AT REF. HEIGHT: HUMIDITY AT REF. HEIGHT: 18. c MBAR 5. % TROPOSPHERE PARAMETERS FOR INDIVIDUAL STATIONS: MAPPING FUNCTION USED FOR DELAY ESTIMATION: 1/COS(ZENITH-DISTANCE) PAR STATION NAME VALIDITY START VALIDITY END SIGMA (M) ABS/REL 1 GPS2 2 GPS3 3 GPS4 4 GPS ABS ABS ABS ABS 7

77 5 GPS ABS 6 GPS ABS 7 GPS ABS 8 GPS ABS 9 GP ABS IONOSPHERE MODELS: U: [OLKI982.ATM]OLKI9821.ION TYPE OF IONOSPHERE MODELS : LOCAL RADIUS OF THE EARTH : KM DEG. OF DEVELOP. ORIGIN OF DEVELOPMENT HEIGHT NORMAIZATION FACTORS MODEL TIME LAT. MIXED VALIDITY START VALIDITY END LOCAL TIME LAT. (D) LONG. (D) (KM) TIME(H) LAT. (D) ELE.CONT D D D D D D+18 POL. DEGREE IN MODEL TERM TIME LATIT. COEFFICIENT SIGMA E E E E E+.162E E E E E E E E E E E E E E E E E E E E+.1261E E E E E E E E E E E E E E E-2 71

78 E E E E E+.2893E E E E E E E E E E E E E E E-2 1LKI982 F: OLKI982 PROGRAM GPSEST 18-DEC-98 13:36 BERNESE GPS SOFTWARE VERSION POLE COORDINATES AND TIME INFORMATION A PRIORI POLE AND TIME INFORMATION FORM THE POLE FILE: DATUM TIME X-POLE ( 11 ) Y-POLE ( 11 ) UT1-UTC (S) GPS-UTC (S) RMS XP ( 11 ) RMS YP ( 11 ) RMS DT (S) EP-CPO (II) PS-CPO (II) RMS EP ( II ) RMS PS ( II) :: :: :: CELESTIAL POLE OFFSET MODEL: NO MODEL 1LKI982 PROGRAM GPSEST 18-DEC-98 13:36 F: OLKI982 BERNESE GPS SOFTWARE VERSION TEST OUTPUT MAXIMUM SYNCHRONIZATION ERRORS: SESS FILE STATION NAME 1 STATION NAME 2 SYNCH. ERROR (NS) 1 1 GPS1 GPS2. 72

79 1 2 GPS1 1 3 GPS1 1 4 GPS1 1 5 GPS1 1 6 GPS1 1 7 GPS1 1 8 GPS1 1 9 GPS1 1 1 GPS GPS GPS GPS GPS GPS GPS9 GPS2 GPS3 GPS4 GPS5 GPS5 GPS6 GPS6 GPS7 GPS7 GPS8 GPS8 GPS9 GPS9 GP1 GP LKI982 F: OLKI PROGRAM GPSEST 18-DEC-98 13:36 BERNESE GPS SOFTWARE VERSION RESULTS (PART 1) NUMBER OF PARAMETERS (PART 1): PARAMETER TYPE #PARAMETERS #PRE-ELIMINATED #SET-UP #NO-OBS #REF #SINGULAR STATION COORDINATES AMBIGUITIES TROPOSPHERE PARAMETERS FOR INDIVIDUAL STATIONS (BEFORE INV) TOTAL NUMBER OF PARAMETERS NUMBER OF DOUBLE DIFFERENCE OBSERVATIONS (PART 1) : TYPE FREQUENCY FILE #OBSERVATIONS PHASE PHASE L1 L2 ALL ALL TOTAL NUMBER OF DOUBLE DIFF. OBSERVATIONS

80 SIGMA OF SINGLE DIFFERENCE OBSERVATION (PART 1): SIGMA OF SINGLE DIFFERENCE OBSERVATION:.49 M (CONVERTED TO L1 PHASE) DEGREE OF FREEDOM : LKI982 PROGRAM GPSEST 18 - DEC : 3 6 F: OLKI982 BERNESE GPS SOFTWARE VERSION STATION COORDINATES: (NOT SAVED) NUM STATION NAME PARAMETER A PRIORI VALUE NEW VALUE NEW- A PRIORI RMS ERROR 3-D ELLIPSOID 2-D ELLIPSE GPS2 X y z HEIGHT LATITUDE LONGITUDE GPS3 X y z HEIGHT LATITUDE LONGITUDE GPS4 X y z HEIGHT LATITUDE LONGITUDE GPS5 X y z HEIGHT LATITUDE LONGITUDE GPS6 X y

81 z HEIGHT LATITUDE LONGITUDE GPS7 X y z HEIGHT LATITUDE LONGITUDE GPS8 X y z HEIGHT LATITUDE LONGITUDE GPS9 X y z HEIGHT LATITUDE LONGITUDE GP1 X y z HEIGHT LATITUDE LONGITUDE LKI982 PROGRAM GPSEST 18-DEC-98 13:36 F: OLKI982 BERNESE GPS SOFTWARE VERSION TROPOSPHERE PARAMETERS FOR INDIVIDUAL STATIONS: REQUEST STATION NAME ZENITH CORR. (M) RMS (M) GPS GPS GPS

82 4 GPS GPS GPS GPS GPS GP LKI982 PROGRAM GPSEST 18-DEC : 3 6 F: OLKI982 BERNESE GPS SOFTWARE VERSION RMS ERRORS OF ELLIPS. COORDINATES AND COORDINATE DIFFER. IN MM (PART 1): NUM B L H B L H B L H B L H B L H B L H B L H B L H B

83 1 1 ~ LKI982 PROGRAM GPSEST 18-DEC-98 13:36 F: OLKI982 BERNESE GPS SOFTWARE VERSION 4. SLOPE DISTANCES AND RMS ERRORS IN M (PART 1) : NUM N 4 N 5 N 6 N 7 N 8 N 9 N 1 N N N RMS N N RMS N N RMS N N RMS N N RMS N N RMS N N RMS N N RMS.1 1 N N RMS 77

84 1LKI982 F: OLKI982 PROGRAM GPSEST 18-DEC-98 13:36 BERNESE GPS SOFTWARE VERSION 4. SLOPE DISTANCES AND RMS ERRORS IN M (PART 1): NUM 1 1 F N N RMS.1 CONTINUATION N N RMS N N RMS N N RMS N N RMS N N RMS N N RMS N N RMS N N RMS.1 78

85 ~ ÅJ!J!endix IV. Results of six measurements at Kivetty (Zero epoch, 1996.) Baseline Observ- Baseline Length Differation New Previous ence epoch solutien solutien (Year) (m) (m) (mm) GPS1-GPS GPS1-GPS GPS1-GPS GPS1-GPS GPS1-GPS GPS1-GPS

86 GPS2-GPS GPS2-GPS GPS2-GPS GPS2-GPS GPS2-GPS GPS3-GPS GPS3-GPS

87 81 GPS3-GPS GPS3-GPS GPS4-GPS GPS4-GPS GPS4-GPS GPS5-GPS GPS5-GPS GPS6-GPS

88 Appendix V. Final result of the first measurements at Kivetty in KIVE981 B: KIVE981 PROGRAM GPSEST 18-DEC-98 13:23 BERNESE GPS SOFTWARE VERSION 4. TABLE OF CONTENTS 1. CAMPAIGNS 2. OBSERVATION FILES 3. GENERAL OPTIONS 4. STATIONS 5. SATELLITE ORBITS 6. ATMOSPHERE 7. RECEIVER CLOCK PARAMETERS 8. POLE COORDINATES AND TIME INFORMATION 9. ANTENNA PHASE CENTERS 1. CONSTANTS 11. PARAMETER CHARACTERIZATION LIST 12. TEST OUTPUT 13. RESULTS (PART 1) 14. RESULTS (PART 2) 1KIVE981 B: KIVE981 PROGRAM GPSEST 18-DEC-98 13:23 BERNESE GPS SOFTWARE VERSION 4. LIST OF INPUT AND OUTPUT FILENAMES GENERAL CONSTANTS POLE INFORMATION LOCAL GEODETIC DATUM SATELLITE INFO SATELLITE PROBLEMS PHASE CENTER ECCENTRICITIES APRIORI COORDINATES STANDARD ORBITS RADIATION PRESSURE COEFF. X: [GEN] CONST. X: [GEN]RAP_1998.ERP X: [GEN] DATUM. X [GEN]SATELLIT.TTT X [GEN]SAT_1998.CRX X [GEN]PHASITRF. U [KIVE981.STA]KIVE981.CRD U [KIVE98l.ORB]KIVE981.STD U [KIVE98l.ORB]KIVE981.RPR 82

89 IONOSPHERE MODELS SITE ECCENTRICITIES SATELLITE CLOCKS ANTENNA ORIENTATIONS COORDINATE RESULTS ORBIT RESULTS IONOSPHERE RESULTS IONEX OUTPUT FILE VAR/COVAR MATRIX COORD. VAR/COVAR MATRIX TOTAL NORMAL EQUATIONS RESIDUALS EARTH ROTATION PARAMETERS IERS FORMAT ERP OUTPUT TROPOSPHERE CORRECTIONS GRID PHASE CENTER OUTPUT HARM. PHASE CENTER OUTPUT U: [KIVE981.ATM]KIVE981.ION U: [KIVE981.RB]KIVE981.CLK 1KIVE981 B: KIVE981 PROGRAM GPSEST 18-DEC-98 13:23 BERNESE GPS SOFTWARE VERSION CAMPAIGNS CAMPAIGN NAME NUM STATION NAME NUM STATION NAME NUM STATION NAME NUM STATION NAME NUM STATION NAME KIVE981 1 GPS1 3 GPS3 2 GPS2 4 GPS4 5 GPSS 6 GPS6 7 GPS7 2. OBSERVATION FILES KIVE981 MAIN CHARACTERISTICS: FILE TYP FREQ. STATION 1 STATION 2 AMB.I.+S. #CLUSTERS SESS FIRST OBSERV.TIME #EPO DT #EF #CLK ARC #SAT W 12 #AMB L1 L2 LS RM 83

90 1 p L1,L2 GPS1 GPS :24: E E 1 27 N y N p L1,L2 GPS1 GPS :1: E E 1 23 N y N p L1,L2 GPS1 GPS :9: E E 1 22 N y N p L1,L2 GPS1 GPS :49: E E 1 27 N y N p L1,L2 GPS1 GPS :1: E E 1 16 N y N p L1,L2 GPS1 GPS :33: E E 1 27 N y N p L1,L2 GPS1 GPS :1: E E 1 24 N y N p L1,L2 GPS2 GPS :7: E E 1 27 N y N p L1,L2 GPS2 GPS :: E E 1 23 N y N p L1,L2 GPS2 GPS :48: E E 1 27 N y N p L1,L2 GPS2 GPS :: E E 1 24 N y N SATELLITES: FILE #SAT SATELLITES OBSERVATION SELECTION: SAMPLING RATE : 3 SEC ELEVATION CUT-OFF ANGLE : 2 DEGREES 1KIVE981 PROGRAM GPSEST 18-DEC-98 13:23 B: KIVE981 BERNESE GPS SOFTWARE VERSION GENERAL OPTIONS A PRIORI SIGMA: A PRIORI SIGMA :.1 M (ZERO-DIFF. L1 PHASE) 84

91 CORRELATIONS AND SESSIONS: STRATEGY TIME INTERVAL CORRELATIONS CORRECTLY MODELLED 1. SEC (TO IDENTIFY EPOCH) SESS #FILE FILE NUMBERS AMBIGUITY RESOLUTION STRATEGY: AMBIGUITIES PRE-ELIMINATED SYNCHRONIZATION ERRORS: STRATEGY : SYNCHRONIZATION ERRORS NOT APPLIED 1KIVE981 B: KIVE981 PROGRAM GPSEST 18-DEC-98 13:23 BERNESE GPS SOFTWARE VERSION STATIONS LOCAL GEODETIC DATUM: DATUM NAME ELL. PARAM./ SCALE SHIFTS TO WGS-84 ROTATIONS TO WGS-84 WGS - 84 A 1/F= se = M O.OOOOOD+OO DX DY DZ. M. M. M RX RY RZ. ". ". " A PRIORI STATION COORDINATES: NUM STATION NAME OBS E/F/C U: [KIVE981.STA]KIVE981.CRD WGS-84 COORDINATES IN METERS X Y Z ELLIPSOIDAL COORDINATES IN LOCAL DATUM LATITUDE LONGITUDE HEIGHT (M) 85

92 1 GPS1 y FIXED GPS2 y ESTIM GPS5 y ESTIM GPS6 y ESTIM GPS7 y ESTIM GPS3 y ESTIM GPS4 y ESTIM KIVE981 PROGRAM GPSEST 18-DEC-98 13:23 B: KIVE981 BERNESE GPS SOFTWARE VERSION SATELLITE ORBITS ARC CHARACTERISTICS: ARC START OF ARC END OF ARC SOURCE #SAT SATELLITES :: :: PR OSCULATING ELEMENTS: U: [KIVE981.RB]KIVE981.STD REFERENCE SYSTEM: J2. REFERENCE EPOCH : MJD ( ) SAT S.MAJ.AXIS ECCENTRIC. INCLINAT. NODE PERIGEE M. ANOMALY PER.PASS.TIME

93 SATELLITE PROBLEMS: SAT PROBLEM TYPE ACTION FROM TO 11 BAD PHASE+CODE 2 BAD PHASE+CODE 28 BAD PHASE+CODE OBS. REMOVED OBS. REMOVED OBS. REMOVED :: :: :: :: :: :: 1KIVE981 B: KIVE981 PROGRAM GPSEST 18-DEC-98 13:23 BERNESE GPS SOFTWARE VERSION ATMOSPHERE TROPOSPHERE MODEL: TROPOSPHERE MODEL: SAASTAMOINEN METEO VALUES : EXTRAPOLATED REFERENCE HEIGHT :. M TEMPERATURE AT REF. HEIGHT: 18. c PRESSURE AT REF. HEIGHT: MBAR HUMIDITY AT REF. HEIGHT: 5. % TROPOSPHERE PARAMETERS FOR INDIVIDUAL STATIONS: MAPPING FUNCTION USED FOR DELAY ESTIMATION: 1/COS(ZENITH-DISTANCE) PAR STATION NAME VALIDITY START VALIDITY END SIGMA (M) ABS/REL 87

94 1 GPS ABS 2 GPS ABS 3 GPS ABS 4 GPS ABS 5 GPS ABS 6 GPS ABS IONOSPHERE MODELS: U: [KIVE981.ATM]KIVE981.ION TYPE OF IONOSPHERE MODELS : LOCAL RADIUS OF THE EARTH : KM DEG. OF DEVELOP. ORIGIN OF DEVELOPMENT HEIGHT NORMAIZATION FACTORS MODEL TIME LAT. MIXED VALIDITY START VALIDITY END LOCAL TIME LAT. (D) LONG. (D) (KM) TIME(H) LAT. (D) ELE.CONT D D D D+18 POL. DEGREE IN MODEL TERM TIME LATIT. COEFFICIENT SIGMA E E E E E E E+.1762E E E E E E E E E E E E E E E E+OO E E E E E E E E E E E E E E E E E-2 88

95 1KIVE981 B: KIVE981 PROGRAM GPSEST 18-DEC-98 13:23 BERNESE GPS SOFTWARE VERSION POLE COORDINATES AND TIME INFORMATION A PRIORI POLE AND TIME INFORMATION FORM THE POLE FILE: DATUM TIME X-POLE ( 11 ) Y-POLE ( 11 ) UT1-UTC (S) GPS-UTC (S) RMS XP ( 11 ) RMS YP ( 11 ) RMS DT (S) EP-CPO (II) PS-CPO (II) RMS EP (II) RMS PS (II) :: :: :: CELESTIAL POLE OFFSET MODEL: NO MODEL 1KIVE981 B: KIVE981 PROGRAM GPSEST 18-DEC-98 13:23 BERNESE GPS SOFTWARE VERSION TEST OUTPUT MAXIMUM SYNCHRONIZATION ERRORS: SESS FILE STATION NAME 1 STATION NAME 2 SYNCH. ERROR (NS) GPS1 GPS GPS1 GPS GPS1 GPS GPS1 GPS GPS1 GPS GPS1 GPS GPS1 GPS GPS2 GPS3. 89

96 GPS2 GPS2 GPS2 GPS3 GPS4 GPS4... 1KIVE981 B: KIVE981 PROGRAM GPSEST 18-DEC-98 13:23 BERNESE GPS SOFTWARE VERSION RESULTS (PART 1) NUMBER OF PARAMETERS (PART 1): PARAMETER TYPE #PARAMETERS #PRE-ELIMINATED #SET-UP #NO-OBS #REF #SINGULAR STATION COORDINATES AMBIGUITIES TROPOSPHERE PARAMETERS FOR INDIVIDUAL STATIONS (BEFORE INV) TOTAL NUMBER OF PARAMETERS NUMBER OF DOUBLE DIFFERENCE OBSERVATIONS (PART 1): TYPE FREQUENCY FILE #OBSERVATIONS PHASE PHASE L1 L2 ALL ALL TOTAL NUMBER OF DOUBLE DIFF. OBSERVATIONS SIGMA OF SINGLE DIFFERENCE OBSERVATION (PART 1): SIGMA OF SINGLE DIFFERENCE OBSERVATION:.57 M (CONVERTED TO L1 PHASE) DEGREE OF FREEDOM KIVE981 PROGRAM GPSEST 18-DEC-98 13:23 9

97 B: KIVE981 BERNESE GPS SOFTWARE VERSION STATION COORDINATES: (NOT SAVED) NUM STATION NAME PARAMETER A PRIORI VALUE NEW VALUE NEW- A PRIORI RMS ERROR 3-D ELLIPSOID 2-D ELLIPSE GPS2 X y z HEIGHT LATITUDE LONGITUDE GPS5 X y z HEIGHT LATITUDE LONGITUDE GPS6 X y z HEIGHT LATITUDE LONGITUDE GPS7 X y z HEIGHT LATITUDE LONGITUDE GPS3 X y z HEIGHT LATITUDE LONGITUDE GPS4 X

98 y z HEIGHT LATITUDE LONGITUDE KIVE981 B: KIVE981 PROGRAM GPSEST 18-DEC-98 13:23 BERNESE GPS SOFTWARE VERSION 4. TROPOSPHERE PARAMETERS FOR INDIVIDUAL STATIONS: REQUEST STATION NAME ZENITH CORR. (M) RMS (M) 1 GPS2 2 GPS5 3 GPS6 4 GPS7 5 GPS3 6 GPS KIVE981 B: KIVE981 PROGRAM GPSEST 18-DEC-98 13:23 BERNESE GPS SOFTWARE VERSION 4. RMS ERRORS OF ELLIPS. COORDINATES AND COORDINATE DIFFER. IN MM (PART 1): NUM ~ H B L H B L H B

99 7 1 ~ B L H B L H KIVE981 B: KIVE981 PROGRAM GPSEST 18-DEC-98 13:23 BERNESE GPS SOFTWARE VERSION 4. SLOPE DISTANCES AND RMS ERRORS IN M (PART 1): NUM 1 5 N 6 N 7 N 3 N N N RMS N N RMS N N RMS N N RMS N N RMS 4 N F N N RMS

100 Appendix VI. Final result of the second measurements at Kivetty in KIVE982 C: KIVE982 PROGRAM GPSEST 18-DEC-98 13:27 BERNESE GPS SOFTWARE VERSION 4. TABLE OF CONTENTS 1. CAMPAIGNS 2. OBSERVATION FILES 3. GENERAL OPTIONS 4. STATIONS 5. SATELLITE ORBITS 6. ATMOSPHERE 7. RECEIVER CLOCK PARAMETERS 8. POLE COORDINATES AND TIME INFORMATION 9. ANTENNA PHASE CENTERS 1. CONSTANTS 11. PARAMETER CHARACTERIZATION LIST 12. TEST OUTPUT 13. RESULTS (PART 1) 14. RESULTS (PART 2) 1KIVE982 C: KIVE982 PROGRAM GPSEST 18-DEC-98 13:27 BERNESE GPS SOFTWARE VERSION 4. LIST OF INPUT AND OUTPUT FILENAMES GENERAL CONSTANTS POLE INFORMATION LOCAL GEODETIC DATUM SATELLITE INFO SATELLITE PROBLEMS PHASE CENTER ECCENTRICITIES APRIORI COORDINATES STANDARD ORBITS RADIATION PRESSURE COEFF. X [GEN]CONST. X [GEN]RAP_1998.ERP X [GEN]DATUM. X [GEN]SATELLIT.TTT X: [GEN]SAT_1998.CRX X: [GEN] PHASITRF. U: [KIVE982.STA)KIVE982.CRD U: [KIVE982.RB)KIVE982.STD U: [KIVE982.RB)KIVE982.RPR 94

101 IONOSPHERE MODELS SITE ECCENTRICITIES SATELLITE CLOCKS ANTENNA ORIENTATIONS COORDINATE RESULTS ORBIT RESULTS IONOSPHERE RESULTS IONEX OUTPUT FILE VAR/COVAR MATRIX COORD. VAR/COVAR MATRIX TOTAL NORMAL EQUATIONS RESIDUALS EARTH ROTATION PARAMETERS IERS FORMAT ERP OUTPUT TROPOSPHERE CORRECTIONS GRID PHASE CENTER OUTPUT HARM. PHASE CENTER OUTPUT U: [KIVE982.ATM]KIVE982.ION U: [KIVE982.RB]KIVE982.CLK 1KIVE982 C: KIVE982 PROGRAM GPSEST 18-DEC-98 13:27 BERNESE GPS SOFTWARE VERSION CAMPAIGNS CAMPAIGN NAME NUM STATION NAME NUM STATION NAME NUM STATION NAME NUM STATION NAME NUM STATION NAME KIVE982 1 GPS1 3 GPS3 2 GPS2 4 GPS4 5 GPSS 6 GPS6 7 GPS7 2. OBSERVATION FILES KIVE982 MAIN CHARACTERISTICS: FILE TYP FREQ. STATION 1 STATION 2 AMB.I.+S. #CLUSTERS SESS FIRST OBSERV.TIME #EPO DT #EF #CLK ARC #SAT W 12 #AMB L1 L2 LS RM 95

102 1 p L1,L2 GPS1 GPS :54: E E 1 27 N y N p L1,L2 GPS1 GPS :: E E 1 24 N y N p L1,L2 GPS1 GPS :41: E E 1 27 N y N p L1,L2 GPS1 GPS :: E E 1 23 N y N p L1,L2 GPS1 GPS :19: E E 1 27 N y N p L1,L2 GPS1 GPS :: E E 1 24 N y N p L1,L2 GPS1 GPS :54: E E 1 11 N y N p L1,L2 GPS1 GPS :12: E E 1 27 N y N p L1,L2 GPS1 GPS :: E E 1 2 N y N p L1,L2 GPS2 GPS :26: E E 1 27 N y N p L1,L2 GPS2 GPS :: E E 1 24 N y N p L1,L2 GPS2 GPS :5: E E 1 27 N y N p L1,L2 GPS2 GPS :: E E 1 23 N y N SATELLITES: FILE #SAT SATELLITES OBSERVATION SELECTION: SAMPLING RATE : 3 SEC ELEVATION CUT-OFF ANGLE : 2 DEGREES 1KIVE982 PROGRAM GPSEST 18-DEC-98 13:27 C: KIVE982 BERNESE GPS SOFTWARE VERSION GENERAL OPTIONS 96

103 A PRIORI SIGMA: A PRIORI SIGMA :.1 M (ZERO-DIFF. 11 PHASE) CORRELATIONS AND SESSIONS: STRATEGY TIME INTERVAL CORRELATIONS CORRECTLY MODELLED 1. SEC (TO IDENTIFY EPOCH) SESS #FILE FILE NUMBERS AMBIGUITY RESOLUTION STRATEGY: AMBIGUITIES PRE-ELIMINATED SYNCHRONIZATION ERRORS: STRATEGY : SYNCHRONIZATION ERRORS NOT APPLIED 1KIVE982 C: KIVE982 PROGRAM GPSEST 18-DEC-98 13:27 BERNESE GPS SOFTWARE VERSION STATIONS LOCAL GEODETIC DATUM: DATUM NAME ELL. PARAM./ SCALE SHIFTS TO WGS-84 ROTATIONS TO WGS-84 WGS - 84 A 1/F= se = M O.OOOOOD+OO DX DY DZ. M. M. M RX RY RZ. ". ". " A PRIORI STATION COORDINATES: U: [KIVE982.STA]KIVE982.CRD 97

104 WGS-84 COORDINATES IN METERS ELLIPSOIDAL COORDINATES IN LOCAL DATUM NUM STATION NAME OBS E/F/C X y z LATITUDE LONGITUDE HEIGHT (M) GPS1 y FIXED GPS2 y ESTIM GPS5 y ESTIM GPS6 y ESTIM GPS7 y ESTIM GPS3 y ESTIM GPS4 y ESTIM KIVE982 PROGRAM GPSEST 18-DEC-98 13:27 C: KIVE982 BERNESE GPS SOFTWARE VERSION SATELLITE ORBITS ARC CHARACTERISTICS: ARC START OF ARC END OF ARC SOURCE #SAT SATELLITES :: :: PR OSCULATING ELEMENTS: U: [KIVE982.RB]KIVE982.STD REFERENCE SYSTEM: J2. REFERENCE EPOCH : MJD ( ) SAT S.MAJ.AXIS ECCENTRIC. INCLINAT. NODE PERIGEE M. ANOMALY PER.PASS.TIME

105 SATELLITE PROBLEMS: SAT PROBLEM TYPE ACTION FROM TO 11 BAD PHASE+CODE 2 BAD PHASE+CODE 28 BAD PHASE+CODE OBS. REMOVED OBS. REMOVED OBS. REMOVED :: :: :: :: :: :: 1KIVE982 C: KIVE982 PROGRAM GPSEST 18-DEC-98 13:27 BERNESE GPS SOFTWARE VERSION ATMOSPHERE TROPOSPHERE MODEL: TROPOSPHERE MODEL: SAASTAMOINEN METEO VALUES : EXTRAPOLATED REFERENCE HEIGHT :. M TEMPERATURE AT REF. HEIGHT: 18. c PRESSURE AT REF. HEIGHT: MBAR HUMIDITY AT REF. HEIGHT: 5. % TROPOSPHERE PARAMETERS FOR INDIVIDUAL STATIONS: 99

106 MAPPING FUNCTION USED FOR DELAY ESTIMATION: 1/COS(ZENITH-DISTANCE) PAR STATION NAME VALIDITY START VALIDITY END SIGMA (M) ABS/REL GPS ABS 2 GPS ABS 3 GPS ABS 4 GPS ABS 5 GPS ABS 6 GPS ABS IONOSPHERE MODELS: U: [KIVE982.ATM]KIVE982.ION TYPE OF IONOSPHERE MODELS : LOCAL RADIUS OF THE EARTH : KM DEG. OF DEVELOP. ORIGIN OF DEVELOPMENT HEIGHT NORMAIZATION FACTORS MODEL TIME LAT. MIXED VALIDITY START VALIDITY END LOCAL TIME LAT. (D) LONG. (D) (KM) TIME(H) LAT. (D) ELE.CONT D D D D D D D+18 POL. DEGREE IN MODEL TERM TIME LATIT. COEFFICIENT SIGMA E+.6497E E E E E E+OO.25118E E E E E E E E+OO E E E E E E E E E E E E E-2 1

107 E E E E E E E E E E E+.3369E E E E E E E E E E E E E E E E E E E E E E E E E E+OO E E E E E-2 1KIVE982 C: KIVE982 PROGRAM GPSEST 18-DEC-98 13:27 BERNESE GPS SOFTWARE VERSION POLE COORDINATES AND TIME INFORMATION A PRIORI POLE AND TIME INFORMATION FORM THE POLE FILE: DATUM TIME X-POLE (II) Y-POLE ( 11 ) UT1-UTC (S) GPS-UTC (S) RMS XP (II) RMS YP ( 11 ) EP-CPO ( 11 ) PS-CPO ( 11 ) RMS EP ( 11 ) RMS PS (II) RMS DT (S) :: :: :: ::

108 CELESTIAL POLE OFFSET MODEL: NO MODEL 1KIVE982 PROGRAM GPSEST 18-DEC-98 13:27 C: KIVE982 BERNESE GPS SOFTWARE VERSION TEST OUTPUT MAXIMUM SYNCHRONIZATION ERRORS: SESS FILE STATION NAME 1 STATION NAME SYNCH. ERROR (NS) 1 1 GPS1 1 2 GPS1 1 3 GPS1 1 4 GPS1 1 5 GPS1 1 6 GPS1 1 7 GPS1 1 8 GPS1 1 9 GPS1 1 1 GPS GPS GPS GPS2 GPS2 GPS2 GPS5 GPS5 GPS6 GPS6 GPS7 GPS7 GPS7 GPS3 GPS3 GPS4 GPS KIVE982 C: KIVE982 PROGRAM GPSEST 18-DEC-98 13:27 BERNESE GPS SOFTWARE VERSION RESULTS (PART 1) NUMBER OF PARAMETERS ( PART 1) : PARAMETER TYPE #PARAMETERS #PRE-ELIMINATED #SET-UP #NO-OBS #REF #SINGULAR STATION COORDINATES AMBIGUITIES TROPOSPHERE PARAMETERS FOR INDIVIDUAL STATIONS (BEFORE INV)

109 TOTAL NUMBER OF PARAMETERS NUMBER OF DOUBLE DIFFERENCE OBSERVATIONS (PART 1) : TYPE FREQUENCY FILE #OBSERVATIONS PHASE PHASE L1 L2 ALL ALL TOTAL NUMBER OF DOUBLE DIFF. OBSERVATIONS SIGMA OF SINGLE DIFFERENCE OBSERVATION (PART 1) : SIGMA OF SINGLE DIFFERENCE OBSERVATION:.4 M (CONVERTED TO L1 PHASE) DEGREE OF FREEDOM KIVE982 C: KIVE982 PROGRAM GPSEST 18-DEC-98 13:27 BERNESE GPS SOFTWARE VERSION 4. STATION COORDINATES: (NOT SAVED) NUM STATION NAME PARAMETER A PRIORI VALUE NEW VALUE NEW- A PRIORI RMS ERROR 3-D ELLIPSOID 2-D ELLIPSE GPS2 X y z HEIGHT LATITUDE LONGITUDE GPS5 X y z

110 HEIGHT LATITUDE LONGITUDE GPS6 X y z HEIGHT LATITUDE LONGITUDE GPS7 X y z HEIGHT LATITUDE LONGITUDE GPS3 X y z HEIGHT LATITUDE LONGITUDE GPS4 X y z HEIGHT LATITUDE LONGITUDE KIVE982 PROGRAM GPSEST 18-DEC-98 13:27 C: KIVE982 BERNESE GPS SOFTWARE VERSION TROPOSPHERE PARAMETERS FOR INDIVIDUAL STATIONS: REQUEST STATION NAME ZENITH CORR. (M) RMS (M) GPS GPS GPS

111 4 5 6 GPS7 GPS3 GPS KIVE982 C: KIVE982 PROGRAM GPSEST 18-DEC-98 13:27 BERNESE GPS SOFTWARE VERSION 4. RMS ERRORS OF ELLIPS. COORDINATES AND COORDINATE DIFFER. IN MM (PART 1): NUM ~ H B L H B L H B L H B L H B L H

112 1KIVE982 C: KIVE982 PROGRAM GPSEST 18-DEC-98 13:27 BERNESE GPS SOFTWARE VERSION 4. SLOPE DISTANCES AND RMS ERRORS IN M (PART 1): NUM 1 5 N 6 N 7 N 3 N 4 N 1 F N N RMS N N RMS N N RMS N N RMS N N RMS N N RMS. 16

113 A~~endix VII. Results of six measurements at Romuvaara (Zero epoch, 1996.) Baseline Observ- Baseline Length Differation New Previous ence epoch solutien solutien (Year) (m) (m) (mm) GPS1-GPS GPS1-GPS GPS1-GPS GPS1-GPS GPS1-GPS GPS1-GPS

114 18 GPS2-GPS GPS2-GPS GPS2-GPS GPS2-GPS GPS2-GPS GPS3-GPS GPS3-GPS

115 19 GPS3-GPS GPS3-GPS GPS4-GPS GPS4-GPS GPS4-GPS GPS5-GPS GPS5-GPS GPS6-GPS

116 Appendix VIII. Final result of the first measurements at Romuvaara in ROMU981 G: ROMU981 PROGRAM GPSEST 18-DEC-98 13:44 BERNESE GPS SOFTWARE VERSION 4. TABLE OF CONTENTS 1. CAMPAIGNS 2. OBSERVATION FILES 3. GENERAL OPTIONS 4. STATIONS 5. SATELLITE ORBITS 6. ATMOSPHERE 7. RECEIVER CLOCK PARAMETERS 8. POLE COORDINATES AND TIME INFORMATION 9. ANTENNA PHASE CENTERS 1. CONSTANTS 11. PARAMETER CHARACTERIZATION LIST 12. TEST OUTPUT 13. RESULTS (PART 1) 14. RESULTS (PART 2) 1ROMU981 G: ROMU981 PROGRAM GPSEST 18-DEC-98 13:44 BERNESE GPS SOFTWARE VERSION 4. LIST OF INPUT AND OUTPUT FILENAMES GENERAL CONSTANTS POLE INFORMATION LOCAL GEODETIC DATUM SATELLITE INFO SATELLITE PROBLEMS PHASE CENTER ECCENTRICITIES APRIORI COORDINATES STANDARD ORBITS RADIATION PRESSURE COEFF. X [GEN)CONST. X [GEN)RAP_1998.ERP X [GEN)DATUM. X [GEN)SATELLIT.TTT X [GEN)SAT_1998.CRX X [GEN)PHASITRF. U: [ROMU981.STA)ROMU981.CRD U: [ROMU981.RB)ROMU981.STD U: [ROMU981.RB)ROMU981.RPR 11

117 IONOSPHERE MODELS SITE ECCENTRICITIES SATELLITE CLOCKS ANTENNA ORIENTATIONS COORDINATE RESULTS ORBIT RESULTS IONOSPHERE RESULTS IONEX OUTPUT FILE VAR/COVAR MATRIX COORD. VAR/COVAR MATRIX TOTAL NORMAL EQUATIONS RESIDUALS EARTH ROTATION PARAMETERS IERS FORMAT ERP OUTPUT TROPOSPHERE CORRECTIONS GRID PHASE CENTER OUTPUT HARM. PHASE CENTER OUTPUT U: [ROMU981.ATM)ROMU981.ION U: [ROMU981.RB)ROMU981.CLK 1ROMU981 G: ROMU981 PROGRAM GPSEST 18-DEC-98 13:44 BERNESE GPS SOFTWARE VERSION CAMPAIGNS CAMPAIGN NAME NUM STATION NAME NUM STATION NAME NUM STATION NAME NUM STATION NAME NUM STATION NAME ROMU981 1 GPS1 2 GPS2 3 GPS3 7 GPS7 4 GPS4 5 GPSS 6 GPS6 2. OBSERVATION FILES ROMU981 MAIN CHARACTERISTICS: FILE TYP FREQ. STATION 1 STATION 2 AMB.I.+S. #CLUSTERS SESS FIRST OBSERV.TIME #EPO DT #EF #CLK ARC #SAT W 12 #AMB L1 L2 L5 RM 111

118 1 p L1,L2 GPS1 GPS :14: E E 1 27 N y N p L1,L2 GPS1 GPS :1: E E 1 24 N y N p L1,L2 GPS1 GPS :18: E E 1 27 N y N p L1,L2 GPS1 GPS :1: 91 3 E E 1 26 N y N p L1,L2 GPS1 GPS :4: E E 1 27 N y N p L1,L2 GPS1 GPS :1: E E 1 21 N y N p L1,L2 GPS1 GPS :39: E E 1 27 N y N p L1,L2 GPS1 GPS :1: 94 3 E E 1 26 N y N p L1,L2 GPS3 GPS :14: E E 1 27 N y N p L1,L2 GPS6 GPS :39: E E 1 27 N y N SATELLITES: FILE #SAT SATELLITES OBSERVATION SELECTION: SAMPLING RATE : 3 SEC ELEVATION CUT-OFF ANGLE : 2 DEGREES 1ROMU981 PROGRAM GPSEST 18-DEC-98 13:44 G: ROMU981 BERNESE GPS SOFTWARE VERSION GENERAL OPTIONS A PRIORI SIGMA: A PRIORI SIGMA :.1 M (ZERO-DIFF. L1 PHASE) 112

119 CORRELATIONS AND SESSIONS: STRATEGY TIME INTERVAL CORRELATIONS CORRECTLY MODELLED 1. SEC (TO IDENTIFY EPOCH) SESS #FILE FILE NUMBERS AMBIGUITY RESOLUTION STRATEGY: AMBIGUITIES PRE-ELIMINATED SYNCHRONIZATION ERRORS: STRATEGY : SYNCHRONIZATION ERRORS NOT APPLIED 1ROMU981 G: ROMU981 PROGRAM GPSEST 18-DEC-98 13:44 BERNESE GPS SOFTWARE VERSION STATIONS LOCAL GEODETIC DATUM: DATUM NAME ELL. PARAM./ SCALE SHIFTS TO WGS-84 ROTATIONS TO WGS-84 WGS - 84 A 1/F= se = M O.OOOOOD+OO DX DY DZ. M. M. M RX RY RZ. ". ". " A PRIORI STATION COORDINATES: U: [ROMU981.STA)ROMU981.CRD NUM STATION NAME OBS E/F/C WGS-84 COORDINATES IN METERS X Y Z ELLIPSOIDAL COORDINATES IN LOCAL DATUM LATITUDE LONGITUDE HEIGHT (M) 1 GPS1 3 GPS3 Y Y FIXED ESTIM

120 4 GPS4 y ESTIM GPSS y ESTIM GPS6 y ESTIM GPS2 y ESTIM GPS7 y ESTIM ROMU981 PROGRAM GPSEST 18-DEC-98 13:44 G: ROMU981 BERNESE GPS SOFTWARE VERSION SATELLITE ORBITS ARC CHARACTERISTICS: ARC START OF ARC END OF ARC SOURCE #SAT SATELLITES :: :: PR OSCULATING ELEMENTS: U: [ROMU981.RB]ROMU981.STD REFERENCE SYSTEM: J2. REFERENCE EPOCH : MJD ( ) SAT S.MAJ.AXIS ECCENTRIC. INCLINAT. NODE PERIGEE M. ANOMALY PER.PASS.TIME

121 SATELLITE PROBLEMS: SAT PROBLEM TYPE ACTION FROM TO 11 BAD PHASE+CODE 2 BAD PHASE+CODE 28 BAD PHASE+CODE OBSo REMOVED OBSo REMOVED OBSo REMOVED :: :: :: :: :: :: 1ROMU981 G: ROMU981 PROGRAM GPSEST 18-DEC-98 13:44 BERNESE GPS SOFTWARE VERSION 4 6o ATMOSPHERE TROPOSPHERE MODEL: TROPOSPHERE MODEL: SAASTAMOINEN METEO VALUES : EXTRAPOLATED REFERENCE HEIGHT : OoOO M TEMPERATURE AT REFo HEIGHT: PRESSURE AT REFo HEIGHT: HUMIDITY AT REFo HEIGHT: 18 c MBAR 5o % TROPOSPHERE PARAMETERS FOR INDIVIDUAL STATIONS: MAPPING FUNCTION USED FOR DELAY ESTIMATION: 1/COS(ZENITH-DISTANCE) PAR STATION NAME VALIDITY START VALIDITY END SIGMA (M) ABS/REL 1 GPS ABS 115

122 2 GPS4 3 GPS5 4 GPS6 5 GPS2 6 GPS ABS ABS ABS ABS ABS IONOSPHERE MODELS: U: [ROMU981.ATM]ROMU981.ION TYPE OF IONOSPHERE MODELS RADIUS OF THE EARTH LOCAL KM DEG. OF DEVELOP. ORIGIN OF DEVELOPMENT HEIGHT MODEL TIME LAT. MIXED VALIDITY START VALIDITY END LOCAL TIME LAT. (D) LONG. (D) (KM) NORMAIZATION FACTORS TIME(H) LAT. (D) ELE.CONT D D D D+18 POL. DEGREE IN MODEL TERM TIME LATIT. COEFFICIENT SIGMA E E E E E E E E E E E E E E E E E E E E E E E+.1866E E E E E E E E E E E E E E E E E-2 116

123 1ROMU981 G: ROMU981 PROGRAM GPSEST 18-DEC-98 13:44 BERNESE GPS SOFTWARE VERSION POLE COORDINATES AND TIME INFORMATION A PRIORI POLE AND TIME INFORMATION FORM THE POLE FILE: DATUM TIME X-POLE (II) Y-POLE (II) UT1-UTC (S) GPS-UTC (S) RMS XP (II) RMS yp (II) RMS DT (S) EP-CPO (II) PS-CPO (II) RMS EP (II) RMS PS (II) :: :: :: CELESTIAL POLE OFFSET MODEL: NO MODEL 1ROMU981 G: ROMU981 PROGRAM GPSEST 18-DEC-98 13:44 BERNESE GPS SOFTWARE VERSION TEST OUTPUT MAXIMUM SYNCHRONIZATION ERRORS: SESS FILE STATION NAME 1 STATION NAME 2 SYNCH. ERROR (NS) GPS1 GPS GPS1 GPS GPS1 GPS GPS1 GPS GPS1 GPS GPS1 GPS GPS1 GPS GPS1 GPS GPS3 GPS GPS6 GPS7. 117

124 1ROMU981 G: ROMU981 PROGRAM GPSEST 18-DEC-98 13:44 BERNESE GPS SOFTWARE VERSION RESULTS (PART 1) NUMBER OF PARAMETERS (PART 1): PARAMETER TYPE #PARAMETERS #PRE-ELIMINATED #SET-UP #NO-OBS #REF #SINGULAR STATION COORDINATES AMBIGUITIES TROPOSPHERE PARAMETERS FOR INDIVIDUAL STATIONS 18 6 (BEFORE INV) TOTAL NUMBER OF PARAMETERS NUMBER OF DOUBLE DIFFERENCE OBSERVATIONS (PART 1) : TYPE FREQUENCY FILE #OBSERVATIONS PHASE PHASE L1 L2 ALL ALL TOTAL NUMBER OF DOUBLE DIFF. OBSERVATIONS SIGMA OF SINGLE DIFFERENCE OBSERVATION (PART 1): SIGMA OF SINGLE DIFFERENCE OBSERVATION:.27 M (CONVERTED TO L1 PHASE) DEGREE OF FREEDOM ROMU981 G: ROMU981 PROGRAM GPSEST 18-DEC-98 13:44 BERNESE GPS SOFTWARE VERSION

125 STATION COORDINATES: (NOT SAVED) NUM STATION NAME PARAMETER A PRIORI VALUE NEW VALUE NEW- A PRIORI RMS ERROR 3-D ELLIPSOID 2-D ELLIPSE GPS3 X y z HEIGHT LATITUDE LONGITUDE GPS4 X y z HEIGHT LATITUDE LONGITUDE GPS5 X y z HEIGHT LATITUDE LONGITUDE GPS6 X y z HEIGHT LATITUDE LONGITUDE GPS2 X y z HEIGHT LATITUDE LONGITUDE GPS7 X y z

126 HEIGHT LATITUDE LONGITUDE ROMU981 G: ROMU981 PROGRAM GPSEST 18-DEC-98 13:44 BERNESE GPS SOFTWARE VERSION 4. TROPOSPHERE PARAMETERS FOR INDIVIDUAL STATIONS: REQUEST STATION NAME ZENITH CORR. (M) RMS (M) GPS GPS GPSS GPS GPS GPS ROMU981 G: ROMU RMS ERRORS OF ELLIPS. COORDINATES AND COORDINATE DIFFER. IN MM (PART 1): NUM ~ H PROGRAM GPSEST 18-DEC-98 13:44 BERNESE GPS SOFTWARE VERSION 4. B L H B L H B L H B

127 2 1 ~ ~ ROMU981 PROGRAM GPSEST 18-DEC-98 13:44 G: ROMU981 BERNESE GPS SOFTWARE VERSION 4. SLOPE DISTANCES AND RMS ERRORS IN M (PART 1): NUM 1 4 N 5 N 6 N 2 N 7 N 1 F N N RMS N N RMS N N RMS N N RMS N N RMS N N RMS. 121

128 Appendix IX. Final result of the second measurements at Romuvaara in ROMU982 H: ROMU983 PROGRAM GPSEST 18-DEC-98 13:49 BERNESE GPS SOFTWARE VERSION 4. TABLE OF CONTENTS 1. CAMPAIGNS 2. OBSERVATION FILES 3. GENERAL OPTIONS 4. STATIONS 5. SATELLITE ORBITS 6. ATMOSPHERE 7. RECEIVER CLOCK PARAMETERS 8. POLE COORDINATES AND TIME INFORMATION 9. ANTENNA PHASE CENTERS 1. CONSTANTS 11. PARAMETER CHARACTERIZATION LIST 12. TEST OUTPUT 13. RESULTS (PART 1) 14. RESULTS (PART 2) 1ROMU982 H: ROMU983 PROGRAM GPSEST 18-DEC-98 13:49 BERNESE GPS SOFTWARE VERSION 4. LIST OF INPUT AND OUTPUT FILENAMES GENERAL CONSTANTS POLE INFORMATION LOCAL GEODETIC DATUM SATELLITE INFO SATELLITE PROBLEMS PHASE CENTER ECCENTRICITIES APRIORI COORDINATES STANDARD ORBITS RADIATION PRESSURE COEFF. X [GEN]CONST. X [GEN]RAP_1998.ERP X [GEN]DATUM. X [GEN]SATELLIT.TTT X [GEN]SAT_1998.CRX X: [GEN] PHASITRF. U: [ROMU982.STA)ROMU982.CRD U: [ROMU982.RB]ROMU982.STD U: [ROMU982.RB)ROMU982.RPR 122

129 IONOSPHERE MODELS SITE ECCENTRICITIES SATELLITE CLOCKS ANTENNA ORIENTATIONS COORDINATE RESULTS ORBIT RESULTS IONOSPHERE RESULTS IONEX OUTPUT FILE VAR/COVAR MATRIX COORD. VAR/COVAR MATRIX TOTAL NORMAL EQUATIONS RESIDUALS EARTH ROTATION PARAMETERS IERS FORMAT ERP OUTPUT TROPOSPHERE CORRECTIONS GRID PHASE CENTER OUTPUT HARM. PHASE CENTER OUTPUT U: [ROMU982.ATM]ROMU982.ION U: [ROMU982.RB]ROMU982.CLK 1ROMU982 H: ROMU983 PROGRAM GPSEST 18-DEC-98 13:49 BERNESE GPS SOFTWARE VERSION CAMPAIGNS CAMPAIGN NAME NUM STATION NAME NUM STATION NAME NUM STATION NAME NUM STATION NAME NUM STATION NAME ROMU982 1 GPS1 2 GPS2 3 GPS3 7 GPS7 4 GPS4 5 GPSS 6 GPS6 2. OBSERVATION FILES ROMU982 MAIN CHARACTERISTICS: FILE TYP FREQ. STATION 1 STATION 2 AMB.I.+S. #CLUSTERS SESS FIRST OBSERV.TIME #EPO DT #EF #CLK ARC #SAT W 12 #AMB L1 L2 L5 RM 123

130 1 p L1,L2 GPS1 GPS :58: E E 1 27 N y N p L1,L2 GPS1 GPS :: E E 1 27 N y N p L1,L2 GPS1 GPS :12: E E 1 27 N y N p L1,L2 GPS1 GPS :: E E 1 24 N y N p L1,L2 GPS1 GPS :43: E E 1 27 N y N p L1,L2 GPS1 GPS :: E E 1 26 N y N p L1,L2 GPS1 GPS :25: E E 1 27 N y N p L1,L2 GPS1 GPS :: E E 1 24 N y N p L1,L2 GPS3 GPS :58: E E 1 27 N y N p L1,L2 GPS3 GPS :: E E 1 24 N y N p L1,L2 GPS6 GPS :35: E E 1 27 N y N p L1,L2 GPS6 GPS :: 86 3 E E 1 24 N y N SATELLITES: FILE #SAT SATELLITES OBSERVATION SELECTION: SAMPLING RATE : 3 SEC ELEVATION CUT-OFF ANGLE : 2 DEGREES 1ROMU982 PROGRAM GPSEST 18-DEC-98 13:49 H: ROMU983 BERNESE GPS SOFTWARE VERSION GENERAL OPTIONS A PRIORI SIGMA: 124

131 A PRIORI SIGMA :.1 M (ZERO-DIFF. 11 PHASE) CORRELATIONS AND SESSIONS: STRATEGY TIME INTERVAL CORRELATIONS CORRECTLY MODELLED 1. SEC (TO IDENTIFY EPOCH) SESS #FILE FILE NUMBERS AMBIGUITY RESOLUTION STRATEGY: AMBIGUITIES PRE-ELIMINATED SYNCHRONIZATION ERRORS: STRATEGY : SYNCHRONIZATION ERRORS NOT APPLIED 1ROMU982 H: ROMU983 PROGRAM GPSEST 18-DEC-98 13:49 BERNESE GPS SOFTWARE VERSION STATIONS LOCAL GEODETIC DATUM: DATUM NAME ELL. PARAM./ SCALE SHIFTS TO WGS-84 ROTATIONS TO WGS-84 WGS - 84 A 1/F= se = M O.OOOOOD+OO DX DY DZ. M. M. M RX RY RZ. ". ". " A PRIORI STATION COORDINATES: NUM STATION NAME OBS E/F/C U: [ROMU982.STA]ROMU982.CRD WGS-84 COORDINATES IN METERS X Y Z ELLIPSOIDAL COORDINATES IN LOCAL DATUM LATITUDE LONGITUDE HEIGHT (M) 125

132 1 GPS1 y FIXED GPS3 y ESTIM GPS4 y ESTIM GPS5 y ESTIM GPS6 y ESTIM GPS2 y ESTIM GPS7 y ESTIM ROMU982 PROGRAM GPSEST 18-DEC-98 13:49 H: ROMU983 BERNESE GPS SOFTWARE VERSION SATELLITE ORBITS ARC CHARACTERISTICS: ARC START OF ARC END OF ARC SOURCE #SAT SATELLITES :: :: PR OSCULATING ELEMENTS: U: [ROMU982.RB]ROMU982.STD REFERENCE SYSTEM: J2. REFERENCE EPOCH : MJD ( ) SAT S.MAJ.AXIS ECCENTRIC. INCLINAT. NODE PERIGEE M. ANOMALY PER.PASS.TIME

133 SATELLITE PROBLEMS: SAT PROBLEM TYPE ACTION FROM TO 11 BAD PHASE+CODE 2 BAD PHASE+CODE 28 BAD PHASE+CODE OBS. REMOVED OBS. REMOVED OBS. REMOVED :: :: :: :: :: :: 1ROMU982 H: ROMU983 PROGRAM GPSEST 18-DEC-98 13:49 BERNESE GPS SOFTWARE VERSION ATMOSPHERE TROPOSPHERE MODEL: TROPOSPHERE MODEL: SAASTAMOINEN METEO VALUES : EXTRAPOLATED REFERENCE HEIGHT :. M TEMPERATURE AT REF. HEIGHT: 18. c PRESSURE AT REF. HEIGHT: MBAR HUMIDITY AT REF. HEIGHT: 5. % TROPOSPHERE PARAMETERS FOR INDIVIDUAL STATIONS: MAPPING FUNCTION USED FOR DELAY ESTIMATION: 1/COS(ZENITH-DISTANCE) 127

134 PAR STATION NAME VALIDITY START VALIDITY END SIGMA (M) ABS/REL GPS ABS 2 GPS ABS 3 GPS ABS 4 GPS ABS 5 GPS ABS 6 GPS ABS IONOSPHERE MODELS: U: [ROMU982.ATM]ROMU982.ION TYPE OF IONOSPHERE MODELS : LOCAL RADIUS OF THE EARTH : KM DEG. OF DEVELOP. ORIGIN OF DEVELOPMENT HEIGHT NORMAIZATION FACTORS MODEL TIME LAT. MIXED VALIDITY START VALIDITY END LOCAL TIME LAT. (D) LONG. (D) (KM) TIME(H) LAT. (D) ELE.CONT D D D D D D D+18 MODEL TERM POL. DEGREE IN TIME LATIT. COEFFICIENT SIGMA E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-1 128

135 E E E E E E E E E E E E E E E E E E E E E+OO.83419E E E E E E E E E E E E E E E E E E E-2 1ROMU982 H: ROMU983 PROGRAM GPSEST 18-DEC-98 13:49 BERNESE GPS SOFTWARE VERSION POLE COORDINATES AND TIME INFORMATION A PRIORI POLE AND TIME INFORMATION FORM THE POLE FILE: DATUM TIME X-POLE (") Y-POLE (") UT1-UTC (S) GPS-UTC (S) RMS XP (") RMS YP ( ") EP-CPO (") PS-CPO (") RMS EP (") RMS PS (") RMS DT (S) :: :: :: CELESTIAL POLE OFFSET MODEL: NO MODEL 129

136 1ROMU982 H: ROMU983 PROGRAM GPSEST 18-DEC-98 13:49 BERNESE GPS SOFTWARE VERSION TEST OUTPUT MAXIMUM SYNCHRONIZATION ERRORS: SESS FILE STATION NAME 1 STATION NAME GPS1 1 2 GPS1 1 3 GPS1 1 4 GPS1 1 5 GPS1 1 6 GPS1 1 7 GPS1 1 8 GPS1 1 9 GPS3 1 1 GPS GPS GPS6 GPS3 GPS3 GPS4 GPS4 GPSS GPSS GPS6 GPS6 GPS2 GPS2 GPS7 GPS7 SYNCH. ERROR (NS) ROMU982 H: ROMU983 PROGRAM GPSEST 18-DEC-98 13:49 BERNESE GPS SOFTWARE VERSION RESULTS (PART 1) NUMBER OF PARAMETERS (PART 1): PARAMETER TYPE #PARAMETERS #PRE-ELIMINATED #SET-UP #NO-OBS #REF #SINGULAR STATION COORDINATES AMBIGUITIES TROPOSPHERE PARAMETERS FOR INDIVIDUAL STATIONS (BEFORE INV) TOTAL NUMBER OF PARAMETERS

137 NUMBER OF DODBLE DIFFERENCE OBSERVATIONS (PART 1): TYPE FREQDENCY FILE #OBSERVATIONS PHASE PHASE L1 L2 ALL ALL TOTAL NUMBER OF DODBLE DIFF. OBSERVATIONS SIGMA OF SINGLE DIFFERENCE OBSERVATION (PART 1): SIGMA OF SINGLE DIFFERENCE OBSERVATION:.72 M (CONVERTED TO L1 PHASE) DEGREE OF FREEDOM ROMU982 H: ROMU983 PROGRAM GPSEST 18-DEC-98 13:49 BERNESE GPS SOFTWARE VERSION 4. STATION COORDINATES: (NOT SAVED) NUM STATION NAME PARAMETER A PRIORI VALDE NEW VALDE NEW- A PRIORI RMS ERROR D ELLIPSOID 2-D ELLIPSE 3 GPS3 X y z HEIGHT LATITDDE LONGITDDE GPS4 X y z HEIGHT LATITDDE LONGITDDE GPS5 X

138 y z HEIGHT LATITUDE LONGITUDE GPS6 X y z HEIGHT LATITUDE LONGITUDE GPS2 X y z HEIGHT LATITUDE LONGITUDE GPS7 X y z HEIGHT LATITUDE LONGITUDE ROMU982 H: ROMU983 PROGRAM GPSEST 18-DEC-98 13:49 BERNESE GPS SOFTWARE VERSION 4. TROPOSPHERE PARAMETERS FOR INDIVIDUAL STATIONS: REQUEST STATION NAME ZENITH CORR. (M) RMS (M) GPS GPS GPS GPS GPS GPS

139 1ROMU982 PROGRAM GPSEST 18-DEC-98 13:49 H: ROMU983 BERNESE GPS SOFTWARE VERSION RMS ERRORS OF ELLIPS. COORDINATES AND COORDINATE DIFFER. IN MM (PART 1): NUM ~ H B L H B L H B L H B L H B L H

Capacity Utilization

Capacity Utilization Capacity Utilization Tim Schöneberg 28th November Agenda Introduction Fixed and variable input ressources Technical capacity utilization Price based capacity utilization measure Long run and short run

Lisätiedot

Efficiency change over time

Efficiency change over time Efficiency change over time Heikki Tikanmäki Optimointiopin seminaari 14.11.2007 Contents Introduction (11.1) Window analysis (11.2) Example, application, analysis Malmquist index (11.3) Dealing with panel

Lisätiedot

The CCR Model and Production Correspondence

The CCR Model and Production Correspondence The CCR Model and Production Correspondence Tim Schöneberg The 19th of September Agenda Introduction Definitions Production Possiblity Set CCR Model and the Dual Problem Input excesses and output shortfalls

Lisätiedot

LYTH-CONS CONSISTENCY TRANSMITTER

LYTH-CONS CONSISTENCY TRANSMITTER LYTH-CONS CONSISTENCY TRANSMITTER LYTH-INSTRUMENT OY has generate new consistency transmitter with blade-system to meet high technical requirements in Pulp&Paper industries. Insurmountable advantages are

Lisätiedot

WindPRO version joulu 2012 Printed/Page :47 / 1. SHADOW - Main Result

WindPRO version joulu 2012 Printed/Page :47 / 1. SHADOW - Main Result SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

16. Allocation Models

16. Allocation Models 16. Allocation Models Juha Saloheimo 17.1.27 S steemianalsin Optimointiopin seminaari - Sks 27 Content Introduction Overall Efficienc with common prices and costs Cost Efficienc S steemianalsin Revenue

Lisätiedot

Metsälamminkankaan tuulivoimapuiston osayleiskaava

Metsälamminkankaan tuulivoimapuiston osayleiskaava VAALAN KUNTA TUULISAIMAA OY Metsälamminkankaan tuulivoimapuiston osayleiskaava Liite 3. Varjostusmallinnus FCG SUUNNITTELU JA TEKNIIKKA OY 12.5.2015 P25370 SHADOW - Main Result Assumptions for shadow calculations

Lisätiedot

WindPRO version joulu 2012 Printed/Page :42 / 1. SHADOW - Main Result

WindPRO version joulu 2012 Printed/Page :42 / 1. SHADOW - Main Result SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table 13.6.2013 19:42 / 1 Minimum

Lisätiedot

Tynnyrivaara, OX2 Tuulivoimahanke. ( Layout 9 x N131 x HH145. Rakennukset Asuinrakennus Lomarakennus 9 x N131 x HH145 Varjostus 1 h/a 8 h/a 20 h/a

Tynnyrivaara, OX2 Tuulivoimahanke. ( Layout 9 x N131 x HH145. Rakennukset Asuinrakennus Lomarakennus 9 x N131 x HH145 Varjostus 1 h/a 8 h/a 20 h/a , Tuulivoimahanke Layout 9 x N131 x HH145 Rakennukset Asuinrakennus Lomarakennus 9 x N131 x HH145 Varjostus 1 h/a 8 h/a 20 h/a 0 0,5 1 1,5 km 2 SHADOW - Main Result Assumptions for shadow calculations

Lisätiedot

( ,5 1 1,5 2 km

( ,5 1 1,5 2 km Tuulivoimala Rakennukset Asuinrakennus Liikerak. tai Julkinen rak. Lomarakennus Teollinen rakennus Kirkollinen rakennus Varjostus "real case" h/a 1 h/a 8 h/a 20 h/a 4 5 3 1 2 6 7 8 9 10 0 0,5 1 1,5 2 km

Lisätiedot

,0 Yes ,0 120, ,8

,0 Yes ,0 120, ,8 SHADOW - Main Result Calculation: Alue 2 ( x 9 x HH120) TuuliSaimaa kaavaluonnos Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Calculation: N117 x 9 x HH141 Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG

Lisätiedot

( ( OX2 Perkkiö. Rakennuskanta. Varjostus. 9 x N131 x HH145

( ( OX2 Perkkiö. Rakennuskanta. Varjostus. 9 x N131 x HH145 OX2 9 x N131 x HH145 Rakennuskanta Asuinrakennus Lomarakennus Liike- tai julkinen rakennus Teollinen rakennus Kirkko tai kirkollinen rak. Muu rakennus Allas Varjostus 1 h/a 8 h/a 20 h/a 0 0,5 1 1,5 2 km

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.9.269

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG VE1 SHADOW - Main Result Calculation: 8 x Nordex N131 x HH145m Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward.

1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward. START START SIT 1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward. This is a static exercise. SIT STAND 2. SIT STAND. The

Lisätiedot

Alternative DEA Models

Alternative DEA Models Mat-2.4142 Alternative DEA Models 19.9.2007 Table of Contents Banker-Charnes-Cooper Model Additive Model Example Data Home assignment BCC Model (Banker-Charnes-Cooper) production frontiers spanned by convex

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

Information on preparing Presentation

Information on preparing Presentation Information on preparing Presentation Seminar on big data management Lecturer: Spring 2017 20.1.2017 1 Agenda Hints and tips on giving a good presentation Watch two videos and discussion 22.1.2017 2 Goals

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table 5.11.2013 16:44 / 1 Minimum

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table 22.12.2014 11:33 / 1 Minimum

Lisätiedot

Rakennukset Varjostus "real case" h/a 0,5 1,5

Rakennukset Varjostus real case h/a 0,5 1,5 Tuulivoimala Rakennukset Asuinrakennus Liikerak. tai Julkinen rak. Lomarakennus Teollinen rakennus Kirkollinen rakennus Varjostus "real case" h/a 1 h/a 8 h/a 20 h/a 1 2 3 5 8 4 6 7 9 10 0 0,5 1 1,5 2 km

Lisätiedot

Bounds on non-surjective cellular automata

Bounds on non-surjective cellular automata Bounds on non-surjective cellular automata Jarkko Kari Pascal Vanier Thomas Zeume University of Turku LIF Marseille Universität Hannover 27 august 2009 J. Kari, P. Vanier, T. Zeume (UTU) Bounds on non-surjective

Lisätiedot

T Statistical Natural Language Processing Answers 6 Collocations Version 1.0

T Statistical Natural Language Processing Answers 6 Collocations Version 1.0 T-61.5020 Statistical Natural Language Processing Answers 6 Collocations Version 1.0 1. Let s start by calculating the results for pair valkoinen, talo manually: Frequency: Bigrams valkoinen, talo occurred

Lisätiedot

Salasanan vaihto uuteen / How to change password

Salasanan vaihto uuteen / How to change password Salasanan vaihto uuteen / How to change password Sisällys Salasanakäytäntö / Password policy... 2 Salasanan vaihto verkkosivulla / Change password on website... 3 Salasanan vaihto matkapuhelimella / Change

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

Gap-filling methods for CH 4 data

Gap-filling methods for CH 4 data Gap-filling methods for CH 4 data Sigrid Dengel University of Helsinki Outline - Ecosystems known for CH 4 emissions; - Why is gap-filling of CH 4 data not as easy and straight forward as CO 2 ; - Gap-filling

Lisätiedot

Other approaches to restrict multipliers

Other approaches to restrict multipliers Other approaches to restrict multipliers Heikki Tikanmäki Optimointiopin seminaari 10.10.2007 Contents Short revision (6.2) Another Assurance Region Model (6.3) Cone-Ratio Method (6.4) An Application of

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

Results on the new polydrug use questions in the Finnish TDI data

Results on the new polydrug use questions in the Finnish TDI data Results on the new polydrug use questions in the Finnish TDI data Multi-drug use, polydrug use and problematic polydrug use Martta Forsell, Finnish Focal Point 28/09/2015 Martta Forsell 1 28/09/2015 Esityksen

Lisätiedot

Digitally signed by Hans Vadbäck DN: cn=hans Vadbäck, o, ou=fcg Suunnittelu ja Tekniikka Oy, email=hans.vadback@fcg.fi, c=fi Date: 2016.12.20 15:45:35 +02'00' Jakob Kjellman Digitally signed by Jakob Kjellman

Lisätiedot

Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu

Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu Returns to Scale II Contents Most Productive Scale Size Further Considerations Relaxation of the Convexity Condition Useful Reminder Theorem 5.5 A DMU found to be efficient with a CCR model will also be

Lisätiedot

( N117 x HH141 ( Honkajoki N117 x 9 x HH120 tv-alueet ( ( ( ( ( ( ( ( ( ( m. Honkajoki & Kankaanpää tuulivoimahankkeet

( N117 x HH141 ( Honkajoki N117 x 9 x HH120 tv-alueet ( ( ( ( ( ( ( ( ( ( m. Honkajoki & Kankaanpää tuulivoimahankkeet Honkajoki & Kankaanpää tuulivoimahankkeet N117 x HH141 Honkajoki N117 x 9 x HH120 tv-alueet Alahonkajoki_kaava_alueen_raja_polyline Asuinrakennus Julkinen tai liiker rak. Lomarakennus Teollinen rak. Allas

Lisätiedot

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs

Lisätiedot

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs

Lisätiedot

The Viking Battle - Part Version: Finnish

The Viking Battle - Part Version: Finnish The Viking Battle - Part 1 015 Version: Finnish Tehtävä 1 Olkoon kokonaisluku, ja olkoon A n joukko A n = { n k k Z, 0 k < n}. Selvitä suurin kokonaisluku M n, jota ei voi kirjoittaa yhden tai useamman

Lisätiedot

Precise Levelling Campaigns at Olkiluoto in 2010 and 2011

Precise Levelling Campaigns at Olkiluoto in 2010 and 2011 Working Report 2012-64 Precise Levelling Campaigns at Olkiluoto in 2010 and 2011 Veikko Saaranen Paavo Rouhiainen Heli Suurmäki Finnish Geodetic Institute May 2013 Working Reports contain information on

Lisätiedot

FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL

FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL FinFamily PostgreSQL 1 Sisällys / Contents FinFamily PostgreSQL... 1 1. Asenna PostgreSQL tietokanta / Install PostgreSQL database... 3 1.1. PostgreSQL tietokannasta / About the PostgreSQL database...

Lisätiedot

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs

Lisätiedot

Data quality points. ICAR, Berlin,

Data quality points. ICAR, Berlin, Data quality points an immediate and motivating supervision tool ICAR, Berlin, 22.5.2014 Association of ProAgria Centres Development project of Milk Recording Project manager, Heli Wahlroos heli.wahlroos@proagria.fi

Lisätiedot

7.4 Variability management

7.4 Variability management 7.4 Variability management time... space software product-line should support variability in space (different products) support variability in time (maintenance, evolution) 1 Product variation Product

Lisätiedot

MUSEOT KULTTUURIPALVELUINA

MUSEOT KULTTUURIPALVELUINA Elina Arola MUSEOT KULTTUURIPALVELUINA Tutkimuskohteena Mikkelin museot Opinnäytetyö Kulttuuripalvelujen koulutusohjelma Marraskuu 2005 KUVAILULEHTI Opinnäytetyön päivämäärä 25.11.2005 Tekijä(t) Elina

Lisätiedot

National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007

National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007 National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007 Chapter 2.4 Jukka Räisä 1 WATER PIPES PLACEMENT 2.4.1 Regulation Water pipe and its

Lisätiedot

Valuation of Asian Quanto- Basket Options

Valuation of Asian Quanto- Basket Options Valuation of Asian Quanto- Basket Options (Final Presentation) 21.11.2011 Thesis Instructor and Supervisor: Prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta

Lisätiedot

S Sähkön jakelu ja markkinat S Electricity Distribution and Markets

S Sähkön jakelu ja markkinat S Electricity Distribution and Markets S-18.3153 Sähkön jakelu ja markkinat S-18.3154 Electricity Distribution and Markets Voltage Sag 1) Kolmivaiheinen vastukseton oikosulku tapahtuu 20 kv lähdöllä etäisyydellä 1 km, 3 km, 5 km, 8 km, 10 km

Lisätiedot

Huom. tämä kulma on yhtä suuri kuin ohjauskulman muutos. lasketaan ajoneuvon keskipisteen ympyräkaaren jänteen pituus

Huom. tämä kulma on yhtä suuri kuin ohjauskulman muutos. lasketaan ajoneuvon keskipisteen ympyräkaaren jänteen pituus AS-84.327 Paikannus- ja navigointimenetelmät Ratkaisut 2.. a) Kun kuvan ajoneuvon kumpaakin pyörää pyöritetään tasaisella nopeudella, ajoneuvon rata on ympyränkaaren segmentin muotoinen. Hitaammin kulkeva

Lisätiedot

E80. Data Uncertainty, Data Fitting, Error Propagation. Jan. 23, 2014 Jon Roberts. Experimental Engineering

E80. Data Uncertainty, Data Fitting, Error Propagation. Jan. 23, 2014 Jon Roberts. Experimental Engineering Lecture 2 Data Uncertainty, Data Fitting, Error Propagation Jan. 23, 2014 Jon Roberts Purpose & Outline Data Uncertainty & Confidence in Measurements Data Fitting - Linear Regression Error Propagation

Lisätiedot

Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition)

Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Esko Jalkanen Click here if your download doesn"t start automatically Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Esko Jalkanen

Lisätiedot

Increase of opioid use in Finland when is there enough key indicator data to state a trend?

Increase of opioid use in Finland when is there enough key indicator data to state a trend? Increase of opioid use in Finland when is there enough key indicator data to state a trend? Martta Forsell, Finnish Focal Point 28.9.2015 Esityksen nimi / Tekijä 1 Martta Forsell Master of Social Sciences

Lisätiedot

3 9-VUOTIAIDEN LASTEN SUORIUTUMINEN BOSTONIN NIMENTÄTESTISTÄ

3 9-VUOTIAIDEN LASTEN SUORIUTUMINEN BOSTONIN NIMENTÄTESTISTÄ Puhe ja kieli, 27:4, 141 147 (2007) 3 9-VUOTIAIDEN LASTEN SUORIUTUMINEN BOSTONIN NIMENTÄTESTISTÄ Soile Loukusa, Oulun yliopisto, suomen kielen, informaatiotutkimuksen ja logopedian laitos & University

Lisätiedot

Toppila/Kivistö 10.01.2013 Vastaa kaikkin neljään tehtävään, jotka kukin arvostellaan asteikolla 0-6 pistettä.

Toppila/Kivistö 10.01.2013 Vastaa kaikkin neljään tehtävään, jotka kukin arvostellaan asteikolla 0-6 pistettä. ..23 Vastaa kaikkin neljään tehtävään, jotka kukin arvostellaan asteikolla -6 pistettä. Tehtävä Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi. (a) Lineaarisen kokonaislukutehtävän

Lisätiedot

ELEMET- MOCASTRO. Effect of grain size on A 3 temperatures in C-Mn and low alloyed steels - Gleeble tests and predictions. Period

ELEMET- MOCASTRO. Effect of grain size on A 3 temperatures in C-Mn and low alloyed steels - Gleeble tests and predictions. Period 1 ELEMET- MOCASTRO Effect of grain size on A 3 temperatures in C-Mn and low alloyed steels - Gleeble tests and predictions Period 20.02-25.05.2012 Diaarinumero Rahoituspäätöksen numero 1114/31/2010 502/10

Lisätiedot

HARJOITUS- PAKETTI A

HARJOITUS- PAKETTI A Logistiikka A35A00310 Tuotantotalouden perusteet HARJOITUS- PAKETTI A (6 pistettä) TUTA 19 Luento 3.Ennustaminen County General 1 piste The number of heart surgeries performed at County General Hospital

Lisätiedot

MRI-sovellukset. Ryhmän 6 LH:t (8.22 & 9.25)

MRI-sovellukset. Ryhmän 6 LH:t (8.22 & 9.25) MRI-sovellukset Ryhmän 6 LH:t (8.22 & 9.25) Ex. 8.22 Ex. 8.22 a) What kind of image artifact is present in image (b) Answer: The artifact in the image is aliasing artifact (phase aliasing) b) How did Joe

Lisätiedot

Characterization of clay using x-ray and neutron scattering at the University of Helsinki and ILL

Characterization of clay using x-ray and neutron scattering at the University of Helsinki and ILL Characterization of clay using x-ray and neutron scattering at the University of Helsinki and ILL Ville Liljeström, Micha Matusewicz, Kari Pirkkalainen, Jussi-Petteri Suuronen and Ritva Serimaa 13.3.2012

Lisätiedot

Mat Seminar on Optimization. Data Envelopment Analysis. Economies of Scope S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

Mat Seminar on Optimization. Data Envelopment Analysis. Economies of Scope S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu Mat-2.4142 Seminar on Optimization Data Envelopment Analysis Economies of Scope 21.11.2007 Economies of Scope Introduced 1982 by Panzar and Willing Support decisions like: Should a firm... Produce a variety

Lisätiedot

Curriculum. Gym card

Curriculum. Gym card A new school year Curriculum Fast Track Final Grading Gym card TET A new school year Work Ethic Detention Own work Organisation and independence Wilma TMU Support Services Well-Being CURRICULUM FAST TRACK

Lisätiedot

S-55.1100 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S-55.1100 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖKNKKA A KONKKA. välikoe 2..2008. Saat vastata vain neljään tehtävään!. aske jännite U. = 4 Ω, 2 = Ω, = Ω, = 2, 2 =, = A, 2 = U 2 2 2 2. ännitelähde tuottaa hetkestä t = t < 0 alkaen kaksiportaisen

Lisätiedot

MEETING PEOPLE COMMUNICATIVE QUESTIONS

MEETING PEOPLE COMMUNICATIVE QUESTIONS Tiistilän koulu English Grades 7-9 Heikki Raevaara MEETING PEOPLE COMMUNICATIVE QUESTIONS Meeting People Hello! Hi! Good morning! Good afternoon! How do you do? Nice to meet you. / Pleased to meet you.

Lisätiedot

Research plan for masters thesis in forest sciences. The PELLETime 2009 Symposium Mervi Juntunen

Research plan for masters thesis in forest sciences. The PELLETime 2009 Symposium Mervi Juntunen Modelling tree and stand characteristics and estimating biomass removals and harvesting costs of lodgepole pine (Pinus contorta) plantations in Iceland Research plan for masters thesis in forest sciences

Lisätiedot

I. Principles of Pointer Year Analysis

I. Principles of Pointer Year Analysis I. Principles of Pointer Year Analysis Fig 1. Maximum (red) and minimum (blue) pointer years. 1 Fig 2. Principle of pointer year calculation. Fig 3. Skeleton plot graph created by Kinsys/Kigraph programme.

Lisätiedot

anna minun kertoa let me tell you

anna minun kertoa let me tell you anna minun kertoa let me tell you anna minun kertoa I OSA 1. Anna minun kertoa sinulle mitä oli. Tiedän että osaan. Kykenen siihen. Teen nyt niin. Minulla on oikeus. Sanani voivat olla puutteellisia mutta

Lisätiedot

Use of spatial data in the new production environment and in a data warehouse

Use of spatial data in the new production environment and in a data warehouse Use of spatial data in the new production environment and in a data warehouse Nordic Forum for Geostatistics 2007 Session 3, GI infrastructure and use of spatial database Statistics Finland, Population

Lisätiedot

Kysymys 5 Compared to the workload, the number of credits awarded was (1 credits equals 27 working hours): (4)

Kysymys 5 Compared to the workload, the number of credits awarded was (1 credits equals 27 working hours): (4) Tilasto T1106120-s2012palaute Kyselyn T1106120+T1106120-s2012palaute yhteenveto: vastauksia (4) Kysymys 1 Degree programme: (4) TIK: TIK 1 25% ************** INF: INF 0 0% EST: EST 0 0% TLT: TLT 0 0% BIO:

Lisätiedot

Vaisala s New Global L ightning Lightning Dataset GLD360

Vaisala s New Global L ightning Lightning Dataset GLD360 Vaisala s New Global Lightning Dataset GLD360 Vaisala Global Lightning Dataset GLD360 Page 2 / Oct09 / Holle-SW Hydro / Vaisala Schedule GLD360 Validation Applications Demonstration Page 3 / Oct09 / Holle-SW

Lisätiedot

Group 2 - Dentego PTH Korvake. Peer Testing Report

Group 2 - Dentego PTH Korvake. Peer Testing Report Group 2 - Dentego PTH Korvake Peer Testing Report Revisions Version Date Author Description 1.0 Henrik Klinkmann First version Table of Contents Contents Revisions... 2 Table of Contents... 2 Testing...

Lisätiedot

GNSS-vastaanottimet. Havaintosuureet

GNSS-vastaanottimet. Havaintosuureet GNSS-vastaanottimet vastanottimien tyyppejä antennit signaalin havaitseminen Havaintosuureet Nyt: C/A-koodi L1 L1-kantoaalto L1 Doppler L2 kantoaalto L2 Doppler P-koodi L1 P-koodi L2 Tulevaisuudessa: C/A-koodi

Lisätiedot

Statistical design. Tuomas Selander

Statistical design. Tuomas Selander Statistical design Tuomas Selander 28.8.2014 Introduction Biostatistician Work area KYS-erva KYS, Jyväskylä, Joensuu, Mikkeli, Savonlinna Work tasks Statistical methods, selection and quiding Data analysis

Lisätiedot

Capacity utilization

Capacity utilization Mat-2.4142 Seminar on optimization Capacity utilization 12.12.2007 Contents Summary of chapter 14 Related DEA-solver models Illustrative examples Measure of technical capacity utilization Price-based measure

Lisätiedot

Choose Finland-Helsinki Valitse Finland-Helsinki

Choose Finland-Helsinki Valitse Finland-Helsinki Write down the Temporary Application ID. If you do not manage to complete the form you can continue where you stopped with this ID no. Muista Temporary Application ID. Jos et onnistu täyttää lomake loppuun

Lisätiedot

AYYE 9/ HOUSING POLICY

AYYE 9/ HOUSING POLICY AYYE 9/12 2.10.2012 HOUSING POLICY Mission for AYY Housing? What do we want to achieve by renting apartments? 1) How many apartments do we need? 2) What kind of apartments do we need? 3) To whom do we

Lisätiedot

Network to Get Work. Tehtäviä opiskelijoille Assignments for students. www.laurea.fi

Network to Get Work. Tehtäviä opiskelijoille Assignments for students. www.laurea.fi Network to Get Work Tehtäviä opiskelijoille Assignments for students www.laurea.fi Ohje henkilöstölle Instructions for Staff Seuraavassa on esitetty joukko tehtäviä, joista voit valita opiskelijaryhmällesi

Lisätiedot

Miksi Suomi on Suomi (Finnish Edition)

Miksi Suomi on Suomi (Finnish Edition) Miksi Suomi on Suomi (Finnish Edition) Tommi Uschanov Click here if your download doesn"t start automatically Miksi Suomi on Suomi (Finnish Edition) Tommi Uschanov Miksi Suomi on Suomi (Finnish Edition)

Lisätiedot

Miehittämätön meriliikenne

Miehittämätön meriliikenne Rolls-Royce & Unmanned Shipping Ecosystem Miehittämätön meriliikenne Digimurros 2020+ 17.11. 2016 September 2016 2016 Rolls-Royce plc The 2016 information Rolls-Royce in this plc document is the property

Lisätiedot

Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine Centre for Language and Communication Studies

Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine Centre for Language and Communication Studies Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine 4.1.2018 Centre for Language and Communication Studies Puhutko suomea? -Hei! -Hei hei! -Moi! -Moi moi! -Terve! -Terve

Lisätiedot

Operatioanalyysi 2011, Harjoitus 2, viikko 38

Operatioanalyysi 2011, Harjoitus 2, viikko 38 Operatioanalyysi 2011, Harjoitus 2, viikko 38 H2t1, Exercise 1.1. H2t2, Exercise 1.2. H2t3, Exercise 2.3. H2t4, Exercise 2.4. H2t5, Exercise 2.5. (Exercise 1.1.) 1 1.1. Model the following problem mathematically:

Lisätiedot

Information on Finnish Language Courses Spring Semester 2017 Jenni Laine

Information on Finnish Language Courses Spring Semester 2017 Jenni Laine Information on Finnish Language Courses Spring Semester 2017 Jenni Laine 4.1.2017 KIELIKESKUS LANGUAGE CENTRE Puhutko suomea? Do you speak Finnish? -Hei! -Moi! -Mitä kuuluu? -Kiitos, hyvää. -Entä sinulle?

Lisätiedot

KMTK lentoestetyöpaja - Osa 2

KMTK lentoestetyöpaja - Osa 2 KMTK lentoestetyöpaja - Osa 2 Veijo Pätynen 18.10.2016 Pasila YHTEISTYÖSSÄ: Ilmailun paikkatiedon hallintamalli Ilmailun paikkatiedon hallintamalli (v0.9 4.3.2016) 4.4 Maanmittauslaitoksen rooli ja vastuut...

Lisätiedot

C++11 seminaari, kevät Johannes Koskinen

C++11 seminaari, kevät Johannes Koskinen C++11 seminaari, kevät 2012 Johannes Koskinen Sisältö Mikä onkaan ongelma? Standardidraftin luku 29: Atomiset tyypit Muistimalli Rinnakkaisuus On multicore systems, when a thread writes a value to memory,

Lisätiedot

Voice Over LTE (VoLTE) By Miikka Poikselkä;Harri Holma;Jukka Hongisto

Voice Over LTE (VoLTE) By Miikka Poikselkä;Harri Holma;Jukka Hongisto Voice Over LTE (VoLTE) By Miikka Poikselkä;Harri Holma;Jukka Hongisto If you are searched for a book by Miikka Poikselkä;Harri Holma;Jukka Hongisto Voice over LTE (VoLTE) in pdf form, then you have come

Lisätiedot

Tilausvahvistus. Anttolan Urheilijat HENNA-RIIKKA HAIKONEN KUMMANNIEMENTIE 5 B RAHULA. Anttolan Urheilijat

Tilausvahvistus. Anttolan Urheilijat HENNA-RIIKKA HAIKONEN KUMMANNIEMENTIE 5 B RAHULA. Anttolan Urheilijat 7.80.4 Asiakasnumero: 3000359 KALLE MANNINEN KOVASTENLUODONTIE 46 51600 HAUKIVUORI Toimitusosoite: KUMMANNIEMENTIE 5 B 51720 RAHULA Viitteenne: Henna-Riikka Haikonen Viitteemme: Pyry Niemi +358400874498

Lisätiedot

KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ

KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ https://community.plm.automation.siemens.com/t5/tech-tips- Knowledge-Base-NX/How-to-simulate-any-G-code-file-in-NX- CAM/ta-p/3340 Koneistusympäristön määrittely

Lisätiedot

Signaalien taajuusalueet

Signaalien taajuusalueet Signaalien taajuusalueet 1420 MHz H 2 GPS: kaksi taajuutta, tulevaisuudessa kolme Galileo: useita taajuuksia Kuinka paikannus tehdään? Kantoaalto kahdella taajuudella L1 = 1575.42 MHz = 19.0 cm L2 = 1227.60

Lisätiedot

1. Liikkuvat määreet

1. Liikkuvat määreet 1. Liikkuvat määreet Väitelauseen perussanajärjestys: SPOTPA (subj. + pred. + obj. + tapa + paikka + aika) Suora sanajärjestys = subjekti on ennen predikaattia tekijä tekeminen Alasääntö 1: Liikkuvat määreet

Lisätiedot

Särmäystyökalut kuvasto Press brake tools catalogue

Särmäystyökalut kuvasto Press brake tools catalogue Finnish sheet metal machinery know-how since 1978 Särmäystyökalut kuvasto Press brake tools catalogue www.aliko.fi ALIKO bending chart Required capacity in kn (T) in relation to V-opening. V R A S = plates

Lisätiedot

Olet vastuussa osaamisestasi

Olet vastuussa osaamisestasi Olet vastuussa osaamisestasi Ohjelmistoammattilaisuuden uudet haasteet Timo Vehmaro 02-12-2015 1 Nokia 2015 Mitä osaamista tulevaisuudessa tarvitaan? Vahva perusosaaminen on kaiken perusta Implementaatio

Lisätiedot

Tietorakenteet ja algoritmit

Tietorakenteet ja algoritmit Tietorakenteet ja algoritmit Taulukon edut Taulukon haitat Taulukon haittojen välttäminen Dynaamisesti linkattu lista Linkatun listan solmun määrittelytavat Lineaarisen listan toteutus dynaamisesti linkattuna

Lisätiedot

TIEKE Verkottaja Service Tools for electronic data interchange utilizers. Heikki Laaksamo

TIEKE Verkottaja Service Tools for electronic data interchange utilizers. Heikki Laaksamo TIEKE Verkottaja Service Tools for electronic data interchange utilizers Heikki Laaksamo TIEKE Finnish Information Society Development Centre (TIEKE Tietoyhteiskunnan kehittämiskeskus ry) TIEKE is a neutral,

Lisätiedot

RINNAKKAINEN OHJELMOINTI A,

RINNAKKAINEN OHJELMOINTI A, RINNAKKAINEN OHJELMOINTI 815301A, 18.6.2005 1. Vastaa lyhyesti (2p kustakin): a) Mitkä ovat rinnakkaisen ohjelman oikeellisuuskriteerit? b) Mitä tarkoittaa laiska säikeen luominen? c) Mitä ovat kohtaaminen

Lisätiedot

MIKES, Julkaisu J3/2000 MASS COMPARISON M3. Comparison of 1 kg and 10 kg weights between MIKES and three FINAS accredited calibration laboratories

MIKES, Julkaisu J3/2000 MASS COMPARISON M3. Comparison of 1 kg and 10 kg weights between MIKES and three FINAS accredited calibration laboratories MITTATEKNIIKAN KESKUS CENTRE FOR METROLOGY AND ACCREDITATION Julkaisu J3/2000 MASS COMPARISON M3 Comparison of 1 kg and 10 kg weights between MIKES and three FINAS accredited calibration laboratories Kari

Lisätiedot

The role of 3dr sector in rural -community based- tourism - potentials, challenges

The role of 3dr sector in rural -community based- tourism - potentials, challenges The role of 3dr sector in rural -community based- tourism - potentials, challenges Lappeenranta, 5th September 2014 Contents of the presentation 1. SEPRA what is it and why does it exist? 2. Experiences

Lisätiedot

GOOD WORK LONGER CAREER:

GOOD WORK LONGER CAREER: Juhani Ilmarinen, Ville Ilmarinen, Pekka Huuhtanen, Veikko Louhevaara, Ove Näsman GOOD WORK LONGER CAREER: WORK WELL-BEING IN FINNISH TECHNOLOGY INDUSTRIES 2010-2015 Background Collective agreement between

Lisätiedot

Sisällysluettelo Table of contents

Sisällysluettelo Table of contents Sisällysluettelo Table of contents OTC:n Moodlen käyttöohje suomeksi... 1 Kirjautuminen Moodleen... 2 Ensimmäinen kirjautuminen Moodleen... 2 Salasanan vaihto... 2 Oma käyttäjäprofiili... 3 Työskentely

Lisätiedot

Kvanttilaskenta - 1. tehtävät

Kvanttilaskenta - 1. tehtävät Kvanttilaskenta -. tehtävät Johannes Verwijnen January 9, 0 edx-tehtävät Vastauksissa on käytetty edx-kurssin materiaalia.. Problem False, sillä 0 0. Problem False, sillä 0 0 0 0. Problem A quantum state

Lisätiedot

LX 70. Ominaisuuksien mittaustulokset 1-kerroksinen 2-kerroksinen. Fyysiset ominaisuudet, nimellisarvot. Kalvon ominaisuudet

LX 70. Ominaisuuksien mittaustulokset 1-kerroksinen 2-kerroksinen. Fyysiset ominaisuudet, nimellisarvot. Kalvon ominaisuudet LX 70 % Läpäisy 36 32 % Absorptio 30 40 % Heijastus 34 28 % Läpäisy 72 65 % Heijastus ulkopuoli 9 16 % Heijastus sisäpuoli 9 13 Emissiivisyys.77.77 Auringonsuojakerroin.54.58 Auringonsäteilyn lämmönsiirtokerroin.47.50

Lisätiedot

4x4cup Rastikuvien tulkinta

4x4cup Rastikuvien tulkinta 4x4cup Rastikuvien tulkinta 4x4cup Control point picture guidelines Päivitetty kauden 2010 sääntöihin Updated for 2010 rules Säännöt rastikuvista Kilpailijoiden tulee kiinnittää erityistä huomiota siihen,

Lisätiedot