Aurinkolämmön varastointi Östersundomissa

Koko: px
Aloita esitys sivulta:

Download "Aurinkolämmön varastointi Östersundomissa"

Transkriptio

1 1 16X Aurinkolämmön varastointi Östersundomissa

2 2 Kaikki oikeudet pidätetään Tätä asiakirjaa tai osaa siitä ei saa kopioida tai jäljentää missään muodossa ilman Pöyry Finland Oy:n antamaa kirjallista lupaa.

3 Yhteystiedot: 1 Pöyry Finland Oy PL 4 (Jaakonkatu 3) Vantaa Kotipaikka Vantaa, Finland Y-tunnus Tel Fax Pöyry Finland Oy Tekijät: Juha Esterinen Projektipäällikkö Pöyry Finland Oy, Energia PL 4 (Jaakonkatu 3) Vantaa, Finland Tel , , Fax juha.esterinen@poyry.com Mikko Ojala Projekti-insinööri, TkK Ympäristötekniikka pohjoinen Pöyry Finland Oy PL 20, Tutkijantie 2 A Oulu puh mikko.ojala@student.oulu.fi Marko Lehmikangas Väylä- ja infrasuunnittelu Konsultti Ympäristötekniikka pohjoinen Pöyry Finland Oy PL 20, Tutkijantie 2 A Oulu puh marko.lehmikangas@poyry.com

4 Sisältö 1 1 TAUSTA JA SELVITYKSEN TAVOITE LÄMPÖENERGIAN VARASTOINTI Yleistä Lämpöenergian varastointi maahan Porakaivovarasto Energiapaaluvarasto Lämmönvarastointi vaakaputkistoon Lämpöenergian varastoiminen veteen Terässäiliövarasto Louhittu kallioluola Akviferivarasto KOHDEALUE TUTKIMUSMENETELMÄT Lähtötiedot Mallinnusohjelma Mallinnuksen reunaehdot Mallinnusparametrit Mallinnustapaukset MALLINNUKSET Putkikonfiguraatiot Saven ja paalun täytemateriaalin ominaisuuksien vaikutus Teoreettisen maksimitilanteen kymmenen syklin mallinnus Saatava lämpömäärä Lämpötilajakauma savessa Energiapaaluvaraston mallintaminen osana kaukolämpöverkkoa Kytkentä kaukolämpöverkkoon Yksittäinen energiapaalu kaukolämpökytkennällä Yhdeksän energiapaalun yhteisvaikutus kaukolämpöverkkokytkennällä LÄMMÖN VARASTOINNIN VAIKUTUKSET Lämpötilan vaikutukset varastointiin ja maaperän ominaisuuksiin Kenttä- ja laboratoriokokeet 70 C lämpövarastosta pehmeässä savimaassa Saven ominaisuuksien muutos Östersundomin tapauksessa Varastoinnin vaikutus biodiversiteettiin ja maankäyttöön LÄMMÖN VARASTOINNIN INVESTOINTIKUSTANNUKSET Energiapaalutuksen kustannukset Terässäiliövaraston kustannukset Kustannusvertailu JOHTOPÄÄTÖKSET JA SUOSITUKSET... 37

5 Liitteet 2 Liite 1 Hanke-esittely ja ohjausryhmän kokoonpano

6 3 1 TAUSTA JA SELVITYKSEN TAVOITE Tämä hanke on osa Lahden Seudun Kehitys LADEC Oy:n koordinoimaa EU:n Clear17 hankketta (Cleantech ja ERA17 julkisissa innovatiivisissa hankinnoissa, Innovatiivisuutta julkisiin investointeihin, projektikoodi: A32168). Hankkeen ohjausryhmässä ovat vaikuttaneet: Jouni Kivirinne Helsingin Energiasta, Ari Karjalainen Helsingin kaupungilta sekä Pekka Leivo Helsingin kaupunkisuunnitteluvirastosta. Työn koordinaattorina on toiminut Mervi Suni Ladec Oy:stä ja työn pääasiallisina tekijöinä Mikko Ojala, Juha Esterinen ja Marko Lehmikangas Pöyry Finland Oy:stä. Työssä keskitytään aurinkolämmön varastoimismahdollisuuksien selvittämiseen Östersundomin alueella. Östersundomin alueelle tehtävässä yleiskaavassa ja kaavamääräyksissä on tarkoitus huomioida aurinkoenergian hyödyntäminen alueella. Ensisijaisesti työssä keskitytään lämmön kausivarastointiin savimaaperään. Tavoitteena on selvittää, onko aurinkoenergian varastointi savimaaperään ja lämmön hyödyntäminen kaukolämpöverkossa mahdollista sekä selvittää miten lämpötila vaikuttaa varastointiin ja maaperän ominaisuuksiin, biodiversiteettiin ja maankäyttöön. Lämmön varastointimahdollisuuksia on selvitetty mallintamalla lämpöpaalurakenteella. 2 LÄMPÖENERGIAN VARASTOINTI 2.1 Yleistä Lämpöenergian varastointi on tärkeää aurinkoenergiapotentiaalin kannattavan valjastamisen toteuttamiseksi Östersundomin oloissa, kun auringosta saadaan energiaa lähinnä kesäkuukausina ja lämmitystarve on suurin talvella. Maksimihyödyn saavuttamiseksi alueella tulee keskittyä löytämään sopivin lämmönvarastointitekniikka aurinkolämmölle vuodenaikojen välille. Erilaisia tekniikoita lämpöenergian varastoinnista on tutkittu paljon viime vuosikymmenien aikana. Eniten käyttökokemusta energian varastoinnista ja maalämmön hyödyntämisestä on porakaivoista kalliomaissa, joihin on varastoitu hukkalämpöä voimalaitoksista tai jäähdytyksessä syntyvää hukkalämpöä. Yleensä varastot ovat toimineet yhdessä lämpöpumppujen kanssa, jolloin varaston lämpötilaero varaston ja lämmitettävän tilan välillä ei tarvitse olla merkittävän iso. Östersundomin tapauksessa alueelle on kaavailtu aurinkoenergian säilömistä korkealämpötilaiseen varastoon, jonka lämpötila on 70 celsiusastetta. Tällöin energiavaraston hyödyntäminen ei tarvitse erillisiä lämpöpumppuja, vaan lämpöä voidaan käyttää suoraan tilalämmitykseen ja käyttövetenä. Korkealämpöisten varastojen rakentamisen esteenä ovat yleisesti olleet huolet maaperän muutoksista, mutta tutkimusten valossa lämmön varastointi maahan on kannattavaa korkeammissakin lämpötiloissa. (Gabrielsson, et al., 1997) Aurinkolämpövarastot voidaan jakaa kolmeen kategoriaan varastointimekanismin perusteella. Vapaan lämmön varastoissa aurinkoenergia muutetaan vapaaksi lämmöksi valittuun materiaaliin ja varastoitu lämpö otetaan varastosta silloin, kun sitä tarvitaan. Latenttilämpövarastoissa aurinkoenergia säilötään lähes isotermisesti faasimuutosmateriaaleihin. Latenttilämpövarastoissa saavutetaan korkeampi

7 energiatiheys kuin vapaan lämmön varastoissa. Kemiallisessa lämmön varastoinnissa lämpö siirretään varastoon kemiallisten reaktioiden ja sorption välityksellä. Latenttilämpövarastointi ja kemiallinen lämmön varastointi ovat suhteellisen uusia tutkimuskohteita, joten tässä selvityksessä keskitytään vapaan lämmön varastointiin. Vapaan lämmön varastot voidaan jakaa veteen perustuviin varastoihin, kivikerrosvarastoihin sekä kallio- ja maaperävarastoihin. (Xu, et al., 2013) Östersundomin tapauksessa potentiaalisin lämmönvarastointikohde on alueen paksut savikerrostumat Lämpöenergian varastointi maahan Varastoitaessa lämpöä maahan maa lämmitetään latausvaiheessa ja viilennetään purkuvaiheessa. Lämmön varastointi maahan tapahtuu yleensä porarei illä tai putkistoilla, jotka voidaan sijoittaa pystysuoraan, vaakasuoraan tai tiettyyn kulmaan. Yleisesti lämpöä varastoidaan joko peruskallioon tai maakerrokseen. (Nordell & Söderlund, 2000) Maan lämmönvastuksen johdosta maahan varastointi sopii lähinnä kausivarastointiin. Lyhytaikaisen varastoinnin toteuttamiseen tulee varastossa olla lisäksi esimerkiksi terässäiliö, joka toimii lisäksi puskurivarastona. Lisäksi lämpöenergian varastointi maahan vaatii suuren tilavuuden, sillä maan lämpökapasiteetti on huomattavasti pienempi kuin veden. Varastointimateriaalina maa on kuitenkin ilmaista ja sitä on paljon saatavilla, joka tekee maavarastoista houkuttelevan vaihtoehdon isoihin lämpövarastoihin. (Xu, et al., 2013) Maahan varastoinnilla on kuitenkin myös negatiivisia puolia. Lämmön varastoinnilla maahan on korkeat investointikustannukset. Vaikka maa on ilmaista, sen kaivaminen ja poraaminen on kallista. (Xu, et al., 2013) Esimerkkitapauksessa Neckarsulmissa lämmönvaihtimien materiaalit ja porakaivojen poraus yhdessä ylimääräisten maansiirtojen kanssa (kaivaminen ja täyttö) vastasivat 69 % koko varaston hintaarviosta. (Schmidt, et al., 2003) Lisäksi korkeiden lämpötilojen varastot maassa vaativat pitkän ajan päästäkseen tyypilliseen tehokkuuteen, jossa maa saavuttaa halutun varastointilämpötilan. Lämmönsiirto maassa on paljon hitaampaa kuin vedessä, joten tyypillisen tehokkuuden saavuttamiseen voi mennä 3 5 vuotta. (Lundh & Dalenbäck, 2008) Lisäksi maanalaisen veden ja vesihöyryn mekanismit ovat monimutkaisia. Lämmönvarastoinnissa maahan tuleekin ottaa huomioon pohjaveden liike ja lämmönsiirtymiseen liittyvät maan ominaisuudet. Lämmön varastointi maahan vaatiikin tarkat geotekniset tutkimukset, joissa selvitetään maan ominaisuudet sekä pohjaveden liike. Pohjaveden liike savessa on usein hyvin hidasta, joten se on usein sopiva varastointimateriaali. Karkeammassa materiaalissa, kuten hiekassa pohjavesivirtaus kiihtyy, joka voi viedä varastoitavan lämmön pois varastosta, jolloin tehokkuus laskee. Kalliossa veden virtausta on vaikea arvioida, koska vesi liikkuu pääasiassa kiven murtumissa ja aukoissa. Van Meursin (1986) laskujen mukaan lämpövarastoon tulee asentaa hydrauliset seinämät, jos pohjaveden nopeus ylittää 0,05 metriä vuorokaudessa. (van Meurs, 1986) Porakaivovarasto Porakaivovarastoja (Borehole Thermal Energy Storage, BTES) käytetään lämmönvarastointiin yleisesti kalliomaalla sekä maakerroksissa. Porakaivojen syvyys peruskalliovarastoissa on yleensä noin m. Maakerroksessa porakaivojen

8 syvyys riippuu pitkälti maakerroksen syvyydestä. Porakaivovarastot voivat olla suljettuja tai avoimia. Suljetuissa porakaivoissa lämmönsiirtoneste kiertää suljetussa piirissä (Ground Heat Exchanger - GHX), jossa lämpö siirtyy maahan putken seinämän kautta. Avoimissa porakaivovarastoissa kiertävä vesi on suorassa kosketuksessa porakaivon seinämiin. Avoimen porakaivovaraston lämmönsiirron tehokkuus on parempi kuin suljetun, mutta niissä voi syntyä kemiallisia ongelmia, kun veteen liukenee metalleja ja kiintoaineita maasta. (Nordell & Söderlund, 2000) Maakerroksessa käytetään lähes aina suljettua porakaivovarastoa. Porakaivovarasto saveen tehdään yleisesti painamalla. Maahan poraaminen on noin 5 10 kertaa kalliimpaa kuin kallioon poraaminen. Lisäksi porakaivojen etäisyys maakerroksessa tulee olla pienempi kuin kalliossa, koska maakerroksen lämmönjohtavuus on yleisesti pienempi kuin kalliolla. Kalliossa yleinen kaivoväli on noin 4 metriä, maakerroksessa noin 2 m. Toisaalta maaperän lämpökapasiteetti on korkeampi kuin kallion. Maakerroksen ominaisuudet riippuvat huomattavasti huokoisuudesta ja vesipitoisuudesta. (Nordell & Söderlund, 2000) Energiapaaluvarasto Energiapaaluissa yhdistyy rakennuksen perustus ja maalämmön käyttö lämmityksessä. Energiapaaluja suunniteltaessa on otettava huomioon, että paalun kanto-ominaisuudet eivät saa huonontua energian talteenotosta. Energiapaalut soveltuvat sellaisiin kohteisiin, jotka vaatisivat muutenkin paalutusta, jolloin energiapaaluista saatava hyöty voidaan ottaa huomioon esirakentamisessa, vähentäen investointikustannuksia. Energiapaaluja voidaan käyttää kaikissa syvissä perustuksissa. Energiapaalujen päälle rakennettava infrastruktuuri määrää yleensä paalujen määrän ja paaluvälin; energian talteenoton kannalta mitoitettavat perustukset ovat yleensä kalliita. (Rautaruukki oyj, 2011) Energiapaalu koostuu kantavasta paalusta ja sen sisään rakennetusta lämmönvaihdinputkijärjestelmästä. Energiapaalut voidaan jakaa asennustyypin mukaan elementtipaaluihin ja kaivinpaaluihin. Elementtipaalut ovat valmiiksi rakennettuja paaluja, jotka asennetaan maahan sellaisinaan. Elementtipaaluja ovat esimerkiksi massiiviset betonipaalut sekä teräspaalut. Kaivinpaalut asennetaan paalutuspaikalla täyttämällä sylinterinmuotoinen aukko betonilla. Energiapaalut voidaan jakaa myös asentamistavan perusteella lyöntipaaluihin ja porapaaluihin. Lyöntipaalut asennetaan maahan lyömällä tai painamalla staattisen paineen avulla. Porapaalu asennetaan porattuun reikään. (Uponor, 2012) Energiapaalun sisälle tuleville lämmönvaihtimille on myös useita mahdollisia konfiguraatioita. Yksinkertaisimmillaan paalun sisälle sijoitetaan yksi U-putki, joka toimii lämmönvaihtimena. Isompiin paaluihin voidaan sijoittaa useampia putkia joko rinnakkain tai ristiin, kuten crosswise-konfiguraatiossa. W-putkea, jossa putki kiertää ylimääräisen lenkin paalun sisällä, on tutkimuksissa pidetty varteenotettavana vaihtoehtona energiapaaluun. (Gao, et al., 2008) Lämmönvaihdinputket ovat yleisesti HDPE-muovia. Isommissa lämpötilaluokissa liikuttaessa putkistojen tulee olla PE-Xmuovia, joka kestää korkeampia lämpötiloja paremmin. (Uponor, 2012) Energiapaaluja on käytetty kattamaan peruslämmitystä ja viilennystä lämpöpumppuun kytkettynä. Viilennysaikana syntynyt hukkalämpö johdetaan takaisin maahan, jotta maaperän lämpöprofiili ei muutu laskien lämmitystehoa. Lämmön varastointia lämpöpaaluilla on tutkittu vain vähän. Korkeammilla lämpötiloilla, kuten

9 Östersundomin tavoitellulla 70 C:n lämpötilatasolla, voi olla vaikutus paalujen kantaviin ominaisuuksiin, joka voisi johtaa ongelmiin perustuksen statiikassa. (Rautaruukki oyj, 2011) Lämmönvarastointi vaakaputkistoon Vaakaputkivarastossa maahan asennetaan putkistosilmukoita maansuuntaisesti. Yleisesti putkistosilmukat sijoitetaan noin 0,5 0,8 metrin päähän toisistaan. Yleisesti käytetty putkikoko vaakaputkistoissa on 40 mm. Vaakaputkistot asennetaan noin 1,2 1,5 metrin syvyyteen, riippuen alueen sääolosuhteista ja maalajista; putkistot sijoitetaan routarajan alapuolelle. Vaakaputkistojen etuja ovat pienet investointikustannukset, helppo asennus ja matala asennussyvyys, jolloin vaikutus maan hydrologisiin ominaisuuksiin on pieni. Östersundomin tapauksessa vaakaputkistovaraston rakentaminen kuitenkin vaikeuttaisi päällerakennettavuutta huomattavasti, koska perustusten rakentaminen tiheän vaakaverkoston päälle olisi vaikeaa. Yksi vaihtoehto Östersundomiin on vaakaputkistojen lisääminen peruslaattaan, jolloin lämpövarasto ei vaikeuttaisi perustusten rakentamista. (Uponor, 2012) 2.3 Lämpöenergian varastoiminen veteen Terässäiliövarasto Terässäiliövarastojen lataus- ja purkutehot ovat suuria ja ne soveltuvat hyvin lyhytkestoisien kulutus- ja tuotantohuippujen tasaamiseen. Terässäiliövarastot ovat paineellisina (<1 MPa) tyypillisimpiä pienikokoisina (0,1 10 m³) varaajina, joita käytetään kiinteistökohtaisina energia- ja lämpimän käyttöveden varaajina. Paineelliset varastot mahdollistavat korkeidenkin lämpötilojen käyttämisen, käyttövesivaraajat toimivat kuitenkin tyypillisimmin alle 95 C lämpötilassa. Matalapaineisia terässäiliövarastoja käytetään pieninä ja keskikokoisina (<2000m 3 ) kaukolämpövarastoina, ja niiden korkein käyttölämpötila on n. 110 C. Paineettomat (ilmanpaineiset) terässäiliövarastot ovat kooltaan m 3. Säiliön vesipinnan päällä on höyrytyyny, jonka avulla säiliön paine pidetään n. 1 kpa tasolla ja korkein käyttölämpötila on alle 100 C. Paineeton terässäiliövarasto on todettu kaukolämpövarastona kustannustehokkaaksi ja toimivaksi ratkaisuksi kymmenien tuhansien kuutioiden kokoon asti (10000 m 3 ) ja siksi valittu tässä työssä vertailukohdaksi, johon savimaaperävarastointia verrataan Louhittu kallioluola Kallioluolavarastoa (Rock Cavern Storage CTES) käytetään suurimittaiseen (>100000m 3 ) lämmön varastointiin. Pääasiallinen lämpöä varastoiva massa on luolassa oleva vesi ympäröivä kallio toimii kausivarastoinnissa osana varastoivaa massaa. Vesi varastoaineena mahdollistaa tarvittaessa suuritehoisen latauksen ja purun. Kallioluolan vesipiiri tulee erottaa varsinaisesta lämmitysjärjestelmästä lämmönsiirtimin, mikä lisää kustannuksia rajoittaa lataus- ja purkutehoa sekä vähentää varaston käytettävää lämpötilaeroa (lämmönsiirtimen asteisuus, 2 5 C, hävitään sekä ladattaessa että

10 purettaessa). Lämmönsiirrin / pumppuasema tulee sijaita pohjaveden pinnan alapuolella, mikä nostaa rakentamiskustannuksia. Lämpövarastot ovat useimmiten käytöstä poistettuja kalliotiloja, jotka on otettu uusiokäyttöön asentamalla luolaan lataus- ja purkuputkistot tai poratut kanavat suutinputkia varten (Oxlösund, Oulu). Uuden kallioluolan rakentamiskustannus riippuu merkittävästi louheen alueellisesta hinnasta, mutta uusi kallioluola ei kuitenkaan korkeampien häviöiden takia ole ollut kilpailukykyinen terässäiliövarastoihin nähden. Kallioluolan lämpöhäviö riippuu merkittävästi siitä kuinka ehjään kallioon luola on louhittu. Rikkonaisessa kalliossa pohjaveden liike lisää häviöitä. Pohjaveden epäpuhtaudet ja mahdolliset aiemman käytönaikaiset jäämät voivat liata lämmönsiirtimiä. Kaukojäähdytyksen kylmävarastoissa kallioluolan ominaisuudet ovat parhaimmillaan kun kallioperän luonnollinen lämpötilataso on lähellä käyttölämpötilaa Akviferivarasto Akviferi-varastossa (Aquifer Thermal Energy Storage ATES) lämpöä varastoivana massana toimii huokoinen kallio- tai maaperä, jossa on paljon pohjavettä. Pohjaveden tulee olla lähes liikkumattomassa tilassa, jotta varastoinnin häviöt säilyvät kohtuullisina. Lämpöenergiaa ladataan ja puretaan kahden tai useamman pohjavesikerrokseen ulottuvan kaivon kautta. Pohjaveden käyttö lämmönsiirrossa parantaa akviferi-varaston lataus- ja purkutehoa suhteessa maaperävarastoihin, joissa maapiirin muodostaa suljettu muoviputkisto. Akviferi-varaston lataus- ja purkunopeus (teho) on kuitenkin alempi kuin vastaavan kapasiteetin kallioluolavarastoissa. Akviferi-lämpövarastointi rajoittaa alueen muuta pohjaveden käyttöä ja pohjaveden epäpuhtaudet likaavat lämmönsiirtimiä Akviferi-varaston vaatimukset maaperän ja pohjavesiolosuhteiden suhteen rajaavat sen käyttöä, niitä on kuitenkin rakennettu yli 1000, joista useimmat Alankomaihin ja Skandinaviaan. 3 KOHDEALUE Kohdealueena oleva Östersundom on Helsingin, Sipoon ja Vantaan kaupunkien yhteinen yleiskaava-alue, jota rakennetaan noin asukkaan asuin- ja työpaikkaalueeksi. Alueen kehittämistyössä on yhtenä teemana aurinkoenergian hyödyntäminen energiahuollossa. 4 TUTKIMUSMENETELMÄT 4.1 Lähtötiedot Aurinkoenergian varastoinnin mallinnuksessa on keskitytty lämmön varastointiin savialueelle. Alueella on laajoja savialueita, jotka ovat potentiaalisia alueita lämmön varastoimiseen. Kuvassa 1 on esitetty kohteen rakennusgeologinen kartta, jossa savialueet ovat sinisellä. Kuvassa 2 on esitetty tyypillinen kohdealueen kairausdiagrammi, jonka mukaan saven vesipitoisuus noin seitsemän metrin syvyyteen saakka on %. Tätä syvemmällä saven vesipitoisuus pienenee syvyyden

11 kasvaessa. Mallinnuksessa on käytetty kuvan 2 mukaista saviprofiilia. Savikerroksen paksuus kohdealueella on yleisesti yli 20 metriä. Mallinnuksessa käytettävät lähtötiedot materiaalien osalta on arvioitu lähdekirjallisuuden ja oheisten Geologian tutkimuskeskuksen tekemien selvitysten perusteella (kuvat 1 ja 2). 8 < 7 m < 5 m 7 15 m 5 10 m 7 15 m m Kuva 1. Östersundomin alueen rakennusgeologinen kartta, jossa savikerroksen keskisyvyydet. (Lähde: Helsingin kaupunkisuunnitteluvirasto /Geologian tutkimuskeskus).

12 9 Kuva 2. Kairausdiagrammi kohdealueen savikerroksesta. (Lähde: Helsingin kaupunkisuunnitteluvirasto /Geologian tutkimuskeskus). 4.2 Mallinnusohjelma Lämmön varastoinnin mallinnuksessa käytettiin COMSOL Multiphysics mallinnusohjelmaa. Comsolin 3D-mallilla voidaan mallintaa elementtimenetelmällä fluidin virtausta ja lämmönsiirtoa ajan funktiona. Mallinnuksessa käytetyt fysiikkamodulit ovat vapaan- ja huokoisen materiaalin virtaus sekä lämmönsiirto huokoisessa materiaalissa. 4.3 Mallinnuksen reunaehdot Mallinnuksen elementtimalli on monimutkainen ja laskentajaksot pitkiä, mikä on edellyttänyt mallin yksinkertaistamista ja oletuksia reunaehtojen osalta. Mallissa on

13 oletettu, että lämpö siirtyy maassa vain konvektion kautta; vesihöyryn ja säteilyn vaikutusta ei ole otettu huomioon. Mallissa on oletettu, että materiaalien ominaisuudet eivät muutu lämpötilan vaikutuksesta. Lisäksi mallissa oletetaan, että yläpuolinen ilma pysyy vakiona vuodenajasta riippumatta. Mallissa keskilämpötilana on käytetty 7,5 celsiusastetta, mikä on 1,6 C korkeampi kuin Helsingin keskilämpötila vuosilta Talviaikana lumikerros toimii eristeenä, minkä takia mallissa on käytetty hieman korkeampaa keskilämpötilaa. Mallissa oletettiin myös, että pohjaveden virtausnopeus varastossa on 0 m/s. Hienojakoisessa savessa pohjaveden virtaus on erittäin hidasta, joten olettamus ei huononna tulosten luotettavuutta Mallinnusparametrit Mallinnuksessa keskityttiin betonitäytteiseen teräspaaluun, joita esimerkiksi Ruukki valmistaa. Varastointimateriaalina on pehmeä savi, joka on tyypillistä Östersundomin alueelle. Savikerroksen paksuutena käytettiin 23,4 metriä. Kuvassa 3 on esitetty mallinnuksessa käytetyn paalun, jossa on W-putki, mitat. Myös muissa malleissa on samat parametrit: vain putken malli, veden virtaus ja materiaalien ominaisuudet muuttuvat. Kuva 3. Mallinnuksessa käytetyn energiapaalun mitat. Materiaali Mallinnuksessa käytettyjen materiaalien ominaisuudet on esitetty taulukossa 1. Taulukko 1. Mallinnuksessa käytettyjen materiaalien ominaisuudet. Tilavuusvirt aus [m³/h] Virtausnope us [m/s] Tiheys [kg/m³] Lämmönjohtavuus [W/mK] Lämpökapasiteetti vakiopaineessa [J/kgK] Huokoisuus Vesi 0,324 0,18344 Betoni ,8 880 Savi , ,55 HDPE-Muovi 0,42

14 Mallinnustapaukset 5 MALLINNUKSET Mallinnuksella on vertailtu useita eri putkikonfiguraatioita, tilavuusvirtauksia (q) sekä putken halkaisijoita lämmönsiirron kannalta parhaan vaihtoehdon löytämiseksi. Lisäksi on mallintamalla arvioitu saven ja täytemateriaalien ominaisuuksien vaikutuksia lämmönvarastoimisominaisuuksiin. Tämän jälkeen on tehty mallinnukset, jotka kattavat kymmenen peräkkäistä lämmityssykliä. Mallinnus on tehty myös osana kaukolämpöverkkoa. 5.1 Putkikonfiguraatiot Mallinnusohjelmalla on vertailtu useita eri putkikonfiguraatioita, tilavuusvirtauksia (q) sekä putken halkaisijoita lämmönsiirron kannalta parhaan vaihtoehdon löytämiseksi. Latausajan sisääntuloveden lämpötilaksi valittiin 95 C ja purkuajalle 0 C suurimman lämpötilaeron saavuttamiseksi. Mallinnuksessa käytettyjen mallien parametrit ovat taulukossa 2. Saven, betonin, veden, teräksen ja muovin ominaisuudet ovat samat kaikissa malleissa. Mallinnuksissa käytetyt putkikonfiguraatiot on esitetty kuvassa 4. Taulukko 2. Mallien parametrit. Putken halkaisija [mm] Tilavuusvirtaus [m³/h] Virtausnopeus [m/s] U-putki U-putki, 1,5*q U-putki, 0,5*q U-putki 40 mm W-putki W-putki, 0,5*q Crosswise ,324 0,486 0,162 0, ,324 0,162 0,324 0, , , , , , ,18344 Kuva 4. U-putki, Crosswise-kaksoisputki ja W-putki Taulukon 2 mukaisten laskentatapausten nesteen lämpötilat neljännen vuoden pituisen lataus/purku-syklin aikana on esitetty kuvassa 5.

15 Lämpötila [ C] Aika [d] U-putki, 0,342 m³/h U-putki, 1,5*0,342 m³/h U-putki, 0,5*0,342 m³/h W-putki, 0,342 m³/h W-putki, 0,5x0,342 m³/h Inlet U-putki 40 mm, 0,8294 m³/h Crosswise Kuva 5. Inlet- ja outletputken lämpötila neljännen syklin aikana eri konfiguraatioille. Kuvan 5 perusteella eri putkikonfiguraatioiden sisään- ja ulosvirtauksen veden lämpötilat eroavat jonkin verran toisistaan. Puolitetun tilavuusvirtauksen malleilla lämpötilaero sisääntulon ja poistulon välillä oli suurin. Pienin lämpötilaero on U- putkella, jolla on puolitoistakertainen tilavuusvirtaus. Lämpötilaero on energiapaalun tehon kannalta oleellinen muuttuja. Jokaisesta mallista on lämpötilaeron perusteella laskettu neljän syklin teho ja lämpömäärä, jotka on esitetty taulukossa 3.

16 13 Sisäiset häviöt Taulukko 3. Eri mallien lämpömäärä neljän syklin aikana. U-putki U-putki, 1,5*q U-putki, 0,5*q U-putki 40 mm W-putki W-putki, 0,5*q Crosswise Q [MWh] Q [MWh] Q [MWh] Q [MWh] Q [MWh] Q [MWh] Q [MWh] -57,85-77,66-55,56-123,57-49,92-45,35-108,83 Lataus -83,85-104,48-71,21-184,77-76,71-67,21-141,51 Purku 26,00 26,83 15,65 61,20 26,79 21,85 32,67 Tehokkuus [%] 31,01 25,68 21,98 33,12 34,93 32,52 23,09 Taulukon 3 perusteella kaikkien putkikonfiguraatioiden tehokkuus on huono. Energiapaaluun syötetystä energiasta menee sisäisiin häviöihin 65,07 82,02 %. Tämä johtuu siitä, että eristyksen puuttuessa lämpöä siirtyy latauksen aikana sisääntulosta ulostulovirtaan pienentäen virtojen lämpötilaeroa. Tehokkuus kuitenkin paranee ensimmäisestä syklistä jokaisella konfiguraatiolla. Tehokkuuden paraneminen on ymmärrettävää, koska muilla korkealämpötilaisilla maavarastoilla normaalin toiminnan saavuttaminen on kestänyt 3 5 vuotta. Isoin saatu lämpömäärä konfiguraatioista on ylivoimaisesti U-putkella, jossa on 40 mm halkaisija. Isompi tilavuusvirtaus näyttäisi lisäävän saatua lämpömäärää, joskin myös sisäiset häviöt ovat reilusti suuremmat kuin muilla konfiguraatioilla. Pienin purettu lämpömäärä on U-putkella, jonka tilavuusvirtaus oli puolet normaalitilanteesta. Myös sen tehokkuus oli pieni, vain 21,98 %. W-putkella, jonka tilavuusvirtaus oli 0,324 m³/h, oli paras tehokkuus, 34,93 %. W-putkesta saatu purettu lämpömäärä oli myös hyvä, 26,79 MWh. 5.2 Saven ja paalun täytemateriaalin ominaisuuksien vaikutus Saven ja paalun täytemateriaalin ominaisuuksien vaikutus paalun lämmönvarastointiominaisuuksiin määritettiin käyttämällä W-putkea tilavuusvirtauksella 0,342 m³/h sen parhaan tehokkuuden ansiosta. Paalun parametrit ja virtausominaisuudet ovat samat kuin aikaisemmassa mallinnuksessa. Saven lämmönjohto-ominaisuudet vaihtelevat suuresti varsinkin kosteuden mukaan. Tällä mallinnuksella pyrittiin tuottamaan maksimitilanne lämmönsiirtymiselle saveen. Vertailukohtana on käytetty mallia, jossa saven ja täytemateriaalin lämmönjohtoominaisuudet ovat skaalan alapäässä. Lisäksi uusissa tutkimuksissa on havaittu, että grafiitin lisäys betonin joukkoon täytemateriaalissa lisää lämpöpaalujen tehokkuutta. Mallinnuksessa tutkittiin myös täytemateriaalin ominaisuuksien vaikutusta varastointiin. Mallinnuksessa käytetyt parametrit on esitetty taulukossa 4 ja mallinnusten sisään- ja ulosvirtauksen veden lämpötilat neljännen syklin aikana on esitetty kuvassa 6.

17 Taulukko 4 Saven ja täytemateriaalin parametrit Normaalitilanne Parempi betoni Parempi savi Parempi savi ja betoni Saven lämmönjohtavuus [W/mK] 1,1 1,1 2,5 2,5 Saven tiheys [kg/m³] 1,8 1,8 2 2 Saven lämpökapasiteetti [J/kgK] Täytemateriaalin lämmönjohtavuus [W/mK] Täytemateriaalin [kg/m³] tiheys Täytemateriaalin lämpökapasiteetti [J/kgK] 1,8 4,5 1,8 4, Lämpötila [ C] Aika [d] Normaalitilanne Inlet Parempi betoni Kuva 6. Saven ja täytemateriaalin ominaisuuksien vaikutus poiston lämpötilaan neljännen syklin aikana. Kuvan 6 perusteella saven lämmönjohtavuuden noustessa arvosta 1,1 W/mK arvoon 2,5 W/mK, saavutetaan huomattavasti korkeampi veden lämpötilaero sisään- ja ulosvirtaaman välille. Myös täytemateriaalin lämmönjohtavuuden nosto 1,8 4,5 W/mK nosti lämpötilaeroa, mutta sen vaikutus oli huomattavasti pienempi. Grafiitin

18 lisäys ei siis merkittävästi paranna paalun lämmönsiirtoa, joten sen lisääminen ei liene ekonomisesti kannattavaa. Saven ja paalun täyttömateriaalin lämmönjohto-ominaisuuksien vaikutuksen selvittämiseksi lämpötilaeroista laskettiin eri mallien lämpömäärät jokaiselle syklille. Lämpömäärät on esitetty taulukossa Taulukko 5. Lämmönsiirto-ominaisuuksiltaan paremman betonin ja saven vaikutus energiapaalun lämpömäärään neljän syklin aikana. Normaalitilanne Parempi betoni Parempi savi Parempi savi ja betoni Q [MWh] Q [MWh] Q [MWh] Q [MWh] Sisäiset häviöt -49,724-51,673-78,643-82,995 Lämpömäärä sisään -76,517-79, , ,121 Lämpömäärä ulos 26,793 27,876 42,274 45,125 Tehokkuus [%] 35,015 35,042 34,960 35,220 Taulukossa 5 esitettyjen tulosten perusteella energiapaalulla savessa, jonka lämmönjohtavuus on 2,5 W/mK, saadaan noin 80 % suurempi lämpömäärä ulos paalusta normaalitilanteeseen verrattuna, jolloin saven lämmönjohtavuus on 1,1 W/mK. Lisäksi parempi täyttömateriaali paalussa nosti lämpömäärää jonkin verran, ei kuitenkaan yhtä merkittävästi kuin muutos saven lämmönjohtavuudessa. Maksimitilanteessa, jossa saven ja täyttömateriaalin lämmönjohtavuus on teoreettisessa maksimissa, saatiin yhdestä energiapaalusta 45,13 MWh lämpöenergiaa. Paalun tehokkuuteen paremmalla täyttömateriaalilla ja savella ei kuitenkaan ollut suurta vaikutusta: kaikkien mallinnusten tehokkuus olin noin 35 %. 5.3 Teoreettisen maksimitilanteen kymmenen syklin mallinnus Saatava lämpömäärä Paalusta saatu lämpömäärä kasvoi useamman lämmityssyklin vaikutuksesta, kuten taulukosta 5 voi nähdä. Tämä vuoksi suoritettiin energiapaalulle paremmalla savella ja paalun täytemateriaalilla myös kymmenen syklin (10 vuotta) mallinnus. Tällä mallilla yritettiin kartoittaa vakiintunutta tilannetta energiapaalulle. Kymmenennen syklin yhden energiapaalun lämpömäärä, tehokkuus, teho ja teho paalumetriä kohti on esitetty taulukossa 6. Taulukko 6. Energiapaalun 10. syklin lämpömäärä, tehokkuus, teho ja teho paalumetriä kohti. Lämpömäärä [J] Lämpömäärä [MWh] Sykli 10-5,72946 E+10-15,915 Lataus -1,06105E+11-29,473 Purku 4,88109E+10 13,559 Tehokkuus [%] 46,0 46,0 Teho [W] 3104,1 Teho/paalumetri [W/m] 132,7

19 16 Kuten taulukosta 6 voi nähdä, kymmenennen syklin tehokkuus on huomattavasti parempi kuin ensimmäisten syklien. Tehokkuus on parantunut ensimmäisen neljän syklin tehokkuudesta noin 11 %. Tämä johtunee saveen jääneestä varastoituneesta lämmöstä. Lisäksi myös saatu lämpömäärä on suurempi kuin ensimmäisellä neljällä syklillä. 10. syklin ulos saatu lämpömäärä on 13,55 MWh ja purkukauden keskimääräinen teho on noin 3,1 kw eli teho paalumetriä kohti on 132 W. Alhaiset teholukemat johtuvat siitä, että varastoitu lämpö puretaan nopeasti purkukauden alussa, jonka jälkeen energiapaalu toimii maalämmöllä Lämpötilajakauma savessa Jotta voitaisiin arvioida, kuinka tiheästi energiapaaluja tulee asentaa varastoon, on tärkeä tuntea lämpötilajakauma savessa. Kuvissa 7 ja 8 on esitetty saven lämpötila paalun ympärillä 10. syklin latausjakson viimeisenä päivänä. Kuva 7. Lämpötilajakauma energiapaalun ympärillä 10. syklin latausjakson viimeisenä päivänä

20 Lämpötila [K] Etäisyys paalusta [m] 1 m 12,7 m 23 m Kuva 8. Saven lämpötila energiapaalun ympärillä 10. syklin latausjakson viimeisenä päivänä 1 m, 12,7 m ja 23 m syvyyksiltä. Kuvista 7 ja 8 voidaan havaita, että lämpö siirtyy kymmenennellä syklillä yli viiden metrin päähän energiapaalusta. Paalun lähellä lämpötila on lähellä syöttöveden lämpötilaa, noin 90 C. Haluttuun, 70 C lämpöluokkaan päästään puolen vuoden lämmityksellä yksittäisellä paalulla vain noin puolen metrin päässä paalusta. Viiden metrin päässä paalusta lämpötila on noin 37 C. Lähellä maanpintaa ja paalun alalaidassa lämpötilat ovat alhaisempia. Kuvissa ei ole huomioitu useampien paalujen yhteisvaikutuksia. 5.4 Energiapaaluvaraston mallintaminen osana kaukolämpöverkkoa Kytkentä kaukolämpöverkkoon Energiapaalujen mallinnuksen tarkoituksena oli kartoittaa aurinkoenergian ja sen varastoinnin mahdollisuuksia osana uuden kaava-alueen energiaratkaisuja. Tämän tavoitteen saavuttaminen edellyttää energiapaaluvaraston integroimista olemassa olevaan kaukolämpöverkkoon. Kaukolämpöverkon menoveden lämpötila on 80 C ja paluuveden 55 C. Aurinkokeräimien ja energiapaaluvaraston integroimiseksi kaukolämpöverkkoon tulee systeemissä olla puskuriakku (terässäiliövarasto), joka tasaa hetkellisiä auringon tehopiikkejä, joita maaperävaraston rajallinen latauskapasiteetti ei muutoin voisi hyödyntää. Puskuriakku mahdollistaa myös lyhytkestoisten kulutuspiikkien syöttämisen lämpöverkkoon. Aurinkokeräinten ja maaperäakun kytkentä kaukolämpöverkkoon on esitetty kuvassa 9.

Aurinkolämmön maaperävarastointi MIKKO OJALA

Aurinkolämmön maaperävarastointi MIKKO OJALA Aurinkolämmön maaperävarastointi MIKKO OJALA 10.6.2014 Sisältö 1. Lämmönvarastointi 2. Tutkimuksen tavoitteet ja tutkimusmenetelmät 3. Mallinnustulokset 4. Varastoinnin ympäristövaikutukset 5. Johtopäätökset

Lisätiedot

Aurinkolämmön varastointi Östersundomissa - selvitystyön alustavia tuloksia

Aurinkolämmön varastointi Östersundomissa - selvitystyön alustavia tuloksia Aurinkolämmön varastointi Östersundomissa - selvitystyön alustavia tuloksia AurinkoATLAS.seminaari 20.11.2013 Juha Esterinen, Mikko Ojala Aurinkolämmön varastointi Östersundomissa selvitystyö toteutetaan

Lisätiedot

AURINKOLÄMMÖN VARASTOINTI ÖSTERSUNDOMIN ALUERAKENNUSKOHTEESSA

AURINKOLÄMMÖN VARASTOINTI ÖSTERSUNDOMIN ALUERAKENNUSKOHTEESSA TEKNILLINEN TIEDEKUNTA AURINKOLÄMMÖN VARASTOINTI ÖSTERSUNDOMIN ALUERAKENNUSKOHTEESSA Mikko Ojala Diplomityö Ympäristötekniikan koulutusohjelma Toukokuu 2014 2 TIIVISTELMÄ OPINNÄYTETYÖSTÄ Koulutusohjelma

Lisätiedot

Geoenergia ja pohjavesi. Asmo Huusko Geologian tutkimuskeskus GTK asmo.huusko@gtk.fi

Geoenergia ja pohjavesi. Asmo Huusko Geologian tutkimuskeskus GTK asmo.huusko@gtk.fi Geoenergia ja pohjavesi Asmo Huusko Geologian tutkimuskeskus GTK asmo.huusko@gtk.fi 1 Geoenergiaa voidaan hyödyntää eri lähteistä Maaperästä (irtaimet maalajit), jolloin energia on peräisin auringosta

Lisätiedot

ENERGIATEHOKAS KARJATALOUS

ENERGIATEHOKAS KARJATALOUS ENERGIATEHOKAS KARJATALOUS PELLON GROUP OY / Tapio Kosola ENERGIAN TALTEENOTTO KOTIELÄINTILALLA Luonnossa ja ympäristössämme on runsaasti lämpöenergiaa varastoituneena. Lisäksi maatilan prosesseissa syntyvää

Lisätiedot

Tulevaisuuden kaukolämpöasuinalueen energiaratkaisut (TUKALEN) Loppuseminaari 16.10.2014

Tulevaisuuden kaukolämpöasuinalueen energiaratkaisut (TUKALEN) Loppuseminaari 16.10.2014 Tulevaisuuden kaukolämpöasuinalueen energiaratkaisut (TUKALEN) Loppuseminaari 16.10.2014 Kaukolämpökytkennät Jorma Heikkinen Sisältö Uusiutuvan energian kytkennät Tarkasteltu pientalon aurinkolämpökytkentä

Lisätiedot

Kokeneempi. Osaavampi

Kokeneempi. Osaavampi Kokeneempi. Osaavampi. 020 7737 300 www.tomallensenera.fi Tom Allen Seneran tunnusluvut Tom Allen: maalämpöalan edelläkävijä Suomessa (perustettu 1991) Tom Allen Senera Oy: yli 9 000 asennettua maalämpö-

Lisätiedot

Uponor G12 -lämmönkeruuputki. Asennuksen pikaohje

Uponor G12 -lämmönkeruuputki. Asennuksen pikaohje Uponor G12 -lämmönkeruuputki Asennuksen pikaohje poraajille Uponor G12 -lämmönkeruuputken asennus neljässä vaiheessa Uponor G12 -putket asennetaan periaatteessa samalla menetelmällä kuin tavanomaiset keruuputket.

Lisätiedot

Aurinkolämpö. Tässä on tarkoitus kertoa aurinkolämmön asentamisesta ja aurinkolämmön talteen ottamiseen tarvittavista osista ja niiden toiminnasta.

Aurinkolämpö. Tässä on tarkoitus kertoa aurinkolämmön asentamisesta ja aurinkolämmön talteen ottamiseen tarvittavista osista ja niiden toiminnasta. Aurinkolämpö Tässä on tarkoitus kertoa aurinkolämmön asentamisesta ja aurinkolämmön talteen ottamiseen tarvittavista osista ja niiden toiminnasta. Keräimien sijoittaminen ja asennus Keräimet asennetaan

Lisätiedot

Aurinkoenergia ja lämmön kausivarastoinnin mahdollisuudet. Vuoden lähienergiaratkaisu -palkinnonjakotilaisuus, Janne Hirvonen

Aurinkoenergia ja lämmön kausivarastoinnin mahdollisuudet. Vuoden lähienergiaratkaisu -palkinnonjakotilaisuus, Janne Hirvonen Aurinkoenergia ja lämmön kausivarastoinnin mahdollisuudet, Janne Hirvonen Taustaa Rakennusten energiantarve on 40% EU:n kulutuksesta Energiatehokkuudella merkittävä vaikutus Rakennusten energiatehokkuusdirektiivi

Lisätiedot

Aurinkolämpö. Tässä on tarkoitus kertoa aurinkolämmön asentamisesta ja aurinkolämmön talteen ottamiseen tarvittavista osista ja niiden toiminnasta.

Aurinkolämpö. Tässä on tarkoitus kertoa aurinkolämmön asentamisesta ja aurinkolämmön talteen ottamiseen tarvittavista osista ja niiden toiminnasta. Aurinkolämpö Tässä on tarkoitus kertoa aurinkolämmön asentamisesta ja aurinkolämmön talteen ottamiseen tarvittavista osista ja niiden toiminnasta. Keräimien sijoittaminen ja asennus Kaikista aurinkoisin

Lisätiedot

Maalämpöpumput suurissa kiinteistöissä mitoitus, soveltuvuus, toiminta Finlandia-talo 14.12.2011. Sami Seuna Motiva Oy

Maalämpöpumput suurissa kiinteistöissä mitoitus, soveltuvuus, toiminta Finlandia-talo 14.12.2011. Sami Seuna Motiva Oy Maalämpöpumput suurissa kiinteistöissä mitoitus, soveltuvuus, toiminta Finlandia-talo 14.12.2011 Sami Seuna Motiva Oy Lämpöpumpun toimintaperiaate Höyry puristetaan kompressorilla korkeampaan paineeseen

Lisätiedot

Energiapaalut. Geoenergian hyödyntäminen perustuspaalujen kautta rakennusten lämmitykseen ja viilennykseen. Hannu Vesamäki, Tuoteryhmäpäällikkö

Energiapaalut. Geoenergian hyödyntäminen perustuspaalujen kautta rakennusten lämmitykseen ja viilennykseen. Hannu Vesamäki, Tuoteryhmäpäällikkö Energiapaalut Geoenergian hyödyntäminen perustuspaalujen kautta rakennusten lämmitykseen ja viilennykseen Hannu Vesamäki, Tuoteryhmäpäällikkö Geoener-seminaari 1.12.2010 15.12.2010 Teräspaalut energian

Lisätiedot

25.6.2015. Mynämäen kaivon geoenergiatutkimukset 2010-2014

25.6.2015. Mynämäen kaivon geoenergiatutkimukset 2010-2014 25.6.2015 Mynämäen kaivon geoenergiatutkimukset 20102014 Geologian tutkimuskeskus 1 TUTKIMUSALUE Tutkimusalue sijaitsee Kivistönmäen teollisuusalueella Mynämäellä 8tien vieressä. Kohteen osoite on Kivistöntie

Lisätiedot

LÄMPÖPUMPUN ANTOTEHO JA COP Täytä tiedot vihreisiin ruutuihin Mittauspäivä ja aika LASKE VIRTAAMA, JOS TIEDÄT TEHON JA LÄMPÖTILAERON

LÄMPÖPUMPUN ANTOTEHO JA COP Täytä tiedot vihreisiin ruutuihin Mittauspäivä ja aika LASKE VIRTAAMA, JOS TIEDÄT TEHON JA LÄMPÖTILAERON LÄMPÖPUMPUN ANTOTEHO JA COP Täytä tiedot vihreisiin ruutuihin Täytä tiedot Mittauspäivä ja aika Lähdön lämpötila Paluun lämpötila 32,6 C 27,3 C Meno paluu erotus Virtaama (Litraa/sek) 0,32 l/s - Litraa

Lisätiedot

Maanvastaisen alapohjan lämmöneristys

Maanvastaisen alapohjan lämmöneristys TUTKIMUSRAPORTTI VTT-R-04026-11 Maanvastaisen alapohjan lämmöneristys Kirjoittajat: Luottamuksellisuus: Jorma Heikkinen, Miimu Airaksinen Luottamuksellinen TUTKIMUSRAPORTTI VTT-R-04026-11 Sisällysluettelo

Lisätiedot

GEOLOGIAN TUTKIMUSKESKUS Raportti 1 (7) Länsi-Suomen yksikkö Herukka Oulu (1162057) Kokkola Annu Martinkauppi ja Petri Hakala 27.8.

GEOLOGIAN TUTKIMUSKESKUS Raportti 1 (7) Länsi-Suomen yksikkö Herukka Oulu (1162057) Kokkola Annu Martinkauppi ja Petri Hakala 27.8. GEOLOGIAN TUTKIMUSKESKUS Raportti 1 (7) Länsi-Suomen yksikkö Herukka Oulu (1162057) Kokkola Annu Martinkauppi ja Petri Hakala TULOKSIA GEOFYSIKAALISISTA PAIKKATUTKIMUKSISTA OULUN HERUKAN SALEN TUTKIMUSKOHTEESSA

Lisätiedot

Helminharjun alue Otalampi POHJATUTKIMUSLAUSUNTO. Työ 4003/12

Helminharjun alue Otalampi POHJATUTKIMUSLAUSUNTO. Työ 4003/12 VIHDIN KUNTA Helminharjun alue Otalampi POHJATUTKIMUSLAUSUNTO Työ 4003/12 Sisällys Pohjatutkimuslausunto Pohjatutkimusmerkinnät Pohjatutkimuskartta 4003/12/1 1:2000 Leikkaus A-A 4003/12/2 1:1000/1:100

Lisätiedot

Yhteenveto laskennasta. Lähiretu Loppukokous

Yhteenveto laskennasta. Lähiretu Loppukokous 1 Yhteenveto laskennasta Lähiretu Loppukokous 20.6.2017 Säästö 2 Kuvaaja I. Säästö yhteisen maalämpöjärjestelmän elinkaarikustannuksissa verrattuna erillisiin järjestelmiin eri tarkastelujaksoilla. 80%

Lisätiedot

Tuloilmaikkunoiden edut ja kannattavuus

Tuloilmaikkunoiden edut ja kannattavuus Tuloilmaikkunoiden edut ja kannattavuus As Oy Espoon Rauhalanpuisto 8 Tausta Asuinrakennuksen suurin lämpöhäviö on ilmanvaihto Koneellisessa poistossa tattava riittävä korvausilman saanti Ulkoa tuleva

Lisätiedot

Aurinkolämpöjärjestelmät

Aurinkolämpöjärjestelmät Energiaekspertti koulutusilta Aurinkolämpöjärjestelmät 17.11.2015 Jarno Kuokkanen Sundial Finland Oy Energiaekspertti koulutusilta Aurinkolämpöjärjestelmät 1. Aurinkolämpö Suomessa 2. Aurinkolämmön rooli

Lisätiedot

Aurinko lämmittää Kotitalouksia ja energiantuottajia Keski-Suomen Energiapäivä

Aurinko lämmittää Kotitalouksia ja energiantuottajia Keski-Suomen Energiapäivä Aurinko lämmittää Kotitalouksia ja energiantuottajia Keski-Suomen Energiapäivä 2016 17.2.2016 Jarno Kuokkanen Sundial Finland Oy Aurinkoenergian potentiaali Aurinkoenergia on: Ilmaista Rajoittamattomasti

Lisätiedot

Kuokkatien ja Kuokkakujan alueen rakennettavuusselvitys

Kuokkatien ja Kuokkakujan alueen rakennettavuusselvitys KIRKKONUMMEN KUNTA SEPÄNKANNAS III Kuokkatien ja Kuokkakujan alueen rakennettavuusselvitys P18602 7.5.2012 2 (6) SISÄLLYSLUETTELO: 1 YLEISTÄ... 3 2 TUTKIMUKSET... 3 3 POHJASUHTEET... 3 4 KATUALUEET...

Lisätiedot

Aurinkoenergia Suomessa

Aurinkoenergia Suomessa Aurinkoenergia Suomessa Aurinkolämmitys on ennen kaikkea vesilämmitys Aurinkoenergia Suomessa Suomessa saadaan auringonsäteilyä yleisesti luultua enemmän. Kesällä säteilyä Suomessa saadaan pitkistä päivistä

Lisätiedot

Maalämpö sopii asunto-osakeyhtiöihinkin

Maalämpö sopii asunto-osakeyhtiöihinkin Maalämpö sopii asunto-osakeyhtiöihinkin Maalämpöä on pidetty omakotitalojen lämmitystapana. Maailma kehittyy ja paineet sen pelastamiseksi myös. Jatkuva ilmastonmuutos sekä kestävä kehitys vaativat lämmittäjiä

Lisätiedot

Tuloilmaikkunoiden edut ja kannattavuus. As Oy Espoon Rauhalanpuisto 8

Tuloilmaikkunoiden edut ja kannattavuus. As Oy Espoon Rauhalanpuisto 8 Tapio Tarpio Tuloilmaikkunoiden edut ja kannattavuus As Oy Espoon Rauhalanpuisto 8 Tausta Asuinrakennuksen suurin lämpöhäviö on ilmanvaihto Koneellisessa poistossa tattava riittävä korvausilman saanti

Lisätiedot

PORVOON ENERGIA LUONNOLLINEN VALINTA. Mikko Ruotsalainen

PORVOON ENERGIA LUONNOLLINEN VALINTA. Mikko Ruotsalainen PORVOON ENERGIA LUONNOLLINEN VALINTA Skaftkärr Skaftkärr hankkeen tavoitteena on rakentaa Porvooseen uusi energiatehokas 400 hehtaarin suuruinen, vähintään 6000 asukkaan asuinalue. Skaftkärr Koko projekti

Lisätiedot

HYVÄ SUUNNITTELU PAREMPI LOPPUTULOS SUUNNITTELUN MERKITYS ENERGIAREMONTEISSA

HYVÄ SUUNNITTELU PAREMPI LOPPUTULOS SUUNNITTELUN MERKITYS ENERGIAREMONTEISSA HYVÄ SUUNNITTELU PAREMPI LOPPUTULOS SUUNNITTELUN MERKITYS ENERGIAREMONTEISSA AJOISSA LIIKKEELLE Selvitykset tarpeista ja vaihtoehdoista ajoissa ennen päätöksiä Ei kalliita kiirekorjauksia tai vahinkojen

Lisätiedot

Lämpöpumpputekniikkaa Tallinna 18.2. 2010

Lämpöpumpputekniikkaa Tallinna 18.2. 2010 Lämpöpumpputekniikkaa Tallinna 18.2. 2010 Ari Aula Chiller Oy Lämpöpumpun rakenne ja toimintaperiaate Komponentit Hyötysuhde Kytkentöjä Lämpöpumppujärjestelmän suunnittelu Integroidut lämpöpumppujärjestelmät

Lisätiedot

13976 POHJOLA RAKENNUS OY SIPOON TOIVOLA ITÄINEN SUURSUONKUJA SIPOO POHJATUTKIMUS 26.11.2013 Insinööritoimisto POHJATEKNIIKKA OY Nuijamiestentie 5 B, 00400 Helsinki, Puh. (09) 477 7510, Fax (09) 4777 5111

Lisätiedot

TUTKIMUS IKI-KIUKAAN ENERGIASÄÄSTÖISTÄ YHTEISKÄYTTÖSAUNOISSA

TUTKIMUS IKI-KIUKAAN ENERGIASÄÄSTÖISTÄ YHTEISKÄYTTÖSAUNOISSA TUTKIMUS IKI-KIUKAAN ENERGIASÄÄSTÖISTÄ YHTEISKÄYTTÖSAUNOISSA IKI-Kiuas Oy teetti tämän tutkimuksen saatuaan taloyhtiöiltä positiivista palautetta kiukaistaan. Asiakkaat havaitsivat sähkölaskujensa pienentyneen,

Lisätiedot

Mäntytie 4, 00270 Helsinki p. (09) 2410006 tai 0400 465861, fax (09) 2412311 KERAVA- PORVOO RAUTATIEN ALITUSPAIKKOJEN RAKENNETTAVUUSSELVITYS

Mäntytie 4, 00270 Helsinki p. (09) 2410006 tai 0400 465861, fax (09) 2412311 KERAVA- PORVOO RAUTATIEN ALITUSPAIKKOJEN RAKENNETTAVUUSSELVITYS INSINÖÖRITOIMISTO e-mail: severi.anttonen@kolumbus.fi Mäntytie 4, 00270 Helsinki p. (09) 2410006 tai 0400 465861, fax (09) 2412311 2017 TALMAN OSAYLEISKAAVA-ALUE SIPOO KERAVA- PORVOO RAUTATIEN ALITUSPAIKKOJEN

Lisätiedot

Suomen geoenergiavarannot. Asmo Huusko Geologian tutkimuskeskus GTK asmo.huusko@gtk.fi

Suomen geoenergiavarannot. Asmo Huusko Geologian tutkimuskeskus GTK asmo.huusko@gtk.fi Suomen geoenergiavarannot Asmo Huusko Geologian tutkimuskeskus GTK asmo.huusko@gtk.fi 1 Mitä geoenergia on? Geoenergialla tarkoitetaan yleisellä tasolla kaikkea maaja kallioperästä sekä vesistöistä saatavaa

Lisätiedot

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3 76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15

Lisätiedot

KOKEMUKSIA LÄMPÖPUMPUISTA KAUKOLÄMPÖJÄRJESTELMÄSSÄ CASE HELEN. Kaukolämpöpäivät Juhani Aaltonen

KOKEMUKSIA LÄMPÖPUMPUISTA KAUKOLÄMPÖJÄRJESTELMÄSSÄ CASE HELEN. Kaukolämpöpäivät Juhani Aaltonen KOKEMUKSIA LÄMPÖPUMPUISTA KAUKOLÄMPÖJÄRJESTELMÄSSÄ CASE HELEN Kaukolämpöpäivät 25.8.2016 Juhani Aaltonen Vähemmän päästöjä ja lisää uusiutuvaa energiaa Tavoitteenamme on vähentää hiilidioksidipäästöjä

Lisätiedot

Uudista käsityksesi puhtaasta energiasta

Uudista käsityksesi puhtaasta energiasta Uudista käsityksesi puhtaasta energiasta QHeat-konseptin mukainen syvälämpö on edullinen, päästötön, ja myös tuleville sukupolville turvallinen energiamuoto. 1 PUHDAS TULEVAISUUS ON JALKOJESI ALLA. Missiomme:

Lisätiedot

Kotirinteen kaava-alue Alueellinen pohjatutkimus Nummela POHJATUTKIMUSLAUSUNTO. Työ 3414/09

Kotirinteen kaava-alue Alueellinen pohjatutkimus Nummela POHJATUTKIMUSLAUSUNTO. Työ 3414/09 VIHDIN KUNTA Kotirinteen kaava-alue Alueellinen pohjatutkimus Nummela POHJATUTKIMUSLAUSUNTO Työ 3414/09 PL 145 gsm 0400 472 059 gsm 0400 409 808 03101 NUMMELA fax (09) 343 3262 fax (09) 222 1201 email

Lisätiedot

Geonergia osana kaupunkien energiaratkaisuja. Asmo Huusko Geologian tutkimuskeskus (GTK)

Geonergia osana kaupunkien energiaratkaisuja. Asmo Huusko Geologian tutkimuskeskus (GTK) Geonergia osana kaupunkien energiaratkaisuja Asmo Huusko Geologian tutkimuskeskus (GTK) GTK:n strategiset teemat DIGITAALISUUS Tuomme digitalisaation mahdollisuudet ja systeemiset hyödyt kaikkiin prosesseihin,

Lisätiedot

LÄSÄ-lämmönsäästäjillä varustettujen kattotuolirakenteiden lämpöhäviön simulointi

LÄSÄ-lämmönsäästäjillä varustettujen kattotuolirakenteiden lämpöhäviön simulointi LÄSÄ-lämmönsäästäjillä varustettujen kattotuolirakenteiden lämpöhäviön simulointi 13.11.2015 TkT Timo Karvinen Comsol Oy Johdanto Raportissa esitetään lämpösimulointi kattotuolirakenteille, joihin on asennettu

Lisätiedot

LAUSUNTO ALUEEN PERUSTAMISOLOSUHTEISTA

LAUSUNTO ALUEEN PERUSTAMISOLOSUHTEISTA GEOPALVELU OY TYÖ N:O 11113 SKOL jäsen ROUTION ALUETUTKIMUS Ratsutilantie 08350 LOHJA LAUSUNTO ALUEEN PERUSTAMISOLOSUHTEISTA 30.06.2011 Liitteenä 6 kpl pohjatutkimuspiirustuksia - 001 pohjatutkimusasemapiirros

Lisätiedot

Hydrologia. Pohjaveden esiintyminen ja käyttö

Hydrologia. Pohjaveden esiintyminen ja käyttö Hydrologia Timo Huttula L8 Pohjavedet Pohjaveden esiintyminen ja käyttö Pohjavettä n. 60 % mannerten vesistä. 50% matalaa (syvyys < 800 m) ja loput yli 800 m syvyydessä Suomessa pohjavesivarat noin 50

Lisätiedot

Alustava pohjaveden hallintaselvitys

Alustava pohjaveden hallintaselvitys Alustava pohjaveden hallintaselvitys Ramboll Finland Oy Säterinkatu 6, PL 25 02601 Espoo Finland Puhelin: 020 755 611 Ohivalinta: 020 755 6333 Fax: 020 755 6206 jarno.oinonen@ramboll.fi www.ramboll.fi

Lisätiedot

Viikkoharjoitus 2: Hydrologinen kierto

Viikkoharjoitus 2: Hydrologinen kierto Viikkoharjoitus 2: Hydrologinen kierto 30.9.2015 Viikkoharjoituksen palautuksen DEADLINE keskiviikkona 14.10.2015 klo 12.00 Palautus paperilla, joka lasku erillisenä: palautus joko laskuharjoituksiin tai

Lisätiedot

Lankilan Metsäkulman alue Alueellinen pohjatutkimus POHJATUTKIMUSLAUSUNTO. Työ 3401/09

Lankilan Metsäkulman alue Alueellinen pohjatutkimus POHJATUTKIMUSLAUSUNTO. Työ 3401/09 VIHDIN KUNTA Lankilan Metsäkulman alue Alueellinen pohjatutkimus POHJATUTKIMUSLAUSUNTO Työ 3401/09 Sisällys: Pohjatutkimuslausunto Pohjatutkimusmerkinnät Pohjatutkimuskartta 3401/09/1 1:3000 Leikkaus A-A

Lisätiedot

Uusiutuvan energian yhdistäminen kaasulämmitykseen

Uusiutuvan energian yhdistäminen kaasulämmitykseen Aurinko Maalämpö Kaasu Lämpöpumput Uusiutuvan energian yhdistäminen kaasulämmitykseen Kaasulämmityksessä voidaan hyödyntää uusiutuvaa energiaa käyttämällä biokaasua tai yhdistämällä lämmitysjärjestelmään

Lisätiedot

Energiakaivot. Tärkeä osa lämpöpumppualan liiketoimintaa. SULPU - Lämpöpumppu seminaari Tomi Mäkiaho

Energiakaivot. Tärkeä osa lämpöpumppualan liiketoimintaa. SULPU - Lämpöpumppu seminaari Tomi Mäkiaho Energiakaivot Tärkeä osa lämpöpumppualan liiketoimintaa SULPU - Lämpöpumppu 2018 -seminaari 2018-11-27 Tomi Mäkiaho 1 R O T O T E C - Y O U R E N E R G Y. B E S T E N E R G Y. AGENDA Rototec yrityksenä

Lisätiedot

Talon valmistumisvuosi 1999 Asuinpinta-ala 441m2. Asuntoja 6

Talon valmistumisvuosi 1999 Asuinpinta-ala 441m2. Asuntoja 6 Lattialämmitetyn rivitalon perusparannus 2015 Talon valmistumisvuosi 1999 Asuinpinta-ala 441m2. Asuntoja 6 Maakaasukattila Lattialämmitys. Putkipituus tuntematon. Ilmanvaihto koneellinen. Ei lämmön talteenottoa.

Lisätiedot

Energiakaivojen mitoitukseen vaikuttavat tekijät

Energiakaivojen mitoitukseen vaikuttavat tekijät Energiakaivojen mitoitukseen vaikuttavat tekijät Nina Leppäharju FM, geofyysikko Suomen Lämpöpumppuyhdistyksen 15-vuotisjuhlaseminaari 30.10.2014 Kokoushotelli Sofia, Helsinki SULPU:n energiakaivojen mitoitustyöryhmä

Lisätiedot

KERAVAN KAUPUNKI. Huhtimontie Tontit 7-871-3,4,6 Kerava POHJATUTKIMUSLAUSUNTO TYÖ 4437/14

KERAVAN KAUPUNKI. Huhtimontie Tontit 7-871-3,4,6 Kerava POHJATUTKIMUSLAUSUNTO TYÖ 4437/14 KERAVAN KAUPUNKI Huhtimontie Tontit 7-871-3,4,6 Kerava POHJATUTKIMUSLAUSUNTO TYÖ 4437/14 Sisällys Pohjatutkimuslausunto Salaojituskerroksen rakeisuusalueet Pohjatutkimusmerkinnät Pohjatutkimuskartta 4437/14/1

Lisätiedot

Kuivauksen fysiikkaa. Hannu Sarkkinen

Kuivauksen fysiikkaa. Hannu Sarkkinen Kuivauksen fysiikkaa Hannu Sarkkinen 28.11.2013 Kuivatusmenetelmiä Auringon säteily Mikroaaltouuni Ilmakuivatus Ilman kosteus Ilman suhteellinen kosteus RH = ρ v /ρ vs missä ρ v = vesihöyryn tiheys (g/m

Lisätiedot

Yläpohjan sellukuitulämmöneristyksen painumisen vaikutus rakenteen kokonaislämmönläpäisyyn

Yläpohjan sellukuitulämmöneristyksen painumisen vaikutus rakenteen kokonaislämmönläpäisyyn Yläpohjan sellukuitulämmöneristyksen painumisen vaikutus rakenteen kokonaislämmönläpäisyyn Asiakas: Työn sisältö Pahtataide Oy Selvityksessä tarkasteltiin kosteuden tiivistymisen riskiä yläpohjan kattotuolien

Lisätiedot

Aurinkoenergia Suomessa

Aurinkoenergia Suomessa Tampere Aurinkoenergia Suomessa 05.10.2016 Jarno Kuokkanen Sundial Finland Oy Aurinkoteknillinen yhdistys Ry Aurinkoenergian termit Aurinkolämpö (ST) Aurinkokeräin Tuottaa lämpöä Lämpöenergia, käyttövesi,

Lisätiedot

YLEISTIETOA LÄMPÖPUMPUISTA

YLEISTIETOA LÄMPÖPUMPUISTA YLEISTIETOA LÄMPÖPUMPUISTA Eksergia.fi Olennainen tieto energiatehokkaasta rakentamisesta Päivitetty 12.1.2015 SISÄLTÖ Yleistä lämpöpumpuista Lämpöpumppujen toimintaperiaate Lämpökerroin ja vuosilämpökerroin

Lisätiedot

Näsilinnankatu 40. Pohjatutkimusraportti. Uudisrakennus Työnro

Näsilinnankatu 40. Pohjatutkimusraportti. Uudisrakennus Työnro Työnro 160091 Näsilinnankatu 40 Uudisrakennus Pohjatutkimusraportti 23.8.2016 A-Insinöörit Suunnittelu Oy ESPOO HELSINKI KUOPIO OULU PORI TAMPERE TURKU p. 0207 911 888, www.ains.fi Y-tunnus 0211382-6 Näsilinnankatu

Lisätiedot

UUSIUTUVAN ENERGIAN RATKAISUT - seminaari

UUSIUTUVAN ENERGIAN RATKAISUT - seminaari UUSIUTUVAN ENERGIAN RATKAISUT - seminaari Timo Toikka 0400-556230 05 460 10 600 timo.toikka@haminanenergia.fi Haminan kaupungin 100 % omistama Liikevaihto n. 40 M, henkilöstö 50 Liiketoiminta-alueet Sähkö

Lisätiedot

Lankilan Metsäkulman alue Alueellinen pohjatutkimus POHJATUTKIMUSLAUSUNTO. Työ 3401/09

Lankilan Metsäkulman alue Alueellinen pohjatutkimus POHJATUTKIMUSLAUSUNTO. Työ 3401/09 VIHDIN KUNTA Lankilan Metsäkulman alue Alueellinen pohjatutkimus POHJATUTKIMUSLAUSUNTO Työ 3401/09 Sisällys: Pohjatutkimuslausunto Pohjatutkimusmerkinnät Pohjatutkimuskartta 3401/09/1 1:3000 Leikkaus A-A

Lisätiedot

RAK Computational Geotechnics

RAK Computational Geotechnics Janne Iho Student number 263061 / janne.iho@student.tut.fi Tampere University of Technology Department of Civil Engineering RAK-23526 Computational Geotechnics Year 2017 Course work 2: Settlements Given

Lisätiedot

MAALÄMPÖJÄRJESTELMÄ 11.3.2013 11.3.2013 1

MAALÄMPÖJÄRJESTELMÄ 11.3.2013 11.3.2013 1 Porin Puuvilla MAALÄMPÖJÄRJESTELMÄ Porin Puuvillan maalämpöjärjestelmä Lämmön ja jäähdytyksen y tuotanto o yhdistetty y Maaperää hyödynnetään lämmitykseen talvella Ja jäähdytykseen kesällä Myös ympärivuotinen

Lisätiedot

Hirsirakenteisten kesämökkien kuivanapitolämmitys

Hirsirakenteisten kesämökkien kuivanapitolämmitys 1 Hirsirakenteisten kesämökkien kuivanapitolämmitys Puupäivä 11.11.2010 Jarkko Piironen Tutkija, dipl.ins. Tampereen teknillinen yliopisto Rakennustekniikan laitos Esityksen sisältö 2 1. Taustaa ja EREL

Lisätiedot

Joakim Majander LIITE 2 MUSTIKKAMAAN VOIMALAITOKSEN JÄÄHDYTYSVESIEN VAIKUTUSTEN ARVIOINTI KEMIJOEN VIRTAUKSIIN JA LÄMPÖTILOIHIN

Joakim Majander LIITE 2 MUSTIKKAMAAN VOIMALAITOKSEN JÄÄHDYTYSVESIEN VAIKUTUSTEN ARVIOINTI KEMIJOEN VIRTAUKSIIN JA LÄMPÖTILOIHIN 1 (8) MUSTIKKAMAAN VOIMALAITOKSEN JÄÄHDYTYSVESIEN VAIKUTUSTEN ARVIOINTI KEMIJOEN VIRTAUKSIIN JA LÄMPÖTILOIHIN 1 JOHDANTO Rovaniemeen on suunnitteilla uusi polttoaineteholtaan noin 295 MW kokoinen voimalaitos.

Lisätiedot

Enäranta Korttelit 262 ja 278-285 Alueellinen pohjatutkimus POHJATUTKIMUSLAUSUNTO. Työ 3392/09

Enäranta Korttelit 262 ja 278-285 Alueellinen pohjatutkimus POHJATUTKIMUSLAUSUNTO. Työ 3392/09 VIHDIN KUNTA Enäranta Korttelit 262 ja 278-285 Alueellinen pohjatutkimus POHJATUTKIMUSLAUSUNTO Työ 3392/09 Sisällys: Pohjatutkimuslausunto Pohjatutkimusmerkinnät Pohjatutkimuskartta 3392/09/1 1:2000 Leikkaus

Lisätiedot

Hulevesien k ä sittely, Hulevesik a setit ja -tunnelit. Uudet ympäristöystävälliset ja tehokkaat ratkaisut hulevesien käsittelyyn

Hulevesien k ä sittely, Hulevesik a setit ja -tunnelit. Uudet ympäristöystävälliset ja tehokkaat ratkaisut hulevesien käsittelyyn Hulevesien k ä sittely, Hulevesik a setit ja -tunnelit Uudet ympäristöystävälliset ja tehokkaat ratkaisut hulevesien käsittelyyn Hulevesien käsittely syntypaikalla vähentää ympäristön kuormitusta Ilmastonmuutoksen

Lisätiedot

Tornio 24.5.2012 RAMK Petri Kuisma

Tornio 24.5.2012 RAMK Petri Kuisma Tornio 24.5.2012 RAMK Petri Kuisma Sisältö Aurinko Miten aurinkoenergiaa hyödynnetään? Aurinkosähkö ja lämpö Laitteet Esimerkkejä Miksi aurinkoenergiaa? N. 5 miljardia vuotta vanha, fuusioreaktiolla toimiva

Lisätiedot

Diplomityö: RD-paaluseinän kiertojäykkyys ja vesitiiveys paalun ja kallion rajapinnassa

Diplomityö: RD-paaluseinän kiertojäykkyys ja vesitiiveys paalun ja kallion rajapinnassa Diplomityö: RD-paaluseinän kiertojäykkyys ja vesitiiveys paalun ja kallion rajapinnassa Leo-Ville Miettinen Nuorempi suunnittelija Finnmap Consulting Oy, Part of Sweco Työn rahoittaja: Ruukki Esityksen

Lisätiedot

SIUNTION KUNTA PALONUMMENMÄKI PALONUMMENKAARI K 180 T 1-6, K 179 T 4, K 181 T 1-2 Siuntio POHJATUTKIMUSLAUSUNTO. Työ 4204/13

SIUNTION KUNTA PALONUMMENMÄKI PALONUMMENKAARI K 180 T 1-6, K 179 T 4, K 181 T 1-2 Siuntio POHJATUTKIMUSLAUSUNTO. Työ 4204/13 SIUNTION KUNTA PALONUMMENMÄKI PALONUMMENKAARI K 180 T 1-6, K 179 T 4, K 181 T 1-2 Siuntio POHJATUTKIMUSLAUSUNTO Työ 4204/13 UUDENMAAN MAANRAKENNUSSUUNNITTELU OY PL 145 gsm 0400 472 059 gsm 0400 409 808

Lisätiedot

ATY AURINKOSEMINAARI 2014 2.10.2014. Katsaus OKT- ja rivi-/kerrostalo ratkaisuista suomen tasolla. Jarno Kuokkanen Sundial Finland Oy

ATY AURINKOSEMINAARI 2014 2.10.2014. Katsaus OKT- ja rivi-/kerrostalo ratkaisuista suomen tasolla. Jarno Kuokkanen Sundial Finland Oy ATY AURINKOSEMINAARI 2014 2.10.2014 Katsaus OKT- ja rivi-/kerrostalo ratkaisuista suomen tasolla Jarno Kuokkanen Sundial Finland Oy Aurinkoenergian potentiaali Aurinkoenergia on: Ilmaista Rajoittamattomasti

Lisätiedot

KAUKOLÄMMITYSJÄRJESTELMIEN KEVENTÄMISMAHDOLLISUUDET MATALAN ENERGIAN KULUTUKSEN ALUEILLA TUTKIMUS

KAUKOLÄMMITYSJÄRJESTELMIEN KEVENTÄMISMAHDOLLISUUDET MATALAN ENERGIAN KULUTUKSEN ALUEILLA TUTKIMUS KAUKOLÄMMITYSJÄRJESTELMIEN KEVENTÄMISMAHDOLLISUUDET MATALAN ENERGIAN KULUTUKSEN ALUEILLA TUTKIMUS ESITTELY JA ALUSTAVIA TULOKSIA 16ENN0271-W0001 Harri Muukkonen TAUSTAA Uusiutuvan energian hyödyntämiseen

Lisätiedot

KISSANMAANKATU 20. Optiplan Oy ENERGIATALOUS. Y-tunnus 0775337-1 Helsinki Turku Tampere www.optiplan.fi. Åkerlundinkatu 11 C Puh.

KISSANMAANKATU 20. Optiplan Oy ENERGIATALOUS. Y-tunnus 0775337-1 Helsinki Turku Tampere www.optiplan.fi. Åkerlundinkatu 11 C Puh. KISSANMAANKATU 20 Optiplan Oy Y-tunnus 0775337-1 Helsinki Turku Tampere www.optiplan.fi Mannerheimintie 105 Helsinginkatu 15, Åkerlundinkatu 11 C Puh. 010 507 6000 PL 48, 00281 Helsinki PL 124, 20101 Turku

Lisätiedot

Käytettäessä Leca -kevytsoraa painumien vähentämiseksi tulee ottaa huomioon seuraavat asiat:

Käytettäessä Leca -kevytsoraa painumien vähentämiseksi tulee ottaa huomioon seuraavat asiat: 20/12/2018 PAINUMAT Leca -kevytsora tarjoaa suuria etuja, kun täytyy ratkaista painumiin liittyviä ongelmia. Se tarjoaa tehokkaat ratkaisut tehokkaalla ja nopealla rakentamisella ja matalilla kustannuksilla.

Lisätiedot

KAIVANTOJEN SEKÄ KATUJEN TUENTA- JA PERUSTAMISTAPALAUSUNTO

KAIVANTOJEN SEKÄ KATUJEN TUENTA- JA PERUSTAMISTAPALAUSUNTO KAIVANTOJEN SEKÄ KATUJEN TUENTA- JA PERUSTAMISTAPALAUSUNTO TYÖNUMERO: 60 2816 LIETO, KAIJASEN PELLON VESIHUOLTOLINJAT JA KADUT 1 YLEISTÄ Kaivantojen osalta tässä lausunnossa laaditaan periaateratkaisut

Lisätiedot

Seismiset luotaukset Ahvenanmaalla Naäsin alueella 1988.

Seismiset luotaukset Ahvenanmaalla Naäsin alueella 1988. Q19/1021/88/1/23 Ahvenanmaa, Näas (ödkarby) J Lehtimäki 09.11.1988 -- ---- 1 rj:o 3353 1/3 Geologian tutkimuskeskus Geofysiikan osasto Työraportti Seismiset luotaukset Ahvenanmaalla Naäsin alueella 1988.

Lisätiedot

RAKENNETTAVUUSSELVITYS

RAKENNETTAVUUSSELVITYS Insinööritoimisto Geotesti Oy TYÖNRO 060292 RAKENNETTAVUUSSELVITYS AHLMANIN ALUE TAMPERE MPERE Insinööritoimisto Geotesti Oy DI Katri Saarelainen RAKENNETTAVUUSSELVITYS 05.12.2006 1(4) TYÖNRO 060292 Ahlmanin

Lisätiedot

Asemakaava nro 8570 ID 1 427 936. Tammelan stadion. Rakennettavuusselvitys

Asemakaava nro 8570 ID 1 427 936. Tammelan stadion. Rakennettavuusselvitys Asemakaava nro 8570 ID 1 427 936 Työnro 150056 Tammelan stadion Rakennettavuusselvitys 24.6.2015 2 (6) Tammelan stadion Työnro 150056 SISÄLLYSLUETTELO Yleistä... 3 Tutkimuskohde... 3 Tehdyt tutkimukset...

Lisätiedot

Aurinkolämmön mahdollisuudet

Aurinkolämmön mahdollisuudet Biobisnestä Pirkanmaalle Aurinkolämmön mahdollisuudet 20.4.2018 Jarno Kuokkanen Sundial Finland Oy Aurinkoteknillinen yhdistys ry Sundial Finland Oy Perustettu 2009 Kotimainen yritys, Tampere Aurinkolämpöjärjestelmät

Lisätiedot

ÄssäStream. - käyttöveden kierron ja suurten käyttöetäisyyksien hallintaan maalämpöratkaisuissa. ÄssäStream-virtauslämmitin

ÄssäStream. - käyttöveden kierron ja suurten käyttöetäisyyksien hallintaan maalämpöratkaisuissa. ÄssäStream-virtauslämmitin R Suomalaisia maalämpöpumppuja vuodesta 1983 - käyttöveden kierron ja suurten käyttöetäisyyksien hallintaan maalämpöratkaisuissa -virtauslämmitin Lämpimän käyttöveden meno Lämpimän käyttöveden paluu -virtauslämmitin

Lisätiedot

3.a. Helposti rakennettavaa aluetta -Sr, Hk, Mr, Si. Vaikeasti rakennettava pehmeikkö lyhyehkö paalutus 2-5m

3.a. Helposti rakennettavaa aluetta -Sr, Hk, Mr, Si. Vaikeasti rakennettava pehmeikkö lyhyehkö paalutus 2-5m 2 5 6 5 7 7 1. Helposti rakennettavaa aluetta -Sr, Hk, Mr, Si 3 3.a Vaikeasti rakennettava pehmeikkö lyhyehkö paalutus 2-5m 1. Vaikeasti rakennettava pehmeikkö paaluperustus 5-12m kadut, pihat mahd. kalkkipilarointi

Lisätiedot

Lämpöenergian varastointi ja sen huomioiminen rakentamisessa kortteli- ja aluetason ratkaisuissa

Lämpöenergian varastointi ja sen huomioiminen rakentamisessa kortteli- ja aluetason ratkaisuissa Kiertotalous kaavoituksessa ja maankäytön suunnittelussa 7.5.2019 Forum Marinum, Turku Lämpöenergian varastointi ja sen huomioiminen rakentamisessa kortteli- ja aluetason ratkaisuissa Rauli Lautkankare

Lisätiedot

Kävelyn aiheuttamien ilmanliikkeiden todentaminen laminaatin alla käytettäessä PROVENT alustaa (parketinalusta)

Kävelyn aiheuttamien ilmanliikkeiden todentaminen laminaatin alla käytettäessä PROVENT alustaa (parketinalusta) TUTKIMUSSELOSTUS Nro VTT-S-02441-07 Korvaa selostuksen Nro VTT-S-00671-07 7.3.2007 n aiheuttamien ilmanliikkeiden todentaminen laminaatin alla käytettäessä PROVENT alustaa (parketinalusta) Tilaaja: SIA

Lisätiedot

Päivämäärä 03.04.2014 PAPINKANKAAN KAAVA-ALUE RAKENNETTAVUUSSELVITYS

Päivämäärä 03.04.2014 PAPINKANKAAN KAAVA-ALUE RAKENNETTAVUUSSELVITYS Päivämäärä 03.04.2014 PAPINKANKAAN KAAVA-ALUE RAKENNETTAVUUSSELVITYS PAPINKANKAAN KAAVA-ALUE RAKENNETTAVUUSSELVITYS Päivämäärä 03.04.2014 Laatija Tarkastaja Iikka Hyvönen Jari Hirvonen SISÄLTÖ 1. YLEISTÄ

Lisätiedot

HÄMEENLINNAN KAUPUNKI KANKAANTAUS 78, MAAPERÄ- JA POHJAVESITARKASTELU

HÄMEENLINNAN KAUPUNKI KANKAANTAUS 78, MAAPERÄ- JA POHJAVESITARKASTELU Vastaanottaja Hämeenlinnan kaupunki Asiakirjatyyppi Raportti Päivämäärä 27.4.2016 Viite 1510026179 HÄMEENLINNAN KAUPUNKI KANKAANTAUS 78, MAAPERÄ- JA POHJAVESITARKASTELU HÄMEENLINNAN KAUPUNKI KANKAANTAUS

Lisätiedot

Hybridijärjestelmän hankinta

Hybridijärjestelmän hankinta Hybridijärjestelmän hankinta MOTIVA: Uusilla hankintamalleilla fiksummin puhdasta energiaa 10.6.2014 Jouni Kivirinne Hybridijärjestelmän hankinta/ JouniKivirinne 1.10.2014 1 HYBRIDIJÄRJESTELMÄN HANKINTA

Lisätiedot

TUULIPUISTO OY KALAJOKI WINDA POWER OY RAPORTTI. Kalajoen Läntisten tuulivoimapuisto. Varjostusselvitys - Päivitys 16X

TUULIPUISTO OY KALAJOKI WINDA POWER OY RAPORTTI. Kalajoen Läntisten tuulivoimapuisto. Varjostusselvitys - Päivitys 16X RAPORTTI TUULIPUISTO OY KALAJOKI WINDA POWER OY Kalajoen Läntisten tuulivoimapuisto Varjostusselvitys - Päivitys Kaikki oikeudet pidätetään Tätä asiakirjaa tai osaa siitä ei saa kopioida tai jäljentää

Lisätiedot

SEINÄJOEN KAUPUNKI ROVEKSEN POHJATUTKIMUS POHJATUTKIMUSSELOSTUS 10.8.2010

SEINÄJOEN KAUPUNKI ROVEKSEN POHJATUTKIMUS POHJATUTKIMUSSELOSTUS 10.8.2010 3136 SEINÄJOEN KAUPUNKI POHJATUTKIMUSSEOSTUS 10.8.2010 SUUNNITTEUTOIMISTO 3136 AUETEKNIIKKA OY TUTKIMUSSEOSTUS JP 10.8.2010 SISÄYSUETTEO 1 TEHTÄVÄ JA SUORITETUT TUTKIMUKSET... 1 2 TUTKIMUSTUOKSET... 1

Lisätiedot

Varastointi. Flex Putket. Flex putket voidaan varastoida joko pysty-tai vaaka-asentoon. Varastoalueella ei saa olla. teräviä kappaleita esim kiviä.

Varastointi. Flex Putket. Flex putket voidaan varastoida joko pysty-tai vaaka-asentoon. Varastoalueella ei saa olla. teräviä kappaleita esim kiviä. Varastointi 2 Flex Putket Flex putket voidaan varastoida joko pysty-tai vaaka-asentoon. Varastoalueella ei saa olla teräviä kappaleita esim kiviä. Putkipäät ovat syytä suojata päätysuojin ennen asennusta.

Lisätiedot

LÄMPÖÄ-hanke. Lämpöenergian varastoinnista uutta liiketoimintaa. Sopii kaikkiin rakennustyyppeihin ja lähes kaikille maaperille

LÄMPÖÄ-hanke. Lämpöenergian varastoinnista uutta liiketoimintaa. Sopii kaikkiin rakennustyyppeihin ja lähes kaikille maaperille LÄMPÖÄ-hanke Lämpöenergian varastoinnista uutta liiketoimintaa Sopii kaikkiin rakennustyyppeihin ja lähes kaikille maaperille Rauli Lautkankare Turun ammattikorkeakoulu Lämpöenergian varastointi Rakennuksen

Lisätiedot

PAKOPUTKEN PÄÄN MUODON VAIKUTUS ÄÄNENSÄTEILYYN

PAKOPUTKEN PÄÄN MUODON VAIKUTUS ÄÄNENSÄTEILYYN PAKOPUTKEN PÄÄN MUODON VAIKUTUS ÄÄNENSÄTEILYYN Seppo Uosukainen 1, Virpi Hankaniemi 2, Mikko Matalamäki 2 1 Teknologian tutkimuskeskus VTT Oy Rakennedynamiikka ja vibroakustiikka PL 1000 02044 VTT etunimi.sukunimi@vtt.fi

Lisätiedot

Lämmityskustannusten SÄÄSTÖOPAS. asuntoyhtiöille

Lämmityskustannusten SÄÄSTÖOPAS. asuntoyhtiöille Lämmityskustannusten SÄÄSTÖOPAS asuntoyhtiöille Lämpöä sisään, lämpöä ulos Lämmön lähteet Lämpöhäviö 10-15% Aurinkoa 3-7% Asuminen 3-6% Lattiat 15-20% Seinät 25-35% Ilmanvaihto 15-20% Talotekniikka LÄMPÖÄ

Lisätiedot

Aurinkolaboratorio. ammattikorkeakoulu ENERGIA ++

Aurinkolaboratorio. ammattikorkeakoulu ENERGIA ++ SAtakunnan ammattikorkeakoulu ENERGIA ++ Aurinkolaboratorio Satakunnan ammattikorkeakoulu Energia++ Tutkimus-, kehittämis- ja innovaatiotoiminta elinkeinoelämän palveluksessa Aurinkolaboratorio Satakunnan

Lisätiedot

Jäspi-Lämpöakku 500, 700, 1500, 2000 ja 3000 l energiavaraajat

Jäspi-Lämpöakku 500, 700, 1500, 2000 ja 3000 l energiavaraajat Jäspi-Lämpöakku, 700, 1, 2000 ja 3000 l energiavaraajat Uutuus! Tehokas, kestävä ja kevyt haponkestävä käyttövesikierukka www.kaukora.fi Jäspi-Lämpöakku, 700, 1, 2000 ja 3000 l energiavaraajat Yli 30 vuoden

Lisätiedot

Teräspaalupäivä 21.1.2016 TRIPLA, YIT RAKENNUS OY Juha Vunneli. yit.fi

Teräspaalupäivä 21.1.2016 TRIPLA, YIT RAKENNUS OY Juha Vunneli. yit.fi Teräspaalupäivä 21.1.2016 TRIPLA, YIT RAKENNUS OY Juha Vunneli yit.fi Pasila kesällä 2014 YIT 2 Pasila 28.8.2015 YIT 3 Company presentation Pasila tulevaisuudessa YIT 4 Company presentation Mikä on Tripla?

Lisätiedot

RAKENNETTAVUUSSELVITYS

RAKENNETTAVUUSSELVITYS RAKENNETTAVUUSSEVITYS PAIMIO MEIJERITIEN ÄNSIOSAN ASEMAKAAVA 9.11.2015 1 (5) _Rakennettavuusselvitys1.docx Sisältö 1 Yleistä... 3 2 Tehdyt tutkimukset... 3 2.1 Mittaukset... 3 2.2 Pohjatutkimukset... 3

Lisätiedot

Carlanderin kaava-alueen lisätutkimukset ja perustamistapaohjeistus

Carlanderin kaava-alueen lisätutkimukset ja perustamistapaohjeistus S U U N N IT T EL U JA T EK N IIK K A PORVOON KAUPUNKI Carlanderin kaava-alueen lisätutkimukset ja perustamistapaohjeistus Perustamistapaohjeistus FCG SUUNNITTELU JA TEKNIIKKA OY P23323 Perustamistapaohjeistus

Lisätiedot

Ekotehokas rakentaja Työmaan energian käyttö. 17.11.2014 Hannu Kauranen

Ekotehokas rakentaja Työmaan energian käyttö. 17.11.2014 Hannu Kauranen Ekotehokas rakentaja Työmaan energian käyttö 17.11.2014 Hannu Kauranen Miksi työmaalla lämmitetään Rakennusvaihe Lämmitystarve Käytettävä kalusto Maarakennusvaihe Maan sulana pito Roudan sulatus Suojaus,

Lisätiedot

Ratapihaan liittyvien alueiden sekä kaupungintalon tontin asemakaavamuutoksen tärinäselvitys Suonenjoen kaupunki

Ratapihaan liittyvien alueiden sekä kaupungintalon tontin asemakaavamuutoksen tärinäselvitys Suonenjoen kaupunki Ratapihaan liittyvien alueiden sekä kaupungintalon tontin asemakaavamuutoksen tärinäselvitys Suonenjoen kaupunki 27.8.2014 1 Taustatiedot Suonenjoen kaupungin keskustassa on käynnissä asemakaavatyö, jonka

Lisätiedot

Energia-ja Huoltotalo Järvi

Energia-ja Huoltotalo Järvi 23.4.2013 Ari Järvi Energia-ja Huoltotalo Järvi Perustettu 1964 Tällä hetkellä työllistää 15 henkilöä Valurin liikekeskuksessa toimipaikka Kokonaisvaltaista palvelua tuotemyynnistä asennukseen ja siitä

Lisätiedot

SEINÄJOEN SEURAKUNTA NURMON HAUTAUSMAAN LAAJENNUKSEN POHJATUTKIMUS POHJATUTKIMUSSELOSTUS 27.6.2014

SEINÄJOEN SEURAKUNTA NURMON HAUTAUSMAAN LAAJENNUKSEN POHJATUTKIMUS POHJATUTKIMUSSELOSTUS 27.6.2014 3697 SEINÄJOEN SEURAKUNTA NURMON HAUTAUSMAAN LAAJENNUKSEN POHJATUTKIMUS POHJATUTKIMUSSELOSTUS 27.6.2014 SISÄLLYSLUETTELO 1. TEHTÄVÄ JA SUORITETUT TUTKIMUKSET 1 2. TUTKIMUSTULOKSET 1 2.1 Rakennuspaikka

Lisätiedot

y 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu.

y 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu. Tehtävä 1 Tarkastellaan paineen ajamaa Poisseuille-virtausta kahden yhdensuuntaisen levyn välissä Levyjen välinen etäisyys on 2h Nopeusjakauma raossa on tällöin u(y) = 1 dp ( y 2 h 2), missä y = 0 on raon

Lisätiedot

Energiakoulutus / Rane Aurinkolämmitys

Energiakoulutus / Rane Aurinkolämmitys Energiakoulutus / Rane Aurinkolämmitys 22.3.2016 Jarno Kuokkanen Sundial Finland Oy Aurinkoteknillinen yhdistys ry Sundial Finland Oy Perustettu 2009 Kotimainen yritys, Tampere Aurinkolämpöjärjestelmät

Lisätiedot

AURINKOLÄMMÖN LIIKETOIMINTAMAHDOLLISUUDET KAUKOLÄMMÖN YHTEYDESSÄ SUOMESSA

AURINKOLÄMMÖN LIIKETOIMINTAMAHDOLLISUUDET KAUKOLÄMMÖN YHTEYDESSÄ SUOMESSA AURINKOLÄMMÖN LIIKETOIMINTAMAHDOLLISUUDET KAUKOLÄMMÖN YHTEYDESSÄ SUOMESSA KAUKOLÄMPÖPÄIVÄT 28-29.8.2013 KUOPIO PERTTU LAHTINEN AURINKOLÄMMÖN LIIKETOIMINTAMAHDOLLISUUDET SUOMESSA SELVITYS (10/2012-05/2013)

Lisätiedot

Luku 13. Kertausta Hydrostaattinen paine Noste

Luku 13. Kertausta Hydrostaattinen paine Noste Luku 13 Kertausta Hydrostaattinen paine Noste Uutta Jatkuvuusyhtälö Bernoullin laki Virtauksen mallintaminen Esitiedot Voiman ja energian käsitteet Liike-energia ja potentiaalienergia Itseopiskeluun jää

Lisätiedot