Historiaa. S Tietoliikenneverkot. Historiaa. Historiaa /XHQWR/LLNHQWHHQKDOOLQWD
|
|
- Taisto Kalevi Sala
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Historiaa S Tietoliikenneverkot /XHQWR/LLNHQWHHQKDOOLQWD Mitä ongelmia havaittiin? Ensimmäiset ongelmat liittyivät TCP:n sisäiseen vuonhallintaan. Pienet paketit, joita syntyy esimerkiksi merkkipohjaisessa tiedonsiirrossa, 40 tavua otsikkoa ja yksi tavu hyötykuormaa, johti verkkojen ylikuormittumiseen turhalla informaatiolla. Toinen ongelmatiikka syntyi, kun verkkojen käyttö kasvoi ja aiheutti mahdollisuuden yhteyden äkillisiin viiveiden kasvuihin; mikäli yhteyden kiertoaikaviive kasvaa nopeammin kuin lähettävän TCP-prosessin mittaama kiertoaikaviive, syntyy uudelleen lähetyksiä, jotka vastaavasti kuormittavat lisää reitittimiä aiheuttaen yhä pitemmän kiertoaikaviiveen S Tietoliikenneverkot / Marko Luoma 3 Historiaa Internet reitittimien ruuhkanhallinta sai alkunsa Ford yhtymän sisäisen verkon ongelmista. Nämä ongelmat ilmenivät, koska silloinen ARPANET perustui identtisiin linkkeihin, joita hallittiin erillisellä vuonohjauksella. Näin mitään ruuhkatilanteita ei ollut päässyt syntymään, ainakaan siinä määrin, että niihin olisi reagoitu. Fordin verkko vastaavasti oli heterogeeninen, yhdistäen useita tuotantolaitoksia eri puolilla USAta sekä sateliitin kautta laitoksen Englannissa. Heterogeenisuus syntyi siitä, että laitoksien sisällä käytettiin ethernet verkkoa ja laitoksien välillä vuokrajohtoja, joilla liikennöintinopeus oli alhaisimmillaan 1,2kbit/s S Tietoliikenneverkot / Marko Luoma 2 Historiaa Ongelmiin pyrittiin ratkaisemaan TCP-prosessin modifioinnilla sekä ns Source Quench toiminnolla, jossa ruuhkautunut reititin pyytää edellistä reititintä pakottamaan lähdettä pienentämään nopeutta. Tämä informointi tapahtuu vastavuohon aina lähteeseen saakka, joka riippuen riippuen toteutuksesta pienentää nopeuttaan tai ei. Kuten saattaa arvata lähderiippuvat ratkaisut reitittimen ruuhkanhallintaan ovat aina ehdollisia; mikäli lähde ei noudata reitittimen ohjeita mitään ei tapahdu. Näin ollen kehitys johti reitittimien sisäisiin ruuhkanhallintamekanismeihin S Tietoliikenneverkot / Marko Luoma 4
2 Mitä ja Miksi liikenteenhallintaa Reitittimet jakavat yhteisiä resursseja Verkon siirtokapasiteettia Reitittimen puskurointikapasiteettia Reitittimen prosessointikapasiteettia Resurssit ovat rajallisia ja yhdenkin loppuminen johtaa toiminnan rajoittumiseen Resurssien jako ja ruuhkanhallinta Kolikon kaksi puolta Resurssienjako: Yhteydelle määritellään ennaltakäsin rajoja Ruuhkanhallinta: Yhteydelle määritellään rajoja ruuhkautumisen tapahduttua Ääripäissä Ei ruuhkanhallintaa --> resurssit on jaettu ennaltakäsin (vrt puhelinverkko) Ei resurssienjakoa --> yhteydet kilpailevat samasta kaistasta ja ruuhkatlanteissa algoritmi ratkaisee resurssien jaon S Tietoliikenneverkot / Marko Luoma S Tietoliikenneverkot / Marko Luoma 7 Contend vs Congest Resurssien jako ja ruuhkanhallinta Contend, viivästyminen Kun verkon siirtokapasiteetti hetkellisesti ylittyy ja paketit asetellaan jonoon, josta ne palvellaan ajallaan. Congest, ruuhkautuminen Kun verkon siirtokapasiteetti ylitetään tarpeeksi pitkän aikaa, vuotaa puskurit yli ja paketteja katoaa 100% Resurssien varaus Ruuhkanhallinta 0% S Tietoliikenneverkot / Marko Luoma S Tietoliikenneverkot / Marko Luoma 8
3 Liikenteenhallinta Liikenteenhallinta on laajempi kokonaisuus kuin pelkkä resurssienjako ja ruuhkanhallinta mutta sisältää käsitteenä molemmat osa-alueet. Liikenteenhallinta on monisäikeistä (hajautettua): verkossa on useita laitteita laitteiden toiminnot on jaettu useille protokollakerroksille usiden laitteiden sisäiset resurssit on jaettu Ruuhkanhallinta vs vuonhallinta Ruuhkanhallinta pyrkii estämään lähdettä ylittämästä verkon resursseja Vuonhallinta pyrkii estämään lähdettä ylittämästä vastaanottajan resursseja S Tietoliikenneverkot / Marko Luoma S Tietoliikenneverkot / Marko Luoma 11 Liikenteen hallinnan aikatasoja Vuo (eri kuin vuonhallinta) Paketti Vuonhallinta IP-kytkentä Yhteys Reititys Yhteydellinen kytkentä, jokainen paketti kulkee ennalta määrättyä reittiä Yhteydetön kytkentä, jokainen paketti reititetään omana kokonaisuutena Käytännössä paketit kulkevat samoja reittejä pitkin ja muodostavat siten VUON. Vuo ei ole kongreettinen reunaehto vaan abstractio, joka helpottaa liikenteenhallintaa Verkonhallinta S Tietoliikenneverkot / Marko Luoma Verkonrakennus S Tietoliikenneverkot / Marko Luoma 12
4 Vuon tila Ei tilaa: puhdas yhteydetön kytkentä Pehmeä tila: reititin ylläpitää tietoa kyseisen yhteyden kytkennästä välimuistissa jonkinlaista tietoa yhteyden puskurointiviiveestä jonkinlaista tietoa yhteyden resurssitarpeesta Kova tila: reititin ylläpitää tarkkaa tietoa yhteyden kytkennästä yhteyden resurssitarpeesta yhteyden olemassaolosta Lähteen käyttäytyminen Erilaisilla sovelluksilla on ominaisuuksia, jotka määrittelevät millaista palvelua niiden tulisi verkosta saada Compressed audio MPEG-video Telephone Rate variation intensity Cell loss tolerance TCP/IP Cell delay variance tolerance S Tietoliikenneverkot / Marko Luoma S Tietoliikenneverkot / Marko Luoma 15 Palvelumalli Best Effort Ei takuuta kaistasta Ei takuuta viiveestä Ei takuuta hukasta Taattu palvelu Takuu kaistan tietylle arvolle Rajoitettu viive Taattu hukka tietyllä aikavälillä Harmaa alue S Tietoliikenneverkot / Marko Luoma 14 Palvelun hyödyllisyys Palvelulla täytyy olla tiettyjä reunaehtoja mikäli nykyisiä sovelluksia halutaa onnestuneesti käyttää. Value of the service 1 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 Telephone TCP/IP Layer coded Video S Tietoliikenneverkot Bandwidth / Marko Luoma 16
5 Lähestymistapoja liikenteenhallintaan Reititin - lähde keskeinen Varaus - vaste pohjainen Ikkuna - nopeus pohjainen S Tietoliikenneverkot / Marko Luoma 17 Varaus - vaste pohjainen Varauspohjaisissa järjestelmissä lähde pyytää verkolta tiettyä määrää resursseja yhteyden ajaksi. Jokainen reititin täyttää tämän pyynnön tai hylkää yhteyden. Vastepohjaisissa järjestelmissä lähteet aloittavat lähettämisen heti ja säätävät nopeuttaa saamansa vasteen perusteella. Ekspilisiittisesti; reititin informoi lähdettä Implisiittisesti; lähde havainnoi verkon tilaa uudelleen lähetyspyyntöjen kautta HUOM!!! Varauspohjainen toiminta edellyttää reititin keskeistä toimintaa S Tietoliikenneverkot / Marko Luoma 19 Reititin - lähde keskeinen Reititin keskeiset menetelmät perustuvat reitittimen tekemään päätökseen, mitkä paketit saavat palvelua ja mitkä eivät Lähde keskeisissä menetelmissä lähteet sopeutuvat verkon tilaan lähettämällä sopivan määrän informaatiota verkkoon Nämä kaksi menetelmää eivät ole toisiaan poissulkevia Vaikka reititin suorittaa pakettien karsintaa tarvitaan lähdepohjaista hallintaa mukautumaan verkon tilaan Vaikka lähde kontrolloisikin liikennettä tarvitaan reitittimiin mekanismeja turvaamaan niiden toimintaa ruuhkatilanteissa S Tietoliikenneverkot / Marko Luoma 18 Ikkuna - nopeus pohjainen Lähteelle kerrotaan kuinka paljon informaatiota lähde saa lähettää Tietyssä aikaikkunassa (purskeinen) Millä nopeudella (tasainen) Nopeuspohjainen lähestymistapa soveltuu varauspohjaisiin järjestelmiin S Tietoliikenneverkot / Marko Luoma 20
6 Internet Best effort verkko Vastepohjainen toiminta (ei varausta) Lähdepohjainen toimintatapa Käyttää ikkunapohjaista lähteenhallintaa Tulevaisuudessa taattuja palveluita Varauspohjaisia palveluita Vaatii paljon reitittimiltä Luonnostaan nopeuspohjainen lähteenhallinta Resurssiteho Resurssiteho optimoi kahta keskeistä parametria läpäisyä viivettä Optimoinnin tavoite on saada mahdollisimman suuri läpäisy mahdollisimman pienellä viiveellä Teho = Läpäisy Viive α Teho Optimi S Tietoliikenneverkot / Marko Luoma S Tietoliikenneverkot / Marko Luoma Kuorma 23 Liikenteenhallinnan vertailumenetelmiä Liikenteenhallinnan menetelmiä vertaillaan usein niiden suhteessa Verkon resurssien hyödyntämiseen Lähteiden reiluun käsittelyyn Reiluus Reiluus on määritelmä sille, miten oikeudenmukaisesti eri yhteyksiä kohdellaan ruuhkautuvassa reitittimessä S Tietoliikenneverkot / Marko Luoma S Tietoliikenneverkot / Marko Luoma 24
7 Sosialistinen näkökanta Kaikkia palvellaan tasapuolisest Kaikki resurssit ovat kaikkien vapaasti hyödynntettävissä Kaikilta odotetaan kunnioitusta toisia kohtaan. TCP-ruuhkanhallinta Tehtävä on määrittää kuinka paljon verkossa on kapasiteettia vapaana Toimii itseohjautuvasti Kellotus vastesanomilla (ACK) Kello on kiertoaikaviive (RTT), joka kertoo ajan, joka kuluu paketin lähettämisestä sen vastaanottamiseen S Tietoliikenneverkot / Marko Luoma S Tietoliikenneverkot / Marko Luoma 27 Kapitalistinen näkökanta Yhteyksiä käsitellään perustuen maksukykyyn, eli sen kulutat mistä maksat. Sosiokapitalistisessa järjestelmässä uudet yhteydet pääsevät mukaan ja vanhat yhteydet saatavat kärsiä siitä ( vakio palveluaika ) Puhtaassa kapitalistisessa järjestelmässä olemassa olevien yhteyksien tilaan ei puututa mitenkään TCP-ruuhkanhallinta Ruuhkaikkuna vastaa vuonhallinnan ilmoitettuaikkunaa Ikkuna on minimiresurssi rajoitettu Maksimissaan: MaxIkkuna = MIN(RuuhkaIkkuna, IlmoitettuIkkuna) Käytännössä: Ikkuna = MaxIkkuna-(Viim. lähetetty tavu - Viim. hyväksytty tavu) KYSYMYS: Kuinka ruuhkaikkuna tiedetään? Lähde suorittaa itseohjautuvaa verkon tilan seurantaa perustuen vastesanomiin (ACK) ja kadonneisiin paketteihin S Tietoliikenneverkot / Marko Luoma S Tietoliikenneverkot / Marko Luoma 28
8 TCP-ruuhkanhallinta TCP-ruuhkanhallinta Lineaarinen kasvu Jokainen onnistuneesti lähetetty ruuhkaikkunallinen kasvattaa ruuhkaikkunaa yhdellä paketilla: RuuhkaIkkuna = RuuhkaIkkuna + MSS Käytännössä jokainen vastesanoma kasvattaa ikkunaa omalta osaltaan: Inc = MSS * (MSS/RuuhkaIkkuna) RuuhkaIkkuna = RuuhkaIkkuna + Inc Eksponentiaalinen peräytyminen Jokainen epäonnistunut lähetys (ajastin laukeaa) aiheuttaa ruuhkaikkunan puoliintumisen: RuuhkaIkkuna = ½ * RuuhkaIkkuna Lähteen nopeuden kasvattaminen on alussa liian hidasta Tarvitaan tehokkaampi mekanismi ensi alkuun Ruuhkaikkuna tuplataan jokaisella vastesanomalla SLOW START on mekanismi, jossa Ruuhkaikkunaa kasvatetaan 1:stä paketista tuplaamalla jokaisen paketin kohdalla ikkunan arvo Se estää laitetta lähettämästä täyttä ikkunaa paketteja niissä tapauksissa, joissa se vastaanottaa useita ACK-paketteja S Tietoliikenneverkot / Marko Luoma S Tietoliikenneverkot / Marko Luoma 31 TCP-ruuhkanhallinta Perusversion käyttäytyminen Pitkät hitaat kasvamiset Nopeat pudotukset TCP-ruuhkanhallinta Alussa lähteen ruuhkaikkunan loputon tuplaaminen johtaa pakettien suureen katoamiseen mittaa verkon kapasiteetin tulevan toiminnan varalle Ajastimen laukeamisen jälkeen tuplaamista käytetään ainoastaan siihen asti, että saavutetaan edellinen validi ruuhkaikkunan koko tämän jälkeen jatketaan normaalia toimintaa (lineaarinen kasvu) S Tietoliikenneverkot / Marko Luoma S Tietoliikenneverkot / Marko Luoma 32
9 TCP-Ruuhkanhallinta TCP-Ruuhkanhallinta Slow Start käyttäytyminen Nopeat nopeuden kasvattamiset Pitkät kuolleet hetket Lähetettävä data Paketin katoaminen ja siitä johtuva ajastimen laukeaminen Ruuhkaikkuna Jokainen yksittäinen kadonnut tai viivästynyt paketti vahvistetaan edellisellä oikealla ACK sanomalla. Kolme peräkkäistä samaa ACK sanomaa laukaisee uudelleen lähetyksen. Mikäli uudelleen lähetys ei tuo kuittausta jokaiseen pakettiin odotetaan ajastimen laukeamista. Paketti 1 Paketti 2 Paketti 3 Paketti 4 Paketti 5 Paketti 6 Paketti 3 ACK 1 ACK 2 ACK 2 ACK 2 ACK 2 ACK S Tietoliikenneverkot / Marko Luoma S Tietoliikenneverkot / Marko Luoma 35 TCP-Ruuhkanhallinta Miten poistaa pitkät hiljaiset hetket yksittäisen paketin kaoamisen jälkeen? Fast Recovery and Fast Retransmit on menetelmä siihen OLETUS: Verkossa katoaa useimmiten vain yksi paketti!!! TCP-Ruuhkanhallinta Nopea vaste useimmissa tapauksissa Monen paketin katoaminen ja niistä johtuva ajastimen laukeaminen Yksittäisen paketin katoaminen ja nopea palaaminen Ruuhkaikkuna S Tietoliikenneverkot / Marko Luoma S Tietoliikenneverkot / Marko Luoma 36
10 Reitittimet Ruuhkatila reitittimessä syntyy, kun resurssien tarve reitittimessä ylittää tarjolla olevan resurssien määrän. Reititin suojautuu resurssien vajetta vastaan erilaisilla jonotusalgoritmeilla, joilla jaetaan verkon kapasiteettia jaetaan puskurimuistin määrää ruuhkan aikana poistetaan oikeat paketit Reitittimet Ennustavat menetelmät pyrkivät pitämään verkon/reitittimen toimintapisteen resurssiteho maksimissa Reagoivat menetelmät pyrkivät palauttamaan toimintapisteen optimiin, mikäli se sen ylittää S Tietoliikenneverkot / Marko Luoma S Tietoliikenneverkot / Marko Luoma 39 Reitittimet Ruuhkanhallinnan menetelmät voidaan jakaa kahteen luokkaan: ruuhkatilaa ennustaviin ruuhkatilaan reagoiviin Reitittimet Toimiakseen menetelmät tarvitsevat erilaisia suoritusarvoja: Jonon keskimääräinen pituus Kiertoaikaviive Mikäli suoritusarvoja mitataan ja ennustetaan perustuen liian tiheään tai harvaan näytteenottoon ilmenee tuloksissa väistämättä virheitä, jotka johtuvat internet-liikenteen dynamiikasta S Tietoliikenneverkot / Marko Luoma S Tietoliikenneverkot / Marko Luoma 40
11 Reitittimet Tail Drop Kiertoaikaviive voidaan määrittää jonon regeneroitumisprosessista. Periaate on hyödyntää dominoivan liikenteen dynamiikkaa. Dominoiva kiertoaikaviive voidaan määrittää tarkkailemalla jonon täyttymis- ja tyhjentymisprosessia. Mikäli prosessi on deterministinen, voidaan syklin pituudesta määrittää kiertoaikaviive S Tietoliikenneverkot / Marko Luoma 41 Tail Drop eli häntäkarsinta on yksinkertaisin puskurinhallintamekanismi. Siinä rajallinen puskuri, jota palvellaan FIFOperiaatteella, ylivuotaa pitäen siten liikenteen kurissa S Tietoliikenneverkot / Marko Luoma 43 Reitittimet Puskurinhallintaan on erilaisia mekanismeja Tail Drop (häntäkarsinta) Random Drop (Satunnaiskarsinta) Random Early Detection (Ennakoiva satunnaiskarsinta) Weighted Fair Queueing (Reilujonotus) Tail Dropin ongelmia Pienellä puskurilla: TCP:llä hankaluuksia päästä slow-startista Heikko vaste verkon transienteille Suurella puskurilla: Reaaliaikaiselle liikenteelle kohtuuttoman suuri viive Verkossa ei etene hetken päästä ollenkaan liikennettä, mikäli linkin nopeus on pieni S Tietoliikenneverkot / Marko Luoma S Tietoliikenneverkot / Marko Luoma 44
12 Tail Dropin ongelmia Globaali synkronisaatio seuraa siitä, että jonon täyttyessä kaikki yhteydet kokevat pakettihukkaa miltei yhtäaikaisesti ja joutuvat siten slow startiin. Selkeä painotus tasaiselle liikenteelle, koska jonon ollessa kasvussa todennäköisyys, että purskeiselle yhteydelle riittää puskurikapasiteettia pienenee. Random Drop Voidaan käyttää sekä ruuhkaa ennakoivana että ruuhkaan reagoivana menetelmänä. Reagointi perustuu paketin karsintaan jokaisen uuden paketin saapuessa Ennakoinnissa jokainen tuleva paketti aiheuttaa karsintatodennäköisyyden laskemisen ja sen perusteella toimimisen S Tietoliikenneverkot / Marko Luoma S Tietoliikenneverkot / Marko Luoma 47 Random Drop Perustuu olettamukseen, että paketti, joka valitaan satunnaisesti kuuluu lähteelle N todennäköisyydellä, joka on suoraan verrannollinen lähteen keskinopeuteen. Paketti valitaan tällä kertaa koko jonosta tasajakaumaan perustuvulla satunnaisprosessilla. Random Early Detection REDissä hyödynnetään puskurin keskimääräistä tilaa karsinta todennäköisyyden laskemiseen. Keskimääräinen puskurin täyttöaste lasketaan keskiarvo-suodattimella Max Min avgt = αqt + ( α) avgt S Tietoliikenneverkot / Marko Luoma 46 avg S Tietoliikenneverkot / Marko Luoma 48
13 REDin edut Ei aiheuta globaalia synkronoitumista Toiminta perustuu eston havainnointiin jo ennen kuin sitä edes esiintyy. Takaa puskuriin kapasiteettia purkeiden varalle Purskeen todennäköisyys tulla karsituksi ei kasva lineaarisesti; sillä purske ei aikaansaa keskiarvon välitöntä nousua (EWMA). Fair Queuing metodit Palvelua jaetaan kiertävällä periaattella perustuen: Tasapuolisesti» Paketti kerrallaan» Bitti kerrallaan Painotetusti» Paketti kerrallaan» Bitti kerrallaan S Tietoliikenneverkot / Marko Luoma S Tietoliikenneverkot / Marko Luoma 51 Fair Queuing Menetelmä, jossa ryhmälle yhteyksiä muodostetaan rinnakkaiset jonot Nämä rinnakkaiset jonot ovat tietyssä mielessä autonomisia, eli niillä ei ole suoraa interaktiota keskenään Entä jos ATM ATM:ssä toimitaan 48-tavun hyötykuorman omaavassa pakettiverkossa. IP-paketit, joudutaan paloittelemaan useaan ATM-soluun siten, että yksittäinen paketti voi jakaantua jopa 200:n soluun. Perinteiset protokollat eivät kykene paketin osittaisiin uudelleen lähteyksiin ja siksi yhden solun hukkaaminen johtaakin koko protokollakehyksen ( solua) poistamiseen S Tietoliikenneverkot / Marko Luoma S Tietoliikenneverkot / Marko Luoma 52
14 Kuinka parantaa hyötysuhdetta Valikoivia liikenteen karsintamenetelmiä ovat: EPD (Early Packet Discard) PPD (Partial Packet Discard) EPD on estoa ennakoiva menetelmä. Se hyödyntää tietoa jonon pituudesta. Mikäli jonon pituus ylittää aseteltavan rajan hylätään saapuva AAL5 -kehys. PPD on vastaavasti reaktiivinen toimintamalli, jossa täyttynyt jono on aiheuttanut ylivuodon puskurissa ja näin ollen aikaansaanut AAL5 -kehyksen vikaantumisen. PPD poistaa jäljelle jääneet solut jonosta ja näin vapauttaa tilaa tuleville soluille. Lisälukemista Opetusmonisteissa tulee kaksi artikkelia, jotka käsittelee ruuhkanhallintaa ja ATM:n tuomia ongelmia IETF:n työsuositus Recommendation on Queue Management and Congestion Avoidance in the Internet Omar Elloumi & Hossan Afifi RED Algorithm in ATM Networks S Tietoliikenneverkot / Marko Luoma S Tietoliikenneverkot / Marko Luoma 55 Miten nämä vaikuttavat verkkoon EPD ja PPD johtavat helposti globaaliin synkronisaatioon, mikä on verkon toiminnan kannalta epäedullinen tilanne. Mikä ratkaisuksi FBA (Fair Buffer Allocation) parantaa EPD:tä lisäämällä pehmeän käyttäytymisen raja-alueella C-RED (Cell Random Early Detection) Yhdistää REDin ja koko kehyksen poiston soluverkkoon Lisäpähkinä Jotta mielenne pysyisi virkeänä ja saisitte tutkiskella asiaa tarkemmin vuorossa on tehtävät Kirjasta kappaleen 8 tehtävät 5 ja 6 Laitan ne myös www-sivulle S Tietoliikenneverkot / Marko Luoma S Tietoliikenneverkot / Marko Luoma 56
S Tietoliikenneverkot
S-38.188 Tietoliikenneverkot Luento 6: Liikenteenhallinta Historiaa Internet reitittimien ruuhkanhallinta sai alkunsa Ford yhtymän sisäisen verkon ongelmista. Nämä ongelmat ilmenivät, koska silloinen ARPANET
S Tietoliikenneverkot S Luento 6: Liikenteenhallinta
M.Sc.(Tech.) Marko Luoma (1/33) S 38.188 Tietoliikenneverkot S 2000 Luento 6: Liikenteenhallinta M.Sc.(Tech.) Marko Luoma (2/33) Terminologiaa Contend, viivästyminen Kun verkon siirtokapasiteetti hetkellisesti
S-38.201 ATM JA MULTIMEDIA SEMINAARI, KEVÄT -97
S-38.201 ATM JA MULTIMEDIA SEMINAARI, KEVÄT -97 Internet reitittimien ruuhkanhallinta Marko Luoma S 39279H Teknillinen korkeakoulu, Teletekniikan laboratorio Otakaari 5A, 02150 Espoo Marko.Luoma@hut.fi
Tietoliikenne II Kurssikoe
581363-2 Tietoliikenne II Kurssikoe 20.10. 2005 Kirjoita jokaisen vastauspaperisi alkuun kurssin nimi ja kokeen päivämäärä sekä nimesi, syntymäaikasi tai opiskelijanumerosi ja allekirjoituksesi. Kokeessa
kynnysarvo (threshold) varoitusarvo = tästä lähtien syytä varoa ruuhkaa aluksi 64 K RTT
kynnysarvo (threshold) varoitusarvo = tästä lähtien syytä varoa ruuhkaa aluksi 64 K kynnysarvoon saakka voidaan kasvattaa ruuhkaikkunaa eksponentiaalisesti kynnysarvon saavuttamisen jälkeen kasvatetaan
kynnysarvo (threshold)
kynnysarvo (threshold) varoitusarvo = tästä lähtien syytä varoa ruuhkaa aluksi 64 K kynnysarvoon saakka voidaan kasvattaa ruuhkaikkunaa eksponentiaalisesti kynnysarvon saavuttamisen jälkeen kasvatetaan
kynnysarvo (threshold)
kynnysarvo (threshold) varoitusarvo = tästä lähtien syytä varoa ruuhkaa aluksi 64 K kynnysarvoon saakka voidaan kasvattaa ruuhkaikkunaa eksponentiaalisesti kynnysarvon saavuttamisen jälkeen kasvatetaan
Palvelun laatutekijät SISÄLLYSLUETTELO
SISÄLLYSLUETTELO 1. Palvelun laatutekijät 2 1.1 Laadun parametrit 2 1.1.1 Kaistanleveys 3 1.1.2 Pakettien kokema viive 4 1.1.3 Pakettien katoaminen ja niiden järjestys 4 1.2 Jonotustekniikoita 4 1.2.1
Kuljetuskerros. Tietokoneverkot. Matti Siekkinen Pasi Sarolahti
Kuljetuskerros Tietokoneverkot Matti Siekkinen Pasi Sarolahti Osa sisällöstä adaptoitu seuraavista lähteistä: J.F. Kurose and K.W. Ross: Computer Networking: A Top-Down Approach 6th ed. -kirjan lisämateriaali
ELEC-C7241 Tietokoneverkot Kuljetuskerros
ELEC-C7241 Tietokoneverkot Kuljetuskerros Pasi Sarolahti (kalvoja Matti Siekkiseltä) 23.1.2018 Laskareista Lisävuoro ke 16-18 U8 Edelleen myös ke 14-16 ja pe 12-14 Ke 14 16 tällä viikolla poikkeuksellisesti
Liikenne ATM- ja SDHverkoissa
Liikenne ATM- ja SDHverkoissa 7LHWROLLNHQQHWHNQLLNDQSHUXVWHHW $(/&7 0DUNXV3HXKNXUL Tämä ja OSI Liikenteen kanavointi Liikenteen hallinta Reititys 7 sovellus 6 esitystapa 5 yhteysjakso 4 siirto 3 verkko
TCP:n vuonohjaus (flow control)
J. Virtamo 38.3141 Teleliikenneteoria / TCP:n vuonohjaus 1 TCP:n vuonohjaus (flow control) W. Stallings, High-Speed Networks, TCP/IP and ATM Design Principles, Prentice-Hall, 1998, Sections 10.1-10.2 Ikkunointipohjainen
Tehtävä 2: Tietoliikenneprotokolla
Tehtävä 2: Tietoliikenneprotokolla Johdanto Tarkastellaan tilannetta, jossa tietokone A lähettää datapaketteja tietokoneelle tiedonsiirtovirheille alttiin kanavan kautta. Datapaketit ovat biteistä eli
Selektiiviset kuittaukset (RFC 2018, RFC 3517)
Selektiiviset kuittaukset (RFC 2018, RFC 3517) Toistokuittaus ilmaisee vain yhden puuttuvan segmentin Vastaavasti kumulatiivinen kuittaus toipumisen aikana kertoo vain seuraavaksi haluttavan eli ilmaiseen
Reiluus. Maxmin-reiluus. Tärkeä näkökohta best effort -tyyppisissä palveluissa. Reiluuden maxmin-määritelmä
J. Virtamo 38.3141 Teleliikenneteoria / Reiluus 1 Reiluus Maxmin-reiluus Tärkeä näkökohta best effort -tyyppisissä palveluissa kenellekään ei anneta kvantitatiivisia QoS-takuita kaikkien pitää saada palvelua
Kuva maailmasta Pakettiverkot (Luento 1)
M.Sc.(Tech.) Marko Luoma (1/20) M.Sc.(Tech.) Marko Luoma (2/20) Kuva maailmasta Pakettiverkot (Luento 1) WAN Marko Luoma TKK Teletekniikan laboratorio LAN M.Sc.(Tech.) Marko Luoma (3/20) M.Sc.(Tech.) Marko
Monimutkaisempi stop and wait -protokolla
Monimutkaisempi stop and wait -protokolla Lähettäjä: 0:A vastaanottaja: ajastin lähettäjälle jos kuittausta ei kuulu, sanoma lähetetään automaattisesti uudelleen kuittaus: = ok, lähetä seuraava uudelleenlähetys
Ongelma 1: Ei saada kolmea toistokuittausta
Nopea uudelleenlähetys (Fast retransmit) ensikuittaus Kun lähettäjä vastaanottaa 3 toistokuittausta samalle segmentille, se lähettää heti puuttuvan segmentin uudestaan eikä odota segmentin ajastimen laukeamista
Nopea uudelleenlähetys (Fast retransmit)
Nopea uudelleenlähetys (Fast retransmit) Kun lähettäjä vastaanottaa 3 toistokuittausta samalle segmentille, se lähettää heti puuttuvan segmentin uudestaan eikä odota segmentin ajastimen laukeamista Seq
Nopea uudelleenlähetys (Fast retransmit)
Nopea uudelleenlähetys (Fast retransmit) Kun lähettäjä vastaanottaa 3 toistokuittausta samalle segmentille, se lähettää heti puuttuvan segmentin uudestaan eikä odota segmentin ajastimen laukeamista Seq
on yksi keskeisimpiä toimintoja Internetin toiminnan varmistamiseksi Internetin ruuhkanhallinta pitkälti
TCP-ruuhkanvalvonta (RFC 2581) TCP-ruuhkanvalvonta on yksi keskeisimpiä toimintoja Internetin toiminnan varmistamiseksi Internetin ruuhkanhallinta pitkälti TCP:n varassa Pääsääntöisesti muut protokollat
Ruuhkanvalvonta on hankalaa!
Ruuhkanvalvonta on hankalaa! Sitä varten on koko ajan kehitetty yhä parempia menetelmiä uudelleenlähetysajastimen arvo» RTT:n varianssin arviointi» Karnin algoritmi» exponential retransmission timer backoff
Ruuhkanvalvonta on hankalaa!
Ruuhkanvalvonta on hankalaa! Sitä varten on koko ajan kehitetty yhä parempia menetelmiä uudelleenlähetysajastimen arvo» RTT:n varianssin arviointi» Karnin algoritmi» exponential retransmission timer backoff
Ruuhkanvalvonta on hankalaa!
Ruuhkanvalvonta on hankalaa! Sitä varten on koko ajan kehitetty yhä parempia menetelmiä uudelleenlähetysajastimen arvo» RTT:n varianssin arviointi» Karnin algoritmi» exponential retransmission timer backoff
S-38.118 Teletekniikan perusteet
S-38.118 Teletekniikan perusteet Laskuharjoitus 3 Paketoinnin hyötysuhde 1 Harjoitus 3 koostuu: Demoluento (45 min) Datan siirtäminen Internetissä yleensä Laskuesimerkki datan siirtämisestä Äänen siirtäminen
Siltojen haitat. Yleisesti edut selvästi suuremmat kuin haitat 2/19/2003 79. Kytkin (switch) Erittäin suorituskykyisiä, moniporttisia siltoja
Siltojen haitat sillat puskuroivat ja aiheuttavat viivettä ei vuonsäätelyä => sillan kapasiteetti voi ylittyä kehysrakenteen muuttaminen => virheitä jää havaitsematta Yleisesti edut selvästi suuremmat
1. FRAME RELAY: RUUHKANHALLINTA
1. FRAME RELAY: RUUHKANHALLINTA Frame Relay on kehitelty nimenomaan uusille nopeammille, virheettömämmille verkoille. Se on tarkoitettu puhtaasti tehokkaaseen tiedonsiirtoon eikä sinänsä sisällä vuohallintaa
Siltojen haitat Yleisesti edut selvästi suuremmat kuin haitat
Siltojen haitat sillat puskuroivat ja aiheuttavat viivettä ei vuonsäätelyä => sillan kapasiteetti voi ylittyä kehysrakenteen muuttaminen => virheitä jää havaitsematta Yleisesti edut selvästi suuremmat
Liikenneteoriaa (vasta-alkajille)
Liikenneteoriaa (vasta-alkajille) samuli.aalto@hut.fi liikteor.ppt S-38.8 - Teletekniikan perusteet - Syksy 000 Sisältö Liikenneteorian tehtävä Verkot ja välitysperiaatteet Puhelinliikenteen mallinnus
OSI malli. S 38.188 Tietoliikenneverkot S 2000. Luento 2: L1, L2 ja L3 toiminteet
M.Sc.(Tech.) Marko Luoma (1/38) S 38.188 Tietoliikenneverkot S 2000 Luento 2: L1, L2 ja L3 toiminteet OSI malli M.Sc.(Tech.) Marko Luoma (2/38) OSI malli kuvaa kommunikaatiota erilaisten protokollien mukaisissa
10. Liikenteen- ja ruuhkanhallinta ATM:ssä Osa 2
S-38.145 Liikenneteorian perusteet K-99 Osa 2 lect10.ppt 1 Sisältö Johdanto Liikenteen- ja ruuhkanhallinnan toimenpiteet ATM:ssä Pääsynvalvonta (CAC) Yhteysparametrien valvonta (UPC) ABR-palveluluokan
Liikenneteorian tehtävä
J. Virtamo 38.3141Teleliikenneteoria / Johdanto 1 Liikenneteorian tehtävä Määrää kolmen eri tekijän väliset riippuvuudet palvelun laatu järjestelmä liikenne Millainen käyttäjän kokema palvelun laatu on
Tekijä / Aihe 1
14.12.2009 Tekijä / Aihe 1 IPTV Alueverkkojen näkökulmasta SimuNet Seminaari 7.12.2008 Vesa Kankare 14.12.2009 Vesa Kankare/ IPTV 2 Agenda Yleistä Palvelun laadun merkitys Aluedataverkon rooli tulevaisuuden
IPTV:n asettamat vaatimukset verkolle ja palvelun toteutus. Lauri Suleva TI07 Opinnäytetyö 2011
IPTV:n asettamat vaatimukset verkolle ja palvelun toteutus SimuNetissä Lauri Suleva TI07 Opinnäytetyö 2011 Johdanto Työn tarkoituksena tutustua IPTV-palveluun yleisesti IPTV-palveluun vaikuttavien tekijöiden
Standardiliitännät. Tämä ja OSI 7LHWROLLNHQQHWHNQLLNDQSHUXVWHHW $(/&7 0DUNXV3HXKNXUL
Standardiliitännät 7LHWROLLNHQQHWHNQLLNDQSHUXVWHHW $(/&7 0DUNXV3HXKNXUL Tämä ja OSI Liitännät toiminnalliset ominaisuudet sähköiset ominaisuudet X.25 Kehysvälitys 7 sovellus 6 esitystapa 5 yhteysjakso
Yleistä. Esimerkki. Yhden palvelimen jono. palvelin. saapuvat asiakkaat. poistuvat asiakkaat. odotushuone, jonotuspaikat
J. Virtamo 38.3143 Jonoteoria / Jonojärjestelmät 1 JONOJÄRJESTELMÄT Yleistä Jonojärjestelmät muodostavat keskeisen mallinnuksen välineen mm. tietoliikenne- ja tietokonejärjestelmien suorituskyvyn analysoinnissa.
Monimutkaisempi stop and wait -protokolla
Monimutkaisempi stop and wait -protokolla ajastin lähettäjälle jos kuittausta ei kuulu, sanoma lähetetään automaattisesti uudelleen kuittaus: ACK = ok, lähetä seuraava uudelleenlähetys synnyttää kaksoiskappaleita!
Monimutkaisempi stop and wait -protokolla
Monimutkaisempi stop and wait -protokolla ajastin lähettäjälle jos kuittausta ei kuulu, sanoma lähetetään automaattisesti uudelleen kuittaus: ACK = ok, lähetä seuraava uudelleenlähetys synnyttää kaksoiskappaleita!
Yleistä ruuhkasta. 5. Ruuhkan valvonta. ruuhkan valvonta <=> vuon valvonta. open-loop control. closed-loop control
5. Ruuhkan valvonta yleistä ruuhkan valvonnasta ruuhkan estäminen liikenteen tasoittaminen vuotava ämpäri, vuoromerkkiämpäri liikennevirran määrittely ruuhkan säätely kuorman rajoittaminen pääsyvalvonta,
5. Ruuhkan valvonta. yleistä ruuhkan valvonnasta ruuhkan estäminen. vuotava ämpäri, vuoromerkkiämpäri liikennevirran määrittely
5. Ruuhkan valvonta yleistä ruuhkan valvonnasta ruuhkan estäminen liikenteen tasoittaminen vuotava ämpäri, vuoromerkkiämpäri liikennevirran määrittely ruuhkan säätely kuorman rajoittaminen pääsyvalvonta,
5. Ruuhkan valvonta. yleistä ruuhkan valvonnasta ruuhkan estäminen. ruuhkan säätely. liikenteen tasoittaminen. kuorman rajoittaminen
5. Ruuhkan valvonta yleistä ruuhkan valvonnasta ruuhkan estäminen liikenteen tasoittaminen vuotava ämpäri, vuoromerkkiämpäri liikennevirran määrittely ruuhkan säätely kuorman rajoittaminen pääsyvalvonta,
11/20/ Siirron optimointi
jos ilmoitus lisäpuskureista katoaa, lähettäjä lukkiutuu odotustilaan vastaanottaja voi luulla, ettei ole lähetettävää lukkiutumisen estämiseksi kun ikkunankoko = 0 lähettäjä ei saa lähettää, paitsi erityistä
Konsensusongelma hajautetuissa järjestelmissä. Niko Välimäki Hajautetut algoritmit -seminaari
Konsensusongelma hajautetuissa järjestelmissä Niko Välimäki 30.11.2007 Hajautetut algoritmit -seminaari Konsensusongelma Päätöksen muodostaminen hajautetussa järjestelmässä Prosessien välinen viestintä
Tietoverkot ja QoS. QoS ATM QoS-toteutukset Integrated Services Differentiated Services. Petri Vuorimaa 1
Tietoverkot ja QoS QoS ATM QoS-toteutukset Integrated Services Differentiated Services Petri Vuorimaa 1 Quality of Service (QoS) Tiedonsiirron vaatimukset määritellään QoSparametrien avulla: + esim. viive,
Tietoliikenne II (2 ov)
Tietoliikenne II (2 ov) Syksy 2001 Liisa Marttinen Kurssikirja: Kurose & Ross, Computer Networking Lisämateriaalia: Aiheeseen liittyvät RFC:t 28.10.2001 1 Tietoliikenne II Täydennystä Tietoliikenne I -kurssin
Tietoliikenne II (2 ov)
Tietoliikenne II (2 ov) Syksy 2001 Liisa Marttinen Kurssikirja: Kurose & Ross, Computer Networking Lisämateriaalia: Aiheeseen liittyvät RFC:t 28.10.2001 1 Tietoliikenne II Täydennystä Tietoliikenne I -kurssin
1. Tietokoneverkot ja Internet. 1. 1.Tietokoneesta tietoverkkoon. Keskuskone ja päätteet (=>-80-luvun alku) Keskuskone ja oheislaitteet
1. Tietokoneverkot ja Internet 1.1. Tietokoneesta tietoverkkoon 1.2. Tietoliikenneverkon rakenne 1.3. Siirtomedia 1.4. Tietoliikenneohjelmisto eli protokolla 1.5. Viitemallit: OSI-malli, TCP/IP-malli 1.6.
Siirron optimointi. Optimointi on usein tarpeen: Silly window syndrome
Siirron optimointi jos ilmoitus lisäpuskureista katoaa, lähettäjä lukkiutuu odotustilaan vastaanottaja voi luulla, ettei ole lähetettävää lukkiutumisen estämiseksi kun ikkunankoko = 0 lähettäjä ei saa
OSI ja Protokollapino
TCP/IP OSI ja Protokollapino OSI: Open Systems Interconnection OSI Malli TCP/IP hierarkia Protokollat 7 Sovelluskerros 6 Esitystapakerros Sovellus 5 Istuntokerros 4 Kuljetuskerros 3 Verkkokerros Linkkikerros
TCP. TCP-optiot. Erilaisia suorituskykyongelmia. Aikaleima (timestamp) TCP:n peruspiirteiden toiminta tarkemmin. TCP:n uusia piirteitä.
TCP TCP:n peruspiirteiden toiminta tarkemmin osin vain harjoitustehtävissä TCP:n uusia piirteitä S Window scaling time stamping RED (Random Early Detection) ECN (Explicit Congestion Notification) Source
Tietoliikenne II. Syksy 2005 Markku Kojo. Tietoliikenne II (2 ov,, 4 op) Page1. Markku Kojo Helsingin yliopisto Tietojenkäsittelytieteen laitos
Tietoliikenne II Syksy 2005 Markku Kojo 1 Syksy 2005 Tietoliikenne II (2 ov,, 4 op) Markku Kojo Helsingin yliopisto Tietojenkäsittelytieteen laitos 2 Page1 1 Kirjallisuus ja muuta materiaalia Kurssikirja:
» multiaccess channel» random access channel LAN (Ethernet) langaton. ongelma: käyttövuoron jakelu Yhteiskäyttöisen kanavan käyttö
4. MAC-alikerros yleislähetys (broadcast)» multiaccess channel» random access channel LAN (Ethernet) langaton ongelma: käyttövuoron jakelu 29.9.2000 1 Mitä käsitellään? Yhteiskäyttöisen kanavan käyttö
4. MAC-alikerros. yleislähetys (broadcast) ongelma: käyttövuoron jakelu. » multiaccess channel» random access channel LAN (Ethernet) langaton
4. MAC-alikerros yleislähetys (broadcast)» multiaccess channel» random access channel LAN (Ethernet) langaton ongelma: käyttövuoron jakelu 29.9.2000 1 Mitä käsitellään? Yhteiskäyttöisen kanavan käyttö
S 38.1105 Tietoliikennetekniikan perusteet. Pakettikytkentäiset verkot. Helsinki University of Technology Networking Laboratory
S 38.1105 Tietoliikennetekniikan perusteet Pakettikytkentäiset verkot Kertausta: Verkkojen OSI kerrosmalli Sovelluskerros Esitystapakerros Istuntokerros Kuljetuskerros Verkkokerros Linkkikerros Fyysinen
Tiivistelmä Kunal Shahin Master of Science -työstä: Simulation Based Study of TCP Fairness in Multi-Hop Wireless Networks
Tiivistelmä Kunal Shahin Master of Science -työstä: Simulation Based Study of TCP Fairness in Multi-Hop Wireless Networks Kari Kähkönen 21. maaliskuuta 2006 1 Johdanto Ad hoc -verkkoihin on kohdistettu
Siirron optimointi. Optimointi on usein tarpeen: Silly window syndrome. Esimerkki jatkuu
A Esimerkki jatkuu B ajastin laukeaa, uudelleen sanoma 2 lähettää sanoman 5 lähettää sanoman 6 jos lupa katoaa, jää odottamaan! ==> lukkiutumistilanne
Esimerkki jatkuu. <seq = 6, data = m6> <ack = 4, buf = 0> <ack = 4, buf = 1> <ack = 4, buf = 2> <ack = 6, buf = 0> <ack = 6, buf = 4> 1/31/
A ajastin laukeaa, uudelleen sanoma 2 lähettää sanoman 5 lähettää sanoman 6 jos lupa katoaa, jää odottamaan! ==> lukkiutumistilanne Esimerkki jatkuu
Vuonohjaus: ikkunamekanismi
J. Virtamo 38.3141 Teleliikenneteoria / Ikkunointiin perustuva vuonohjaus 1 Vuonohjaus: ikkunamekanismi Kuittaamattomina liikkeellä olevien segmenttien (data unit) lkm W (ikkuna) Lähetyslupien kokonaismäärä
Miksi? Miksi? Kaksisuuntainen liikenne TCP-protokolla. Ikkunankoko. Valikoiva toisto: ikkuna 5, numeroavaruus 8
Ikkunankoko Kun käytetty numeroavaruus on 0, 1,.. n ja eri numeroita siis käytettävissä n+1 yleensä jokin kakkosen potenssi» koska numerokentän koko k bittiä => käytössä 2**k numeroa ikkunan koko go back
Chapter 3 Transport Layer. Kuljetuskerros
Chapter 3 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete
Tietoliikenne II (2 ov) Tietoliikenne II. Sisällysluettelo jatkuu. Alustava sisällysluettelo. Suoritus. Täydennystä Tietoliikenne I -kurssin asioihin
Tietoliikenne II ( ov) Syksy 001 Liisa Marttinen Kurssikirja: Kurose & Ross, Computer Networking Lisämateriaalia: Aiheeseen liittyvät RFC:t 4.10.001 1 Tietoliikenne II Täydennystä Tietoliikenne I -kurssin
ITKP104 Tietoverkot - Teoria 3
ITKP104 Tietoverkot - Teoria 3 Ari Viinikainen Jyväskylän yliopisto 5.6.2014 Teoria 3 osuuden tärkeimmät asiat kuljetuskerroksella TCP yhteyden muodostus ja lopetus ymmärtää tilakaavion suhde protokollan
Tietoliikenne II (2 ov)
Tietoliikenne II (2 ov) Syksy 2002 Liisa Marttinen Kurssikirja: Kurose & Ross, Computer Networking (2. edition) (kyllä 1. painoskin kelpaa, mutta siitä puuttuu mm. mobiiliverkot kokonaan) Lisämateriaalia:
Tietoliikenteen perusteet. Langaton linkki
Tietoliikenteen perusteet Langaton linkki Kurose, Ross: Ch 6.1, 6.2, 6.3 (ei:6.2.1, 6.3.4 ja 6.3.5) Tietoliikenteen perusteet /2007/ Liisa Marttinen 1 Sisältö Langattoman linkin ominaisuudet Lnagattoman
Tietoliikenteen perusteet. Langaton linkki
Tietoliikenteen perusteet Langaton linkki Kurose, Ross: Ch 6.1, 6.2, 6.3 (ei:6.2.1, 6.3.4 ja 6.3.5) Tietoliikenteen perusteet /2007/ Liisa Marttinen 1 Sisältö Langattoman linkin ominaisuudet Lnagattoman
Tietoverkot ja QoS. QoS QoS-toteutukset Integrated Services Differentiated Services
Tietoverkot ja QoS QoS QoS-toteutukset Integrated Services Differentiated Services 1 Quality of Service (QoS) Tiedonsiirron vaatimukset määritellään QoSparametrien avulla: esim. viive, virhetaajuus, kapasiteetti
TCP. TCP:n peruspiirteiden toiminta tarkemmin. TCP:n uusia piirteitä. osin vain harjoitustehtävissä
TCP TCP:n peruspiirteiden toiminta tarkemmin osin vain harjoitustehtävissä TCP:n uusia piirteitä SACK Window scaling time stamping RED (Random Early Detection) ECN (Explicit Congestion Notification) TCP-otsakkeen
TCP:n peruspiirteiden toiminta tarkemmin. osin vain harjoitustehtävissä. TCP:n uusia piirteitä
TCP TCP:n peruspiirteiden toiminta tarkemmin osin vain harjoitustehtävissä TCP:n uusia piirteitä SACK Window scaling time stamping RED (Random Early Detection) ECN (Explicit Congestion Notification) TCP-otsakkeen
Kuittaukset ACK. NAK-kuittaus. kumulatiivinen ACK. yksittäinen ACK. sanoma virheellinen tai puuttuu. tähän saakka kaikki ok!
ACK Kuittaukset kumulatiivinen ACK tähän saakka kaikki ok! Go-Back N yksittäinen ACK vain tämä ok! Valikoiva toisto NAK-kuittaus sanoma virheellinen tai puuttuu 5.10.2001 40 Negatiiviset kuittaukset NAK-kuittauksilla
Kuittaukset. Miksi? Miksi? Negatiiviset kuittaukset NAK-kuittauksilla voidaan nopeuttaa uudelleenlähettämistä. Ikkunankoko ACK
ACK Kuittaukset kumulatiivinen ACK tähän saakka kaikki ok! Go-Back N yksittäinen ACK vain tämä ok! Valikoiva toisto NAK-kuittaus sanoma virheellinen tai puuttuu Negatiiviset kuittaukset NAK-kuittauksilla
Kuittaukset. tähän saakka kaikki ok! Go-Back N. sanoma virheellinen tai puuttuu
ACK Kuittaukset kumulatiivinen ACK tähän saakka kaikki ok! Go-Back N yksittäinen ACK vain tämä ok! Valikoiva toisto NAK-kuittaus sanoma virheellinen tai puuttuu 5.10.2001 40 Negatiiviset kuittaukset NAK-kuittauksilla
j n j a b a c a d b c c d m j b a c a d a c b d c c j
TEKNILLINEN KORKEAKOULU Tietoliikenne- ja tietoverkkotekniikan laitos S-38.115 Liikenneteorian perusteet, Kevät 2008 Demonstraatiot Luento 12 29.2.2008 D12/1 Tarkastellaan verkkoa, jossa on solmua ja linkkiä.
OSI-malli. S Tietoliikenneverkot. Miksi kytketään. Välitys ja kytkeminen OSI-mallissa. /XHQWR.\WNHQWlMDUHLWLW\V
Teknillinen korkeakoulu Teletekniikan laboratorio OSImalli S8.88 Tietoliikenneverkot 7 sovelluskerros 7 sovelluskerros /XHQWR.\WNHQWlMUHLWLW\V esitystapakerros yhteysjakso esitystapakerros yhteysjakso
Ikkunankoko. Kun käytetty numeroavaruus on 0, 1,.. n ja eri numeroita siis käytettävissä n+1
Ikkunankoko Kun käytetty numeroavaruus on 0, 1,.. n ja eri numeroita siis käytettävissä n+1 yleensä jokin kakkosen potenssi» koska numerokentän koko k bittiä => käytössä 2**k numeroa ikkunan koko go back
Ikkunankoko. Kun käytetty numeroavaruus on 0, 1,.. n ja eri numeroita siis käytettävissä n+1
Ikkunankoko Kun käytetty numeroavaruus on 0, 1,.. n ja eri numeroita siis käytettävissä n+1 yleensä jokin kakkosen potenssi» koska numerokentän koko k bittiä => käytössä 2**k numeroa ikkunan koko go back
Tietoliikenne II (2 ov)
Tietoliikenne II (2 ov) Kevät 2001 Liisa Marttinen Kurssikirja: Tanenbaum, Computer Networks (3. Painos) Tietoliikenne II Kertausta ja täydennystä Tietoliikenne I - kurssin asioihin perusteellisemmin laajemmin
Luento 13: Arkkitehtuurit. Internet tänään
Tietoliikenneverkot Luento 13: Arkkitehtuurit Nykyinen Internet: Best Effort palvelua Internet tänään Yhtäläiset mahdollisuudet (resurssit) ja kurjuudet (hukat ja viiveet) Internet on muuttumassa kaupalliseksi
Tietoliikenne II (2 ov) Sisällysluettelo jatkuu. Tietoliikenne II. Alustava sisällysluettelo. Suoritus
Tietoliikenne II ( ov) Syksy 00 Liisa Marttinen Kurssikirja: Kurose & Ross, Computer Networking (. edition) (kyllä 1. painoskin kelpaa, mutta siitä puuttuu mm. mobiiliverkot kokonaan) Lisämateriaalia:
J. Virtamo Jonoteoria / Prioriteettijonot 1
J. Virtamo 38.3143 Jonoteoria / Prioriteettijonot 1 Prioriteettijonot Tarkastellaan M/G/1-jonojärjestelmää, jossa asiakkaat on jaettu K:hon prioriteettiluokkaan, k = 1,..., K: - luokalla 1 on korkein prioriteetti
Ratkaisu: Miksi lähetetään uusi paketti? SACK (Selective Acknowledgement) Nopea toipuminen ei onnistu! Limited Transmit
Limited Transmit RFC 3042: Enhansing TCP s Loss Recovery Using Limited Transmit. M. Allman, H. Balakrishnan, S. Floyd. January 2001 (Status: PROPOSED STANDARD) Lähettäjä ei saa kolmea toistokuittausta
1. Tietokoneverkot ja Internet
1. Tietokoneverkot ja Internet 1.1. Tietokoneesta tietoverkkoon 1.2. Tietoliikenneverkon rakenne 1.3. Siirtomedia 1.4. Tietoliikenneohjelmisto eli protokolla 1.5. Viitemallit: OSI-malli, TCP/IP-malli 1.6.
1. Tietokoneverkot ja Internet Tietokoneesta tietoverkkoon. Keskuskone ja päätteet (=>-80-luvun alku) Keskuskone ja oheislaitteet
. Tietokoneverkot ja Internet.. Tietokoneesta tietoverkkoon.. Tietoliikenneverkon rakenne.. Siirtomedia.4. Tietoliikenneohjelmisto eli protokolla.5. Viitemallit: OSI-malli, TCP/IP-malli.6. Esimerkkejä
Diplomityöseminaari 6.8.2002
Diplomityöseminaari 6.8.2002 Työn nimi: TV-lähetystä välittävän laajakaistaisen IP-pohjaisen tilaajaverkon palvelunlaatu Työn tekijä: Lasse Kiiskinen Valvoja: Professori Raimo Kantola Ohjaaja: DI Mikko
3. Kuljetuskerros 3.1. Kuljetuspalvelu
End- to- end 3. Kuljetuskerros 3.1. Kuljetuspalvelu prosessilta prosessille looginen yhteys portti verkkokerros koneelta koneelle IP-osoite peittää verkkokerroksen puutteet jos verkkopalvelu ei ole riittävän
7. Palvelun laatu (QoS) Internetissä
7. Palvelun laatu (QoS) Internetissä Sovellus ei saa mitään takuita palvelun laadusta: IP tarjoaa tasapuolisen palvelun (best effort) kaikille) joskus kaikki toimii hyvin, joskus ei sovellus ei voi paljoa
7. Palvelun laatu (QoS) Internetissä
7. Palvelun laatu (QoS) Internetissä Sovellus ei saa mitään takuita palvelun laadusta: IP tarjoaa tasapuolisen palvelun (best effort) kaikille) joskus kaikki toimii hyvin, joskus ei sovellus ei voi paljoa
Pertti Pennanen OSI 1 (4) EDUPOLI ICTPro1 29.10.2013
Protokollat Pertti Pennanen OSI 1 (4) SISÄLLYSLUETTELO Protokollat... 1 OSI-mallin kerrokset ovat... 2 Fyysinen kerros (Ethernet) hubi, toistin... 2 Siirtoyhteyskerros (Ethernet) silta, kytkin... 2 Verkkokerros
Tietokone. Tietokone ja ylläpito. Tietokone. Tietokone. Tietokone. Tietokone
ja ylläpito computer = laskija koostuu osista tulostuslaite näyttö, tulostin syöttölaite hiiri, näppäimistö tallennuslaite levy (keskusyksikössä) Keskusyksikkö suoritin prosessori emolevy muisti levy Suoritin
Tietoverkot ja QoS. Quality of Service (QoS) QoS-toteutukset. Laatuparametrit. Jonotus. Reitittimen toiminta
Tietoverkot ja QoS Quality of Service (QoS) QoS QoS-toteutukset Integrated Services Differentiated Services Tiedonsiirron vaatimukset määritellään QoSparametrien avulla: esim. viive, virhetaajuus, kapasiteetti
Tietoliikenteen perusteet
Tietoliikenteen perusteet Luento 5: Kuljetuskerros luotettavan tiedonsiirron periaatteet Syksy 2017, Timo Karvi Kurose&Ross: Ch3 Pääasiallisesti kuvien J.F Kurose and K.W. Ross, All Rights Reserved Tietoliikenteen
1. Johdanto luento01.ppt S Liikenneteorian perusteet - Kevät
luento01.ppt S-38.145 - Liikenneteorian perusteet - Kevät 2005 1 Sisältö Tietoliikenneverkot ja välitysperiaatteet Liikenneteorian tehtävä Liikenneteoreettiset mallit Littlen kaava 2 Tietoliikenneverkot
M. Allman, H. Balakrishnan, S. Floyd. January (Status: PROPOSED STANDARD) Lähettäjä ei saa kolmea toistokuittausta =>
Limited Transmit RFC 3042: Enhansing TCP s Loss Recovery Using Limited Transmit. M. Allman, H. Balakrishnan, S. Floyd. January 2001 (Status: PROPOSED STANDARD) Lähettäjä ei saa kolmea toistokuittausta
Liikkuvuudenhallinta Mobile IP versio 6 - protokollalla
Liikkuvuudenhallinta Mobile IP versio 6 - protokollalla Mikko Merger Valvoja: Professori Jorma Jormakka Ohjaaja: TkL Markus Peuhkuri TKK/Tietoverkkolaboratorio 1 Sisällysluettelo Tavoitteet IEEE 802.11
M. Allman, H. Balakrishnan, S. Floyd. January Lähettäjä ei saa kolmea toistokuittausta =>
Limited Transmit RFC 3042: Enhansing TCP s Loss Recovery Using Limited Transmit. M. Allman, H. Balakrishnan, S. Floyd. January 2001 (Status: PROPOSED STANDARD) Lähettäjä ei saa kolmea toistokuittausta
Salausmenetelmät (ei käsitellä tällä kurssilla)
6. Internetin turvattomuus ja palomuuri Internetin turvaongelmia Tietojen keruu turva-aukkojen löytämiseksi ja koneen valtaaminen Internetissä kulkevan tiedon tutkiminen IP-osoitteen väärentäminen Palvelunestohyökkäykset
1.4. Tietoliikenneohjelmistot eli protokollat
1.4. Tietoliikenneohjelmistot eli protokollat Protokolla eli yhteyskäytäntö Mitä sanomia lähetetään ja missä järjestyksessä Missä tilanteessa sanoma lähetetään Miten saatuihin sanomiin reagoidaan tietoliikenteessä
1.4. Tietoliikenneohjelmistot eli protokollat
1.4. Tietoliikenneohjelmistot eli protokollat Protokolla eli yhteyskäytäntö Mitä sanomia lähetetään ja missä järjestyksessä Missä tilanteessa sanoma lähetetään Miten saatuihin sanomiin reagoidaan tietoliikenteessä
1.4. Tietoliikenneohjelmistot eli protokollat. Protokollien kerrosrakenne. Mitä monimutkaisuutta?
1.4. Tietoliikenneohjelmistot eli protokollat Protokolla eli yhteyskäytäntö Mitä sanomia lähetetään ja missä järjestyksessä Missä tilanteessa sanoma lähetetään Miten saatuihin sanomiin reagoidaan tietoliikenteessä
1. Tietokoneverkot ja Internet Tietokoneesta tietoverkkoon. Keskuskone ja oheislaitteet. Keskuskone ja päätteet (=>-80-luvun alku)
1. Tietokoneverkot ja Internet 1.1. Tietokoneesta tietoverkkoon 1.2. Tietoliikenneverkon rakenne 1.3. Siirtomedia 1.4. Tietoliikenneohjelmisto eli protokolla 1.5. Viitemallit: OSI-malli, TCP/IP-malli 1.6.
" Internet on globaalin mittakaavan koeverkko. " Nykyinen Internet. " yhtäläiset resurssit ja kurjuus. " Best Effort palvelua. " 3 bitin precedence
Internet tänään " Internet on globaalin mittakaavan koeverkko. Tietoliikenneverkot Luento 8: Arkkitehtuurit " Internet on muuttumassa kaupalliseksi verkoksi, jonka palvelut halutaan saattaa kaupallisuuden