TIN, Keilaniemi Global energy view. Tuomo Suntola

Samankaltaiset tiedostot
Maapallon energiavarat

Maapallon energiaratkaisut: Mistä puhdasta energiaa?

Sähköntuotanto energialähteittäin Power generation by energy source

Geoenergian tulevaisuuden visio. Jari Suominen

Sähköntuotanto energialähteittäin Power generation by energy source

Sähköntuotanto energialähteittäin Power generation by energy source

Sähköntuotanto energialähteittäin Power generation by energy source

Sähköntuotanto energialähteittäin Power generation by energy source

Sähköntuotanto energialähteittäin Power generation by energy source

Sähköntuotanto energialähteittäin Power generation by energy source

Sähköntuotanto energialähteittäin Power generation by energy source

Sähköntuotanto energialähteittäin Power generation by energy source

Low-Carbon Finland Platform Energiajärjestelmäskenaariot. Antti Lehtilä Tiina Koljonen

Export Demand for Technology Industry in Finland Will Grow by 2.0% in 2016 GDP growth 2016/2015, %

SolarForum. An operation and business environment development project

Biometaanin tuotannon ja käytön ympäristövaikutusten arviointi

Parisiin sopimus vs. Suomen energia- ja ilmastostrategia 2030

Hiilineutraalin Turun toimenpiteet ja haaste Lounais-Suomen yhteinen ilmastohaaste, Rauma Turun kaupunginhallituksen puheenjohtaja Olli A

Uusiutuva/puhdas energia haasteita ja mahdollisuuksia. Prof. Jarmo Partanen

Sähköjärjestelmän käyttövarmuus & teknologia Käyttövarmuuspäivä

Uutta ja uusiutuvaa Energia-alan kehitys vs. Parisiin sopimus. Prof. Jarmo Partanen Ilmastoseminaari

Storages in energy systems

Energiajärjestelmän haasteet ja liikenteen uudet ratkaisut

Maailman energiatulevaisuudet Uudet energialähteet Professori Peter Lund Teknillinen korkeakoulu

METSÄT JA ENERGIA Kannattaako keskittyä hajautettuun? Pekka Peura

Liikenteen biopolttoaineet

Energia-alan kehitys vs. Parisiin sopimus vs. Suomen energia- ja ilmastostrategia 2030

Vähäpäästöinen luotettava ja kustannustehokas sähköjärjestelmä? Prof. Jarmo Partanen

Tulevaisuuden energiateknologiat - kehitysnäkymiä ja visioita vuoteen ClimBus-ohjelman päätösseminaari kesäkuuta 2009 Satu Helynen, VTT

Sähkön rooli? Jarmo Partanen LUT School of Energy systems

Social and Regional Economic Impacts of Use of Bioenergy and Energy Wood Harvesting in Suomussalmi

Energia-alan vahvat ja heikot signaalit

Suomi innovaatioympäristönä maailman paras?

Suomestako öljyvaltio? Kari Liukko

Ruuan ja vesivarojen riittävyyden globaalit haasteet The world is thirsty because we are hungry?

Global Economy is Expected to Grow by 3.5% in 2015

Uusien liikenteen biopolttoaineteknologioiden

Toimintamallit happamuuden ennakoimiseksi ja riskien hallitsemiseksi turvetuotantoalueilla (Sulfa II)

Digitice Road Show Kokkola. Lassi Markkanen Vattenfall Key Account Manager Sales Nordic Energy Intensive Clients

Integrating full climate change impacts balances and management

Ilmastonmuutoksen hillinnän kansainväliset haasteet

Timo Saarelainen Toimitusjohtaja Honeywell Oy Bioenergia Yksi Itä-Suomen mahdollisuuksista Kuopio 30. lokakuuta 2009

Kaasutukseen perustuvat CHP-tekniikat. ForestEnergy2020 -tutkimus- ja innovaatio-ohjelman vuosiseminaari, Joensuu,

14. Energialähteet ja energiantuotanto

Biomassan mahdollisuuksia energiantuotannossa

Tarua vai totta: sähkön vähittäismarkkina ei toimi? Satu Viljainen Professori, sähkömarkkinat

SATAKUNTA UNIVERSITY OF APPLIED SCIENCES. Jyrki Holttinen BACHELOR THESIS CLIMATE STRATEGY STUDY FOR PORI REGION

Sellutehdas biojalostamona Jukka Kilpeläinen, tutkimus- ja kehitysjohtaja, Stora Enso Oyj Biotekniikka kansaa palvelemaan yleisötilaisuus

Space for work, meetings and events. Expert Services for knowledge intensive and growth oriented SME s

ENERGYWEEK Making Grids Smarter A Journey from a Vision to Reality. Dick Kronman, Head of Smart Grids Center of Excellence

CCS:n rooli Suomen energiajärjestelmässä vuoteen 2050

Sustainability Investing in the Future Low2No. Jean Rogers February 2011

Ainevirta-analyysi esimerkki Suomen typpi- ja fosforivirroista

Typen ja fosforin alhainen kierrätysaste Suomessa

Maatilayritysten vastuu alueellisesti määräytyvästä kestävyydestä

Turun ilmasto- ja energiatoimenpiteitä

Kestävä ja älykäs energiajärjestelmä

Kasvu keskimäärin / Average growth: +2,9 % Japani Japan

Aurinkoenergia kehitysmaissa

Sähköntuotannon tulevaisuus. Seppo Valkealahti Sähköenergiatekniikan professori Tampereen teknillinen yliopisto

Rakentamisen näkymät EU-alueella ja Suomessa

Kiina China. Japani Japan

Wärtsilä Corporation. Interim Report January-September 2003 Ole Johansson President & CEO. 29 October Wärtsilä

Efficiency change over time

Ympäristöjalanjäljet - miten niitä lasketaan ja mihin niitä käytetään? Hiilijalanjälki

Metsäbiomassaan perustuvien nestemäisten biopolttoaineiden ilmastovaikutukset

Aurinkosähkön tulevaisuudennäkymät ja kannattavuus Suomessa. Jero Ahola

Sähköntuotanto ja ilmastonmuutoksen hillintä haasteet tuotannolle, jakelulle ja varastoinnille

Vesi Energia Ruoka (- ja ekosysteemi) NEXUS. Seppo Rekolainen SYKE

Näkökulmia energia- ja ilmastostrategiaan

KRIISIVIESTINNÄN MEDIASUHTEET

Finnish experiences in designing and funding the renewable energy projects

Suomen Meriklusterin yhteistyön ja vaikuttavuuden kehittäminen

Pamaus ry Uusiutuva energia Suomen mahdollisuus

Jätteiden energiahyötykäyttö ja maakaasu Vantaan Energian jätevoimala

Photo: Paavo Keränen. KAINUU in statistics 2009

Uusinta tietoa ilmastonmuutoksesta: Hillintä

Maailmantalouden kasvun jakautuminen 2011e Breakdown of World Economic Growth in 2011e

Ilmastonmuutos on täällä voiko se vaikuttaa positiivisesti liiketoimintaan?

TM ETRS-TM35FIN-ETRS89 WTG

Nuclear power in 2015 Global and European perspectives 5/4/2015 1

Miten ymmärtää puubiomassan kaasutusta paremmin? - Hiilen kaasutusmallin kehittäminen

ENERGIAMURROS ON MAHDOLLISUUS Energiateollisuus ry:n Syysseminaari. Henrik Ehrnrooth, Pöyry Oyj ja Climate Leadership Council

( ( OX2 Perkkiö. Rakennuskanta. Varjostus. 9 x N131 x HH145

LIIKENTEEN BIOPOLTTOAINEIDEN HIILIJALANJÄLKIVERTAILU. BioRefine- ja Vesi loppuseminaari Risto Soukka

Suomi muuttuu Energia uusiutuu

Tynnyrivaara, OX2 Tuulivoimahanke. ( Layout 9 x N131 x HH145. Rakennukset Asuinrakennus Lomarakennus 9 x N131 x HH145 Varjostus 1 h/a 8 h/a 20 h/a

TM ETRS-TM35FIN-ETRS89 WTG

Ilmasto-vaikutukset-Suomi? Prof. Petteri Taalas Secretary-General

Environmental Impacts of Energy Production in Finland a Life Cycle Approach

13/04/2011. Energy supply of communities facing challenge of Climate Change. Energiatehokkuus alkaa kaavoituksesta

Metsälamminkankaan tuulivoimapuiston osayleiskaava

TM ETRS-TM35FIN-ETRS89 WTG

Puun rakennuskäytön ympäristövaikutukset (khk)


TM ETRS-TM35FIN-ETRS89 WTG

Paikallisen vihreän talouden kehittäminen pohjoismaisessa kontekstissa

Exercise 1. (session: )

KONEOPPIMINEN SISÄLLÖNTUOTANNOSSA CASE NESTE

Wärtsilä Corporation. Interim Report January-June 2003 Ole Johansson President & CEO. 31 July Wärtsilä

Transkriptio:

TIN, Keilaniemi 30.10.2003 Global energy view Tuomo Suntola 1

TIN, Keilaniemi 30.10.2003 Global energy view Tuomo Suntola 1. World Energy Council objectives and scenarios 1. Energiavarastojen inventaario, luonnon energiavirrat ja tuotettu energia 2. Energian käytön jakautuminen, saatavuus ja tuotantotarpeet 3. Sähkön tuotannon reaalivaihtoehdot, ilmastouhat 4. Auringon energian hyödyntämisvaihtoehtoja 5. Energian tie primäärilähteestä käyttökohteeseen, vetyteknologia 6. Hiilen kierto maapallon ekosysteemissä 2

Luonnonfilosofian seura Tieteiden talo 2.10.2003 klo 18.00 Maapallon energiavarat Tkt Tuomo Suntola 1. Energiavarastojen inventaario, luonnon energiavirrat ja tuotettu energia 2. Energian käytön jakautuminen, saatavuus ja tuotantotarpeet 3. Sähkön tuotannon reaalivaihtoehdot, ilmastouhat 4. Auringon energian hyödyntämisvaihtoehtoja 5. Energian tie primäärilähteestä käyttökohteeseen, vetyteknologia 6. Hiilen kierto maapallon ekosysteemissä 3

Technical Options for a more Sustainable Future - Improved Energy Efficiency - especially at the point of end-use in buildings, electric appliances, vehicles, and production processes. - More Renewable Energy: such as biomass, wind, solar, hydro, and geothermal - Advanced Energy Technologies: next generation fossil fuel and carbon sequestration technologies nuclear technologies, if the issues can be resolved.

Global Mean Temperature Change INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC)

Mauna Loa measurement on atmospheric CO 2 content 500 CO 2 (ppm) 450 400 350 300 250 200 1900 1950 2000 2050 6

Global Mean Temperature Change CO 2 development 1900-2000 INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC)

Global Primary Energy Scenarios Nakicenovic IIASA 2003 8

Global Mean Temperature Change INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC)

World Electricity Demand by Regions Consumption of electricity MWh / year / capita 12 8 North America OECD Pacific Western Europe Russia & Eastern Europe 4 0 Latin America East Asia Middle East & North Africa China India Rest of the world 0 1000 2000 3000 4000 5000 6000 Population, cumulative [millions of people] 10

France Mobility by Travel Mode (passenger-kilometers per day per person) 10 2 100,000 All modes 10 1 Buses + cars 10,000 Km/day-cap 10 0 2-Wheelers Rail 1,000 Meter/day-cap 10-1 Railways Horses Air TGV 100 10-2 Waterways 1800 1850 1900 1950 2000 10 Grübler IIASA 1998

US oil productions mimic discoveries US PRODUCTIONS MIMIC PAST DISCOVERIES 6 Gb/year 5 DISCOVERIES BACKDATED & 33-YEAR SHIFTED Jean Laherrere 4 3 2 PRODUCTIONS 1 0 12 1900 1920 1940 1960 1980 2000 2020 2040 Grübler IIASA 1998

Will non Middle East oil mimic discoveries? WORLD EXCLUDING OPEC MIDDLE-EAST annual discoveries shifted by 30 years and productions 30 25 discoveries shifted by 30 years 20 15 10 5 productions 0 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040

14

World Primary Energy 1000 Primary Energy (EJ) 100 10 1 Biomass Total Coal Hydro + other Renew. Gas Oil Nuclear 0.1 0.01 1850 1870 1890 1910 1930 1950 1970 1990 2010

Brazil Ethanol Learning Curve Oil-equivalent price $/bbl 200 150 100 50 Producer price Producer price Cumulative subsidy 1billion $ Oil price Estimated Oil price Data: Goldenberg, 1996 30 % cost reduction for each doubling of cum. production Subsidy 0 1978 1985 1988 1990 1995 0 10 20 30 Cumulative production 10 Regression 0.6 billion $ Cumulative production 10 Source: Goldemberg, 1996 $2billion 6 bbl 6 bbl? 0.3 billion $? Grübler IIASA 2002

Nakicenovic TU-Wien & IIASA 2003 Evolution of Global Primary Energy

Nakicenovic TU-Wien & IIASA 2003 Evolution of Global Primary Energy

Evolution of Global Primary Energy Nakicenovic 19 TU-Wien & IIASA 2003

Annual solar insolation: 100 000 TW = 80 000 Gtoe/y (=> 100 million nuclear power stations) Global energy sources and reserves Proven earth reserves, TWy Energy production: 15 Twy/y = 12 Gtoe/y ( => 15000 x 1 GW power stations) Coal: 8000 Oil: 200 Natural gas: 250 Uranium: 100 20

Annual solar insolation: 100 000 TW = 80 000 Gtoe/y Global energy sources and reserves Biomass: -renewal: 600 TWy 80 TW Proven earth reserves, TWy Energy production: 15 Twy/y = 12 Gtoe/y Coal: 8000 Oil: 200 Natural gas: 250 Uranium: 100 21

Annual solar insolation: 100 000 TW = 80 000 Gtoe/y Global energy sources and reserves Hydro: 1 TW Biomass: -renewal: 600 TWy 80 TW Proven earth reserves, TWy Energy production: 15 Twy/y = 12 Gtoe/y Coal: 8000 Oil: 200 Natural gas: 250 Uranium: 100 22

Annual solar insolation: 100 000 TW(y/y) = 80 000 Gtoe/y Global energy sources and reserves Hydro: 1 TW Biomass: -renewal: 600 TWy 80 TW Wind: 0.5 TW Proven earth reserves, TWy Energy production: 15 TW = 12 Gtoe/y Coal: 8000 Oil: 200 Natural gas: 250 Uranium: 100 23

Global energy balances Solid land biomass production 80 TW Biomass 1,5 TW Fossil fuel 12 TW Forestry 7% Agriculture 4% Electricity by fossil 1,2 TW Popul. 1% Hydro 0,25 TW Nuclear 0,22 TW Solid land biomass production: 0,1 % of solar insolation Energy production: 0,01 % of solar insolation 24

Energy balances in Finland Biomass production 28 GWy/y Energy production 35,4 GWy/y Fossil fuels Forestry industry 13 GWy/y Agriculture 1,6 GWy/y Population 0,5 GWy/y Solid land biomass production: 0,1 % of solar insolation 22 GWy/y Biomass 4,6 GWy/y Combustion based electricity 3,1 GWy/y Energy production: 0,15 % of solar insolation Hydro power 1,7 GWy/y Nuclear power 2,1 GWy/y 25

Energy balances in France Biomass production 120 GWy/y Energy production 280 GWy/y Agriculture residues 55 GWy/y Fossil fuels Hydro electricity 7 GWy/y 160 GWy/y Forestry Industry 7 GWy/y Agriculture products 35 GWy/y Population 5 GWy/y Biomass Nuclear electricity 38 GWy/y Combustion based electricity 7 GWy/y Solid land biomass production: 120 GWy/y = 0,2 % of solar insolation Energy production: 280 Gwy/y = 0,45 % of solar insolation 26

Luonnonfilosofian seura Tieteiden talo 2.10.2003 klo 18.00 Maapallon energiavarat Tkt Tuomo Suntola 1. Energiavarastojen inventaario, luonnon energiavirrat ja tuotettu energia 2. Energian käytön jakautuminen, saatavuus ja tuotantotarpeet 3. Sähkön tuotannon reaalivaihtoehdot, ilmastouhat 4. Auringon energian hyödyntämisvaihtoehtoja 5. Energian tie primäärilähteestä käyttökohteeseen, vetyteknologia 6. Hiilen kierto maapallon ekosysteemissä 27

Primary energy scenario for 1900-2050 Global energy production TW 30 Other, new? Solar Wind Nuclear Oil 20 Oil Gas 10 0 1900 1950 2000 2050 Gas to liquid & Advanced coal Conventional coal Advanced biomass Conventional biomass Hydro 28

Primary energy scenario for 1900-2050 Global energy production TW 30 Other, new? Solar Wind Nuclear Oil 20 Oil Gas Gas to liquid & Advanced coal 10 Conventional coal 0 1900 1950 2000 2050 Advanced biomass Conventional biomass Hydro 2100 29

Luonnonfilosofian seura Tieteiden talo 2.10.2003 klo 18.00 Maapallon energiavarat Tkt Tuomo Suntola 1. Energiavarastojen inventaario, luonnon energiavirrat ja tuotettu energia 2. Energian käytön jakautuminen, saatavuus ja tuotantotarpeet 3. Sähkön tuotannon reaalivaihtoehdot, ilmastouhat 4. Auringon energian hyödyntämisvaihtoehtoja 5. Energian tie primäärilähteestä käyttökohteeseen, vetyteknologia 6. Hiilen kierto maapallon ekosysteemissä 30

Global production of electricity 1900-2100 4000 GW 3000 TOTAL Fossil Hydro 2000 Nuclear Biomass 1000 Wind Solar 0 1900 1950 2000 2050 2100 Year 31

Global production of electricity 1900-2100 10000 GW 1000 100 10 1 TOTAL Fossil Hydro Nuclear Biomass Wind Solar 0,1 1900 1950 2000 2050 2100 Year 32

Global production of electricity 1900-2100 4000 GW 3000 TOTAL Fossil Hydro 2000 Nuclear Biomass 1000 Wind Solar 0 1900 1950 2000 2050 2100 Year 33

Global production of electricity 1900-2100 increased wind and solar 10000 GW 1000 100 10 1 TOTAL Fossil Hydro Nuclear Biomass Wind Solar 0,1 1900 1950 2000 2050 2100 Year 34

Global production of electricity 1900-2100 increased wind and solar 4000 GW 3000 TOTAL Fossil Hydro 2000 Nuclear Biomass 1000 Wind Solar 0 1900 1950 2000 2050 2100 Year 35

Mauna Loa measurement on atmospheric CO 2 content 380 CO 2 (ppm) 370 360 350 340 330 320 310 1955 1965 1975 1985 1995 2005 36

Luonnonfilosofian seura Tieteiden talo 2.10.2003 klo 18.00 Maapallon energiavarat Tkt Tuomo Suntola 1. Energiavarastojen inventaario, luonnon energiavirrat ja tuotettu energia 2. Energian käytön jakautuminen, saatavuus ja tuotantotarpeet 3. Sähkön tuotannon reaalivaihtoehdot, ilmastouhat 4. Auringon energian hyödyntämisvaihtoehtoja 5. Energian tie primäärilähteestä käyttökohteeseen, vetyteknologia 6. Hiilen kierto maapallon ekosysteemissä 37

Alternatives for solar insolation to electricity conversion 0,01 0,4 0,3 0,95 0,001 (total) Biomass / fossil fuels Sun -biomass -(fossil fuels) -combustion - turbine - generator - power grid 0,8 0,25 0,95 0,2 (total) Solar thermal Sun - heat collector - turbine -generator - power grid 0,12 0,9 0,1(total) Photovoltaic Sun - solar panels - inverter - power grid 38

Distribution of the earth area Area of solar panels needed for all present production of electricity 0,02 % Buildings, roads, ect < 0,5 % Cropland 3 % Pasture 6,5 % Forests 8,1 % Deserts ect 9,4 % Oceans 73 % 39

Luonnonfilosofian seura Tieteiden talo 2.10.2003 klo 18.00 Maapallon energiavarat Tkt Tuomo Suntola 1. Energiavarastojen inventaario, luonnon energiavirrat ja tuotettu energia 2. Energian käytön jakautuminen, saatavuus ja tuotantotarpeet 3. Sähkön tuotannon reaalivaihtoehdot, ilmastouhat 4. Auringon energian hyödyntämisvaihtoehtoja 5. Energian tie primäärilähteestä käyttökohteeseen, vetyteknologia 6. Hiilen kierto maapallon ekosysteemissä 40

Energy products: from source to end-user - Availability, convenience, cost, emissions, energy efficiency Industry, metallurgy / chemicals / pulp&paper Households, heat / lightning / appliances Traffic, car / heavy / public / rail / sea / air Crude oil Natural gas Coal Peat Biomass, residues & waste Bio-products, cultivated Hydro potential Wind potential Solar insolation Nuclear - availability -cost - emissions - energy efficiency 41

Energy products: from source to end-user - Availability, convenience, cost, emissions, energy efficiency Industry, metallurgy / chemicals / pulp&paper Households, heat / lightning / appliances Traffic, car / heavy / public / rail / sea / air Electricity Heat Crude oil Natural gas Coal Peat Biomass, residues & waste Bio-products, cultivated Hydro potential Wind potential Solar insolation Nuclear - availability -cost - emissions - energy efficiency 42

Energy products: from source to end-user - Availability, convenience, cost, emissions, energy efficiency Industry, metallurgy / chemicals / pulp&paper Households, heat / lightning / appliances Traffic, car / heavy / public / rail / sea / air Electricity Heat Liquid fuels Gasoline / diesel / kerosene Ethanol, methanol Crude oil Natural gas Coal Peat Biomass, residues & waste Bio-products, cultivated Hydro potential Wind potential Solar insolation Nuclear - availability -cost - emissions - energy efficiency 43

Energy products: from source to end-user - Availability, convenience, cost, emissions, energy efficiency Industry, metallurgy / chemicals / pulp&paper Households, heat / lightning / appliances Traffic, car / heavy / public / rail / sea / air Electricity Heat Liquid fuels Gasoline / diesel / kerosene Ethanol, methanol Natural gas Hydrogen Gases Crude oil Natural gas Coal Peat Biomass, residues & waste Bio-products, cultivated Hydro potential Wind potential Solar insolation Nuclear - availability -cost - emissions - energy efficiency 44

Energy products: from source to end-user - Availability, convenience, cost, emissions, energy efficiency Industry, metallurgy / chemicals / pulp&paper Households, heat / lightning / appliances Traffic, car / heavy / public / rail / sea / air Electricity Heat Liquid fuels Gasoline / diesel / kerosene Ethanol, methanol Natural gas Hydrogen Coal, peat, wood-chips&pellets Gases Solid fuels Crude oil Natural gas Coal Peat Biomass, residues & waste Bio-products, cultivated Hydro potential Wind potential Solar insolation Nuclear - availability -cost - emissions - energy efficiency 45

Energy products: from source to end-user - Availability, convenience, cost, emissions, energy efficiency Industry, metallurgy / chemicals / pulp&paper Households, heat / lightning / appliances Traffic, car / heavy / public / rail / sea / air Energy products Electricity Heat Liquid fuels Gasoline / diesel / kerosene Ethanol, methanol Natural gas Hydrogen Coal, peat, wood-chips&pellets Gases Solid fuels Crude oil Natural gas Coal Peat Biomass, residues & waste Bio-products, cultivated Hydro potential Wind potential Solar insolation Nuclear - availability -cost - emissions - energy efficiency 46

Hydrogen production / GJ Crude oil Natural gas 5 Coal 10 Peat Biomass, residues & waste 15 Bio-products, cultivated Hydro 10 Wind potential 30 Solar insolation 50 Nuclear 20 47

Energy cost comparison 20 per GJ 10 0 Coal Oil Gas H2 fossil H2 renew. Petrol Elect. 48

Combustion energies of selected substances mol.w. kj/mol kj/g=gj/ton toe / ton MWh / ton Hydrogen H 2 2 285,8 142,90 3,52 39,69 Methane CH 4 16 890,8 55,68 1,37 15,46 Carbon C 12 393,5 32,79 0,81 9,11 Methanol CH 3 OH 32 726,1 22,69 0,56 6,30 Carbon monoxide CO 28 283,0 10,11 0,25 2,81 toe 40,61 11,28 49

H 2 cost / production alternatives / GJ Natural gas reforming (central) 5-8 Other fossil (oil POX, coal gasification) 10-12 Natural gas reforming (LNG) 12-15 Natural gas on site reforming 15-30 Biomass gasification 10-15 Electrolysis (hydroelectricity) 10-20 Electrolysis (wind) 20-40 Electrolysis (solar thermal) 40-60 Photoelectrolysis 50-100 50

Luonnonfilosofian seura Tieteiden talo 2.10.2003 klo 18.00 Maapallon energiavarat Tkt Tuomo Suntola 1. Energiavarastojen inventaario, luonnon energiavirrat ja tuotettu energia 2. Energian käytön jakautuminen, saatavuus ja tuotantotarpeet 3. Sähkön tuotannon reaalivaihtoehdot, ilmastouhat 4. Auringon energian hyödyntämisvaihtoehtoja 5. Energian tie primäärilähteestä käyttökohteeseen, vetyteknologia 6. Hiilen kierto maapallon ekosysteemissä 51

Carbon distribution in nature Atmosphere 700 Gt Forests 450 Gt Oceans 37 000 Gt Oil & gas 300 Gt Grass, ect. 100 Gt Soil 1300 Gt Coal 5000 Gt Sediment layer 20 000 Gt? 52

Carbon circulation in nature Atmosphere 700 Gt 60 Gt/y 100 Gt/y Forests 450 Gt Oceans 37 000 Gt Oil & gas 300 Gt Grass, ect. 100 Gt Soil 1300 Gt Coal 5000 Gt Sediment layer 20 000 Gt? 53

Carbon circulation in nature Atmosphere 700 Gt 6 Gt/y 60 Gt/y 100 Gt/y Forests 450 Gt Oceans 37 000 Gt Oil & gas 300 Gt Grass, ect. 100 Gt Soil 1300 Gt Coal 5000 Gt Sediment layer 20 000 Gt? 54

Carbon circulation in nature Atmosphere 700 Gt 6 Gt/y 50 Mt/y 100 Gt/y 60 Gt/y Forests 450 Gt Oceans 37 000 Gt Oil & gas 300 Gt Grass, ect. 100 Gt Soil 1300 Gt Coal 5000 Gt Sediment layer 20 000 Gt? 55

Carbon distribution in atmosphere and oceans 6 Gt annual CO 2 emissions 700 Gt atmosphere Natural CO 2 exchange 100 Gt/y 50 Mt annual SO x emissions Oceans 37 000 Gt 700 Gt 100 m surface layer 37 000 Gt deep oceans 56

Reaction equations and the calculation procedure for the multiphase CaCO 3 -CO 2 -H 2 O system in the presence of sulfuric acid ( ) ( ) CO g CO aq (1) 2 2 + ( ) CO aq +H O H +HCO (2) 2 2 3 HCO H +CO (3) + 2 3 3 2+ 2 ( ) CaCO s Ca +CO (4) 3 3 () HSO l HSO +H (5) + 2 4 4 HSO H +SO (6) + 2 4 4 - T and p - standard H, C, S data - model for G E Solver for minimum (G) - concentrations - activities, ph - partial pressures - equilibrium constants 57

Equilibrium between CO 2 pressure and ocean at different temperatures 1E-3 P(CO2)/bar 8E-4 6E-4 Effect of annual acid rain in 1 meter surface layer CO2 pressure in the atmosphere 4E-4 2E-4 T=25 C T=15 C T= 5 C 0 0 2E-4 4E-4 6E-4 8E-4 1E-3 CaCO3 mol/kg 58

Equilibrium between CO 2 pressure and ocean at different temperatures 4,500E-04 p(co2) [bar] 4,000E-04 Annual increase in the p(co2) pressure 3,500E-04 T=25 C Effect of annual acid rain in 1 meter surface layer T=15 C 3,000E-04 2,500E-04 T= 5 C 2,000E-04 5,000E-04 5,500E-04 6,000E-04 6,500E-04 7,000E-04 CaCO3 [mol/kg] 59

Effect of SO x emissions on atmospheric CO 2 equilibrium 1,2 1 0,8 SOx reference level 50 Mt(S)/year 0,6 0,4 0,2 0 1900 1950 2000 2050 500 450 CO2 (ppm) 400 350 300 CO2(Mauna Loa) 250 200 1900 1950 2000 2050 60

Global Warming & Climate Change The average global temperature is rising sharply due to increasing concentrations of greenhouse gases (GHGs) in the atmosphere. This rise in temperature is creating change in the world's climate which will have enormous consequences for people and the planet. Humans are contributing to the greenhouse effect by emitting greenhouse gases (GHGs) that trap energy and warm the atmosphere. Most of the emissions come from burning fossil fuels such as coal, oil and gasoline. http://www.agores.org/general/climatehome.htm 61

. OR. Global Warming & Climate Change The average global temperature is rising sharply due to increasing concentrations of greenhouse gases (GHGs) in the atmosphere. Humans are contributing to the greenhouse effect by disturbing the balance of carbon dioxide between the atmosphere, soil and waters. TS 62

Drivers of Renewable Energy Renewable energies have considerable potential and could theoretically provide a nearly unlimited supply of relatively clean and mostly local energy. In absolute terms, renewable energy supply has been growing strongly; the annual growth for wind energy, for example, has been around 30% recently, albeit from a very low base. In relative terms, on the other hand, the share of modern renewables, including large hydro, in the total primary energy supply has remained around 4%... excluding large hydro around 0.5%. http://www.worldenergy.org/wec-geis/edc/scenario.asp http://www.worldenergy.org/wec-geis/publications/statements/stat2003.asp 63