Tietoliikenne tekniikan kurssi

Samankaltaiset tiedostot
Kaisu Keskinen 100 % 1-1

Chapter 1, lection 2 Introduction

Tietoliikenteen perusteet

TLT Osa 1 Suomennetut

Chapter 1 Introduction

TLT Osa 1 Suomennetut

100 % Kaisu Keskinen Diat

Tietoliikenteen perusteet

Capacity Utilization

Chapter 1 Introduction

Ryhmän kokoonpano. Kaikki kalvot on jaettu tasan ryhmän jäsenten kesken

Efficiency change over time

Security server v6 installation requirements

Security server v6 installation requirements

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

TIEKE Verkottaja Service Tools for electronic data interchange utilizers. Heikki Laaksamo

Network to Get Work. Tehtäviä opiskelijoille Assignments for students.

Tietokoneverkot ja Internet

Information on preparing Presentation

Microsoft Lync 2010 Attendee

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

FPGA-piirien käyttökohteet nyt ja tulevaisuudessa Tomi Norolampi

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

Introduction to exterior routing

Introduction to exterior routing

anna minun kertoa let me tell you

Introduction to exterior routing

1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward.

Perinteisesti käytettävät tiedon (datan) tyypit

Chapter 5 Link Layer and LANs

The CCR Model and Production Correspondence

HITSAUKSEN TUOTTAVUUSRATKAISUT

Miksi Suomi on Suomi (Finnish Edition)

Information on Finnish Language Courses Spring Semester 2017 Jenni Laine

ECVETin soveltuvuus suomalaisiin tutkinnon perusteisiin. Case:Yrittäjyyskurssi matkailualan opiskelijoille englantilaisen opettajan toteuttamana

Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition)

16. Allocation Models

LYTH-CONS CONSISTENCY TRANSMITTER

Voice Over LTE (VoLTE) By Miikka Poikselkä;Harri Holma;Jukka Hongisto

Automaatiojärjestelmän hankinnassa huomioitavat tietoturva-asiat

C++11 seminaari, kevät Johannes Koskinen

OSI ja Protokollapino

AYYE 9/ HOUSING POLICY

1. Tietokoneverkot ja Internet Tietokoneesta tietoverkkoon. Keskuskone ja päätteet (=>-80-luvun alku) Keskuskone ja oheislaitteet

S Tietoliikennetekniikan perusteet. Pakettikytkentäiset verkot. Helsinki University of Technology Networking Laboratory

Introduction to exterior routing. Autonomous Systems

Helsinki Metropolitan Area Council

Results on the new polydrug use questions in the Finnish TDI data

7.4 Variability management

Internet Protocol version 6. IPv6

Luento 1: Tietokoneverkot ja Internet

Johdanto tietoverkkoihin. Chapter 1 Introduction. Tietoverkot ja Internet. Mitä on Internet: palvelunäkökulma. Mitä on Internet: Hallintanäkökulma

1. Liikkuvat määreet

Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine Centre for Language and Communication Studies

AFCEA PVTO2010 Taistelija / S4

National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007

7. Product-line architectures

SMART BUSINESS ARCHITECTURE

Tietoliikenne II. Syksy 2005 Markku Kojo. Tietoliikenne II (2 ov,, 4 op) Page1. Markku Kojo Helsingin yliopisto Tietojenkäsittelytieteen laitos

Choose Finland-Helsinki Valitse Finland-Helsinki

VIRVE-päivä Mihin viranomaisten turvallisuusviestintä on menossa? Janne Koivukoski Sisäasiainminsteriö Pelastusosasto

You can check above like this: Start->Control Panel->Programs->find if Microsoft Lync or Microsoft Lync Attendeed is listed

Tietoliikenteen perusteet

Cloud, Convergence, Ubiquity ja muita uudissanoja - ICT toimialan näkymät 2011

FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL

MEETING PEOPLE COMMUNICATIVE QUESTIONS

ESPOO VANTAA INSTITUTE OF TECHNOLOGY. ser 0/0. Right WS-3 WS-4. Ennen QoS-määrittelyjä tehdään normaalit reititinmäärittelyt ja testataan IP-yhteys:

TIETEEN PÄIVÄT OULUSSA

100 % Kaisu Keskinen Diat

Use of spatial data in the new production environment and in a data warehouse

Arkkitehtuuritietoisku. eli mitä aina olet halunnut tietää arkkitehtuureista, muttet ole uskaltanut kysyä

LANSEERAUS LÄHESTYY AIKATAULU OMINAISUUDET. Sähköinen jäsenkortti. Yksinkertainen tapa lähettää viestejä jäsenille

Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu

Alternative DEA Models

Kysymys 5 Compared to the workload, the number of credits awarded was (1 credits equals 27 working hours): (4)

WAMS 2010,Ylivieska Monitoring service of energy efficiency in housing Jan Nyman,

SELL Student Games kansainvälinen opiskelijaurheilutapahtuma

Kaikki analogiset järjestelmät digitaalisiksi ja verkkokäyttöisiksi - jo tänään Kustannustekkuutta ja joustavuutta työskentelyyn

TW-WLAN g/n MIMO USB-sovitin Asennusohje

Data Quality Master Data Management

TU-C2030 Operations Management Project. Introduction lecture November 2nd, 2016 Lotta Lundell, Rinna Toikka, Timo Seppälä

Information on Finnish Courses Autumn Semester 2017 Jenni Laine & Päivi Paukku Centre for Language and Communication Studies

Skene. Games Refueled. Muokkaa perustyyl. for Health, Kuopio

BLOCKCHAINS AND ODR: SMART CONTRACTS AS AN ALTERNATIVE TO ENFORCEMENT

1.3 Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä

The role of 3dr sector in rural -community based- tourism - potentials, challenges

Esitykset jaetaan tilaisuuden jälkeen, saat linkin sähköpostiisi. Toivottavasti vastaat myös muutamaan kysymykseen tapahtumasta Have a lot of fun!

Tarua vai totta: sähkön vähittäismarkkina ei toimi? Satu Viljainen Professori, sähkömarkkinat

UX NÄKÖKULMA - KONECRANES

AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY VERKOTAN OY VERKOTAN LTD.

Oulun yliopisto Sähkö- ja tietotekniikan osasto

GPRS-lisäpalvelu INTERNET-ASETUKSET

Innovative and responsible public procurement Urban Agenda kumppanuusryhmä. public-procurement

VUOSI 2015 / YEAR 2015

1.3Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä

KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ

Copernicus, Sentinels, Finland. Erja Ämmälahti Tekes,

Ostamisen muutos muutti myynnin. Technopolis Business Breakfast

BDD (behavior-driven development) suunnittelumenetelmän käyttö open source projektissa, case: SpecFlow/.NET.

Transkriptio:

Tietoliikenne tekniikan kurssi Kalvot 1 Osku Grönberg 0403024 Minula ei ollut ryhmää, tässä vaiheessa joten käänsin 20 kalvoa kalvoista 1. Introduction 1-1

Chapter 1 Introduction A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following: If you use these slides (e.g., in a class) that you mention their source (after all, we d like people to use our book!) If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material. Thanks and enjoy! JFK/KWR All material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Introduction 1-2

Kappale 1: Johdanto päämäärä: terminologia Syvempi ymmärrys myöhemmin kurssilla lähtökohta: Käytetään Intertiä esimerkkinä yleiskatsaus: Mikä on Interti? Mikä on protokolla? Verkon rajapinnat; hostit, yhteydenotto, fyysinen media Verkon ydin: paketti/piiri kytkennät, Interin rakenne suorituskyky: häviö, viive, läpimeno turvallisuus Protokollat ja kerrokset, palvelu mallit historia Introduction 1-3

Chapter 1: introduction our goal: get feel and terminology more depth, detail later in course approach: use Inter as example overview: what s the Inter? what s a protocol? work edge; hosts,, physical media work core: packet/circuit switching, Inter structure performance: loss, delay, throughput security protocol layers, service models history Introduction 1-4

Kappale 1: kartta 1.1 Mikä on Inerti? 1.2 rajat loppupään systeemit, verkot, linkit 1.3 verkon ydin Paketti/piiri kytkennät, verkon rakenne 1.4 viive, häviö, verkon läpivienti 1.5 protokollat ja kerrokset, palvelu-mallit 1.6 verkot hyökkäyksien kohteina: turvallisuus 1.7 historia Introduction 1-5

Chapter 1: roadmap 1.1 what is the Inter? 1.2 work edge end systems, works, links 1.3 work core packet switching, circuit switching, work structure 1.4 delay, loss, throughput in works 1.5 protocol layers, service models 1.6 works under attack: security 1.7 history Introduction 1-6

Mikä on Interti: PC serveri Langaton kone älypuhelin Miljoonat yhteydessä olevat laskennalliset laitteet: hostit = loppu-systeemit ajettavatverkko ohjelmat Kommunikointi linkit kuitu, kupari, radio, satelliitti kuljetusnopeus: kaista Langaton linkki Langattomat linkit Mobiilit verkot kotiverkko Kansainvälinen IS aluekohtainen ISP routteri pakettikytkentä: lähetetään paketteja (klönttejä dataa >_>) Routerit ja kytkimet Instituitio kohtaiset verkot Introduction 1-7

What s the Inter: nuts and bolts view PC server wireless laptop smartphone wireless links wired links millions of connected computing devices: hosts = end systems running work apps communication links fiber, copper, radio, satellite transmission rate: bandwidth mobile work home work global ISP regional ISP router Packet switches: forward packets (chunks of data) routers and switches institutional work Introduction 1-8

Hauskoja interin käyttötapauksia Verkkoa käyttävä leivänpaahdin + säätiedottaja IP kuva kehys http://www.ceiva.com/ Tweet-a-watt: Monitoroi energiankulutus Interti jääkaappi Slingbox: katso, Kontrolloi TV:tä ulkoisesti Interti puhelimet Introduction 1-9

Fun inter appliances Web-enabled toaster + weather forecaster IP picture frame http://www.ceiva.com/ Tweet-a-watt: monitor energy use Inter refrigerator Slingbox: watch, control cable TV remotely Inter phones Introduction 1-10

Mikä on Inter: Interti: verkko verkkoja Sisäisesti yhdistetyt ISP:t Protokollat lähetyksen kontrolloiti, viestien vastaanotto esim., TCP, IP, HTTP, Skype, 802.11 Interin standardit RFC: Request for comments IETF: Inter Engineering Task Force mobile work home work global ISP regional ISP institutional work Introduction 1-11

What s the Inter: nuts and bolts view Inter: work of works Interconnected ISPs protocols control sending, receiving of msgs e.g., TCP, IP, HTTP, Skype, 802.11 Inter standards RFC: Request for comments IETF: Inter Engineering Task Force mobile work home work global ISP regional ISP institutional work Introduction 1-12

Miö on Interti: palveluiden näkökulmasta Infrastruktuuri joka tarjoaa palveluita sovelluksille: Web, VoIP, sähköposti, pelit, e- commerce, sosiaaliset verkot, Antoo ohjelmoitavan liittymän sovelluksille Koukkuja jotka mahdollistavat sovellusten yhdistämisen intertiin Tarjoaa palveluille vaihtoehtoja, verrattavissa postinjakeluun mobile work home work institutional work global ISP regional ISP Introduction 1-13

What s the Inter: a service view Infrastructure that provides services to applications: Web, VoIP, email, games, e-commerce, social s, provides programming interface to apps hooks that allow sending and receiving app programs to connect to Inter provides service options, analogous to postal mobile work home work institutional work global ISP regional ISP Introduction 1-14

Mikä on protokolla? Ihmis-protokollat: Mitä kello on? Haluaisin kysyä jotakin esittely tietty viesti lähetetty tietty toimenpide suoritettu kun viesti tullut perille, tai muu tapahtuma Verkko-protokollat: Koneita, ei ihmisiä Kaikkea kommunikointia ohjaavat protokollat protokollat määrittävät muotoilun, viestien lähetys ja saapumis järjestykset verkkojen ja toimenpiteiden seassa viestien kuljetuksessa ja vastaanottamisessa Introduction 1-15

What s a protocol? human protocols: what s the time? I have a question introductions specific msgs sent specific actions taken when msgs received, or other events work protocols: machines rather than humans all communication activity in Inter governed by protocols protocols define format, order of msgs sent and received among work entities, and actions taken on msg transmission, receipt Introduction 1-16

Mikä on protokolla? Ihmis-protokolla ja verkko-protokolla: Hi Hi Paljo kello? 2:00 aika TCP yhteys pyyntö TCP yhteys vastaus Get http://www.awl.com/kurose-ross <tiedosto> Q: muita ihmis protokollia? Introduction 1-17

Lähempi tarkastelu verkon rakenteelle: Verkon rajat: hostit: clientit ja serverit Serverit usein datakeskuksissa Verkot, fyysinen media: langalllinen, langaton kommunikointi linkki Verkon ydin: Yhdistetyt routerit Verkko verkkoja mobile work home work institutional work global ISP regional ISP Introduction 1-18

A closer look at work structure: work edge: hosts: clients and servers servers often in data centers works, physical media: wired, wireless communication links work core: interconnected routers work of works mobile work home work institutional work global ISP regional ISP Introduction 1-19

Yhdistettävät verkot ja fyysinen media Q: miten hosti saa yhteyden routeriin? Asuinalueelliset verkot Instituutioiden verkot (koulut, firmat) Mobiilit verkot Pidä mielessä: Verkon kaista (bittiä sekunnissa)? Jaettu vai yksilöllinen? Introduction 1-20

Access works and physical media Q: How to connect end systems to edge router? residential s institutional works (school, company) mobile works keep in mind: bandwidth (bits per second) of work? shared or dedicated? Introduction 1-21

verkot: digital subscriber line (DSL) palveluntarjoaja Puhelin verkot DSL modem splitter DSLAM Ääntä ja dataa siirretään eri taajuuksilladsl yhteyden palveluntarjoajalle multiplexer ISP käytetään olemassa olevaa puhelin linjaa palveluntarjoajalle DSLAM Data kulkee DSL puhelin linjaa pirkin Intertiin Ääni DSL puhelin linjaa pitkin puhelin verkkoon < 2.5 Mbps ylöspäin siirtonopeus (yleensä < 1 Mbps) < 24 Mbps alaspäin siirtonopeus (yleensä < 10 Mbps) Introduction 1-22

Access : digital subscriber line (DSL) central office telephone work DSL modem splitter voice, data transmitted at different frequencies over dedicated line to central office DSLAM DSL multiplexer ISP use existing telephone line to central office DSLAM data over DSL phone line goes to Inter voice over DSL phone line goes to telephone < 2.5 Mbps upstream transmission rate (typically < 1 Mbps) < 24 Mbps downstream transmission rate (typically < 10 Mbps) Introduction 1-23

verkot: kaapeli verkot Kaapelin modeemi jakaja Kaapelin päätepiste Introduction Channels V I D E O V I D E O V I D E O V I D E O V I D E O V I D E O D A T A D A T A C O N T R O L 1 2 3 4 5 6 7 8 9 frequency division multiplexing: eri kanavat lähetetään eri taajuuksina samaa kaapelia pitkin 1-24

Access : cable work Kaapeli modeemi jakaja Kaapelin päätepiste Introduction Channels V I D E O V I D E O V I D E O V I D E O V I D E O V I D E O D A T A D A T A C O N T R O L 1 2 3 4 5 6 7 8 9 frequency division multiplexing: different channels transmitted in different frequency bands 1-25

Verkot, kaapeli verkot cable headend cable modem splitter data, TV lähetetään eri taajuuksina Samaa kaapelia pitkin kaikille CMTS Kaapelimodeemin opetus systeemi ISP HFC: hybrid fiber coax asymmetrinen: jopa 30Mbps lataus nopeus, 2 Mbps lähetys nopeus Verkko kaapeleita, kuitu yhdistää koteja ISP routteriin kodit jakavat yhteyden kaapelin päätepisteeseen Toisin kuin DSL, jolla on yksilöllinen yhteys palvewluntarjoajaan Introduction 1-26

Verkot: kotiverkko Langaton laite Usein vain yksi laatikko Palveluntarjoajalle lopusta loppuun Langaton yhteydenotto piste(54 Mbps) Kaapeli tai DSL modeemi Routteri, palomuuri, NAT Langallinen yhteys(100 Mbps) Introduction 1-27

Access : home work wireless devices often combined in single box to/from headend or central office cable or DSL modem wireless point (54 Mbps) router, firewall, NAT wired Ether (100 Mbps) Introduction 1-28

Yritysten verkot(ether) Yrityksen ISP linkki (Inter) Yrityksen routteri Yritysverkon kytkin Yrityksen sähköposti ja web palvelimet Yleisesti käytetty yrityksissä ja yliopistoilla jne. 10 Mbps, 100Mbps, 1Gbps, 10Gbps nopeuksisia Tänäpäivänä hostit yleensä yhteydessä yritysverkon kytkimeen Introduction 1-29

Enterprise works (Ether) institutional link to ISP (Inter) institutional router Ether switch institutional mail, web servers typically used in companies, universities, etc 10 Mbps, 100Mbps, 1Gbps, 10Gbps transmission rates today, end systems typically connect into Ether switch Introduction 1-30

Langattomat verkot Langaton verkko yhdistää hostit routteriin Aseman kautta point langaton LANs rakennuksessa(100 ft) 802.11b/g (WiFi): 11, 54 Mbps yhteys nopeus Laaja-alainen langaton verkko Telco (puhelin) operaattori tarjoaa, 10 s km 1 ja 10 Mbps välillä 3G, 4G: LTE Intertiin Intertiin Introduction 1-31

Wireless works shared wireless work connects end system to router via base station aka point wireless LANs: within building (100 ft) 802.11b/g (WiFi): 11, 54 Mbps transmission rate wide-area wireless provided by telco (cellular) operator, 10 s km between 1 and 10 Mbps 3G, 4G: LTE to Inter to Inter Introduction 1-32

Hosti: lähettää paketin dataa Hstin lähetys funktio: Esim sovellusviesti Jaetaan osiin, paketteja, L bitin pituisiin Paketit lähetetään verkkoon lähetysnopeudella R Linkin yhteysnopeus, aka linkin kapasiteetti, aka linkin kaista Paketin kuljetusviive 2 hosti Aika joka kuluu L bitin siirtämiseen linkkiin = = 1 R: linkin nopeus Kaksi L kokoista pakettia L (bittiä) R (bittiä/s) 1-33

Host: sends packets of data host sending function: takes application message breaks into smaller chunks, known as packets, of length L bits transmits packet into 2 1 work at transmission rate R host link transmission rate, aka link capacity, aka link bandwidth packet time needed to = transmit L-bit = transmission delay packet into link two packets, L bits each R: link transmission rate L (bits) R (bits/sec) 1-34

Fyysinen media bitti: kulkee lähettäjän/vastaanottaja parien välillä Fyysinen linkki: mitä on lähettäjän & vastaanottajan välillä Ohjattu media: Singaalit kulkevat kiinteässä mediassa: kupari, kuitu, coax Ohjaamaton media: Singaalit kulkevat vapaasti, esim radio twisted pair (TP) Kaksi eristettyä kupari lankaa Kategoria 5: 100 Mbps, 1 Gpbs Ether Kategoria 6: 10Gbps Introduction 1-35

Physical media bit: propagates between transmitter/receiver pairs physical link: what lies between transmitter & receiver guided media: signals propagate in solid media: copper, fiber, coax unguided media: signals propagate freely, e.g., radio twisted pair (TP) two insulated copper wires Category 5: 100 Mbps, 1 Gpbs Ether Category 6: 10Gbps Introduction 1-36

Fyysinen meida: coax, kuitu coaxikaalinen kaapeli: Kaksi kuparijohdinta kaksisuuntainen laajakaista: monta kanavaa HFC Kuitu optinen kaapeli: Lasikuitu kurjettaa valopulsseja (pulsi on bitti) Nopeat operaatiot: Nopea pisteestä pisteeseen siirto(e.g., 10 s-100 s s Gpbs siirtonopeus) Alhainen virheprosentti: Välillä matkaa Immuuni elektromagneettiselle melulle Introduction 1-37

Physical media: coax, fiber coaxial cable: two concentric copper conductors bidirectional broadband: multiple channels on cable HFC fiber optic cable: glass fiber carrying light pulses, each pulse a bit high-speed operation: high-speed point-to-point transmission (e.g., 10 s- 100 s Gpbs transmission rate) low error rate: repeaters spaced far apart immune to electromagic noise Introduction 1-38

Fyysinen media: radio Elektromagneettinen spektrumi kuljettaa signaalia Ei fyysistä johtoa monisuuntainen Ympäristön vaikutteet: heijastuminen Objekti estää yhteyden interferenssi Radi linkki tyypit: Maanalainen mikroaalto esim jopa 45 Mbps kanavia LAN (e.g., WiFi) 11Mbps, 54 Mbps Suuri alue (esim puhelin) 3G puhelin: ~ muutama Mbps sateliitti Kbps:stä 45Mbps:tiin kanava (tai monta pienempää kanavaa) 270 msec päästä päätyyn viive Geosynkronisuus vs matalampi korkeus(lyhyempi matka) Introduction 1-39

Physical media: radio signal carried in electromagic spectrum no physical wire bidirectional propagation environment effects: reflection obstruction by objects interference radio link types: terrestrial microwave e.g. up to 45 Mbps channels LAN (e.g., WiFi) 11Mbps, 54 Mbps wide-area (e.g., cellular) 3G cellular: ~ few Mbps satellite Kbps to 45Mbps channel (or multiple smaller channels) 270 msec end-end delay geosynchronous versus low altitude Introduction 1-40

Chapter 1: roadmap 1.1 what is the Inter? 1.2 work edge end systems, works, links 1.3 work core packet switching, circuit switching, work structure 1.4 delay, loss, throughput in works 1.5 protocol layers, service models 1.6 works under attack: security 1.7 history Introduction 1-41

The work core mesh of interconnected routers packet-switching: hosts break application-layer messages into packets forward packets from one router to the next, across links on path from source to destination each packet transmitted at full link capacity Introduction 1-42

Packet-switching: store-andforward L bits per packet source 3 2 1 R bps R bps destination takes L/R seconds to transmit (push out) L-bit packet into link at R bps store and forward: entire packet must arrive at router before it can be transmitted on next link end-end delay = 2L/R (assuming zero propagation delay) one-hop numerical example: L = 7.5 Mbits R = 1.5 Mbps one-hop transmission delay = 5 sec more on delay shortly Introduction 1-43

Packet Switching: queueing delay, loss A R = 100 Mb/s C B queue of packets waiting for output link R = 1.5 Mb/s D E queuing and loss: If arrival rate (in bits) to link exceeds transmission rate of link for a period of time: packets will queue, wait to be transmitted on link packets can be dropped (lost) if memory (buffer) fills up Introduction 1-44

Two key work-core functions routing: determines sourcedestination route taken by packets routing algorithms forwarding: move packets from router s input to appropriate router output routing algorithm local forwarding table header value output link 0100 0101 0111 1001 3 2 2 1 3 2 1 dest address in arriving packet s header Network Layer 4-45

Alternative core: circuit switching end-end resources allocated to, reserved for call between source & dest: In diagram, each link has four circuits. call gets 2 nd circuit in top link and 1 st circuit in right link. dedicated resources: no sharing circuit-like (guaranteed) performance circuit segment idle if not used by call (no sharing) Commonly used in traditional Introduction 1-46

Circuit switching: FDM versus TDM FDM Example: 4 users frequency TDM time frequency time Introduction 1-47

Packet switching versus circuit switching packet switching allows more users to use work! example: 1 Mb/s link each user: 100 kb/s when active active 10% of time N users 1 Mbps link circuit-switching: 10 users packet switching: with 35 users, probability > 10 active at same time is less than.0004 * Q: how did we get value 0.0004? Q: what happens if > 35 users? * Check out the online interactive exercises for more examples Introduction 1-48

Packet switching versus circuit switching is packet switching a slam dunk winner? great for bursty data resource sharing simpler, no call setup excessive congestion possible: packet delay and loss protocols needed for reliable data transfer, congestion control Q: How to provide circuit-like behavior? bandwidth guarantees needed for audio/video apps still an unsolved problem (chapter 7) Q: human analogies of reserved resources (circuit switching) versus on-demand allocation (packetswitching)? 1-49 Introduction

Inter structure: work of works End systems connect to Inter via ISPs (Inter Service Providers) Residential, company and university ISPs Access ISPs in turn must be interconnected. So that any two hosts can send packets to each other Resulting work of works is very complex Evolution was driven by economics and national policies Let s take a stepwise approach to describe current Inter structure

Inter structure: work of works Question: given millions of ISPs, how to connect them together?

Inter structure: work of works Option: connect each ISP to every other ISP? connecting each ISP to each other directly doesn t scale: O(N 2 ) connections.

Inter structure: work of works Option: connect each ISP to a global transit ISP? Customer and provider ISPs have economic agreement. global ISP

Inter structure: work of works But if one global ISP is viable business, there will be competitors. ISP A ISP B ISP C

Inter structure: work of works But if one global ISP is viable business, there will be competitors. which must be interconnected Inter exchange point ISP A IXP IXP ISP B ISP C peering link

Inter structure: work of works and regional works may arise to connect s to ISPS ISP A IXP IXP ISP B ISP C regional

Inter structure: work of works and content provider works (e.g., Google, Microsoft, Akamai ) may run their own work, to bring services, content close to end users ISP A ISP B IXP Content provider work IXP regional ISP B

Inter structure: work of works Tier 1 ISP Tier 1 ISP Google IX P Regional ISP IX P Regional ISP IX P ISP ISP ISP ISP ISP ISP ISP ISP at center: small # of well-connected large works tier-1 commercial ISPs (e.g., Level 3, Sprint, AT&T, NTT), national & international coverage content provider work (e.g, Google): private work that connects it data centers to Inter, often bypassing tier-1, regional 1-58 Introduction

Tier-1 ISP: e.g., Sprint POP: point-of-presence to/from backbone peering to/from customers Introduction 1-59

Chapter 1: roadmap 1.1 what is the Inter? 1.2 work edge end systems, works, links 1.3 work core structure 1.4 delay, loss, throughput in works 1.5 protocol layers, service models 1.6 works under attack: security 1.7 history packet switching, circuit switching, work Introduction 1-60

How do loss and delay occur? packets queue in router buffers packet arrival rate to link (temporarily) exceeds output link capacity packets queue, wait for turn packet being transmitted (delay) A B packets queueing (delay) free (available) buffers: arriving packets dropped (loss) if no free buffers Introduction 1-61

Four sources of packet delay A transmission propagation B nodal processing queueing d nodal = d proc + d queue + d trans + d prop d proc : nodal processing check bit errors determine output link typically < msec d queue : queueing delay time waiting at output link for transmission depends on congestion level of router Introduction 1-62

Four sources of packet delay A transmission propagation B nodal processing queueing d nodal = d proc + d queue + d trans + d prop d trans : transmission delay: L: packet length (bits) R: link bandwidth (bps) d trans = L/R d trans and d prop very different d prop : propagation delay: * Check out the Java applet for an interactive animation on trans vs. prop delay d: length of physical link s: propagation speed in medium (~2x10 8 m/sec) d prop = d/s Introduction 1-63

Caravan analogy 100 km 100 km ten-car caravan toll booth toll booth cars propagate at 100 km/hr toll booth takes 12 sec to service car (bit transmission time) car~bit; caravan ~ packet Q: How long until caravan is lined up before 2nd toll booth? time to push entire caravan through toll booth onto highway = 12*10 = 120 sec time for last car to propagate from 1st to 2nd toll both: 100km/(100km/hr)= 1 hr A: 62 minutes Introduction 1-64

Caravan analogy (more) 100 km 100 km ten-car caravan toll booth toll booth suppose cars now propagate at 1000 km/hr and suppose toll booth now takes one min to service a car Q: Will cars arrive to 2nd booth before all cars serviced at first booth? A: Yes! after 7 min, 1st car arrives at second booth; three cars still at 1st booth. Introduction 1-65

Queueing delay (revisited) R: link bandwidth (bps) L: packet length (bits) a: average packet arrival rate average queueing delay traffic intensity = La/R La/R ~ 0: avg. queueing delay small La/R -> 1: avg. queueing delay large La/R > 1: more work arriving than can be serviced, average delay infinite! La/R ~ 0 * Check out the Java applet for an interactive animation on queuing and loss La/R -> 1 Introduction 1-66

Real Inter delays and routes what do real Inter delay & loss look like? traceroute program: provides delay measurement from source to router along end-end Inter path towards destination. For all i: sends three packets that will reach router i on path towards destination router i will return packets to sender sender times interval between transmission and reply. 3 probes 3 probes 3 probes Introduction 1-67

Real Inter delays, routes traceroute: gaia.cs.umass.edu to www.eurecom.fr 3 delay measurements from gaia.cs.umass.edu to cs-gw.cs.umass.edu 1 cs-gw (128.119.240.254) 1 ms 1 ms 2 ms 2 border1-rt-fa5-1-0.gw.umass.edu (128.119.3.145) 1 ms 1 ms 2 ms 3 cht-vbns.gw.umass.edu (128.119.3.130) 6 ms 5 ms 5 ms 4 jn1-at1-0-0-19.wor.vbns. (204.147.132.129) 16 ms 11 ms 13 ms 5 jn1-so7-0-0-0.wae.vbns. (204.147.136.136) 21 ms 18 ms 18 ms 6 abilene-vbns.abilene.ucaid.edu (198.32.11.9) 22 ms 18 ms 22 ms 7 nycm-wash.abilene.ucaid.edu (198.32.8.46) 22 ms 22 ms 22 ms 8 62.40.103.253 (62.40.103.253) 104 ms 109 ms 106 ms 9 de2-1.de1.de.geant. (62.40.96.129) 109 ms 102 ms 104 ms 10 de.fr1.fr.geant. (62.40.96.50) 113 ms 121 ms 114 ms 11 renater-gw.fr1.fr.geant. (62.40.103.54) 112 ms 114 ms 112 ms 12 nio-n2.cssi.renater.fr (193.51.206.13) 111 ms 114 ms 116 ms 13 nice.cssi.renater.fr (195.220.98.102) 123 ms 125 ms 124 ms 14 r3t2-nice.cssi.renater.fr (195.220.98.110) 126 ms 126 ms 124 ms 15 eurecom-valbonne.r3t2.ft. (193.48.50.54) 135 ms 128 ms 133 ms 16 194.214.211.25 (194.214.211.25) 126 ms 128 ms 126 ms trans-oceanic link 17 * * * 18 * * * * means no response (probe lost, router not replying) 19 fantasia.eurecom.fr (193.55.113.142) 132 ms 128 ms 136 ms * Do some traceroutes from exotic countries at www.traceroute.org Introduction 1-68

Packet loss queue (aka buffer) preceding link in buffer has finite capacity packet arriving to full queue dropped (aka lost) lost packet may be retransmitted by previous node, by source end system, or not at all A buffer (waiting area) packet being transmitted B packet arriving to full buffer is lost * Check out the Java applet for an interactive animation on queuing and loss Introduction 1-69

Throughput throughput: rate (bits/time unit) at which bits transferred between sender/receiver instantaneous: rate at given point in time average: rate over longer period of time server server, sends withbits (fluid) file of into F bits pipe to send to client link pipe capacity that can carry R s bits/sec fluid at rate R s bits/sec) link pipe capacity that can carry R c bits/sec fluid at rate R c bits/sec) Introduction 1-70

Throughput (more) R s < R c What is average end-end throughput? R s bits/sec R c bits/sec R s > R c What is average end-end throughput? R s bits/sec R c bits/sec bottleneck link on end-end link path that constrains end-end throughput Introduction 1-71

Throughput: Inter scenario per-connection end-end throughput: min(r c,r s,r/10) in practice: R c or R s is often bottleneck R s R s R s R R c R c R c 10 connections (fairly) share backbone bottleneck link R bits/sec Introduction 1-72

Chapter 1: roadmap 1.1 what is the Inter? 1.2 work edge end systems, works, links 1.3 work core structure 1.4 delay, loss, throughput in works 1.5 protocol layers, service models 1.6 works under attack: security 1.7 history packet switching, circuit switching, work Introduction 1-73

Protocol layers Networks are complex, with many pieces : hosts routers links of various media applications protocols hardware, software Question: is there any hope of organizing structure of work?. or at least our discussion of works? Introduction 1-74

Organization of air travel ticket (purchase) baggage (check) gates (load) runway takeoff airplane routing airplane routing ticket (complain) baggage (claim) gates (unload) runway landing airplane routing a series of steps Introduction 1-75

Layering of airline functionality ticket (purchase) baggage (check) gates (load) ticket (complain) baggage (claim gates (unload) ticket baggage gate runway (takeoff) runway (land) takeoff/landing airplane routing airplane routing airplane routing airplane routing airplane routing departure airport intermediate air-traffic control centers arrival airport layers: each layer implements a service via its own internal-layer actions relying on services provided by layer below Introduction 1-76

Why layering? dealing with complex systems: explicit structure allows identification, relationship of complex system s pieces layered reference model for discussion modularization eases maintenance, updating of system change of implementation of layer s service transparent to rest of system e.g., change in gate procedure doesn t affect rest of system layering considered harmful? Introduction 1-77

Inter protocol stack application: supporting work applications FTP, SMTP, HTTP transport: process-process data transfer TCP, UDP work: routing of datagrams from source to destination IP, routing protocols link: data transfer between neighboring work elements Ether, 802.111 (WiFi), PPP physical: bits on the wire application transport work link physical Introduction 1-78

ISO/OSI reference model presentation: allow applications to interpret meaning of data, e.g., encryption, compression, machine-specific conventions session: synchronization, checkpointing, recovery of data exchange Inter stack missing these layers! these services, if needed, must be implemented in application needed? application presentation session transport work link physical Introduction 1-79

segment datagram frame message H l H t H n H t H n H t M M M M source application transport work link physical Encapsulation link physical switch H l H n H n H t H t H t M M M M destination application transport work link physical H l H n H n H t H t M M work link physical H n H t M router Introduction 1-80

Chapter 1: roadmap 1.1 what is the Inter? 1.2 work edge end systems, works, links 1.3 work core packet switching, circuit switching, work structure 1.4 delay, loss, throughput in works 1.5 protocol layers, service models 1.6 works under attack: security 1.7 history Introduction 1-81

Network security field of work security: how bad guys can attack computer works how we can defend works against attacks how to design architectures that are immune to attacks Inter not originally designed with (much) security in mind original vision: a group of mutually trusting users attached to a transparent work Inter protocol designers playing catch-up security considerations in all layers! Introduction 1-82

Bad guys: put malware into hosts via Inter malware can get in host from: virus: self-replicating infection by receiving/executing object (e.g., e-mail attachment) worm: self-replicating infection by passively receiving object that gets itself executed spyware malware can record keystrokes, web sites visited, upload info to collection site infected host can be enrolled in bot, used for spam. DDoS attacks Introduction 1-83

Bad guys: attack server, work infrastructure Denial of Service (DoS): attackers make resources (server, bandwidth) unavailable to legitimate traffic by overwhelming resource with bogus traffic 1. select target 2. break into hosts around the work (see 3. send bot) packets to target from compromised hosts target Introduction 1-84

Bad guys can sniff packets packet sniffing : broadcast media (shared ether, wireless) promiscuous work interface reads/records all packets (e.g., including passwords!) passing by A C src:b dest:a payload B wireshark software used for end-of-chapter labs is a (free) packet-sniffer Introduction 1-85

Bad guys can use fake addresses IP spoofing: send packet with false source address A C src:b dest:a payload B lots more on security (throughout, Chapter 8) Introduction 1-86

Chapter 1: roadmap 1.1 what is the Inter? 1.2 work edge end systems, works, links 1.3 work core structure 1.4 delay, loss, throughput in works 1.5 protocol layers, service models 1.6 works under attack: security 1.7 history packet switching, circuit switching, work Introduction 1-87

Inter history 1961-1972: Early packet-switching principles 1961: Kleinrock - queueing theory shows effectiveness of packet-switching 1964: Baran - packetswitching in military s 1967: ARPA conceived by Advanced Research Projects Agency 1969: first ARPA node operational 1972: ARPA public demo NCP (Network Control Protocol) first host-host protocol first e-mail program ARPA has 15 nodes Introduction 1-88

Inter history 1972-1980: Interworking, new and proprietary s 1970: ALOHA satellite work in Hawaii 1974: Cerf and Kahn - architecture for interconnecting works 1976: Ether at Xerox PARC late70 s: proprietary architectures: DEC, SNA, XNA late 70 s: switching fixed length packets (ATM precursor) 1979: ARPA has 200 nodes Cerf and Kahn s interworking principles: minimalism, autonomy - no internal changes required to interconnect works best effort service model stateless routers decentralized control define today s Inter architecture Introduction 1-89

Inter history 1980-1990: new protocols, a proliferation of works 1983: deployment of TCP/IP 1982: smtp e-mail protocol defined 1983: DNS defined for name-to-ip-address translation 1985: ftp protocol defined 1988: TCP congestion control new national works: Cs, BIT, NSF, Minitel 100,000 hosts connected to confederation of works Introduction 1-90

Inter history 1990, 2000 s: commercialization, the Web, new apps early 1990 s: ARPA decommissioned 1991: NSF lifts restrictions on commercial use of NSF (decommissioned, 1995) early 1990s: Web hypertext [Bush 1945, Nelson 1960 s] HTML, HTTP: Berners-Lee 1994: Mosaic, later Netscape late 1990 s: commercialization of the Web late 1990 s 2000 s: more killer apps: instant messaging, P2P file sharing work security to forefront est. 50 million host, 100 million+ users backbone links running at Gbps Introduction 1-91

Inter history 2005-present ~750 million hosts Smartphones and tablets Aggressive deployment of broadband Increasing ubiquity of high-speed wireless Emergence of online social works: Facebook: soon one billion users Service providers (Google, Microsoft) create their own works Bypass Inter, providing instantaneous to search, emai, etc. E-commerce, universities, enterprises running their services in cloud (eg, Amazon EC2) Introduction 1-92

Introduction: summary covered a ton of material! Inter overview what s a protocol? work edge, core, work packet-switching versus circuit-switching Inter structure performance: loss, delay, throughput layering, service models security history you now have: context, overview, feel of working more depth, detail to follow! Introduction 1-93