TLT-2600 Verkkotekniikan jatkokurssi 2005 2006



Samankaltaiset tiedostot
TVP 2003 kevätkurssi. Kertaus Otto Alhava

Reititys. Tämä ja OSI 7LHWROLLNHQQHWHNQLLNDQSHUXVWHHW $(/&7 0DUNXV3HXKNXUL. Yhteyden jakaminen Reititys Kytkentä Internet-protokolla TCP, UDP

Antti Vähälummukka 2010

S Tietoliikennetekniikan perusteet. Pakettikytkentäiset verkot. Helsinki University of Technology Networking Laboratory

OSI malli. S Tietoliikenneverkot S Luento 2: L1, L2 ja L3 toiminteet

OSI-malli. S Tietoliikenneverkot. Miksi kytketään. Välitys ja kytkeminen OSI-mallissa. /XHQWR.\WNHQWlMDUHLWLW\V

Kattava katsaus reititykseen

Siltojen haitat. Yleisesti edut selvästi suuremmat kuin haitat 2/19/ Kytkin (switch) Erittäin suorituskykyisiä, moniporttisia siltoja

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria

S Tietoliikenneverkot

itää saada selville P-osoitetta vastaava erkko-osoite. leislähetyksenä ysely: Kenen IPsoite. IP-paketissa on vain vastaanottajan

TCP/IP-protokollapino. Verkkokerros ja Internetprotokolla. Sisältö. Viime luennolla. Matti Siekkinen

Tietoliikenne I 2 ov kevät 2002

Tietoliikenne I (muuntokoulutettaville) 2 ov Syksy 2002 Luennot Liisa Marttinen 11/6/2002 1

reititystietojen vaihto linkkitilaviestejä säännöllisin väliajoin ja topologian muuttuessa

reititystietojen vaihto linkkitilaviestejä säännöllisin väliajoin ja topologian muuttuessa

OSPF:n toiminta. Välittäjäreititin. Hello-paketti. Hello-paketin kentät. Hello-paketin kentät jatkuvat. OSPF-sanomat hello naapurien selvillesaaminen

Kuva maailmasta Pakettiverkot (Luento 1)

Pikaohje IPv6-ominaisuuksiin FreeBSD-järjestelmässä Päivitetty Niko Suominen

Tietokone. Tietokone ja ylläpito. Tietokone. Tietokone. Tietokone. Tietokone

Tietoliikenteen perusteet. Langaton linkki

Tietoliikenteen perusteet. Langaton linkki

100 % Kaisu Keskinen Diat

2. Esimerkkejä eri järjestelmien mallintamisesta (osa 1)

Yhdysliikennejärjestelyt suomessa sekä tekniikan kuvaus

Johdatus graafiteoriaan

Liikenneteoriaa (vasta-alkajille)

Introduction to exterior routing

Introduction to exterior routing. Autonomous Systems

Reititys. Tietokoneverkot 2009 (4 op) Syksy Futurice Oy. Reititys. Jaakko Kangasharju.

Tietoliikenne I 2 ov kevät 2003

Verkkokerroksen palvelut. 4. Verkkokerros. Virtuaalipiiri (virtual circuit) connection-oriented ~ connectionless. tavoitteet.

4. Verkkokerros. sovelluskerros. kuljetuskerros. verkkokerros. siirtoyhteyskerros peruskerros. asiakas. end-to-end

Introduction to exterior routing

Verkkokerroksen palvelut. 4. Verkkokerros. Virtuaalipiiri (virtual circuit) connection-oriented ~ connectionless. tavoitteet.

Reititys. 4. Reititys (Routing) Verkkokerroksen tehtävänä on toimittaa data (paketit) lähettäjän koneelta vastaanottajan koneelle. Reititysalgoritmit

Chapter 4 Network Layer

Tietoliikenne I (muuntokoulutettaville) 2 ov syksy 2003 Luennot Liisa Marttinen

Siltojen haitat Yleisesti edut selvästi suuremmat kuin haitat

Reititys. 4. Reititys (Routing) Verkkokerroksen tehtävänä on toimittaa data (paketit) lähettäjän koneelta vastaanottajan koneelle. Reititysalgoritmit

Introduction to exterior routing

4. Reititys (Routing)

Jos A:lla ei ole tietoa ARP-taulussaan, niin A lähettää ARP-kysely yleislähetyksenä

Chapter 5 Link Layer and LANs

Tietoliikenne I 2 ov syksy 2001

Verkkokerros ja Internet Protocol. kirja sivut

4 reititintyyppiä. AS:ien alueet. sisäinen reititin alueen sisäisiä. alueen reunareititin sekä alueessa että runkolinjassa

reitittimet käyttävät samaa reititysprotokollaa (intra-as protocol)

Verkkokerroksen palvelut

Lisää reititystä. Tietokoneverkot 2009 (4 op) Syksy Futurice Oy. Lisää reititystä. Jaakko Kangasharju

Tietoliikenne I (muuntokoulutettaville) 2 ov syksy 2003 Luennot Liisa Marttinen

Lisää reititystä. Tietokoneverkot 2008 (4 op) Syksy Teknillinen korkeakoulu. Lisää reititystä. Jaakko Kangasharju

TW-LTE REITITIN: INTERNET-YHTEYKSIEN KAISTANJAKO

Kuljetus- ja verkkokerrokset. Jyry Suvilehto T Johdatus tietoliikenteeseen ja multimediatekniikkaan kevät 2011

Teleliikenne vs. Dataliikenne Piirikytkentä & Pakettikytkentä

3/3/15. Verkkokerros 2: Reititys CSE-C2400 Tietokoneverkot Kirjasta , Verkkokerros. Internet-protokollapino ja verkkokerroksen tehtävä

Algoritmi on periaatteellisella tasolla seuraava:

INTERNET-yhteydet E L E C T R O N I C C O N T R O L S & S E N S O R S

ICMP-sanomia. 3. IP-kerroksen muita protokollia ja mekanismeja ICMP (Internet Control Message Protocol)

3. IP-kerroksen muita protokollia ja

4. Reititys (Routing)

Verkkokerros 2: Reititys

TLT-2600 Verkkotekniikan jatkokurssi Multicast

ITKP104 Tietoverkot - Teoria 3

Monilähetysreititys. Paketti lähetetään usealle vastaanottajalle Miksi? Monet sovellukset hyötyvät

AS 3 AS 0. reitittimet käyttävät samaa reititysprotokollaa (intra-as protocol)

AS 3 AS 5 AS 1 AS 0 AS 2 AS 4

Luennon aiheet. S Tietoliikenneverkot. Mihin IP-kytkentää tarvitaan? Miltä verkko näyttää? Vuon määrittely. Vuon määrittely

Reititys. Luennon sisältö. Miten IP-paketti löytää tiensä verkon läpi. Edelleenlähetys (forwarding) yksittäisen koneen näkökulmasta

Reititys. Autonomisten järjestelmien sisäinen reititys. luvut 7, 13 ja 15. Sanna Suoranta

Diplomityöseminaari

Tietoliikenne II. Syksy 2005 Markku Kojo. Tietoliikenne II (2 ov,, 4 op) Page1. Markku Kojo Helsingin yliopisto Tietojenkäsittelytieteen laitos

4. Reititys (Routing)

4. Reititys (Routing)

Tiedonvälitystekniikka 1-3 ov. Kurssin sisältö ja tavoite

Langaton linkki. Langaton verkko. Tietoliikenteen perusteet. Sisältö. Linkkikerros. Langattoman verkon komponentit. Langattoman linkin ominaisuuksia

Tietoliikenne I 2 ov kevät 2004

Tietoliikenne I 2 ov kevät 2004

Tietoliikenne I 2 ov syksy 2000

Tietoliikenne I 2 ov syksy 2000

Tietoliikenteen perusteet

Chapter 1 Introduction

OSI ja Protokollapino

Tietoliikenne I 2 ov syksy 2000

Algoritmit 1. Luento 8 Ke Timo Männikkö

Kymenlaakson Ammattikorkeakoulu Elektroniikan koulutusohjelma / tietoliikennetekniikka Opinnäytetyö 2011 Tuomo Korja

5.5 Ethernet-lähiverkko. Eetteriverkon rakenne. Kaapelit. Törmäyksen jälkeinen uudelleenlähetys. Signaalin koodaus Manchester-koodaus CSMA/CD

Multicast. Johdanto Ryhmien hallinta Reititys Reaaliaikaiset siirto- ja hallintaprotokollat Resurssien varaus Sessioiden hallinta

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko,

Kotitalouksien kiinteät internet - liittymät. Tero Karttunen Oy Mikrolog Ltd

S Tietoliikennetekniikan perusteet. Piirikytkentäinen evoluutio. Annukka Kiiski

Verkkokerros ja Internetprotokolla

TeleWell TW-EA711 ADSL modeemi & reititin ja palomuuri. Pikaohje

Reitittimen rakenne. Kytkentäosa ... (switching fabric) Reititysprosessori linkkikerroksen toiminnot (LK)

" Reititysprosessori. " suorittaa reititysprotokollaa " RIP, OSPF, BGP,.. " päivittää reititystauluja. " hallinta- ja ylläpitotoimintoja

Eetteriverkon rakenne

CSMA/CD. Eetteriverkon rakenne. Signaalin koodaus. Törmäyksen jälkeinen uudelleenlähetys. Lyhyet etäisyydet, pieni määrä laitteita. Manchester-koodaus

Mikä on internet, miten se toimii? Mauri Heinonen

0 v i v j / E, M ij = 1 v i v j E.

Tietoliikenteen perusteet. Langaton linkki. Kurose, Ross: Ch 6.1, 6.2, 6.3. (ei: 6.2.1, ja 6.3.5)

Transkriptio:

TLT-2600 Verkkotekniikan jatkokurssi 2005 2006 Jarmo Harju Karri Huhtanen Aleksi Suhonen Heikki Vatiainen Verkkotekniikan jatkokurssi 1

Verkkotekniikan jatkokurssi, 4 op Tavoitteet Ymmärrys verkkotekniikoiden keskinäisistä suhteista, Internetin arkkitehtuurista, verkkosuunnittelusta ja IP-verkkojen reitityksestä sekä IPv6:n asemasta. Perustiedot multicastista ja Mobile IP:stä Teoriatietoa sovelletaan käytäntöön laboratorioharjoituksissa Esitiedot TLT-2100 / 8304500 Tietoliikenneverkkojen perusteet (suoritusmerkintä oltava, muuten tenttiä ei tarkasteta) Suositellaan: 8305010 Tietoliikenneprotokollat Vaatimukset Luennot Labraharjoitus, joka tehdään kolmessa vaiheessa kevään IV periodilla tentti (20.3.2006) http://www.cs.tut.fi/kurssit/tlt-2600/ Verkkotekniikan jatkokurssi 2

Verkkotekniikan jatkokurssi, 4 op Materiaalia kurssikirja: Christian Huitema: Routing in the Internet, 2. painos, Prentice Hall alan toinen klassikko: Radia Perlman: Interconnections, 2. painos, Addison-Wesley yleisteokset Stallings: Data and Computer Communications, Prentice-Hall Kurose, Ross: Computer Networking, Addison Wesley Bertsekas, Gallager: Data Networks, Prentice Hall reititysprotokollista: John T. Moy. OSPF: Anatomy of an Internet Routing Protocol, Addison- Wesley Bassam Halabi: Internet Routing Architectures, 2. painos, Cisco Press luentokalvoja Verkkotekniikan jatkokurssi 3

Verkkotekniikat ja Internetin arkkitehtuuri Verkkotekniikan jatkokurssi 4

Piirikytkentä vs. pakettikytkentä 1/3 Piirikytkentä osapuolien välille muodostetaan kuvaannollisesti virtapiiri, ns. galvaaninen yhteys, jota pitkin data siirretään reititys ja resurssien varaus ennen datan siirtoa datan mukana ei tarvita minkäänlaista osoitetietoa välttämätön analogisen datan siirrossa digitaalisen datan siirrossa voidaan pieninopeuksisia yhteyksiä kanavoida (multipleksata) suurinopeuksisille yhteyksille tyypillisesti aikajakokanavointia hyväksi käyttäen puskurointia ei käytetä muuten kuin em. kanavoinnin tarpeisiin yhteydellä on koko ajan käytössä vakio tiedonsiirtonopeus Plussaa: pienet viiveet, taattu siirtokaista Miinusta: tekniikka kallista; resurssit varattuna koko yhteyden ajan vaikka liikennettä ei olisikaan; reititys verrattain staattista Verkkotekniikan jatkokurssi 5

Piirikytkentä vs. pakettikytkentä 2/3 Pakettikytkentä verkon solmuissa data käsitellään paketteina resurssien tehokkaampi hyödyntäminen: tilastollinen kanavointi kommunikoivilla osapuolilla voi olla käytössä eri tiedonsiirtonopeudet verkkopalvelulle kaksi perusvaihtoehtoa yhteydetön palvelu eli pakettiperustainen reititys (datagrammiverkot, esim. Internet) yhteydellinen palvelu eli virtuaalipiirikytkentäiset verkot, esim. X.25, ATM, MPLS vain digitaaliselle datalle täydelliset osoitteet (yhtydetön palvelu) tai lyhyet yhteysviitteet (yhteydellinen palvelu) tarvitaan joka paketissa Plussaa: resurssit aina hyötykäytössä; halvempi tekniikka; dynaaminen reititys Miinusta: yhteyden viive ja läpäisy (throughput) riippuvat verkon kuormituksesta Verkkotekniikan jatkokurssi 6

Piirikytkentä vs. pakettikytkentä 3/3 Piiri- ja pakettikytkennän suhde toisiinsa Pakettikytkentäisen verkon aliverkkoina voi olla piirikytkennällä toteutettuja osia ja usein näin onkin, esim. modeemi/isdn-yhteydet Internetiin, tai SDH:n käyttö datansiirtoon operaattorin runkoverkossa Toisaalta piirikytkentäisen puhelinverkon runkoverkossa voidaan käyttää pakettikytkentäistä VoIP-tekniikkaa Pakettikytkentäisiä ja piirikytkentäisiä aliverkkoja voidaan siis yhdistää toisiinsa tarkoituksenmukaisella tavalla Datagrammipohjainen (siis yhteydetön) pakettikytkentä mahdollisti joustavan ja edullisen tavan yhdistää eri tekniikoilla toteutettuja dataverkkoja => Internet sai alkunsa Verkkotekniikan jatkokurssi 7

Internetin arkkitehtuuri Perusnäkökulma Internetin keskeinen suunnitteluperiaate: älykkäät päätelaitteet, yksinkertainen verkko Verkkotekniikan jatkokurssi 8

Internetin arkkitehtuuri Verkkotekninen näkökulma Reitittimet eivät yleensä ole toisiinsa kytkettyjä point-to-point -linkeillä vaan siirtoverkkojen avulla MPLS PoS LAN Frame Relay ATM Verkkotekniikan jatkokurssi 9

Internetin arkkitehtuuri Verkkohierarkian näkökulma Access Network CORE Internetin verkkohierarkiaan kuuluvat päätelaitteet (host), pääsyverkot eli liityntäverkot (access) ja runkoverkko (core). Verkkotekniikan jatkokurssi 10

Internetin arkkitehtuuri Palveluntarjoajanäkökulma Esimerkki Verkkotekniikan jatkokurssi 11

Internetin arkkitehtuuri Reitityshierarkian näkökulma Internetin runkoverkko kytkee organisaatioiden ja palveluntarjoajien verkkoja (autonomisia systeemeitä) toisiinsa. Autonomisten systeemien sisällä toimii ns. sisäinen reititys. Myös Internetin runkoverkko on kokoelma toisiinsa kytkettyjä autonomisia systeemejä, jotka tarjoavat kauttakulkupalveluita asiakkailleen. AS:ien tasolla tarvitaan ns. ulkoista reititystä. Transit AS 1 Transit AS 7 AS 6 AS 1 Transit AS 2 Transit AS 4 Transit AS 6 Transit AS 3 Transit AS 5 AS 5 AS 2 AS 3 AS 4 Verkkotekniikan jatkokurssi 12

Internetin arkkitehtuuri yhteenveto Toisin kuin televerkossa, Internetin pääsy- ja runkoverkot eivät ole rakentuneet suunnitelmallisesti Runkoverkon hierarkiataso on matala Runkoverkko on kokoelma kansallisten ja kansainvälisten operaattoreiden autonomisia järjestelmiä, jotka tarjoavat kauttakulkuoikeuksia toisilleen Jos runkoverkko ei osaa reitittää jotain pakettia, paketti hylätään (default-free -verkko) Pääsyverkot ovat tyypillisesti teleoperaattoreiden hallinnoimia verkkoja, jotka liittyvät runkoverkkoon yhdellä tai useammalla reitittimellä Verkkotekniikan jatkokurssi 13

Verkkotekniikoiden kerrosten erottaminen Verkkoprotokollat: IP (IPX, CLNP) Verkkotekniikat: ATM, MPLS, Frame Relay, Ethernet, X.25 Verkkokerros Siirtokerros Siirtoverkko, kehystys: SDH, HDLC, PPP, Ethernet Fyysinen kerros Multipleksaava siirtokerros: WDM, TDM, FDM, CDM Fyysinen kerros: kupari, kuitu, radiotie Verkkotekniikan jatkokurssi 14

Pääsyverkot Kapeakaistainen access PSTN, ISDN GPRS, UMTS Laajakaistainen access dedikoitu yhteys (taattu kaista) xdsl (Fyysinen puhelinlinja + ATM-verkko tai Ethernet), kiinteä linja (kuitu- tai kuparijohtimella) jaettu yhteys Normaali Ethernet Kaapelimodeemi (fyysinen kaapeli-tv-verkko + Ethernet) Langaton yhteys (operaattorin WLAN) Verkkotekniikan jatkokurssi 15

Runkoverkot Tasot 1 2: Siirtoverkot fyysisellä tasolla optiset kuidut ja WDM niiden päällä SDH, Ethernet tai jokin muu 2- tai 3-tason tekniikka Taso 3 (over taso 2 over taso 1): Verkkotekniikat ATM tai Frame Relay (over SDH ja/tai over WDM) MPLS (over SDH tai over Ethernet) (IP-) Packet over (PPP over) SDH (IP-) Packet over (jokin kehystys over) WDM IP over Ethernet over (jokin kehystys over) WDM Verkkotekniikan jatkokurssi 16

IP:n asema kerrosmallissa IP on verkkokerroksen ylin alikerros, ns. internetworking kerros Sen alla voi olla suoraan linkkikerros tai käytetystä verkkotekniikasta riippuva verkkokerroksen protokolla kuten X.25 tai ATM:n AAL5 Verkkotekniikan jatkokurssi 17

Verkkokerros vs. linkkikerros Linkkitason toiminta: kehys siirretään yhden linkin yli yhdelle (point-to-point -linkki) tai useammalle vastaanottajalle (multi-access linkki) Verkkotason toiminta: kehys (jota nyt kutsutaan paketiksi) siirretään (eli reititetään) usean verkon solmun kautta kohteeseensa Linkkitasolla ei siten tarvita reititystä Selkeää, eikö totta? Hetkinen, entä tyypillinen kytkimillä rakennettu lähiverkko!? Katsotaan sitä tarkemmin. Verkkotekniikan jatkokurssi 18

Lähiverkko 1 Gbit/s / 100 Mbit/s switches Verkkotekniikan jatkokurssi 19

Lähiverkot Laajoissa Ethernet-kytkinverkoissa on sinänsä kaikki tunnusmerkit sille, että kehysten siirtely on verkkokerroksen toimintaa. LANit kuuluvat kuitenkin linkkikerrokselle siksi, että kytkinten (siltojen) toiminta perustuu kakkoskerroksen osoitteisiin (MAC-osoitteisiin), joiden perusteella reititys ei ole mahdollista Miksi ei? Palataan asiaan hieman myöhemmin. Verkkotekniikan jatkokurssi 20

Ethernet -kytkimet Välittävät kehyksiä linkkikerroksen tasolla MAC-osoitteita käyttäen Kytkentä: A-to-B ja A -to-b samanaikaisesti, ei törmäyksiä Suuri määrä liityntöjä (interface) Nykyään yksittäiset asemat ovat tyypillisesti tähtimäisesti kytkettyjä kytkimiin (hubeja ei käytetä) Ethernet, mutta yleensä ei törmäyksiä! Broadcast- ja multicast-osoitteilla varustetut kehykset lähetetään kaikkiin liittymiin Verkkotekniikan jatkokurssi 21

Lähiverkko Broadcast -domain 1 Gbit/s / 100 Mbit/s switches Collision domain Verkkotekniikan jatkokurssi 22

Virtuaali-LANit VLAN-runkolinja eli IEEE802.1Q on käytössä Virtuaali-LANien avulla broadcast-domaineja voidaan jakaa pienemmiksi alueiksi kytkinverkon sisällä 1 Gbit/s / 100 Mbit/s switches VLANien välinen liikenne kulkee reitittimen kautta Verkkotekniikan jatkokurssi 23

IP, IP-reititys ja reitittimet Verkkotekniikan jatkokurssi 24

Nimet, osoitteet, reitit Nimi identifioi kohteen. Kuka on kyseessä? Osoite kertoo sijainnin. Missä kohde on? Reitti Miten kohteeseen päästään? Esimerkkejä: LAN-osoitteet ovat oikeastaan nimiä MAC-osoite yksilöi laitteen (tai sen verkkokortin) Jos laitteen paikka LANissa vaihtuu, MAC-osoite säilyy samana IP-tason osoitteet ovat aidosti osoitteita kaksitasoinen rakenne: verkkotunnus + koneen tunnus IP-osoitetta on vaihdettava, kun konetta siirretään aliverkosta toiseen TCP/IP-verkkojen ongelma on, että koneilla (sovelluksilla) ei ole selkeästi määriteltyjä nimiä! DNS:n domain-nimet auttavat, mutta eivät ratkaise ongelmaa. Verkkotekniikan jatkokurssi 25

IP-osoitteet Jotta asemat ja reitittimet voisivat käsitellä IP-datagrammeja oikein, niiden on pystyttävä erottamaan verkon tunnus ja aseman tunnus IP-osoitteesta käytännössä siis tarvitaan tieto, minkä kahden bitin välissä raja kulkee, eli mikä osuus osoitteesta on verkkotunnusta (network prefix) Alkuperäinen ajatus: sallitaan rajan kulkea vain tavujen välissä, ja koodataan tieto verkkotunnuksen pituudesta osoitteen alkuun! Tämänhetken fakta: raja pitäisi voida vetää joustavasti lähes mihin kohtaan tahansa, eikä tietoa silloin voida sisällyttää osoitteeseen itseensä => Tarvitaan erillinen tieto: aliverkkomaski kertoo verkkotunnuksen pituuden Verkkotekniikan jatkokurssi 26

IP-reititys IP-reititys on pakettien kytkentää IP-osoitteen perusteella tavoitteena kuljettaa paketti lähettäjältä vastaanottajalle Ei yhteydenmuodostusta eikä siihen liittyvää signalointia Reititys perustuu siihen, että jokaisen paketin osalta reitittimet itsenäisesti päättelevät (konfiguroinnin kautta ja/tai verkosta saamiensa tietojen perusteella) mikä on paketin seuraava etappi matkalla kohteeseensa Reititys on dynaamista, eli se ottaa automaattisesti huomioon katkenneet yhteydet, uudet verkot, jne. Tähän tarvitaan reititysprotokollia, jotka välittävät saavutettavuustietoa ja mahdollistavat reititystaulujen päivittämisen Verkkotekniikan jatkokurssi 27

IP-aliverkko IP-aliverkko (IP subnet) on osoitteiden avulla muodostettu looginen kokonaisuus, joka on sidoksissa fyysiseen topologiaan Samaan IP-aliverkkoon kuuluvat asemat voivat lähettää toisilleen IP-datagrammeja suoraan, ilman reitittimen myötävaikutusta. IP-aliverkko on toteutettu jollain verkkotekniikalla, esimerkiksi lähiverkon avulla (broadcast-verkko) tai (paketti)kytkentäisen verkon avulla. Yhteen LANiin tai pakettikytkentäiseen verkoon voidaan muodostaa useita IP-aliverkkoja. Verkkotekniikan jatkokurssi 28

IP-aliverkko Tyypillisesti yksi lähiverkko (broadcast domain) muodostaa yhden IP-aliverkon, mutta joskus voi olla tarkoituksenmukaista sijoittaa lähiverkkoon useita IP-aliverkkoja. Virtuaali-LANien (VLAN) avulla broadcastin etenemistä lähiverkossa voidaan rajoittaa. Luontevaa on sijoittaa eri VLANit eri IP-aliverkkoihin. Reititin tunnistaa aliverkot IP-osoitteen verkkotunnuksen (eli network prefixin) perusteella. Myös asemat tuntevat oman verkkotunnuksensa, ja ohjaavat reitittimelle vain ne lähettämänsä IP-datagrammit, joiden kohde ei kuulu samaan IP-aliverkkoon. Verkkotekniikan jatkokurssi 29

Virtuaali-LANit ja IP-aliverkot VLAN-runkolinja eli IEEE802.1Q on käytössä VLANit voivat olla eri IPaliverkkoja. 1 Gbit/s / 100 Mbit/s switches Tällöin on ilman muuta selvää, että VLANien välinen liikenne kulkee reitittimen kautta. Verkkotekniikan jatkokurssi 30

Voiko sama VLAN näkyä reitittimen eri porteissa? VLAN-runkolinja eli IEEE802.1Q on käytössä VLANit voivat olla eri IPaliverkkoja 1 Gbit/s / 100 Mbit/s switches Verkkotekniikan jatkokurssi 31

Vastaus on EI Reititystoiminto ei tunnista VLANeja Verkkotunnisteen (network prefix) määrittelemä IP-aliverkko pitää löytyä yksikäsitteisesti yhden IP-tasolle näkyvän portin takaa (no, ei tämä nyt aivan ehdoton vaatimus ole Edellisen kalvon kuvassa esittetty tapaus on mahdollinen vain, jos reititin onkin yhteen laatikkoon pakattu yhdistelmälaite, ns. kytkinreititin, joka suostuu kytkemään myös MAC-osoitteiden ja VLAN-tunnuksen perusteella silloin kun kehystä ei ole lähetetty reitittimen MAC-osoitteeseen. Paitsi reitittimen, myös portin käsite on hämärtynyt, kun yhden fyysisen tason portin takaa voi löytyä eri tasoilta useampia loogisia portteja käytetystä verkkotekniikasta riippuen Verkkotekniikan jatkokurssi 32

Verkkotekniikan jatkokurssi 33

IP-tason ja fyysisen tason topologian vertailu Verkkotekniikan jatkokurssi 34

Reititin Reititin on tietokone, joka on yhdistetty kahteen tai useampaan aliverkkoon. Reititin päättää jokaisen sille saapuvan paketin osalta kaksi asiaa: 1) ulosmenoportin eli seuraavan fyysisen aliverkon 2) seuraavan etapin (reititin tai kohdehost) ko. aliverkossa. Reitittimet käyttävät reititystauluja, joihin talletetaan tietoja kohdeverkoista ja niihin johtavista reiteistä Verkkotekniikan jatkokurssi 35

Reititin Reitittimen tehtävät voidaan jakaa kahteen osaan: 1. IP-pakettien välitys (forwardointi) IP-protokollan ohjaamana reititystaulusta etsitään sisääntulleelle IP-datagrammille oikea (fyysinen tai looginen) ulosmenoportti, ja portin takana olevan fyysisen verkon ymmärtämä seuraavan etapin osoite 2. Reititystietojen pitäminen ajantasalla Reititystaulut luodaan ja pidetään yllä käymällä jatkuvaa keskustelua muiden reitittimien kanssa. Tähän tarvitaan reititysprotokollia, sillä IP ei ole ollenkaan suunniteltu tähän tarkoitukseen. Verkkotekniikan jatkokurssi 36

Router Architecture Overview Two key router functions: run routing algorithms/protocol (RIP, OSPF, BGP) switching datagrams from incoming to outgoing link Verkkotekniikan jatkokurssi 37

IP-verkon reititysprotokollat Päätelaitteiden ja reitittimien muodostamaa verkkokonaisuutta, joka on yhden tahon hallinnan ja valvonnan alainen kutsutaan autonomiseksi järjestelmäksi (AS). Autonominen järjestelmä muodostaa oman reititysalueensa Yhden AS:n sisällä olevat reitittimet vaihtavat keskenään reititykseen liittyvää tietoa käyttäen ns. Internal-reititysprotokollia kuten OSPF, RIP tai IGRP. Ennenkuin kaksi AS:ää voi kommunikoida keskenään, pitää niiden vaihtaa reititystietoja - tähän käytetään ns. Externalreititysprotokollia, joista tärkein on BGP4. Verkkotekniikan jatkokurssi 38

Reititystauluharjoitus HARJOITUS: Miltä oheisen reititystaulun mukainen verkkoympäristö näyttää? {kukkuu:16} netstat -ain Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll ni0* 0 none none 0 0 0 0 0 ni1* 0 none none 0 0 0 0 0 lo0 4608 127 127.0.0.1 148794008 0 148794008 0 0 lan1 1497 157.24.8.0 157.24.10.8 474007108 4570 439052939 76 8582284 {kukkuu:17} ifconfig lan1 lan1: flags=863<up,broadcast,notrailers,running,multicast> inet 157.24.10.8 netmask fffffc00 broadcast 157.24.11.255 {kukkuu:18} netstat -rn Routing tables Destination Gateway Flags Refs Use Interface 127.0.0.1 127.0.0.1 UH 0 148191973 lo0 137.251.47.3 157.24.10.17 UGHD 0 27 lan1 157.24.10.8 127.0.0.1 UH 0 607247 lo0 193.167.241.239 157.24.10.17 UGHD 0 18 lan1 193.167.241.246 157.24.10.17 UGHD 0 235 lan1 default 157.24.10.17 UG 127 4887624 lan1 157.24.8.0 157.24.10.8 U 88 101042994 lan1 157.24.12.0 157.24.10.1 UG 0 2126 lan1 157.24.13.0 157.24.10.1 UG 1 6029 lan1 157.24.14.0 157.24.10.1 UG 0 47427 lan1 157.24.16.0 157.24.10.69 UG 0 684 lan1 157.24.60.0 157.24.11.53 UG 0 6551 lan1 Verkkotekniikan jatkokurssi 39

Graafit Graafi määritellään parina missä G = (N,A), N = solmujen (node) joukko A = kaarien (arc) joukko. Yksinkertaisessa graafissa kahta solmua voi yhdistää vain yksi kaari, eli tällöin kaaret ovat solmupareja {n 1, n 2 }, missä n 1, n 2 N ja n 1 n 2. Solmuja n 1 ja n 2 sanotaan kaaren α = {n 1,n 2 } päätepisteiksi. Multigraafissa solmuparia voi yhdistää useampi kuin yksi kaari, ja myös päätepisteet voivat olla yksi ja sama solmu. Verkkotekniikassa on syytä olettaa graafien olevan multigraafeja. Verkkotekniikan jatkokurssi 40

Graafiteorian määritelmiä 1/5 Reitti (walk) graafissa G on jono (n 1, n 2,..., n k ) solmuja siten, että jokainen pari (n 1, n 2 ), (n 2, n 3 ),..., (n k-1, n k ) kuuluu A:han eli on G:n kaari. Jos solmut n 1, n 2,..., n k ovat kaikki eri solmuja, reittiä sanotaan poluksi (path). Reitti (n 1, n 2,..., n k ), jolle pätee: k > 3, n 1 = n k ja reitillä ei ole muita samoja solmuja on silmukka (cycle). Graafi G' = (N', A') on graafin G = (N, A) aligraafi, jos N' N ja A' A. Verkkotekniikan jatkokurssi 41

Graafiteorian määritelmiä 2/5 Graafi on yhtenäinen, jos jokaisesta solmusta i N on polku (i = n 1, n 2,..., n k = j) jokaiseen muuhun solmuun j. Yhtenäinen graafi, jossa ei ole silmukoita, on puu. Virittävä puu (spanning tree) on sellainen G:n aligraafi, joka on puu ja sisältää G:n kaikki solmut. Verkkotekniikan jatkokurssi 42

Graafiteorian määritelmiä 3/5 G = (N, A) on suunnattu graafi, jos A on järjestettyjen parien joukko, eli kaaret ovat suunnattuja kaaria (n 1, n 2 ), missä n 1 on kaaren alkupiste ja n 2 on kaaren päätepiste. Jokaiseen suunnattuun graafiin liittyy tavallinen graafi G' = (N', A'), jolle N' = N ja {i, j} A' <=> ( (i, j) A (j, i) A ) Suunnatussa graafissa voidaan suunnattu reitti määritellä luonnollisella tavalla. Verkkotekniikan jatkokurssi 43

Graafiteorian määritelmiä 4/5 Suunnattu graafi on vahvasti yhtenäinen, jos jokaisesta solmusta i on polku jokaiseen muuhun solmuun m. Oletetaan, että suunnatun graafin G jokaiselle kaarelle (i, j) A on annettu äärellinen painokerroin ( pituus ) d ij. Ääretön pituus siis tulkitaan siten, että kaari (i, j) ei kuulu A:han. G:n suunnatun reitin r = (i, j, k,..., l, m) pituus on d ij + d jk +... + d lm. Lyhimmän polun ongelmassa tavoitteena on löytää pituudeltaan lyhin reitti r kahden annetun solmun välille. Verkkotekniikan jatkokurssi 44

Graafiteorian määritelmiä 5/5 Lause. Olkoot i ja m, i m, suunnatun, vahvasti yhtenäisen graafin G kaksi mielivaltaista solmua. Lyhin reitti solmusta i solmuun m on polku, jos ja vain jos kaikkien sellaisten silmukoiden, jotka eivät kulje solmun m kautta, pituus on ei-negatiivinen. Tod. => Jos pituudeltaan negatiivinen silmukka löytyy, voidaan sen avulla lyhentää jokin i:stä m:ään kulkeva polku mielivaltaisen pieneksi ( lähestyy miinus ääretöntä), joten lyhintä reittiä m:ään ei ole olemassa. <= Olkoon r mielivaltainen reitti solmusta i solmuun m. Jos r ei ole polku, siitä voidaan irrottaa silmukoita, kunnes se on polku i:stä m:ään. Koska irrotettujen silmukoiden pituudet ovat suurempia tai yhtäsuuria kuin 0, on saatu polku enintään samanpituinen kuin reitti r. Siten kaikki mahdolliset reitit voidaan modifioida enintään samanpituisiksi poluiksi. Koska graafissa polkuja on äärellinen määrä, ko. poluista voidaan löytää lyhin. Verkkotekniikan jatkokurssi 45