Lämpöistä oppia Fysiikan ja kemian perusteet ja pedagogiikka

Samankaltaiset tiedostot
Lämpöistä oppia ja energiaa Fysiikan ja kemian perusteet ja pedagogiikka

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.

Termodynamiikan suureita ja vähän muutakin mikko rahikka

RATKAISUT: 12. Lämpöenergia ja lämpöopin pääsäännöt

1. Kumpi painaa enemmän normaalipaineessa: 1m2 80 C ilmaa vai 1m2 0 C ilmaa?

Kemiallinen reaktio

Lämpöopin pääsäännöt

Aineen olomuodot ja olomuodon muutokset

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Lämmön siirtyminen rakenteessa. Lämpimästä kylmempään päin Lämpötilat rakenteen eri puolilla pyrkivät tasoittumaan

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua

VASTAUKSIA YO-KYSYMYKSIIN KURSSISTA FY2: Lämpö

KIINTEÄN AINEEN JA NESTEEN TILANYHTÄLÖT

Tarvittavat välineet: Kalorimetri, lämpömittari, jännitelähde, kaksi yleismittaria, sekuntikello

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen

Termodynamiikka. Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt. ...jotka ovat kaikki abstraktioita

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Lämpöilmiöitä. Kokeellista fysiikkaa luokanopettajille Ari Hämäläinen kevät 2005

Aurinkolämpö. Tässä on tarkoitus kertoa aurinkolämmön asentamisesta ja aurinkolämmön talteen ottamiseen tarvittavista osista ja niiden toiminnasta.

1. (*) Luku 90 voidaan kirjoittaa peräkkäisen luonnollisen luvun avulla esimerkiksi

Saunan fysiikkaa. Joona Havukainen, Katriina Juva, Riikka Ruuth ja Anton Saressalo Tutkijakoulutuslinjan tiederetriitti 1

Lämmöneristäminen. Minä panin ikkunaan pahvisuojan. Dow polyurethane systems

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Muita lämpökoneita. matalammasta lämpötilasta korkeampaan. Jäähdytyksen tehokerroin: Lämmityksen lämpökerroin:

FYSIIKAN HARJOITUSKOE I Mekaniikka, 8. luokka

Kuivauksen fysiikkaa. Hannu Sarkkinen

Lämmityksen lämpökerroin: Jäähdytin ja lämmitin ovat itse asiassa sama laite, mutta niiden hyötytuote on eri, jäähdytyksessä QL ja lämmityksessä QH

Kaasu Neste Kiinteä aine Plasma

CHEM-A1410 Materiaalitieteen perusteet

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella:

Lämpötila ja lämpöenergia

KEMIAN MIKROMAAILMA, KE2 VESI

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen

Länsiharjun koulu 4a

Aineopintojen laboratoriotyöt 1. Veden ominaislämpökapasiteetti

KOSTEUS. Visamäentie 35 B HML

Vesi, veden ominaisuudet ja vesi arjessa

Mekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä:

Lämpöoppia. Haarto & Karhunen.

Vähennä energian kulutusta ja kasvata satoa kasvihuoneviljelyssä

Luento 4. Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit

Lämpötila, lämpö energiana

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

Kaikenlaisia sidoksia yhdisteissä: ioni-, kovalenttiset ja metallisidokset Fysiikan ja kemian perusteet ja pedagogiikka

LÄMPÖOPPIA: lämpöenergia, lämpömäärä (= lämpö Q) Aineen lämpötila t aineen saaman lämpömäärän Q funktiona; t = t(q)

VALAISTUSTA VALOSTA. Fysiikan ja kemian perusteet ja pedagogiikka. Kari Sormunen Kevät 2014

Tehtävä 2. Selvitä, ovatko seuraavat kovalenttiset sidokset poolisia vai poolittomia. Jos sidos on poolinen, merkitse osittaisvaraukset näkyviin.

Työ 3: Veden höyrystymislämmön määritys


Aurinkolämpö. Tässä on tarkoitus kertoa aurinkolämmön asentamisesta ja aurinkolämmön talteen ottamiseen tarvittavista osista ja niiden toiminnasta.

Molaariset ominaislämpökapasiteetit

Kryogeniikka ja lämmönsiirto. DEE Kryogeniikka Risto Mikkonen

Erilaisia entalpian muutoksia

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt

Puhtaat aineet ja seokset

Kiteet kimpaleiksi (Veli-Matti Ikävalko)

Pynnönen SIVU 1 KURSSI: Opiskelija Tark. Arvio

Lämpöopin pääsäännöt. 0. pääsääntö. I pääsääntö. II pääsääntö

Erilaisia entalpian muutoksia

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p

Miltä työn tekeminen tuntuu

Tekijä lehtori Zofia Bazia-Hietikko

1. van der Waalsin tilanyhtälö: 2 V m RT. + b2. ja C = b2. Kun T = 273 K niin B = cm 3 /mol ja C = 1200 cm 6 mol 2

6. Yhteenvetoa kurssista

c) Mitkä alkuaineet ovat tärkeitä ravinteita kasveille?

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

Energia-alan keskeisiä termejä. 1. Energiatase (energy balance)

Luku 13. Kertausta Hydrostaattinen paine Noste

Vesi ja veden olomuodot lumitutkimuksien avulla

13 KALORIMETRI Johdanto Kalorimetrin lämmönvaihto

Luku 13. Kertausta Hydrostaattinen paine Noste

ENERGIAA! ASTE/KURSSI AIKA 1/5

Koesuunnitelma. Tuntemattoman kappaleen materiaalin määritys. Kon c3004 Kone ja rakennustekniikan laboratoriotyöt. Janne Mattila.

VALAISTUSTA VALOSTA. Fysiikan ja kemian pedagogiikan perusteet. Kari Sormunen Syksy 2014

Termodynamiikka. Fysiikka III Ilkka Tittonen & Jukka Tulkki

1. a) Selitä kemian käsitteet lyhyesti muutamalla sanalla ja/tai piirrä kuva ja/tai kirjoita kaava/symboli.

Mitkä ovat aineen kolme olomuotoa ja miksi niiden välisiä olomuodon muutoksia kutsutaan?

REAKTIOT JA TASAPAINO, KE5 KERTAUSTA

Kaksi yleismittaria, tehomittari, mittausalusta 5, muistiinpanot ja oppikirjat. P = U x I

Voima ja potentiaalienergia II Energian kvantittuminen

Fysikaaliset ominaisuudet

Liite F: laskuesimerkkejä

PULLEAT VAAHTOKARKIT

Lämmityskustannusten SÄÄSTÖOPAS. asuntoyhtiöille

ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 9 /

Capito-varaajat ENERGIA HYBRIDI KERROS PUSKURI

Roth Alu-LaserPlus putkijärjestelmä

Tutkimusmateriaalit -ja välineet: kaarnan palaset, hiekan murut, pihlajanmarjat, juuripalat, pakasterasioita, vettä, suolaa ja porkkananpaloja.

Energiataloudellinen uudisrakennus tai lyhyt takaisinmaksuaika yhdistämällä energiasaneeraus Julkisen rakennuksen remonttiin

FY1 Fysiikka luonnontieteenä

Mittausprojekti 2017

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN

Konventionaalisessa lämpövoimaprosessissa muunnetaan polttoaineeseen sitoutunut kemiallinen energia lämpö/sähköenergiaksi höyryprosessin avulla

14.1. Lämpötilan mittaaminen

TEHTÄVIEN RATKAISUT N = 1,40 N -- 0,84 N = 0,56 N. F 1 = p 1 A = ρgh 1 A. F 2 = p 2 A = ρgh 2 A

ATOMIHILAT. Määritelmä, hila: Hilaksi sanotaan järjestelmää, jossa kiinteän aineen rakenneosat ovat pakkautuneet säännöllisesti.

= 1 kg J kg 1 1 kg 8, J mol 1 K 1 373,15 K kg mol 1 1 kg Pa

Transkriptio:

Lämpöistä oppia Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Alkudemonstraatio Käsi lämpömittarina Laittakaa kolmeen eri altaaseen kylmää, haaleaa ja lämmintä vettä. 1) Pitäkää toista kättä kylmässä ja toista lämpimässä vedessä noin puoli minuuttia. 2) Siirtäkää molemmat kädet yhtä aikaa haaleaan veteen. Miltä haalea vesi tuntuu käsissä? Mitkä seikat vaikuttavat lämpöaistimukseen? Mitä mieltä olette kädestä lämpömittarina?

Lämpöoppi eli termodynamiikka tutkii lämpöön, energiaan ja lämpötilaan liittyviä ilmiöitä Käsitteitä Lämpöenergia (energiamuoto) Lämpö/lämpömäärä (esimerkiksi 50 o C:n lämpötilassa oleva neste sisältää lämpöä tietyn määrän; esimerkiksi vesien sekoittamisessa erilämpöisillä vesillä on erilainen lämpömäärä) Lämpötila (kuvaa itse asiassa aineen rakenneosasten liikkeen nopeutta)

Oppilaiden ennakkokäsityksiä energiasta Oppilaat ajattelevat, että energia liittyy eläviin olentoihin; sellaisilla kappaleilla kuin auto, kivi, jne. ei voi olla energiaa. Energia liittyy ihmisen energisyyteen. Elävillä olioilla voi olla energiaa, mutta sillä on varsin tekninen merkitys eikä se tarkoita ihmisen aktiivisuutta. Energia liittyy liikkumiseen. Oppilaiden mielestä energiaa tarvitaan liikkumiseen, ilman energiaa kappaleet ovat elottomia. Energia liittyy liikkumiseen, mutta fysiikan mukaan liikkuvalla kappaleella on energiaa, mutta kappale ei liiku energian vaikutuksesta. Energiaa pidetään aineen, polttoaineen kaltaisena. Kun oppilaat kuvaavat auton polttoainetta, he puhuvat polttoaineesta energiana eikä että polttoaineesta saadaan energiaa. Energia ei ole ainetta. Energia on abstrakti käsite, jonka lukuarvo voidaan joissakin tapauksissa laskea esimerkiksi kappaleen nopeudesta ja massasta. Oppilaat ajattelevat, että energia kuluu. Fysiikan teorian mukaan energia ei kulu. Energian säilymislaki on luonnontieteen peruslakeja.

Aineen olomuodot Aine koostuu rakenneosista (atomeista tai molekyyleistä). Rakenneosaset ovat jatkuvassa liikkeessä, ja liike lisääntyy lämpötilan kasvaessa ja aineen olomuodon muuttuessa Kiinteä aine (lämpötila alhainen) Aineen rakenneosaset on tietyillä paikoilla ja järjestäytyneet hilarakenteeksi. Rakenneosasten liike on hyvin pientä. Jos rakenneosasten liike pysähtyisi, olisi kyseessä absoluuttinen nollapiste (ei voida saavuttaa).

Nestemäinen aine (lämpötila kohonnut) Rakenneosaset ovat edelleen kiinni toisissaan, mutta niillä on enemmän liikkumavapautta. Kaasu (lämpötila kohonnut) Kaasussa rakenneosaset eivät ole sidottu toisiinsa vaan liikkuvat vapaasti toisiinsa törmäillen. Ainetta lämmittäessä rakenneosasten liike kasvaa ja hiukkaset pyrkivät ottamaan suuremman tilan. Tästä syystä aineet laajenevat lämmetessään. Poikkeus: vesi ei laajene sulaessaan ja tästä syystä jää kelluu vedessä (ρ jää < ρ vesi )

Esimerkki lämpölaajenemisesta Pekkalan vanhempi silta on teräsrakenteinen betonikantinen palkkisilta. Sen pituus on 453 metriä. Pekkalan sillan lämpölaajeneminen pituussuunnassa voidaan laskea seuraavasti: ΔL = α ΔT L o, missä ΔL = pitenemä, α = aineelle ominainen pituuden lämpölaajenemiskerroin, ΔT = lämpötilan muutos, L o = alkuperäinen pituus Teräksen α = 12 10-6 1/ºC. Oletetaan, että silta on talvella (-25 ºC) 453,0 m pitkä. Kesällä (+25 ºC) silta on siis pitempi, pidentymä on ΔL = 12 10-6 1/ºC 50ºC 463,0m = 0,2778m eli n. 28 cm. Sillan toinen pää lepää rullien päällä, jotka mahdollistavat sillan venymisen kesällä ja supistumisen talvella.

Olomuotojen muutoksista Aineen lämpötilan nostamiseen tarvitaan energiaa. Lämpö/lämpömäärä kuvaa siirtyvän lämpöenergian määrää Aineen sulamispisteessä lämmön tuominen muuttaa aineen kiinteästä nesteeksi, eikä lämpötila tällöin kohoa Vastaavasti aineen jäätyessä siitä vapautuu lämpöä Myös nesteen muuttaminen kaasuksi kiehumispisteessä vaatii energiaa eikä aineen lämpötila tällöin nouse.

Aine voi muuttua myös suoraan kiinteästä kaasuksi (sublimoituminen) tai toisinpäin (härmistyminen) Esim. pyykit kuivavat pakkasella (sublimoituminen) ja ikkunoissa talvipakkasella näkyvät kuurankukat (härmistyminen)

Lämpöenergian siirtyminen Lämpöenergian siirtymisen suunta on aina lämpimämmästä kylmempään päin Jos ovea avataan talvipakkasella, niin ulkoa ei tule kylmää vaan lämpöenergia siirtyy ulos. Lämpöenergia voi siirtyä kolmella tavalla Johtumalla: Lämpöenergia siirtyy, mutta ainetta ei siirry. Virtaamalla/kulkeutumalla: Lämpöenergia siirtyy aineen mukana. Säteilemällä: Lämpöenergia siirtyy ilman väliainetta.

Pohdittavaa! 1. Minkä vuoksi lämmitetyssä saunassa oleva rautanaula polttaa ihoa, mutta lauteet eivät? a) Rautanaulan lämpötila on korkeampi kuin lauteiden b) Naula johtaa paremmin lämpöä c) Naulan pinta-ala on pienempi kuin lauteiden Pitäisi olla selvä juttu, kun ajattelet lämmön johtumista (vrt. lusikka-työ harjoituksissa). 2. Mitä tapahtuu ja miksi kun kuuma rautakappale (lämpötila 100 C) pudotetaan veteen (lämpötila 20 C)? a) Lämpötilat tasoittuvat koska vesi luovuttaa kylmää raudalle b) Molempien lämpötilat tasoittuvat 60 C:een, koska molemmat luovuttavat saman määrän energiaa toisilleen c) Lämpötilat tasoittuvat koska rauta luovuttaa lämpöä veteen Miksi ei voi olla a-vaihtoehto? (ks. edellä olevista dioista) Miksi ei voilla b-vaihtoehto? (ei voida päätellä kuten vesien sekoittumisessa, koska eri aineita ja niillä vielä eri olomuoto) Miksi on c-vaihtoehto? (ks. edellä olevista dioista) 3. Minkä vuoksi kylmissä maissa talojen seiniin laitetaan rakennusvaiheessa lasivillaa? a) Saadaan kevyellä rakenteella paksummat seinät b) Huokoisessa materiaalissa oleva ilma toimii hyvänä lämmöneristeenä c) Paksumpi seinä estää kylmän virtaamisen sisään Ja tämähän on ihan selvä (vrt. harjoituksissa veden jäähtyminen lasipurkissa ilman eristettä ja solumuovi eristeenä).