Luennon aiheet. Kertausta: OSI-malli. OSI-malli, esimerkki. Fyysinen kerros - yleistä. Fyysinen kerros ja siirtotiet

Samankaltaiset tiedostot
S Tietoliikennetekniikan perusteet. Luento 2 Siirtotiet. OSI-kerrokset 1 ja 2.

S Tietoliikennetekniikan perusteet. Luento 6 Siirtotiet. OSI kerrokset 1 ja 2.

S Tietoliikennetekniikan perusteet

S Tietoliikennetekniikan perusteet. Luento 3 Siirtotiet. OSI kerrokset 1 ja 2.

Kuva maailmasta Pakettiverkot (Luento 1)

5. Siirtoyhteyskerros linkkikerros (Data Link Layer)

5. Siirtoyhteyskerros linkkikerros (Data Link Layer)

OSI malli. S Tietoliikenneverkot S Luento 2: L1, L2 ja L3 toiminteet

Pertti Pennanen OSI 1 (4) EDUPOLI ICTPro

» multiaccess channel» random access channel LAN (Ethernet) langaton. ongelma: käyttövuoron jakelu Yhteiskäyttöisen kanavan käyttö

4. MAC-alikerros. yleislähetys (broadcast) ongelma: käyttövuoron jakelu. » multiaccess channel» random access channel LAN (Ethernet) langaton

Reititys. Reititystaulukko. Virtuaalipiirin muunnostaulukko. Datasähkeverkko. virtuaalipiiriverkko. Eri verkkotekniikoita

Siirtotiet (Siirtomedia)

OPTISET KUIDUT. KEMIA JA YMPÄRISTÖ Jesse Peurala ja Reijo Tolonen ja TP05S, ryhmä C

S Tietoliikennetekniikan perusteet. Pakettikytkentäiset verkot. Helsinki University of Technology Networking Laboratory

SISÄLMYSLUETTELO QUO VADIS?... 9

5. Siirtoyhteyskerros linkkikerros (Data Link Layer) 5.1. Kaksipisteyhteydet. Kehysten kuljetus. Missä virhe hoidetaan? Virheet.

S Tietoliikennetekniikan perusteet. Piirikytkentäinen evoluutio. Annukka Kiiski

Antti Vähälummukka 2010

Sanoman siirto paketteina: ei etenemisviivettä, ei jonotuksia

Tietoliikenne II. Syksy 2005 Markku Kojo. Tietoliikenne II (2 ov,, 4 op) Page1. Markku Kojo Helsingin yliopisto Tietojenkäsittelytieteen laitos

Tietoliikenne II (2 ov)

LexCom 125 Cat5e suojaamattomat kuparikaapelit (sisäkäyttöön) 100 Ohm +/- 15% MHz. 4 parikierrettä kierrettynä Johdin Kiinteä kupari AWG 24

Siltojen haitat. Yleisesti edut selvästi suuremmat kuin haitat 2/19/ Kytkin (switch) Erittäin suorituskykyisiä, moniporttisia siltoja

Tietoliikenne II (2 ov)

6. Erilaisia verkkoja. LAN, MAN ja WAN

6. Erilaisia verkkoja

Sanoman siirto paketteina: ei etenemisviivettä, ei jonotuksia

Parikaapeli. Siirtomedia. Sähkömagneettinen spektri. EIA/TIA kategoriat

Langaton linkki. Langaton verkko. Tietoliikenteen perusteet. Sisältö. Linkkikerros. Langattoman verkon komponentit. Langattoman linkin ominaisuuksia

Kapasitiivinen ja induktiivinen kytkeytyminen

Radiotekniikan perusteet BL50A0301

Parikaapelit CATx / RJ45

Tiedonsiirron perusteet ja fyysinen kerros. Tietoliikenne kohtaa todellisuuden OSI-mallin alimmainen kerros Kirja sivut 43-93

S Tietoliikennetekniikan perusteet. Luento Informaatioteorian alkeita Tiedonsiirron perusteet

5. Siirtoyhteyskerros linkkikerros (Data Link Layer) 5.1. Kaksipisteyhteydet. Kehysten kuljetus. Virheet. Missä virhe hoidetaan?

5. Siirtoyhteyskerros linkkikerros (Data Link Layer)

T Verkkomedian perusteet. Tietoliikennekäsitteitä Tiedonsiirron perusteet

Kurssin perustiedot. ELEC-C7110 Informaatioteknologian perusteet. Tämän viikon aiheet. Tiedonsiirron perusteita. Tiedonsiirron rakenneosat

S Teletekniikan perusteet

TURVAVÄYLÄSEMINAARI. Erilaiset kenttäväylät ja niiden kehitys Jukka Hiltunen

Kanavointi (multiplexing) Samalla linkillä usean yhteyden sanomia. Siirtonopeus, siirtoaika. Lasketaan! Ratkaistaan!

Monimutkaisempi stop and wait -protokolla

Ongelmia mittauksissa Ulkoiset häiriöt

Tietoliikenteen fyysinen kerros. Tietoliikenne kohtaa todellisuuden Kirja sivut 43-93

1.4. Tietoliikenneohjelmistot eli protokollat

1.4. Tietoliikenneohjelmistot eli protokollat

1.4. Tietoliikenneohjelmistot eli protokollat. Protokollien kerrosrakenne. Mitä monimutkaisuutta?

Chapter 5 Link Layer and LANs

Luennon sisältö. Protokolla eli yhteyskäytäntö (1) Verkon topologia

T Johdatus tietoliikenteeseen ja multimediatekniikkaan. Tiedonsiirron perusteet Lähiverkot

SIIRTOTIET JA ANTENNIT

S Tietoliikennetekniikan perusteet. Piirikytkentäinen evoluutio

Virtuaalipiirin muunnostaulukko. Magneettinen ja optinen media Siirtomedia. Kierretty parijohto (twisted pair) Eri verkkotekniikoita

Häiriöt kaukokentässä

)\\VLQHQNHUURV Lähiverkot / Markus Peuhkuri 1

S Elektroniikan häiriökysymykset. Laboratoriotyö, kevät 2010

OSI ja Protokollapino

RF-tekniikan perusteet BL50A Luento Antennit Radioaaltojen eteneminen

Tietoliikenteen perusteet. Langaton linkki

Tietoliikenteen perusteet. Langaton linkki

HÄIRIÖSUOJAUS KAKSISUUNTAINEN PROSESSI SISÄISET JA ULKOISET HÄIRIÖT

Kohina (Noise) 1.4. Tietoliikenneohjelmistot eli protokollat. Signaalin vahvistaminen

Kohina (Noise) Signaalia häiritsee kohina. aina taustalla esiintyvää sähkömagneettista aaltoliikettä terminen kohina. elektronien liikkeestä johtuva,

Sähkömagneettisista kentistä ja aalloista

1. Tietokoneverkot ja Internet

KÄYTTÖOHJE FLSNIF KÄYTTÖÖNOTTO V2.2 ( ) 1 (5)

Tietoliikenteen perusteet. Linkkikerros

S Tietoliikennetekniikan perusteet. Jukka Manner Teknillinen korkeakoulu

Antti Vähälummukka 2010

Siltojen haitat Yleisesti edut selvästi suuremmat kuin haitat

Protokollien yleiset toiminnot

5. Siirtoyhteyskerros linkkikerros (Data Link Layer)

5. Siirtoyhteyskerros linkkikerros (Data Link Layer) 5.1. Kaksipisteyhteydet. Kehysten kuljetus. Missä virhe hoidetaan? Virheet.

5. Siirtoyhteyskerros linkkikerros (Data Link Layer)

TW- EAV510: WDS- TOIMINTO KAHDEN TW- EAV510 LAITTEEN VÄLILLÄ

Faradayn laki ja sähkömagneettinen induktio

T Verkkomedian perusteet

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto

Piirikytkentäinen verkko -ensin varataan resurssit yhteyttä varten -sitten datan siirto yhteyttä pitkin -vapautetaan resurssit.

Kanavointi (multiplexing)

Numeeriset menetelmät

1 Määrittele seuraavat langattoman tiedonsiirron käsitteet.

Kanavan kuuntelu. Yleislähetysprotokollia ALOHA. CSMA (Carrier Sense Multiple Access) Viipaloitu ALOHA. Lähetyskanavan kuuntelu (carrier sense)

EMC Suojan epäjatkuvuudet

ELEC-C1210 Automaatio Tietoliikenne 2014

Linkkikerros: Ethernet ja WLAN. T Suuri osa kalvomateriaalista Ursula Holmströmiltä Kirja

2. Peruskerros. tiedonsiirron perusteet siirtotie (media) siirtoverkkoja. puhelinverkko: modeemi, isdn, langaton verkko: soluradio satelliittiverkko

d) Jos edellä oleva pari vie 10 V:n signaalia 12 bitin siirtojärjestelmässä, niin aiheutuuko edellä olevissa tapauksissa virheitä?

ITKP104 Tietoverkot - Teoria 3

Peruskerros: OFDM. Fyysinen kerros: hajaspektri. Hajaspektri: toinen tapa. FHSS taajuushyppely (frequency hopping)

Sisäilmaston mittaus hyödyntää langatonta anturiteknologiaa:

Virtuaalipiirin muunnostaulukko

EMC Johdanto EMC. Miksi? Elektroniikan käytön voimakas kasvu mobiililaitteet, sulautetut järjestelmät

Tietoliikenteen perusteet. Langaton linkki. Kurose, Ross: Ch 6.1, 6.2, 6.3. (ei: 6.2.1, ja 6.3.5)

Tietoliikenteen perusteet. Linkkikerros

Standardiliitännät. Tämä ja OSI 7LHWROLLNHQQHWHNQLLNDQSHUXVWHHW $(/&7 0DUNXV3HXKNXUL

K6 ja K10G liittimien asennus S/FTP-kaapeliin. 3M Telecommunications

Data ja informaatio. Tiedonsiirron perusteet ja fyysinen kerros. Ohjattu media. Tiedonsiirto. Ohjaamaton media

5.5 Ethernet-lähiverkko. Eetteriverkon rakenne. Kaapelit. Törmäyksen jälkeinen uudelleenlähetys. Signaalin koodaus Manchester-koodaus CSMA/CD

Transkriptio:

Luennon aiheet S-38.1105 Tietoliikennetekniikan perusteet Luento 2 Siirtotiet. OSI-kerrokset 1 ja 2. Timo Smura 30.01.2008 Kertausta Verkkojen kerrosmalli: OSI Fyysinen kerros (OSI-mallin 1. kerros) Siirtotiet: Avojohto, kaapeli, valokuitu, radiolinkit Siirtoyhteyskerros (OSI-mallin 2. kerros) vuonohjaus virheenkorjaus vuoronvarausmenettelyt (access control) Slide 2/25 Kertausta: OSI-malli OSI-malli, esimerkki OSI-malli: TCP/IP-malli: 7: Sovelluskerros (Application layer) 6: Esitystapakerros (Presentation layer) Sovelluskerros 5: Istuntokerros (Session layer) Tämä luento! 4: Kuljetuskerros (Transport layer) 3: Verkkokerros (Network layer) 2: Siirtoyhteyskerros (Data link layer) 1: Fyysinen kerros (Physical layer) Kuljetuskerros Internet-kerros Verkkoyhteyskerros Slide 3/25 Slide 4/25 Fyysinen kerros - yleistä Fyysinen kerros ja siirtotiet (Physical layer) Määrittelee konkreettisia, mitattavia asioita Liittimet, johdot, sähköiset tasot Muut kerrokset sisältävät ohjelmistomäärittelyitä Ratkaistavia asioita: Siirtotiet Bittien sähköinen esitystapa Siirtonopeus, synkronointi Siirtotie = signaalin sähköinen tai optinen kulkutie Kuparikaapeli, optinen kuitu tai radiolinkki Slide 6/25 1

Avojohto Kaapeli Eli eristämätön johdin Aluksi pelkkää terästä, myöhemmin kuparipäällysteistä terästä Yksilankaiset avojohdot Käytettiin ensimmäisissä puhelinverkoissa Paluujohtimena toimi maa >> epäsymmetrinen, herkkä häiriöille Avojohdinparit (kaksoisjohto) Käyttöön 1900-luvun alussa lisättiin toinen johto paluujohtimeksi yhteyksien laatu parani, mutta edelleen ongelmia resistanssi: signaalin teho muuttuu lämmöksi kapasitanssi: signaali oikaisee eikä saavuta vastapäätä johtimen magneettikenttä indusoi virran viereisessä johtimessa >> ylikuuluminen >> ongelma väheni johtimien vuorottelulla Langalle kertyvä huurre muuttaa johdon sähköisiä ominaisuuksia Poistuneet käytöstä lähestulkoon kokonaan Useita eristettyjä johtimia käärittynä saman vaipan sisälle Voidaan sijoittaa vapaammin kuin avojohto, esim. maan alle Mahdollisuus lisätä vaippaan häiriösuojaus Kierretty parikaapeli (Twisted pair) kaksi toistensa ympäri kierrettyä eristettyä johdinta, ympärillä muovivaippa kiertäminen vähentää ulkoisten häiriöiden vaikutusta UTP - Unshielded Twisted Pair: suojaamaton FTP - Folio shielded Twisted Pair: kaikilla pareilla yhteinen suojaus STP - Single-pair-shielded Twisted Pair (STP): jokainen pari erikseen suojattu puhelinjohdot, kaiutinkaapelit, lähiverkot Koaksiaalikaapeli Kaksi eristettyä johdinta sisäkkäin Antennikaapeli, lähiverkkokaapeli (alkup. Ethernet) Slide 7/25 Slide 8/25 Valokuitu Valokuidun rajoitukset Materiaali kvartsilasia tai muovia Idea keksittiin 1966, ensimmäiset kuidut valmistettiin 1970 Siirrettävä signaali valoa Sähköinen signaali muutetaan valoksi LED- tai laserlähettimillä Valo pysyy kuidun sisällä kokonaisheijastuksen avulla, kuoren ja ytimen välillä oltava riittävän suuri taitekerroinero Kuidun taitekerroinprofiilin ja siitä seuraavan valon etenemistavan mukaan kuidut jaetaan eri tyyppeihin Käyttökelpoinen sekä lähiverkoissa että pitkissä runkoyhteyksissä Kaistanleveyttä rajoittaa lähinnä dispersio eri taajuiset valonsäteet kulkevat kuidussa eri nopeudella saapuvat vastaanottimeen eri aikoina >> valopulssi leviää Siirtoetäisyyttä rajoittaa vaimennus Vaimennus riippuu aallonpituudesta ja yleisesti ottaen pienenee aallonpituuden kasvaessa (eli taajuuden alentuessa) Kuidun aiheuttama vaimennus Absorptio (esim. hydroksidi-ionien aiheuttama vesipiikki) Sironta (muutokset lasin tiheydessä, lasiseoksen epätasaisuudet, kuidun taivuttamisesta johtuvat jännitykset ja kuplat) Taivutushäviöt (valonsäde karkaa kuidun sisältä) Liitosten aiheuttama vaimennus Slide 9/25 Slide 10/25 Kuitutyypit Kuitutyypit (2) Monimuotokuidut = Kuidut, joiden päästä tulevat valonsäteet ovat kulkeneet eripituiset matkat ja ovat eri vaiheissa Askeltaitekertoiminen kuitu Yksinkertaisin ja vanhin kuitutyyppi Taitekerroin muuttuu ytimen ja kuoren välillä hyppäyksenomaisesti Ytimen halkaisija suuri verrattuna valon aallonpituuteen -> valosta etenee monta eri muotoa -> muotodispersio Asteittaistaitekertoiminen kuitu Ytimen taitekerroin muuttuu asteittaisesti kuorta kohti -> valonsäteet kaartuvat jyrkän heijastumisen sijasta Valo etenee useissa eri muodoissa, mutta reunoilla valon nopeus on suurempi kuin keskiosassa -> muotodispersio melko vähäistä Yksimuotokuitu Ytimen ja kuoren välinen taitekerroin ja ytimen pieni halkaisija sallivat vain yhden muodon (eli yhdellä tapaa taittuvan valonsäteen) etenemisen Ei dispersiota, pienin vaimennus Kuidun ja komponenttien valmistus kalliimpaa Kuva: Willa & Uusitupa, 2001: Tietoliikenneaapinen Slide 11/25 Slide 12/25 2

Valokuidun edut ja haitat Edut kuparikaapeleihin nähden: Immuuni sähkömagneettisille häiriöille, ei säteile ulospäin (ei ylikuulumista, salakuuntelua) Siirtohäviöt pienet >> toistinväli jopa satoja kilometrejä Leveä kaista, korkeat kantoaaltotaajuudet >> suuri siirtokapasiteetti Haitat: Kuidun, lähettimien ja ilmaisimien teko vaativaa >> kalliimpi hinta Asennus ja ylläpito haastavaa Herkästi rikkoontuvaa kuparijohtoihin verrattuna Radiolinkit Vapaa tila, ilmatie, langaton siirtotie Edut: "halpa" - ei johdonvetokustannuksia liikkuvat päätelaitteet, yhteys mahdollinen lähes missä vain Rajoitukset: viestin salakuuntelu ja häirintä helppoa >> turvallisuus ratkaistava käyttökelpoisia radiotaajuuksia rajatusti, käytöstä sovittava kansainvälisesti siirto-olosuhteet vaihtelevat (sääilmiöt, magneettiset myrskyt) Slide 13/25 Slide 14/25 Radioaaltojen eteneminen Suora näköyhteys Korkeatkin taajuudet Muita tapoja luotettavampi, pääasiallinen etenemistapa teletekniikassa Sironta 300 MHz 10 GHz Jopa 2000 km Heijastuminen ionosfääristä < 30 MHz Jopa maapallon ympäri, mikäli aalto heijastuu uudelleen maanpinnasta Maanpinta-aalto < 10 MHz Optimiolosuhteissa tuhansia kilometrejä Siirtoyhteyskerros Slide 15/25 Siirtoyhteyskerros - yleistä Vuonohjaus (flow control) (Data link layer) Ratkaistavia asioita: Yhteyden muodostus kahden solmun välillä Fyysinen osoitteistus Vuonohjaus Virheiden käsittely Vuoronvarausmenettelyt Todellisuudessa verkkototeutukset eivät noudata OSIjakoa kirjaimellisesti Samoja tehtäviä (kuten virheenkorjausta ja vuonohjausta) tehdään myös muilla kerroksilla Kuinka paljon tietoa kerralla voi lähettää? Tapahtuu yhteyden aikana Pyrkii estämään tiedon katoamisen siirron aikana puskurien täyttymisen takia: vastaanottaja estää lähettäjää lähettämästä liikaa tietoa kerralla Menetelmiä: Lähetetään yksi viesti kerrallaan ja odotetaan vastaanottajalta kuittausta ennen seuraavan viestin lähetystä (stop-and-wait) Lähetetään useita viestejä kerrallaan; kuittausta odottavien viestien lukumäärän määrää ns. liukuva ikkuna (sliding window) Slide 17/25 Slide 18/25 3

Virheet Esiintyvät joko yksittäin (single-bit error) tai purskeina (burst error) Voivat johtua esim. tahdistusvirheistä tai kohinasta ja häiriöistä Kohinan määritelmä: mikä tahansa ei-toivottu satunnainen signaali, joka summautuu mitattavaan signaaliin tai häiritsee haluttua signaalia Aiheutuu laitteen tai materiaalin fysiikasta (esim. lämpökohina) Häiriöt joko luonnollisia (esim. revontulet) tai ihmisen aikaansaamaa (esim. 50 Hz:n sähköverkkojen aiheuttama häiriö, radiolähetteet) >> Joka tapauksessa virheitä tulee aina Virheiden käsittely (error control) Virheiden havainti (engl. error detection) Tavoitteena havaita virheet ja tämän jälkeen joko lähettää virheelliset merkit tai viestit uudelleen (retransmission) hylätä viallinen viesti korjata viallinen viesti Virheenhavaintimenetelmiä: kaiutus vastaanottaja lähettää kaiken saamansa datan takaisin lähettäjälle pariteettitarkistus lähettäjä lisää jokaiseen merkkiin yhden pariteettibitin, joka täydentää merkin ykkösbittien lukumäärän joko parilliseksi tai parittomaksi tarkistussumma lähettäjä laskee tarkistussumman suuremmasta bittijoukosta eli lohkosta ja lisää sen lohkon loppuun Virheenkorjaus (engl. error correction) pyritään sisällyttämään viesteihin niin paljon toistoa, että virheelliset bitit voidaan paitsi havaita myös korjata Slide 19/25 Slide 20/25 Vuoronvarausmenettelyt (access control) Kilpavarausperiaate Kenen vuoro lähettää? Kahdenvälisellä linkillä: varmistetaan, että vastaanottaja on toimintakunnossa ja valmis vastaanottoon Monta tasa-arvoista laitetta jakaa saman siirtotien >> tarvitaan hienostuneempia menetelmiä siirtoyhteyden jakamiseksi Sopivin menetelmä riippuu verkon rakenteesta Kilpavarausperiaate: lähetyshaluiset asemat kilpailevat lähetysvuorosta Valtuudenvälitysperiaate: verkossa kiertää valtuus (token), jonka nappaamalla asema saa lähetysvuoron itselleen Muita tapoja: FDMA, TDMA, CDMA (lähetysvuoroista sovitaan jo etukäteen) CSMA/CD (Carrier Sense Multiple Access / Collision Detection) algoritmi Sopii verkkoon, jossa asemat joutuvat kilpailemaan yhteisestä siirtotiestä (esim. radiotie, väyläverkko) Tasa-arvoinen: kaikilla asemilla yhtä hyvä tai huono todennäköisyys saada lähetysvuoro Käytetään mm. Ethernetissä (perusmuodossa väylätopologia) ja WLAN:eissa (hieman muunneltuna >> CSMA/CA) Toimintaperiaate yksinkertaistettuna: Kuunnellaan väylää Jos väylä hiljainen, lähetetään kehys Jos havaitaan törmäys lähetetään sotkua, jotta muutkin huomaavat törmäyksen satunnaisen pituinen viive ennen uutta yritystä Slide 21/25 Slide 22/25 Kilpavarausperiaate: esimerkki Kone 2 lähettää koneelle 4 Kone 5 lähettää koneelle 1 Valtuudenvälitysperiaate Verkossa kiertää valtuus (engl. token), jonka haltijalla on lähetysvuoro Käytetään sekä rengas- että väylätopologiassa Token Ring (IEEE 802.4) fyysisesti rengasverkko >> ei törmäyksiä, ennakoitava viive lähetysvuoron saamisessa Token Bus (IEEE 802.5) yhdistelmä Ethernet- ja Token Ringverkkoja (fyysisesti väylätopologia, jossa kiertää valtuus loogisen renkaan mukaisesti) >> ei törmäyksiä, ennakoitavat viiveet >> käytetään teollisuusautomaatiosovelluksissa Kuva-animaatio: http://www.datacottage.com/nch/eoperation.htm Slide 23/25 Slide 24/25 4

Valtuudenvälitysperiaate: esimerkki Kone 1 lähettää viestin koneelle 4 Kone 4 lähettää kuittauksen koneelle 1 Kuva-animaatio: http://www.datacottage.com/nch/troperation.htm Slide 25/25 5