Johdanto Linkkikerros Kirja 102-128, 135-151, 170-180 Luennon tavoitteena on oppia linkkitason teknologiaan liittyviä käsitteitä kuten Kehystys Ylemmän tason datan kapselointi Jaetun median käyttö Jaetun median hallinta (medium access control) Verkkotopologiat Tietokoneet käsittelevät tavuja, IP-kerros paketteja, fyysinen kerros bittejä Linkkikerros yhdistää nämä kehystämällä ja kapseloimalla ylemmän tason datan siirrettäväksi fyysisen median ylitse Kerrostetut yhteyskäytännöt OSI-malli Yhteyskäytännöt (protokollat) yhdistävät oman tasonsa olioita Ylemmät kerrokset käyttävät alemman kerroksen palveluita Kerrokset ovat riippumattomia muista kerroksista Kunkin kerroksen määrittelee sen ylemmälle kerrokselle tarjoama palvelurajapinta ja sen alemmalta kerrokselta vaatima palvelu Olio Olio Olio toteuttaa (tarjoaa) rajapinnan Olio hyödyntää rajapintaa Protokolla Vertaisoliolio Oliot viestivät vaihtaen viestejä (Protocol Data Unit, PDU) saman tason olioiden kanssa Kaksi N-tason oliota eri järjestelmissä kommunikoi keskenään käyttäen N-tason yhteyskäytäntöä N-kerroksen N+1-kerrokselle tarjoamat palvelut toteutetaan N- kerroksella kapseloimalla (encapsulation) Kapselointi tarkoittaa ylemmän kerroksen datan (Service Data Unit, SDU) sisällyttämistä sitä alemman kerroksen viesteihin (Protocol Data Unit, PDU) Saman kerroksen oliot ovat vertaisia (peer) N+1 tason oliot hyödyntävät N-tason tarjoamia palveluita rajapinnan (Service ccess Point, SP) kautta Yksi N+1-tason olio voi olla samanaikaisesti yhteydessä yhteen tai useampaan N-tason SPiin Yksi N-tason SP on yhteydessä yhteen N-tason olioon Tietoverkkojen topologiat Verkko voi olla rakenteeltaan rengas, väylä, tähti tai hybridi Lähiverkot usein tähti- tai väylämäisiä Kampus- ja alueelliset verkot usein kaksoisrenkaita (vikasietoinen ratkaisu) Eri kerroksilla saattaa olla erilainen topologia Koaksaali-Ethernet on fyysinen ja looginen väylä Keskitin-Ethernet on fyysinen tähti, looginen väylä Käytetty media voi olla usean osapuolen jakama tai vain kahden olion väline Tällä kerroksella toteutetaan Lähiverkot Ethernet, WLN, Token Ring, TM (paikallinen) Pisteiden väliset yhteydet Tietokoneita tai lähiverkkoja yhdistävät HDLC, PPP, SLIP, TM Perinteinen tele-infra: Sonet, SDH, PDH, TM Käsitellään IV periodilla Myös Kampusverkot tai MN (Metropolitan rea Network) FDDI, HIPPI, TM, optiset reknaat Langattomat mobiliverkot GPRS, UMTS Ja muuta teknologiaa Kaapelimodemit, luetooth Linkkikerros (Data Link Layer) 1
Kehystys itti- ja tavuorientoitunut kehystys Koska linkkikerroksen tehtävänä on ylemmän tason SDUden siirtäminen omien PDUden sisällä ja linkkikerroksen alapuolella on fyysinen kerros (joka siis oletusarvoisesti siirtää yhden bitin), on likkikerroksen käytettävä fyysistä kerrosta tavalla, joka mahdollistaa datan tunnistamisen vastaanottajalle Tätä kutsutaan kehystykseksi, eri likkikerroksen protokollat toimivat eri tavoi, mutta yleensä ne toteuttavat kehyksen, esimerkiksi merkitsemällä PDUn alun ja lopun Linkkikerros voi lisäksi sisältää muita toimintoja HDLC (High-level Data Link Control) Linkkikerroksen bittiorientoitunut protokolla HDLC-kehyksen aloittaa lippu (flag) 01111110 Datan alku- ja loppumerkki Tavu 01111110 voidaan siirtää bit stuffing -tekniikalla Jokaisen kuvion 11111 perään lisätään 0 SLIP (Serial Line IP) Yksinkertainen tavuorientoitunut protokolla IP-pakettien kehystämiseen Edellyttää 8-bittisen siirtotien Kehystäminen toteutetaan lähettämällä jokaisen IP-paketin jälkeen END-merkki (tavu 192) Datassa olevat END-merkit lähetetään ESC-merkin (tavu 219) avulla, END = 219 220, ESC=219 221 (byte stuffing) Vanhentunut teknologia, kuvataan RFC 1055:ssä Pääteyhteys ja modeemi PPP-protokolla (Point to Point Protocol) Hieman historiaa: Halpojen mikrotietokoneiden yleistyessä 1980-luvulla niiden ensisijainen tietoliikennevarustus oli RS-232 -sarjaliikenneportti Suunniteltu siirtämään SCII-merkkejä päätteille/päätteiltä Kehystää 7 tai 8 bittiä alku- ja loppubiteillä Voidaan käyttää pariteettibittiä siirtovirheiden tunnistamiseen Modeemin avulla sarjayhteys voitiin jatkaa etäämmälle käyttäen puhelinverkkoa Tietokoneessa käytettiin tyypillisesti pääteemulaattoriohjelmistoa, joka pysty noudattamaan varsinaisten päätelaitteiden ohjauskoodeja Tavukoodeja, esim. SCII 10 rivinvaihto, SCII 13 vaununpalautus Modeemi ja sarjayhteys tarjoavat siis tavan siirtää tavuja tietokoneelta toiselle Tämä tekniikka ei noudattanut yleensä OSI-mallia Määritelty standardeissa RFC 1661,1662, 1663 ym. Monipuolinen Suunniteltu IP:n ja muiden verkkotason protokollien siirtämiseen sarjayhteyksien ylitse Käytetään IP-liikenteeseen erilaisten yhteyksien ylitse Muodostamaan modeemiyhteyksiä Internetiin Yksinkertaisiin VPN-toteutuksiin "PPP over SSH" (SSH tarjoaa salauksen) xdsl-yhteyksien tarjoamiseen, PPP "over Ethernet" tai TM Tukee erilaisia tarpeita Osapuolten tunnistaminen ja todentaminen IP-osoitteiden ja muun verkkokonfiguraation siirto (korvaa DHCP:n) Ylläolevan takia PPP:n käyttö muiden linkkikerroksen protokollien ylitse on mielekästä Yksinkertaistettu tilamalli: Dead Down Fail Up Established Terminate Opened Closing Fail Network Istunnon avaus- ja sulkutapahtumaa ei näytetä (laitteisto-ohjautuva tai manuaalinen) PPP-istunto uthenticate Success/ None Digitaaliset tilaajaliittymät (laajakaistaiset) siakasliittymien tekniset ominaisuudet eivät salli tavallisten digitaalisten teletekniikoidan hyödyntämisen PDH/SDH, kerrotaan lisää IV periodilla Halu hyödyntää olemassa olevia infrastruktuuri-investointeja on suuri On olemassa joukko erilaisia tekniikoita tai standardeja POTSasiakasliittymien (Plain Old Telephone System) vanhan kaapeloinnin hyödyntämiseen Tällä hetkellä suosituin ratkaisu on DSL, muitakin on Yleisemmin ongelma tunnetaan nimellä "last mile problem" Ne, joilla ei ole mahdollisuutta tai halua hyödyntää televerkkoa yrittävät käyttää kaapeli-tv-verkkoa, sähköverkkoa, langattomia tekniikoita (IEEE 802.11, 802.16) jne. Tai pohtivat oman verkon rakentamista 2
DSL Kaapelimodeemit symmetric Digital Subscriber Line Käyttää yhtä kierrettyä paria, tarjoaa sen ylitse yhden simplexyhteyden kumpaankin suuntaan sekä sallii analogisen duplexyhteyden puheelle siakasliittymän taajuusspektri voidaan jakaa puheelle ja korkeammille signaalitaajuuksille Yhteyden alussa DSLn käyttämä spektri jaetaan kapeisiin alikanaviin, joiden siirtokapasiteetti analysoidaan Näin pyritään hyödyntämään siirtotien tarjoama kapasiteetti mahdollisimman hyvin DSL versio ITU-T G.992.1 tarjoaa 6.144Mbps alaspäin and 640kbps ylöspäin DSL:n ylitse voidaan ajaa eri protokollia Usein PPP over TM tai Ethernet Riippuu palveluntarjoajan arkkitehtuurista Kaapelitelevisioverkko on rakennettu yksisuuntaista yhteislähetystä varten, eikä ole osa televerkkoa Se tarjoaa laajakaistaisen koaksaaliyhteyden kuluttajan kotiin Kaapeli-TV-verkko voidaan päivittää kaksisuuntaista liikennettä varten, jolloin sen kautta voidaan siirtää myös dataa Linkkitasolla talon asukkaat jakavat yhteistä antenniverkkoa Digitaaliset televisiolähetykset Lähiverkko naloginen televisiosignaali voidaan digitalisoida Käytössä on useita standardeja DV-S (satellite) satelliittilähetyksille DV-T (terrestrial) maanpäällisille radioliikenteelle DV-C (cable) kaapeli-tv-käyttöön DV-H (handheld) mobiililaitteita varten Voidaan käyttää muunkin datan siirtoon Regulaation puitteissa Yksisuuntainen yhteislähetys Käyttäminen käyttäjäkohtaiseen tietoliikenteeseen ei ole kustannustehokasta Voidaan käyttää laajempaa vastaanottajajoukkoa kiinnostavan datan siirtoon Interaktiiviset palvelut vaativat kuluttajalle tavallisen Internetyhteyden Yksityinen oma, ei ulkopuolista sääntelyä Lyhyt etäisyys (~1km) koneiden välillä edullinen nopeaa, melko virheetöntä tiedonsiirtoa ei tarvita monipuolista virheenkorjausta Koneita siirretään paikasta toiseen Koneiden sijainnin hallinta työlästä nnetaan joka koneelle oma osoite Viestit lähetetään yleislähetyksenä kaikille lähiverkossa Tarvitaan menetelmä jakaa siirtomedia: medium access control protocol Tyypillinen lähiverkko Viestintä jaetulla siirtotiellä Siirtotie Verkkokortti (Network Interface Card) Uniikki osoite MC-osoite Kaikki asemat ovat saman johdon ääressä Siirtotiellä käytetään yleislähetystä (broadcast) Kaikki asemat kuulevat yhteiselle medialle lähetetyn viestin Jos kaksi asemaa lähettää yhtä aikaa tapahtuu törmäys Signaalit sekoittuvat ja lähetys menee sekaisin Eli pelkkä kehystys ei riitä RM Ethernet Processor RM ROM 3
Eri tapoja jakaa yhteinen siirtotie Kanavajako (channelization) kanavajako (channelization) ja kanavointi (multiplexing) jokainen asema saa oman osansa jaetusta siirtotiestä sopii jatkuvaan lähetykseen eri lähetykset voidaan erotella esim. signaalin taajuuden mukaan (FDM) tai kullakin asemalla on oma aikaikkuna (TDM) jolloin se saa lähettää käsitellään tarkemmin IV periodilla teletekniikan yhteydessä Dynaaminen varaus (MC schemes) asemat lähettävät tarpeen mukaan, törmäykset havaitaan tai niitä vältetään sovitulla tavalla sopii purskeiselle datalle Jaettu kanavoimaton väylä Crash!! Mikä tahansa asema voi lähettää tarvittaessa Joten törmäykset ovat mahdollisia, tarvitaan strategia niiden ratkaisemiseksi Vuorottelu Kilpailu ja uudelleenlähetys Vuorottelu (Scheduling) Kilpavaraus on tehoton suurilla liikennemäärillä Vuorottelu (scheduling) on organisoidumpi tapa jakaa vuoroja varaus (reservation) kysely (polling) valtuuden välitys (token passing) Vuorottelu: Kysely (polling) Yksi laite hallitsee mediaa, muut lähettävät vain kysyttäessä Käytetään mm. joissakin kenttäväyläverkoissa CN (autot), LON (rakennukset) jne. Myös korkeamman tason protokollat käyttävät kyselyä IMP ja POP, "olenko saanut uutta sähköpostia" Data from 1 Data from 2 Inbound line Data to M Poll 1 Host computer Poll 2 1 2 3 Outbound line M Stations Vuorottelu: Valtuuden välitys Kilpavaraus (random access) Rengasverkko token Data to M token Ei sovittuja lähetysvuoroja lähetys satunnaisesti silloin kun on lähetettävää Törmäysten havaitseminen Tapa välttää uudet törmäykset uudelleenlähetyksessä Token, eli lupa lähettää, kiertää verkossa sema jolla on token hallussaan on valtuutus lähettää 4
CSM CSM-CD Carrier Sense Multiple ccess Vältetään selvät törmäykset kuuntelemalla siirtotietä Törmäyksiä tapahtuu ainoastaan lähetyksen alussa Kun lähetys ei vielä ole levinnyt koko mediaan Haavoittuvuusaika on t prop eli siirtoviive päästä päähän Miten vältetään useampi samanaikainen lähetys kun siirtotie vapautuu? Lähetetään heti Jos varattu, uudelleenlähetys ajan t kuluttua Jos vapaa, lähetä (todennäköisyydellä p) tai odota (1-p) Valittu tapa vaikuttaa keskimääräiseen viiveeseen ja tehokkuus riippuu liikenteen luonteesta Carrier Sense Multiple ccess with Collision Detection Havaitaan törmäykset Säästetään kaistaa lopettamalla törmännyt lähetys heti Törmäyksen havaitseminen tapahtuu viipeellä MC-yhteyskäytännöt LN standardeja Medium ccess Control -protokollat toteuttavat edellä kerrottuja algoritmeja Tyypillisesti linkkikerroksen protokollia Hyvän MC-protokollan ominaisuuksia pieni siirtoviive oikeudenmukaisuus (yksi asema ei pysty valtaamaan verkkoa) luotettavuus ominaisuudet vastaavat liikenteen ominaisuuksia palvelunlaatu (Quality of service, QoS) skaalatutuvuus hinta (ei protokollan, vaan sen toteuttamisen hinta) Ethernet, Token ring, FDDI, WLN MC käytäntö kehysrakenne fyysinen siirtotie Tässä käydään läpi Ethernet ja WLN Vähän historiaa Ethernet 1970 LOHnet radioverkko käyttöön Hawajin saarilla 1973 Metcalf ja oggs kehittävät ideasta Ethernetin, kilpavarausverkon 1979 DIX Ethernet II Standard 1985 IEEE 802.3 LN Standard (10 Mbps) 1995 Fast Ethernet (100 Mbps) 1998 Gigabit Ethernet 2002 10 Gigabit Ethernet Tänään Ethernet on hallitseva lähiverkkostandardi Metcalf s Sketch: Standardi IEEE 802.3 Lyhyen kantaman lähiverkko Määrittelee protokollan ja kaapelointioptiot Useita vaihtoehtoja fyysiselle verkolle Koaksiaalikaapeli 10ase5 ja 10ase2, nykyään historiaa Kaikki asemat samassa kaapelissa Parikaapeli 10aseT, 100aseT, 1000aseT, 10GaseT... Keskittimet tai kytkimet yhdistävät asemat Optinen 100aseFX 5
IEEE 802.3 - Kehysrakenne Ethernetin osoitteet 7 1 6 6 2 variable 4 bytes Destination Source Preamble SD ddress ddress Length Information Pad FCS Total 64 to 1518 ytes Preamble toistaa 10101010-kuviota SD aloittaa itse kehyksen tavulla 10101011 Vastaanottajan ja lähettäjän osoitteet ovat 6 tavua Pituus on informaatio-kentän pituus tavuissa Padding varmistaa, että kehys on vähintään 64 tavua Tarkistussumma on CCITT 32-bit CRC kattaen osoitteen, pituuden, informaation ja paddingin Jokaisella verkkokortilla (NIC) on uniikki osoite (MC-osoite) valmistajan kiinteästi asettama tai ohjelmistollisesti vaihdettava 1. bitti kertoo onko kyseessä täsmälähetys (0) vai ryhmälähetys (1) 2. bitti kertoo onko kyseessä paikallinen (0) vai globaali (1) osoite 3 ensimmäistä tavua (miinus kaksi ensimmäistä bittiä) on Organizationally Unique Identifier (OUI) 3 viimeistä tavua on valmistajan valittavissa yleislähetys on osoitteelle ff:ff:ff:ff:ff:ff (kaikki bitit 1) saman osoitteen sattuminen kahdelle verkkokortille samassa verkossa on harvinaista, mutta mahdollista sema voi lähettää täsmälähetyksiä, ryhmmälähetyksiä tai yleislähetyksiä IP ja muut protokollat tarvitsevat yleislähetyksiä muiden samassa lähiverkossa olevien asemien (RP) tai verkkoasetuksia tarjoavien palveluiden (DHCP) löytämiseen Tavallinen liikenne on täsmälähetyksiä IEEE 802.3 laitteisto Ethernet-kytkimet ja -keskittimet Keskitin (hub) tähtiverkko, toistaa kaiken liikenteen kaikille asemille kaikki asemat saman siirtotien ääressä liikenteen määrä rajoittaa asemien määrää Ethernet kytkin (switch) tähtiverkko, toistaa vain tarvittavan liikenteen oppii mikä MC-osoite on missäkin liittymässä erilliset törmäysalueet suurempi siirtokapasiteetti kuin keskitin-pohjaisella verkolla Silta yhdistää Ethernet-lähiverkkoja (ei välttämättä hyvä idea) mahdollistaa pitkän kantaman yhteydet kehys otetaan vastaan kokonaan ja välitetään toiseen verkkoon välittää vain tarpeellisen liikenteen (myös yleislähetykset) Yhtenäinen törmäysalue (a) Yksinkertainen ja halpa Nykyään väistymässä Topologiana tähti (b) Nopea sisäinen väylä ~10x linjanopeus Skaalautuu Erilliset törmäysalueet tai kehyksien puskurointi Langaton viestintä WLN Langaton viestintä on suosittua Lähiverkoissa helppo asennettavuus (ei kaapeleita) Liikkuvuus sekä lähiverkossa että globaalimmin Radiosignaali (ohjaamaton media) Signaalin voimakkuus vaihtelee ajan ja paikan mukaan Signaali kenen tahansa kuunneltavissa, salakuuntelu, tietomurto, palveluesto mahdollisia Taajuuskaistan rajallisuus ja viranomaisrajoitukset vaikuttavat kaistan käyttöön IP:n näkökulmasta langattomat verkot ovat linkkikerrosta, vaikka esim. GPRS sisältää monta tasoa sisällään Tämän hetken hallitseva lähiverkkostandardi, IEEE 802.11 Ethernetin tapainen radioverkko Tukiasema korvaa keskittimen Kantama ~60 m Kapasiteetti 1-54 Mbps Tärkeimmät versiot 802.11b (2-4 Mbps) ja 802.11g (~20 Mbps) Markkinointinimenä Wi-Fi Hyödyntää lupavapaata 2,4 GHz taajuusaluetta Voidaan käyttää ilman tukiasemaa dhoc-tilasssa Tukiaseman kanssa CSM-CD ei toimi 6
"Hidden Node" -ongelma "Hidden Node" -ongelma (a) (b) lähettää kehyksen Datakehys Datakehys C C näkee vapaan median, koska :n signaali ei ulotu C:lle saakka Datakehys C lähettää kehyksen, joka törmää :ssä :n kehyksen kanssa, C ei huomaa törmäystä Tarvitaan uusi MC-algoritmi: CSM with Collision voidance C CSM/C Carrier Sense Multiple ccess With Collision voidance Korvaa Ethernetin törmäyksen tunnistamisen törmäyksen välttämisellä Koaksiaali- ja keskitinpohjaisissa Ethernet-verkoissa asemat näkevät toisensa Radioverkossa signaali ei välttämättä kuulu kaikille Joten lähettävä asema lähettä ensin Request To Send (RTS) - viestin tukiasemalle Jos tukiasema on vapaa, se vastaa Clear To Send (CTS) - viestillä Lähetyksen lopuksi tukiasema kuittaa CK-viestillä WLN ei käytä aina, asetettavissa Yhteenveto Linkkikerros on lähellä fyysistä kerrosta ja osa fyysisen kerroksen ongelmista ratkaistaan linkkikerroksessa Linkkikerros kehystää ja kapseloi ylempien kerroksien viestejä (tämän kurssin puitteissa ensisijaisesti IPkerroksen) Saman kerroksen vertaisoliot viestivät keskenään molempien tuntemalla protokollalla, käyttäen alempien kerroksien palveluita IP ei tiedä eikä välitä käyttääkö se WLNia, Ethernetiä tai PPP:tä 7