Painevalukappaleen suunnitteluprosessi
|
|
- Hilja Pääkkönen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Painevalukappaleen suunnitteluprosessi Stefan Fredriksson SweCast Käännös: Tuula Höök Tampereen teknillinen yliopisto Painevaluprosessi Kun suunnitellaan uutta tuotetta valua tai jonkin muun tyyppistä tuotetta tulee aina esille joukko teknisiä, taloudellisia ja ulkonäköön liittyviä vaatimuksia. Vaatimukset rajoittavat valmistusmenetelmien valintaa. Seuraavassa on lueteltu joukko keskeisiä vaatimuksia, joihin joudutaan useissa tapauksissa ottamaan kantaa: Tuotteen valmistusmateriaali Eräkoko Toleranssit Pinnankarheus Paino Kustannukset Kun eri vaihtoehdot on harkittu ja tehty päätös valmistusmenetelmästä, tuote muokataan muodoiltaan ja muilta ominaisuuksiltaan valittuun menetelmään sopivaksi. Se, kuinka paljon tuotetta joudutaan muokkaamaan, riippuu valitusta menetelmästä. Muutokset, joita joudutaan tekemään kokillivalumenetelmän tai painevalumenetelmän suhteen, ovat erilaisia. Alla olevassa listassa on esitetty joukko yksityiskohtia, jotka täytyy käydä läpi, jos valmistusmenetelmäksi on valittu valaminen. Seinämien risteyskohdat Pyöristyssäteet ja reiät Päästökulmat Rivoitus ja paksunnetut seinämät Kutistuma Koneistus ja puhdistaminen Painevalukappaleen suunnitteluprosessi 1
2 Tuotteen tai komponentin vaatimukset Materiaali Eräkoko Pinnankarheus Paino Materiaalinvalinta Valmistusmenetelmän valinta (Valu) Muutokset tuotteeseen Kuva 1: Valukappaleen suunnittelun ensimmäiset vaiheet Jotkin valun aikana ilmenevistä ongelmista ovat jäljitettävissä tuotteen suunnittelun aikana tehtyihin ratkaisuihin. Alla olevaan taulukkoon on koottu esimerkkejä valuvioista ja haettu suunnitteluprosessista vaihe, jonka aikana tehty ratkaisu on vaikuttanut vian muodostumiseen. Valuvika / Vaatimus Huokoisuus, mittatarkkuus Valuprosessin vaihe Jähmettyminen Syy Seinämien risteyskohdat, rivoitus Kutistuma Jäähtyminen Seinämien risteyskohdat, rivoitus ja paksunnetut kohdat Ilma ja oksidit Muotin täyttyminen Geometria, pyöristyssäteet, jakopinta ja paksunnetut kohdat Vajaatäyttö, kylmäjuoksu Muotin täyttyminen Seinämien risteyskohdat, rivoitus ja paksunnetut kohdat Halkeamat Muotin täyttyminen, jäähtyminen Seinämien risteyskohdat, rivoitus Lujuus Muotin täyttyminen, jähmettyminen ja jäähtyminen Geometria, seinämien risteyskohdat, rivoitus ja paksunnetut kohdat Painevalukappaleen suunnitteluprosessi 2
3 Valun simulointiohjelmistoja on nykyisin yleisesti käytössä. Useimmiten niitä käytetään ongelmien selvittämiseen tai valun optimointiin. Simulointiohjelmistoja voitaisiin käyttää myös toisella tapaa. Niitä voi käyttää valukappaleen geometrian optimointiin ja yhteistyöhön tuotetta tilaavan organisaation suunnittelijoiden ja valimon välillä. Tällä tavoin simulointiohjelmistojen erilaisista toiminnoista on mahdollista saada suurempi hyöty kuin pelkässä valimokäytössä. Yhteistyöllä kappale voidaan optimoida siten, että se on paremmin valettava, parempi ja mahdollisesti myös kustannustehokkaampi kuin totutulla tavalla suunniteltu kappale. Ongelmana on yhteistyön puute kappaletta suunnittelevan yrityksen ja valimon välillä. Suunnitteluinsinöörit muotoilevat kappaleen ja jättävät sen mallinnustiedoston valimoon. Valimo lähettää mallin eteenpäin työkalunvalmistajalle, joka koneistaa valumallin tai muotin tuotetta varten. Valimo alkaa tuottaa kappaleita ja tekee ongelmien ilmetessä simulointeja. Simulointien lopputulosta käytetään ongelmien ratkaisemisessa. Useissa tapauksissa ratkaisu johtaa siihen, että sekä tuotetta että muottia muokataan. Koska muotti on jo valmis, sen muokkaamiseen on vain rajallisesti mahdollisuuksia ja muokkaaminen on myös hyvin kallista. Asiakas FEA / FEM Työkalu Valu OK Simulointi Kuva 2: Tyypillinen toimintamalli valujen suunnittelussa Tätä totuttua toimintamallia voidaan parantaa tekemällä enemmän simulointeja tuotteen suunnitteluvaiheessa. Tällöin on valmiina vasta CAD ohjelmistolla tuotettu malli, ei vielä valmiita työkaluja. Tuotteen optimointi eri valumenetelmille on helppoa, jos yhteistyö valimon, tuotesuunnittelijan ja mahdollisesti myös työkalunvalmistajan välillä on saumatonta. Jokaisen osapuolen tulisi voida kertoa mielipiteensä siten, että toiveet otetaan mahdollisuuksien mukaan huomioon. Painevalukappaleen suunnitteluprosessi 3
4 FEA / FEM Työkalu Valu OK Asiakas Simulointi Customer, Foundry, Patternmaker Kuva 3: Uusi parempi toimintamalli valukappaleiden suunnitteluun On hyvin tärkeää, että yhteistyö valimon, tuotesuunnittelijan ja työkalunvalmistajan välillä aloitetaan niin aikaisessa vaiheessa kuin mahdollista. Tällöin voidaan täydentää eri osapuolten tietotaidossa olevia puutteita toisen osapuolen tietotaidolla. Eri osapuolten pitäisi ottaa vastuu omasta suunnittelustaan. Tuotetta suunnitteleva insinööri ottaa esimerkiksi vastuun kappaleen mekaanisista ominaisuuksista tekemällä analyysin jollakin lujuuslaskentaohjelmistolla tai muulla menetelmällä. Hän ei kuitenkaan välttämättä osaa huomioida valumenetelmän asettamia vaatimuksia. Jotta kappaleesta saataisiin muokattua hyvä valu, sen suunnittelussa tarvitaan sekä tietoa mekaanisista ominaisuuksista että valmistusprosessista. Jos suunnitteluosapuolet toimivat hyvässä yhteisymmärryksessä, aika suunnittelusta valmiiksi tuotteeksi lyhenee merkittävästi. Kappaleen valettavuus paranee samalla, jolloin on odotettavissa myös, että susikappaleiden määrä vähentyy. Valunsimulointiohjelmistot Nykyiset valunsimulointiohjelmistot ovat erittäin hyviä ja niiden laatu paranee jatkuvasti. Tuotteen ulkonäkö ja toiminnalliset vaatimukset päätetään jo hyvin aikaisessa vaiheessa suunnittelua. Näiden päätösten jälkeen olisi hyvä tehdä ensimmäinen simulointi. Tuotteen ei välttämättä tarvitse olla viimeistä pyöristyssädettä ja päästökulmaa myöten täydellinen ensimmäisiä simulointikokeiluja varten. Simulointi voidaan tehdä yksinkertaisella ja puutteellisestikin muotoillulla mallilla. Ensimmäinen kokeilu voidaan tehdä jo raakaversioihin, arvioida tulokset ja muokata kappaletta. Kun kappaleen suunnittelu ei vielä ole edennyt pitkälle, muutosten tekeminen on helppoa. Simulointiohjelmilla voidaan käsitellä eri osia valuprosessista ja samalla tehdä arvioita, kuinka hyvin kappale täyttää kunkin prosessin vaiheen vaatimukset. Seuraavassa on esitetty joukko kohteita, joihin valunsimulointiohjelmistoja voidaan käyttää: Muotin täyttyminen Jähmettyminen Jännityslaskenta Painevalukappaleen suunnitteluprosessi 4
5 Muotin täyttymislaskenta Jähmettymislaskenta Jännityslaskenta Simuloinnin osa FEA / FEM Huokoisuus ja mekaaniset ominaisuudet Kanavisto ja jakolinja Lujuus ja halkeilu Virheet Prosessi Kuva 4: Kohteet valunsimulointiohjelmistojen käyttämiseen Jähmettymisen aikainen kutistuma on yksi suurimmista ongelmista kaikissa valumenetelmissä. Jos jähmettymisen aikana ei ole lisämetallia tarjolla, valuun muodostuu tyhjiä kohtia joko kappaleen sisälle tai pintaan. Jähmettymiskutistuman voi ennustaa tarkistamalla kappaleen jähmettymisprofiili simulointiohjelmistolla. Simuloinnin osoittaman tiedon perusteella voidaan tehdä muutoksia kappaleen muotoihin ja tutkia, mihin kohtiin tarvitaan syöttömetallia. Simulointi voidaan suorittaa jo ennen kuin kappaleeseen on suunniteltu kanavisto. Tällöin voidaan havaita helposti, onko kappaleeseen muodostumassa kuumia kohtia. Alla olevassa kuvassa on kolme esimerkkiä valukappaleen nurkkakohdan muotoilusta. Oikeanpuolimaisin esimerkki jäähtyy tasaisimmin. Nurkkakohta on muotoiltu tässä esimerkissä siten, että sisä ja ulkopuolisten pyöristysten suhde on sopiva. Ei ulkopuolista pyöristystä Ulkopyöristys = Sisäpyöristys Ulkopyöristys = 1.25 x sisäpyöristys Kuva 5: Kutistuman ennakointi valunsimulointiohjelmiston avulla Painevalukappaleen suunnitteluprosessi 5
6 Toisinaan on hyödyksi simuloida jokin rajattu osa kappaleesta sen sijaan, että simuloitaisiin koko komponentti. Simuloimalla voidaan tarkistaa jonkin osan suunnittelun onnistuminen ja saada tulokset nopeammin. On esimerkiksi tärkeätä suunnitella seinämien risteyskohdat siten, että niiden suhde on sopiva. Kuvasta 6 voidaan havaita, kuinka suuri merkitys oikealla seinämäsuhteella on. Kuvan värit ilmentävät kappaleen lämpötilamoduulia, joka vastaa suunnilleen kappaleen jähmettymisaikaa. Vasemmalla olevassa kuvassa suhde on oikea, pyöristyssäde on sovitettu seinämänpaksuuden mukaan eikä kappaleeseen muodostu kuumaa kohtaa. Oikealla olevassa kuvassa pystyseinämän paksuus on kolmasosa vaakaseinämän paksuudesta, jolloin pystyseinämä jäähdyttää muita kappaleen osia. Yhden kuuman alueen sijaan kappaleeseen muodostuu kaksi kuumaa aluetta. Kuva 6: Esimerkkejä T risteyksen suunnittelusta Jähmettymissimuloinnin tuloksista voi ennustaa joitakin kappaleen mekaanisia ominaisuuksia. Joissain simulointiohjelmistoissa voi tutkia jähmettymiseen kuluvan ajan ja lujuuden suhdetta. Valukappaleen lujuus riippuu suuresti jähmettymisajasta. Kappaleen suunnittelijan on hyvä tunnistaa tämä ja muut kappaleen lujuuteen vaikuttavat tekijät. Arkiajattelun vastaisesti valu ei tule välttämättä yhtään lujemmaksi, jos jonkin rajatun alueen paksuutta kasvattaa, koska paksumman seinämän jähmettymisaika on pitempi kuin ohuemman seinämän. Kun valua on tutkittu riittävän kauan jähmettymisanalyysin avulla, voidaan tehdä muotin täyttymissimulointi, päättää jakolinjan paikka ja portin sijainti. Koska valuportti voidaan asettaa vain jakolinjalle ja siinäkin vain tiettyihin paikkoihin, portin sijainti on hyvä suunnitella jo varhaisessa vaiheessa. Jännityssimuloinnilla voidaan tarkistaa kappaleen jäännösjännitykset ja tutkia tuleeko niistä olemaan haittaa kappaleen mekaanisten ominaisuuksien kannalta. Jäännösjännitykset voivat saada kappaleen myös vääntyilemään ja sen kautta pois toleranssialueelta. Jos kappale on kokoonpanon osa, vääntymät voivat haitata kokoonpantavuutta. Kappaleeseen voi tehdä tarvittavat muutokset, jos vääntyilyongelmat ja mekaaniseen kestävyyteen liittyvät ongelmat havaitaan ajoissa. Painevalukappaleen suunnitteluprosessi 6
12. Erilaiset liitoskohdat ja risteykset
12. Erilaiset liitoskohdat ja risteykset Pekka Niemi Tampereen ammattiopisto Liitoskohdat ja risteykset aiheuttavat valukappaleen rakenteelle monia vaatimuksia mm. tiiveyden ja jännitysten syntymisen estämisessä.
LisätiedotPainevalut 3. Teoriatausta Revolved Pattern. Mallinnuksen vaiheet. CAD työkalut harjoituksessa diecasting_3_1.sldprt
Painevalut 3 Tuula Höök Tampereen teknillinen yliopisto Hae aloituskappale start_diecasting_3_1.sldprt. Tehtävänäsi on suunnitella kansi alueille, jotka on merkitty kuvaan punaisella, vihreällä ja sinisellä
LisätiedotPäästöjen analysointi ja piirteiden korjaaminen 3
Päästöjen analysointi ja piirteiden korjaaminen 3 Tampere University of Technology Tuula Höök Ota kappale start_repair_3_1.sldprt. Kappale on kupin muotoinen ja siinä on sivulla vastapäästöllinen muoto.
Lisätiedotkannet ja kotelot Tuula Höök Tampereen teknillinen yliopisto
Metallisen kestomuottikappaleen suunnittelua 1, kannet ja kotelot Tuula Höök Tampereen teknillinen yliopisto Hae kokoonpano start_assembly_1_x.sldasm. Tehtävänäsi on suunnitella kansi alueille, jotka on
LisätiedotJakolinja. ValuAtlas & CAE DS 2007 Ruisku ja painevalukappaleen suunnittelu. Tuula Höök Tampereen teknillinen yliopisto
Jakolinja Tuula Höök Tampereen teknillinen yliopisto Jakolinja (parting line) on nurkkakohta, jossa valettavassa kappaleessa olevat hellitykset eli päästöt (draft angles) vaihtavat suuntaa (Katso kuva
LisätiedotPerusteet 2, pintamallinnus
Perusteet 2, pintamallinnus Tuula Höök Tampereen teknillinen yliopisto Ota piirustus fin_basic_1_3.pdf, sama piirustus kuin harjoituksessa basic_1_3. Käytä piirustuksessa annettuja mittoja ja tuota niiden
LisätiedotTeoriatausta. Mallinnuksen vaiheet. CAD työkalut harjoituksessa. Ruiskuvalumuotin kanavisto 2
Ruiskuvalumuotin kanavisto 2 Tuula Höök Tampereen teknillinen yliopisto Teoriatausta Ruiskuvalumuotin kanavistot: kylmäkanavat Ruiskuvalumuotin täyttäminen CAD työkalut harjoituksessa Ruiskuvalumuotin
LisätiedotStandardin ISO 8062 mittatoleranssijärjestelmä
Valutoleranssilla tarkoitetaan yhteisesti sovittua aluetta, jonka sisälle kappaleiden mittamuutokset mahtuvat. Toleranssit jaotellaan yleensä useaan ryhmään, jossa pienimmissä toleranssiryhmissä hyväksytyt
LisätiedotSacotec Day verkkokoulutus. HINTAKOMPONENTIT ja TARJOUSPYYNTÖ,
Sacotec Day verkkokoulutus HINTAKOMPONENTIT ja TARJOUSPYYNTÖ, Kappaleen tuotannon hintakomponentit TEKNISET VAATIMUKSET JA OMINAISUUDET TYÖKALUN TUOTANTO KAPPALEMÄÄRÄ VAHAPUUSSA 3D- TULOSTEET KPL-PAINO
LisätiedotValetun koneenosan 3D CAD suunnittelun perusteet
Valetun koneenosan 3D CAD suunnittelun perusteet Tuula Höök Tampereen teknillinen yliopisto Valetun koneenosan suunnittelutiedostot (3D CAD mallit) rakentuvat kolmelle tasolle. Tasot ovat 1.) kappaleen
LisätiedotEsimerkkejä ruiskuvalukappaleista
Esimerkkejä ruiskuvalukappaleista Tuula Höök Tampereen teknillinen yliopisto Tuula Höök - TREDU/Valimoinstituutti Kappale 1: Vesikannun kansi Kappale alta Sisäänvalukohta Jakolinja ja ulostyöntösuunta
Lisätiedotwww.alteams.com Global partner local commitment
www.alteams.com Global partner local commitment yleinen käsitys ja ehkäpä osittainen totuuskin Miksi kallis, miksi pitkä toimitusaika? Pitääkö olla näin? Hinta on suhteellista, toimitusaika ei Mitä olisi
LisätiedotPerusteet 4, tilavuusmallinnus
Perusteet 4, tilavuusmallinnus Juho Taipale, Tuula Höök Tampereen teknillinen yliopisto Ota piirustus fin_basic_4.pdf. Käytä piirustuksessa annettuja mittoja ja tuota niiden pohjalta teknisesti hyvälaatuinen
LisätiedotPerusteet 2, pintamallinnus
Perusteet 2, pintamallinnus Tuula Höök Tampereen teknillinen yliopisto Ota piirustus fin_basic_1_2.pdf, sama piirustus kuin harjoituksessa basic_1_2. Käytä piirustuksessa annettuja mittoja ja tuota niiden
LisätiedotTasainen seinämänpaksuus 1
Tasainen seinämänpaksuus 1 Tuula Höök Tampereen teknillinen yliopisto Hae aloitusmalli start_univwall_1.sldprt. Avaa malli ja tarkastele sitä seinämänpaksuuden näkökulmasta. Kappale on yksinkertainen suorakulmainen
LisätiedotPeriaatteet. ValuAtlas Muotin valmistus Tuula Höök. Tuula Höök Tampereen teknillinen yliopisto
Periaatteet Tuula Höök Tampereen teknillinen yliopisto Onnistunut muotin suunnittelu tapahtuu muotin valmistajan, valuyrityksen ja valettavan tuotteen suunnittelijan välisenä yhteistyönä. Yhteistyön käytännön
LisätiedotTeoriatausta. Mallinnuksen vaiheet. CAD työkalut harjoituksessa. Ruiskuvalumuotin kanavisto 1
http://www.valuatlas.net ValuAtlas & CAE DS 2007 Muotinsuunnitteluharjoitukset Ruiskuvalumuotin kanavisto 1 Tuula Höök Tampereen teknillinen yliopisto Teoriatausta Ruiskuvalumuotin kanavistot: kylmäkanavat
Lisätiedotkannet ja kotelot Tuula Höök Tampereen teknillinen yliopisto
Metallisen kestomuottikappaleen suunnittelua 1, kannet ja kotelot Tuula Höök Tampereen teknillinen yliopisto Hae kokoonpano start_assembly_1_x.sldasm tai sitä vastaava neutraalimuotoinen tiedosto. Tehtävänäsi
LisätiedotPerusteet 2, pintamallinnus
Perusteet 2, pintamallinnus Tuula Höök, Juho Taipale Tampereen teknillinen yliopisto Ota sama piirustus kuin harjoituksessa perusteet 1_2, eli fin_basic_1_2.pdf. Käytä piirustuksessa annettuja mittoja
Lisätiedotseinämänpaksuus Teoriatausta Mallinnuksen vaiheet CAD työkalut harjoituksessa Tasainen seinämänpaksuus
Tasainen seinämänpaksuus Tuula Höök Tampereen teknillinen yliopisto Ota aloitustiedosto start_univwall_x.sldprt. Avaa tiedosto ja tarkastele kappaleessa olevia seinämänpaksuuksia. Kappaleessa on liian
Lisätiedot19. Muotin syöttöjärjestelmä
19. Muotin syöttöjärjestelmä Raimo Keskinen, Pekka Niemi Tampereen ammattiopisto Kun muotin täyttänyt sula metalli alkaa jähmettyä, kutistuu se samanaikaisesti. Valukappaleen ohuet kohdat jähmettyvät aikaisemmin
LisätiedotPainevalut 3. Teoriatausta. Mallinnuksen vaiheet. CAD työkalut harjoituksessa diecasting_3_2.sldprt. CAE DS Kappaleensuunnitteluharjoitukset
Painevalut 3 Juho Taipale, Tuula Höök Tampereen teknillinen yliopisto Hae aloituskappale start_diecasting_3_2.sldprt ja mallinna siihen kansi. CAD työkalut harjoituksessa diecasting_3_2.sldprt Kuva 1:
LisätiedotKuumana kovettuvat hiekkaseokset
Kuumana kovettuvat hiekkaseokset Seija Meskanen, Teknillinen korkeakoulu Kuumana kovettuvia hiekkaseoksia käytetään sekä muottien että keernojen valmistukseen. Muotteja valmistetaan kuorimuottimenetelmällä.
LisätiedotPerusteet 6, lisää pintamallinnusta
Perusteet 6, lisää pintamallinnusta Juho Taipale, Tuula Höök Tampereen teknillinen yliopisto Ota piirustus fin_basic_6_2.pdf. Käytä piirustuksessa annettuja mittoja ja mallinna kappale pääosin pintamallinnustyökaluja
LisätiedotLiikkuva keerna. Teoriatausta. Mallinnuksen vaiheet. CAD työkalut harjoituksessa Liikkuva keerna
Liikkuva keerna Tuula Höök Tampereen teknillinen yliopisto Hae aloitusmalli start_movingcore_x.sldprt. Tehtävänäsi on hellittää kappaleen muodot siten, että vastapäästölliset muodot voi valmistaa liikkuvilla
LisätiedotPerusteet 2, pintamallinnus
Perusteet 2, pintamallinnus Tuula Höök, Juho Taipale Tampereen teknillinen yliopisto Ota sama piirustus kuin harjoituksessa perusteet 1_1, fin_basic_1_1.pdf. Käytä piirustuksessa annettuja mittoja ja tuota
LisätiedotPerusteet 3, tilavuus ja pintamallinnus
Perusteet 3, tilavuus ja pintamallinnus Tuula Höök, Juho Taipale Tampereen Teknillinen Yliopisto Ota piirustus fin_basic_3_1.pdf. Käytä piirustuksessa annettuja mittoja ja tuota niiden pohjalta teknisesti
LisätiedotPerusteet 1, yksinkertaisen kappaleen tilavuusmallinnus
Perusteet 1, yksinkertaisen kappaleen tilavuusmallinnus Tuula Höök Tampereen Teknillinen Yliopisto Avaa piirustus fin_sandbasic_1_x.pdf. Käytä piirustuksessa annettuja mittoja ja tuota niiden pohjalta
LisätiedotPerusteet 6, lisää pintamallinnusta
Perusteet 6, lisää pintamallinnusta Tuula Höök Tampereen teknillinen yliopisto Hae piirustus fin_basic_6_2.pdf. Käytä piirustukseen merkittyjä mittoja ja mallinna kappale pinta ja tilavuusmallinnustyökaluja
LisätiedotPainevalut 1. Teoriatausta Knit. Mallinnuksen vaiheet. CAD työkalut harjoituksessa diecasting_1.sldprt. CAE DS Kappaleensuunnitteluharjoitukset
Painevalut 1 Tuula Höök Tampereen teknillinen yliopisto Hae piirustus diecasting_1_1.pdf. Käytä piirustuksessa annettuja mittoja ja tuota niiden pohjalta teknisesti hyvälaatuinen ruisku tai painevalukappale,
Lisätiedot20. Valukappaleen hyötysuhde eli saanto
20. Valukappaleen hyötysuhde eli saanto Raimo Keskinen, Pekka Niemi Tampereen ammattiopisto Fysiikassa hyötysuhteella tarkoitetaan laitteen hyödyksi antaman energian ja laitteeseen tuodun kokonaisenergian
LisätiedotPainevalukappaleen mittatarkkuus ja toleranssit 1
Painevalukappaleen mittatarkkuus ja toleranssit Tuula Höök Tampereen teknillinen yliopisto Painevalukappaleen muoto ja mittatarkkuus riippuu seuraavista tekijöistä: Muotin lämpötasapaino Muotin lujuus
LisätiedotPerusteet 3, tilavuus ja pintamallinnus
Perusteet 3, tilavuus ja pintamallinnus Tuula Höök Tampereen teknillinen yliopisto Ota piirustus fin_basic_3_1.pdf, sama piirustus kuin harjoituksessa basic_3_1. Käytä piirustuksessa annettuja mittoja
LisätiedotMuovituotteen suunnittelun kokonaisprosessi
Muovituotteen suunnittelun kokonaisprosessi Tampereen teknillinen yliopisto Sanna Nykänen Muovi materiaalina antaa lukemattomia mahdollisuuksia tuotesuunnitteluun. Muovituotetta suunniteltaessa on muistettava
Lisätiedot11. Suunnattu jähmettyminen
11. Suunnattu jähmettyminen Pekka Niemi Tampereen ammattiopisto 11.1 Heuvers in pallo Valukappaleen jähmettyminen tulee alkaa syöttökuvuista kauimpana olevista kappaleen osista ja edetä avonaisena rintamana
LisätiedotLiikkuva keerna 1. Teoriatausta. Mallinnuksen vaiheet. CAD työkalut harjoituksessa. movingcore_2.sldprt. CAE DS Kappaleensuunnitteluharjoitukset
Liikkuva keerna 1 Tuula Höök Tampereen teknillinen yliopisto Hae aloituskappale start_movingcore_2.sldprt. Tehtävänä on tunnistaa muodot, joihin tarvitaan liikkuva keerna sekä sen jälkeen erottaa muodot
LisätiedotJakopinnat ja liikkuvan keernan pinnat 1, keerna jakopinnan tasalla
Jakopinnat ja liikkuvan keernan pinnat 1, keerna jakopinnan tasalla Tuula Höök, Tampereen teknillinen yliopisto Teoriatausta Muotin perusrakenne Ruisku tai painevalukappaleen rakenteen perusasiat: päästö,
Lisätiedot18. Muotin täyttöjärjestelmä
18. Muotin täyttöjärjestelmä Raimo Keskinen, Pekka Niemi Tampereen ammattiopisto Kanavistoa, jota pitkin sula metalli virtaa muottionteloon, kutsutaan muotin täyttöjärjestelmäksi. Täyttämisen ohella sillä
LisätiedotPerusteet 3, tilavuus ja pintamallinnus
Perusteet 3, tilavuus ja pintamallinnus Tuula Höök Tampereen teknillinen yliopisto Ota piirustus fin_basic_3_1.pdf. Käytä piirustuksessa annettuja mittoja ja tuota niiden pohjalta teknisesti hyvälaatuinen
Lisätiedot3. Muotinvalmistuksen periaate
3. Muotinvalmistuksen periaate Raimo Keskinen, Pekka Niemi Tampereen ammattiopisto Irtomallikaavaus Hiekkamuotin valmistuksessa tarvitaan valumalli. Se tehdään yleensä puusta, ja se muistuttaa mitoiltaan
LisätiedotKuva 104. Kehysten muotoilu. Kuva 105. Kehässä hiekkalistat
10. Kaavauskehykset Raimo Keskinen, Pekka Niemi Tampereen ammattiopisto Kaavauskehysten päätehtävä on pitää sullottu muotti koossa. Muotin muodostaa useimmiten kaksi päällekkäin olevaa kehystä, joiden
LisätiedotTilavuusmallinnus 1, pursotettuja kappaleita
Tilavuusmallinnus 1, pursotettuja kappaleita Tuula Höök Tampereen Teknillinen Yliopisto Ota piirustus solids_1_x.pdf. Käytä piirustuksessa annettuja mittoja ja tuota niiden pohjalta teknisesti hyvälaatuinen
Lisätiedothttp://www.valuatlas.net ValuAtlas Kestomuottivalujen suunnittelu Seija Meskanen, Tuula Höök
Täysmuottikaavaus Seija Meskanen, Teknillinen korkeakoulu Tuula Höök, Tampereen teknillinen yliopisto Täysmuottikaavaus on menetelmä, jossa paisutetusta polystyreenistä (EPS) valmistettu, yleensä pinnoitettu
LisätiedotPerusteet 1, yksinkertaisen kappaleen tilavuusmallinnus
Perusteet 1, yksinkertaisen kappaleen tilavuusmallinnus Tuula Höök Tampereen Teknillinen Yliopisto Avaa piirustus fin_sandbasic_1_x.pdf. Käytä piirustuksessa annettuja mittoja ja tuota niiden pohjalta
LisätiedotKorkki 1 CAD työkalut joka on myös kauniisti muotoiltu harjoituksessa cap_1_2.sldprt Tilavuusmallinnus Pintamallinnus (vapaaehtoinen) Teoriatausta
Korkki 1 Tuula Höök Tampereen teknillinen yliopisto Ota piirustus cap_1_1.pdf. Käytä piirustuksessa annettuja mittoja ja mallinna niiden perusteella teknisesti oikein muotoiltu ruiskuvalukappale, joka
Lisätiedot19. Kylmänä kovettuvat hiekat, kovettumisreaktio
19. Kylmänä kovettuvat hiekat, kovettumisreaktio Raimo Keskinen Pekka Niemi - Tampereen ammattiopisto Sideaineet vaikuttavat kylmänä kovettuvien hiekkojen kovettumisominaisuuksiin. Tällöin vaikuttavina
LisätiedotAlumiini valukappaleen suunnitteluprosessi Suunnittelun suuntaviivoja. Avoin yhteistyö mahdollisimman aikaisessa vaiheessa!!! Työkalun valmistus
Alumiini valukappaleen suunnitteluprosessi Suunnittelun suuntaviivoja. Avoin yhteistyö mahdollisimman aikaisessa vaiheessa!!! Valimo Olennaiset valutekniikkaan, tuotelaatuun, työkalun kestävyyteen, valun
LisätiedotRuiskuvalumuotin kanavisto 2
Ruiskuvalumuotin kanavisto 2 Juho Taipale, Tuula Höök Tampereen teknillinen yliopisto Teoriatausta Ruiskuvalumuotin kanavistot: kylmäkanavat Ruiskuvalumuotin täyttäminen CAD työkalut harjoituksessa Ruiskuvalumuotin
LisätiedotJanne Juhola
Janne Juhola www.dtream.fi Dtream Oy on high-tech insinööritoimisto, joka tarjoaa rakenteiden optimointi-, simulointi-, analyysi- ja ongelmien ratkaisupalveluja. MoldFlow Topology Optimization FEM Thermal
LisätiedotHiekkavalukappaleen konstruktion mukauttaminen
Hiekkavalukappaleen konstruktion mukauttaminen Seija Meskanen, Teknillinen korkeakoulu Tuula Höök, Tampereen teknillinen yliopisto Hiekkavalu on painovoimainen valumenetelmä. Muottihiekka on eristävää
LisätiedotRuiskuvalumuotin kanavisto 1
Ruiskuvalumuotin kanavisto 1 Juho Taipale, Tuula Höök Tampereen teknillinen yliopisto Teoriatausta Ruiskuvalumuotin kanavistot: kylmäkanavat Ruiskuvalumuotin täyttäminen CAD työkalut harjoituksessa Ruiskuvalumuotin
LisätiedotAlumiinin valaminen. Valuseosten seosaineet. Yleisimmät valuseokset. ValuAtlas Valimotekniikan perusteet
Alumiinin valaminen Skan Aluminium Pohjoismaisen alumiiniteollisuuden yhteistyöelin: Alumiinin valaminen ja työstäminen Toimittanut: Seija Meskanen, Teknillinen korkeakoulu Valuseosten seosaineet Alumiinia
LisätiedotLiikkuva keerna 1. Teoriatausta. Mallinnuksen vaiheet. CAD työkalut harjoituksessa movingcore_1.sldprt. CAE DS Kappaleensuunnitteluharjoitukset
Liikkuva keerna 1 Tuula Höök Tampereen teknillinen yliopisto Hae aloitusmalli start_movingcore_1.sldprt. Tehtävänä on muokata sivuilla olevat koukut siten, että niihin voi asettaa liikkuvat keernat. Mallinna
LisätiedotRuiskuvalukappaleen syöttökohta
Ruiskuvalukappaleen syöttökohta Technical University of Gabrovo Hristo Hristov Tampereen teknillinen yliopisto Tuula Höök Ruiskuvalukappaleen suunnittelijan on tärkeää huomioida kohta, josta muovi tullaan
LisätiedotTilavuusmallinnus 3, pyöräytettyjä,sweepattuja ja loftattuja kappaleita
Tilavuusmallinnus 3, pyöräytettyjä,sweepattuja ja loftattuja kappaleita Tuula Höök Tampereen Teknillinen Yliopisto Tapani Honkavaara Teknillinen korkeakoulu Ota piirustus solids_3_x.pdf. Käytä piirustuksessa
Lisätiedot7. Valukappaleiden suunnittelu keernojen käytön kannalta
7. Valukappaleiden suunnittelu keernojen käytön kannalta Pekka Niemi Tampereen ammattiopisto Keernoja käytetään valukappaleen muotojen aikaansaamiseksi sekä massakeskittymien poistoon. Kuva 23 A D. Ainekeskittymän
LisätiedotMuotin CAD suunnittelun vaiheet
Muotin CAD suunnittelun vaiheet Tuula Höök Tampereen teknillinen yliopisto Muotin suunnittelu on yksi vaihe uuden tuotteen valmistamisessa tarpeellisten suunnittelu ja tuotantovaiheiden ketjussa. Ketjun
LisätiedotLaatutason määrittely ja laatustandardit - Valurauta
Laatutason määrittely ja laatustandardit - Valurauta Valunhankinta-koulutus 15.-16.3.2007 Marko Riihinen Metso Foundries Jyväskylä Oy Rautavalussa mahdollisesti esiintyviä valuvirheitä Muoto: IV + V ~40
LisätiedotTilavuusmallinnus 1, pursotettuja kappaleita
Tilavuusmallinnus 1, pursotettuja kappaleita Tuula Höök Tampereen Teknillinen Yliopisto Ota piirustus solids_1_x.pdf. Käytä piirustuksessa annettuja mittoja ja tuota niiden pohjalta teknisesti hyvälaatuinen
LisätiedotKestomuottivalun suunnittelun perusteet
Kestomuottivalun suunnittelun perusteet Stefan Fredriksson Swerea/SweCast Tuula Höök Tampereen teknillinen yliopisto Sanna Nykänen Tampereen teknillinen yliopisto Teknisesti hyvälaatuinen valukappale Teknisesti
LisätiedotValuviat ja kappaleen pinnan laatu
Valuviat ja kappaleen pinnan laatu Tuula Höök - Tampereen teknillinen yliopisto Pinnan laadusta tulee eräs pinnoitettavan valukappaleen tärkeimmistä hyväksymiskriteereistä, koska pinnoitteilla on taipumus
LisätiedotPerusteet 5, pintamallinnus
Perusteet 5, pintamallinnus Tuula Höök Tampereen teknillinen yliopisto Ota piirustus fin_basic_4.pdf, sama piirustus kuin harjoituksessa basic_4. Käytä piirustuksessa annettuja mittoja ja tuota niiden
Lisätiedot23. Yleistä valumalleista
23. Yleistä valumalleista Raimo Keskinen, Pekka Niemi Tampereen ammattiopisto Valumallien yleisin rakenneaine on puu. Sen etuja muihin rakenneaineisiin verrattuna ovat halpuus, keveys ja helppo lastuttavuus.
LisätiedotPerusteet 6, lisää pintamallinnusta
Perusteet 6, lisää pintamallinnusta Juho Taipale, Tuula Höök Tampereen teknillinen yliopisto Ota piirustus fin_basic_6_3.pdf. Käytä piirustuksessa annettuja mittoja ja mallinna kappale pääasiassa pintamallinnustyökaluin.
Lisätiedot3D TULOSTUS HIEKKATULOSTUS
HIEKKATULOSTUS HIEKKATULOSTUS ExOne hiekkatulostus Teollisuuden kehityksen tulevaisuus asettaa suuria vaatimuksia valimoille ja toimittajille, jossa kustannusten hallinta ja vaatimusten toteutettavuus
LisätiedotPerusteet 6, lisää pintamallinnusta
Perusteet 6, lisää pintamallinnusta Juho Taipale, Tuula Höök Tampereen teknillinen yliopisto Ota piirustus fin_basic_6_1.pdf. Käytä piirustuksessa annettuja mittoja ja mallinna kappale pääasiassa pintamallinnustyökaluin.
LisätiedotMuotin perusrakenne Ruisku tai painevalukappaleen rakenteen perusasiat: päästö, kulmapyöristys, jakopinta ja vastapäästö.
Jakopinta perusteet JuhoTaipale, Tuula Höök Tampereen teknillinen yliopisto Teoriatausta Muotin perusrakenne Ruisku tai painevalukappaleen rakenteen perusasiat: päästö, kulmapyöristys, jakopinta ja vastapäästö.
Lisätiedot26. Valumallin valmistuksessa huomioon otettavia seikkoja
26. Valumallin valmistuksessa huomioon otettavia seikkoja Raimo Keskinen, Pekka Niemi Tampereen ammattiopisto Kutistuminen Kuten aikaisemmin todettiin, valukappaleen jähmettyessä sulasta kiinteäksi tapahtuu
LisätiedotSinkkiseosten painevalu
Sinkkiseosten painevalu Miskolc University Käännös: Tuula Höök Tampereen teknillinen yliopisto Painevalu on valumenetelmä, jossa metalliseos työnnetään suurella, mutta kontrolloidulla nopeudella ja paineella
LisätiedotSuunnitteluohjeita tarkkuusvalukappaleelle
Suunnitteluohjeita tarkkuusvalukappaleelle Tavoitteena muotoilussa Near-net-shape (NNS) eli mahdollisimman lähelle lopullista muotoa minimi valukappaleen lastuamisella. SFS-ISO 8062 Tarkkuusvalulla saavutettava
LisätiedotMuotin perusrakenne Ruisku tai painevalukappaleen rakenteen perusasiat: päästö, kulmapyöristys, jakopinta ja vastapäästö.
Jakopinta perusteet JuhoTaipale, Tuula Höök Tampereen teknillinen yliopisto Teoriatausta Muotin perusrakenne Ruisku tai painevalukappaleen rakenteen perusasiat: päästö, kulmapyöristys, jakopinta ja vastapäästö.
LisätiedotTulevaisuuden teräsrakenteet ja vaativa valmistus. 3D-skannaus ja käänteinen suunnittelu
Tulevaisuuden teräsrakenteet ja vaativa valmistus Hämeenlinnassa 24. - 25.1.2018 3D-skannaus ja käänteinen suunnittelu Timo Kärppä, HAMK Ohutlevykeskus 2018 2 SISÄLTÖ 1. Digitaalisuus mahdollistaa monia
LisätiedotPerusteet 6, lisää pintamallinnusta
Perusteet 6, lisää pintamallinnusta Tuula Höök Tampereen teknillinen yliopisto Hae piirustus fin_basic_6_3.pdf. Käytä piirustukseen merkittyjä mittoja ja mallinna kappale pinta ja tilavuusmallinnustyökaluja
LisätiedotMuotin rakenne Ruisku tai painevalukappaleen rakenteen perusasiat: hellitys eli päästö, kulmapyöristys, jakopinta ja vastapäästö.
Jakopinta 1 Tuula Höök, Tampereen teknillinen yliopisto Esitiedot Muotin rakenne Ruisku tai painevalukappaleen rakenteen perusasiat: hellitys eli päästö, kulmapyöristys, jakopinta ja vastapäästö. Harjoituksessa
LisätiedotLiikkuva keerna. Teoriatausta. Mallinnuksen vaiheet. CAD työkalut harjoituksessa
Liikkuva keerna Tuula Höök Tampereen teknillinen yliopisto Hae aloitusmalli start_movingcore_x.catpart. Tehtävänä on muokata kappaleen muodot siten, että vastapäästölliset muodot voi valmistaa liikkuvilla
LisätiedotPerusteet 2, keernallisia kappaleita
Perusteet 2, keernallisia kappaleita Tuula Höök Tampereen Teknillinen Yliopisto Avaa piirustus fin_sandbasic_2_x.pdf. Käytä piirustuksessa annettuja mittoja ja tuota niiden pohjalta a) kappaleen rakennemalli
LisätiedotTilavuusmallinnus 2, pursotuksin ja leikkauspinnoin muotoiltuja kappaleita Tuula Höök Tampereen Teknillinen Yliopisto
Tilavuusmallinnus 2, pursotuksin ja leikkauspinnoin muotoiltuja kappaleita Tuula Höök Tampereen Teknillinen Yliopisto Ota piirustus solids_2_x.pdf. Käytä piirustuksessa annettuja mittoja ja tuota niiden
LisätiedotTuotteen hitsattavuuden testaus robottisimulointiohjelmalla. Kari Solehmainen Savonia Ammattikorkeakoulu HitSavonia
Tuotteen hitsattavuuden testaus robottisimulointiohjelmalla Kari Solehmainen Savonia Ammattikorkeakoulu HitSavonia Sisältö Yhtenäissuunnittelu (Concurrent engineering) Mallinnus ja simulointi Robottihitsauksen
LisätiedotTilavuusmallinnus 2, pursotuksin ja pursotetuin leikkauspinnoin muotoiltuja kappaleita
Tilavuusmallinnus 2, pursotuksin ja pursotetuin leikkauspinnoin muotoiltuja kappaleita Tuula Höök Tampereen Teknillinen Yliopisto Ota piirustus solids_2_x.pdf. Käytä piirustuksessa annettuja mittoja ja
LisätiedotPainevalut 2. Teoriatausta. Mallinnuksen vaiheet Draft Analysis. CAD työkalut harjoituksessa diecasting_2.sldprt
Painevalut 2 Juho Taipale, Tuula Höök Tampereen teknillinen yliopisto Hae aloituskokoonpano start_gearbox.zip ja pura se omalle koneellesi. Voit käyttää myös neutraalitiedostoja. Tehtävänä on suunnitella
LisätiedotJOUSTAVA YKSITTÄISVALMISTUS. Konepajamiehet 19.4.2011 Kauko Lappalainen
JOUSTAVA YKSITTÄISVALMISTUS Konepajamiehet 19.4.2011 Joustava yksittäisvalmistusautomaatio Target Erävalmistuksen ja yksittäisvalmistuksen tavoitteiden erot Toistuva erävalmistus tai volyymituotanto tuotantolaitteiston
LisätiedotTapani Honkavaara VALUTUOTTEIDEN SUUNNITTELU-
Tapani Honkavaara VALUTUOTTEIDEN SUUNNITTELU- Tämä sivu on tarkoituksella jätetty tyhjäksi Tämäkin sivu on tarkoituksella jätetty tyhjäksi. 3 Tämä opas on syntynyt diplomityön lopputuloksena. Diplomityön
LisätiedotKaasuavusteinen ruiskuvalu
Kaasuavusteinen ruiskuvalu School of Technology and Management, Polytechnic Institute of Leiria Käännetty ja tarkistettu teksti: Tuula Höök Tampereen teknillinen yliopisto Kaasuavusteinen ruiskuvalu on
LisätiedotVALUNSUUNNITTELUN PARHAAT KÄYTÄNNÖT
VALUNSUUNNITTELUN PARHAAT KÄYTÄNNÖT 4.4.2018 1 Peiron Oy Markku Eljaala 5.4.2018 Valunkäytöstä yleensä Suomalaiset yritykset käyttävät valua ainakin miljardilla vuosittain globaalisti Todennäköisesti enemmän
LisätiedotAlumiinikappaleen valuviat ja ominaisuudet 1
Alumiinikappaleen valuviat ja ominaisuudet Swerea SWECAST Madeleine Bladh Käännös: Tuula Höök Tampereen teknillinen yliopisto Valuviat ovat kappaleessa olevia haitallisia materiaali tai muotopoikkeamia.
LisätiedotPainevalukappaleen mittatarkkuus ja toleranssit
Painevalukappaleen mittatarkkuus ja toleranssit Tuula Höök Tampereen teknillinen yliopisto Painevalukappaleen muoto ja mittatarkkuus riippuvat seuraavista tekijöistä: Muotin lämpötasapaino Muotin lujuus
Lisätiedot13. Savisideaineet. Raimo Keskinen Pekka Niemi - Tampereen ammattiopisto
13. Savisideaineet Raimo Keskinen Pekka Niemi - Tampereen ammattiopisto Savisideaineet ovat luonnon tuotteita, jotka saadaan sitomiskykyiseksi kostuttamalla ne vedellä. Savella on taipumus imeä itseensä
LisätiedotTilavuusmallinnus 3, Shaft, Rib ja Multi sections Solid työkaluin mallinnettuja kappaleita
Tilavuusmallinnus 3, Shaft, Rib ja Multi sections Solid työkaluin mallinnettuja kappaleita Tuula Höök Tampereen Teknillinen Yliopisto Ota piirustus solids_3_x.pdf. Käytä piirustuksessa annettuja mittoja
LisätiedotValujen raaka-ainestandardit - Valurauta
Valujen raaka-ainestandardit - Valurauta Valunhankinta-koulutus 15.-16.3.2007 Marko Riihinen Metso Foundries Jyväskylä Oy Valurauta / rautavalun valumateriaali - rakkaalla lapsella on monta nimeä Suomugrafiittivalurauta
LisätiedotSIMO-pilotointi Metsähallituksessa. SIMO-seminaari
SIMO-pilotointi Metsähallituksessa SIMO-seminaari Hakkuiden optimointi tiimitasolla Metsähallituksen metsissä Heli Virtasen Pro gradu -tutkielma Tutkimusalue ja aineisto Metsätalouden Kainuun alue Kuhmon
LisätiedotTeoriatausta. Mallinnuksen vaiheet. CAD työkalut harjoituksessa. Uppokipinätyöstön elektrodi
Uppokipinätyöstön elektrodi Tuula Höök, Tampereen teknillinen yliopisto Teoriatausta Muotin perusrakenne Uppokipinätyöstö Kipinätyöstön elektrodit Muottipesän valmistettavuus CAD työkalut harjoituksessa
LisätiedotValun laatutason määrittely. Markku Eljaala
Valun laatutason määrittely Markku Eljaala 1 Valamisen plussat ensin 2 Periaatteessa kaikkia metalleja voidaan valmistaa valamalla - Saatavien ominaisuuksien (seosten) kirjo on valtava - Osa metalleista
LisätiedotMuotin perusrakenne Ruisku- tai painevalukappaleen rakenteen perusasiat: päästö, kulmapyöristys, jakopinta ja vastapäästö.
Jakopinta JuhoTaipale, Tuula Höök Tampereen teknillinen yliopisto Teoriatausta Muotin perusrakenne Ruisku- tai painevalukappaleen rakenteen perusasiat: päästö, kulmapyöristys, jakopinta ja vastapäästö.
LisätiedotMetallin lisäävän valmistuksen näkymiä
Metallin lisäävän valmistuksen näkymiä Esityksen sisältö 3D-tulostuksesta yleisesti Yleinen käsitys 3D-tulostuksesta: 3D-tulostus on helppoa ja hauskaa Voidaan tulostaa mitä tahansa muotoja 3D-mallin pohjalta
LisätiedotTuomas Korhonen ALUMIINISTEN PAINEVALUKAPPALEIDEN SUUNNITTELUOHJEISTUS
Tuomas Korhonen ALUMIINISTEN PAINEVALUKAPPALEIDEN SUUNNITTELUOHJEISTUS ALUMIINISTEN PAINEVALUKAPPALEIDEN SUUNNITTELUOHJEISTUS Tuomas Korhonen Opinnäytetyö Kevät 2013 Kone- ja tuotantotekniikan koulutusohjelma
Lisätiedot2. Valukappaleiden suunnittelu mallikustannusten kannalta
2. Valukappaleiden suunnittelu mallikustannusten kannalta Pekka Niemi Tampereen ammattiopisto 2.1. Valukappaleiden muotoilu Valitse kappaleelle sellaiset muodot, jotka on helppo valmistaa mallipajojen
LisätiedotKOKSIN OMINAISUUDET MASUUNIN OLOSUHTEISSA
1 KOKSIN OMINAISUUDET MASUUNIN OLOSUHTEISSA Selvitys koksin kuumalujuudesta, reaktiivisuudesta ja reaktiomekanismista Juho Haapakangas CASR vuosiseminaari 2016 2 MASUUNIPROSESSI 3 METALLURGINEN KOKSI Valmistetaan
LisätiedotEnnustamisen ja Optimoinnin mahdollisuudet
Ennustamisen ja Optimoinnin mahdollisuudet Agenda Mitä optimointi on Ennustamisen mahdollisuudet Optimoinnin eri tasot ja tavoitteet Optimoinnin käyttöönotto Mitä optimointi on Mitä optimointi on? Oikea
Lisätiedot22. Valu- ja kanavistonäkökohtia
22. Valu- ja kanavistonäkökohtia Pekka Niemi Tampereen ammattiopisto Valamisen onnistumiseen vaikuttaa paljon eri osa-alueita. Näistä voidaan nostaa joitakin määrääviksi tekijöiksi. Nämä voidaan esim.
Lisätiedot