Intonaation analyysi ja annotointi puhekorpuksissa

Koko: px
Aloita esitys sivulta:

Download "Intonaation analyysi ja annotointi puhekorpuksissa"

Transkriptio

1 Intonaation analyysi ja annotointi puhekorpuksissa /HY:n fonetiikan laitos Stefan Werner Kieliteknologia/JoY Intonaation analyysi/annotointi HY p.1/43

2 Intonaation määritelmä(t) Sävelkulku, F 0 -käyrä, painotus ja lausetyyppi, sävy,... Intonaation analyysi/annotointi HY p.2/43

3 Intonaation funktiot liittyvät sanapainoon aksenttiin lausetyyppiin syntaksiin semantiikkaan pragmatiikkaan... Intonaation analyysi/annotointi HY p.3/43

4 Määritelmä Intonaatio seuraavassa suppeasti: F 0 Intonaation analyysi/annotointi HY p.4/43

5 Representaatiot ja notaatiot taso rekisteri tooni kontuuri kerrosmalli tune configuration tone sequence... Intonaation analyysi/annotointi HY p.5/43

6 Representaatiot ja notaatiot erilliset pisteet vs. jatkuva viiva suorat viivat vs. käyrät paikallinen vs. globaalinen yksi taso vs. monta tasoa Intonaation analyysi/annotointi HY p.6/43

7 Representaatiot ja notaatiot Kaikki muu kuin (luotettavasti) mitattujen F 0 -arvojen listaus on enemmän tai vähemmän mielivaltaista tulkintaa... Intonaation analyysi/annotointi HY p.7/43

8 Eri mallityyppejä Intonaation analyysi/annotointi HY p.8/43

9 Pierrehumbert: toonisekvenssit Intonaation analyysi/annotointi HY p.9/43

10 Pierrehumbert: toonisekvenssit H* H* H% L L L% Anna came with Manny Intonaation analyysi/annotointi HY p.10/43

11 IPO: kontuuriprototyypit Intonaation analyysi/annotointi HY p.11/43

12 IPO: kontuuriprototyypit Original F0 contour Close copy Standardized stylization Intonaation analyysi/annotointi HY p.12/43

13 Fujisaki: additiiviset kerrokset Intonaation analyysi/annotointi HY p.13/43

14 Öhmanin malli SENTENCE INTONATION INPUT ARTICULATORY INTERACTION LARYNX MODEL F0 WORD INTONATION INPUT ACOUSTIC INTERACTION Intonaation analyysi/annotointi HY p.14/43

15 Fujisakin algoritmi I J ln F 0 (t) = ln F min + A pi G pi (t T 0i )+ A aj {G aj (t T 1j ) G aj (t T 2j )} i=1 j=1 jossa G pi (t) = α 2 i t exp( α it) jos t 0 0 jos t < 0 ja G aj (t) = min[1 (1 + β j t) exp( β j t), γ] jos t 0 0 jos t < 0 Intonaation analyysi/annotointi HY p.15/43

16 Fujisakin algoritmi Parametrit: F min asymptoottinen F 0 I lausekekomentojen lkm J aksenttikomentojen lkm A pi i:nnen lausekekomennon amplitudi A aj j:nnen aksenttikomennon amplitudi T 0i i:nnen lausekekomennon ajankohta T 1j j:nnen aksenttikomennon alku T 2j j:nnen aksenttikomennon loppu α i Lausekemekanismi G pi :n kulmafrekvenssi β j Aksenttimekanismi G aj :n kulmafrekvenssi γ Aksenttiamplitudin maksimiarvo. Intonaation analyysi/annotointi HY p.16/43

17 Fujisaki 200 F0 (Hz) 180 Phrase component F0 (Hz) t (sec) Resulting F0 contour F0 (Hz) Accent component 20 t (sec) t (sec) Intonaation analyysi/annotointi HY p.17/43

18 Fujisaki 200 F0 (Hz) 200 F0 (Hz) korkeampi F min a) d) t (sec) pienempi lausekkeen amplitudi 20 t (sec) F0 (Hz) 200 F0 (Hz) pienempi alfa b) 100 e) pienempi aksentin amplitudi 20 t (sec) 20 t (sec) F0 (Hz) 200 F0 (Hz) c) 100 f) pienempi beta myöhempi T1 20 t (sec) 20 t (sec) Intonaation analyysi/annotointi HY p.18/43

19 Fujisaki 200 F0 (Hz) korkeampi F min t (sec) Intonaation analyysi/annotointi HY p.19/43

20 Fujisaki 200 F0 (Hz) pienempi alfa t (sec) Intonaation analyysi/annotointi HY p.20/43

21 Fujisaki 200 F0 (Hz) pienempi beta t (sec) Intonaation analyysi/annotointi HY p.21/43

22 Fujisaki 200 F0 (Hz) pienempi lausekkeen amplitudi 20 t (sec) Intonaation analyysi/annotointi HY p.22/43

23 Fujisaki 200 F0 (Hz) pienempi aksentin amplitudi t (sec) Intonaation analyysi/annotointi HY p.23/43

24 Fujisaki 200 F0 (Hz) myöhempi T1 20 t (sec) Intonaation analyysi/annotointi HY p.24/43

25 Tilt Paul Taylor (CSTR, Rhetorical,... ) RFC-mallin seuraaja intonational event ja sen muoto F 0 -tapahtumat kytketty tavujen nukleuksiin Intonaation analyysi/annotointi HY p.25/43

26 Rise Fall Connection 4 parametria: nousun amplitudi ja kesto laskun amplitudi ja kesto 3 mittauspistettä F 0 -tapahtumassa: alku huippu loppu Automaattinen F 0 -käyrän approksimointi Intonaation analyysi/annotointi HY p.26/43

27 Tilt 3 parametria: 1. tilt (F 0 -käyräosan muoto) 2. F 0 -tapahtuman amplitudi 3. F 0 -tapahtuman kesto Intonaation analyysi/annotointi HY p.27/43

28 Tilt tilt A = A nousu A lasku A nousu + A lasku tilt K = K nousu K lasku K nousu +K lasku Intonaation analyysi/annotointi HY p.28/43

29 Tilt tilt A = A nousu A lasku A nousu + A lasku tilt K = K nousu K lasku K nousu +K lasku tilt = A nousu A lasku 2( A nousu + A lasku ) + K nousu K lasku 2(K nousu +K lasku ) Intonaation analyysi/annotointi HY p.28/43

30 Tilt tilt A = A nousu A lasku A nousu + A lasku tilt K = K nousu K lasku K nousu +K lasku tilt = A nousu A lasku 2( A nousu + A lasku ) + K nousu K lasku 2(K nousu +K lasku ) A = A nousu + A lasku K = K nousu + K lasku Intonaation analyysi/annotointi HY p.28/43

31 Tilt Intonaation analyysi/annotointi HY p.29/43

32 Muita Lundin malli (Gårding, Bruce) ICP:n malli (Bailly, Aubergé) INTSINT (DiCristo, Hirst) Neuraaliverkot (Vainio et al.)... Intonaation analyysi/annotointi HY p.30/43

33 ICP Sentence Sentence + syntagma Sentence + syntagma + prosodic group rappelez monsieur dupont jeudi Intonaation analyysi/annotointi HY p.31/43

34 INTSINT M T L U T S L U T D L H L H D H D B Intonaation analyysi/annotointi HY p.32/43

35 Vertailuesimerkki 200 Frequency (Hz) 0 er he sieht sees sieher H* L% ToBI ^0ST3 *3GSE0 IPO phrase accent Fujisaki Time (s) Intonaation analyysi/annotointi HY p.33/43

36 Käytännön sovellus ToBI: painollisten tavujen paikallistaminen, manuaalinen annotointi IPO: suuri määrä erilaisia kuuntelukokeita Fujisaki: automaattinen annotaatio mahdollista (esim. INTSINT: automaattinen annotaatio mahdollista ( Intonaation analyysi/annotointi HY p.34/43

37 Esim. MOMEL/INTSINT Intonaation analyysi/annotointi HY p.35/43

38 MOMEL: residuaali Intonaation analyysi/annotointi HY p.36/43

39 INTSINT T T T T T H H B B B Intonaation analyysi/annotointi HY p.37/43

40 INTSINT U T D H S D U L Intonaation analyysi/annotointi HY p.38/43

41 MOMEL in Praat [rykäisy] e hkap A [] s i t: E n [] m us i so i nt i a Intonaation analyysi/annotointi HY p.39/43

42 MOMEL in Praat 370 o F0 curve and its MOMEL stylization Pitch (Hz) o o o o o o o o o o o Time (s) Intonaation analyysi/annotointi HY p.40/43

43 Esim. MOMEL/INTSINT Intonaation analyysi/annotointi HY p.41/43

44 Esim. MOMEL/INTSINT Intonaation analyysi/annotointi HY p.42/43

45 MOMEL in Praat Intonaation analyysi/annotointi HY p.43/43

Sanajärjestyksen ja intensiteetin vaikutus suomen intonaation havaitsemisessa ja tuotossa

Sanajärjestyksen ja intensiteetin vaikutus suomen intonaation havaitsemisessa ja tuotossa Sanajärjestyksen ja intensiteetin vaikutus suomen intonaation havaitsemisessa ja tuotossa Martti Vainio, Juhani Järvikivi & Stefan Werner Helsinki/Turku/Joensuu Fonetiikan päivät 2004, Oulu 27.-28.8.2004

Lisätiedot

Prosodian havaitsemisesta: suomen lausepaino ja focus

Prosodian havaitsemisesta: suomen lausepaino ja focus Prosodian havaitsemisesta: suomen lausepaino ja focus Martti Vainio Helsingin yliopisto, Fonetiikan laitos; Kieliteknologia Juhani Järvikivi, Turun yliopisto, Psykologia; University of Dundee Yleistä Lingvistisen

Lisätiedot

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y ) MATEMATIIKAN JA TILASTOTIETEEN LAITOS Differentiaaliyhtälöt, kesä 00 Tehtävät 3-8 / Ratkaisuehdotuksia (RT).6.00 3. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: y = + y + y = + y + ( y ) (y

Lisätiedot

Suomen prosodian variaation tutkimuksesta

Suomen prosodian variaation tutkimuksesta Suomen prosodian variaation tutkimuksesta Tommi Nieminen Itä-Suomen yliopisto Tommi Kurki Turun yliopisto Prosodian käsitteestä prosodia käsittää kaikki ne puheen ilmiöt, jotka eivät ole segmentoitavissa

Lisätiedot

Prosodia. Martti Vainio. Puhetieteiden laitos, Helsingin yliopisto. Prosodia p. 1/53

Prosodia. Martti Vainio. Puhetieteiden laitos, Helsingin yliopisto. Prosodia p. 1/53 Prosodia p. 1/53 Prosodia Martti Vainio Puhetieteiden laitos, Helsingin yliopisto FP1/Clt120 Fonetiikan perusteet Syksy 2006 p. 2/53 Miksi prosodiasta tulee olla kiinnostunut? Prosodiaa käytetään kaikissa

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

Puhenäytteiden mittailusta puhekorpuksen perkuuseen: kalastelua mato-ongella ja verkoilla. Mietta Lennes FIN-CLARIN / Helsingin yliopisto

Puhenäytteiden mittailusta puhekorpuksen perkuuseen: kalastelua mato-ongella ja verkoilla. Mietta Lennes FIN-CLARIN / Helsingin yliopisto Puhenäytteiden mittailusta puhekorpuksen perkuuseen: kalastelua mato-ongella ja verkoilla Mietta Lennes FIN-CLARIN / Helsingin yliopisto Johdanto Kun puhetta ja kieltä tutkitaan kvantitatiivisesti, on

Lisätiedot

Miksi prosodiasta tulee olla kiinnostunut? Prosodia. Äänteiden yläpuolella. Mitä? ja Miten?

Miksi prosodiasta tulee olla kiinnostunut? Prosodia. Äänteiden yläpuolella. Mitä? ja Miten? Miksi prosodiasta tulee olla kiinnostunut? Prosodia Martti Vainio Fonetiikan laitos, Helsingin yliopisto Prosodiaa käytetään kaikissa kielissä ilmaisemaan rakenteellista, semanttista ja funktionaalista

Lisätiedot

Prosodia. Martti Vainio. Fonetiikan laitos, Helsingin yliopisto. Prosodia p.1/46

Prosodia. Martti Vainio. Fonetiikan laitos, Helsingin yliopisto. Prosodia p.1/46 Prosodia Martti Vainio Fonetiikan laitos, Helsingin yliopisto Prosodia p.1/46 Miksi prosodiasta tulee olla kiinnostunut? Prosodiaa käytetään kaikissa kielissä ilmaisemaan rakenteellista, semanttista ja

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, syksy 2016 / ORMS1010 Matemaattinen Analyysi 8. harjoitus, viikko 49 R1 to 12 14 F453 (8.12.) R2 to 14 16 F345 (8.12.) R3 ke 8 10 F345 (7.11.) 1. Määritä funktion f (x) = 1 Taylorin sarja

Lisätiedot

Talousmatematiikan perusteet, L2 Kertaus Aiheet

Talousmatematiikan perusteet, L2 Kertaus Aiheet Talousmatematiikan perusteet, L2 Kertaus 1 Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat lausekkeet (alkaen sisältä ulospäin) 2. potenssit ja juurilausekkeet 3. kerto-

Lisätiedot

Mitä suomen intonaatiosta tiedetään

Mitä suomen intonaatiosta tiedetään Mitä suomen intonaatiosta tiedetään ja mitä ehkä tulisi tietää? Tommi Nieminen Itä-Suomen yliopisto AFinLAn syyssymposium Helsinki 13. 14. 11. 2015 Johdanto Jäsennys 1 Johdanto 2 Mitä intonaatiosta tiedetään?

Lisätiedot

Lineaarialgebra MATH.1040 / Piirianalyysiä 2

Lineaarialgebra MATH.1040 / Piirianalyysiä 2 Lineaarialgebra MATH.1040 / Piirianalyysiä 2 1 Seuraavat tarkastelut nojaavat trigonometrisille funktioille todistettuihin kaavoihin. sin(α + β) = sinα cosβ + cosα sinβ (1) cos(α + β) = cosα cosβ sinα

Lisätiedot

spontaanin puheen PRosoDinen jaksottelu

spontaanin puheen PRosoDinen jaksottelu spontaanin puheen PRosoDinen jaksottelu Eija Aho Esitetään Helsingin yliopiston humanistisen tiedekunnan suostumuksella julkisesti tarkastettavaksi Arppeanumissa (Snellmaninkatu 3) perjantaina 27. elokuuta

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

Talousmatematiikan perusteet, L2 Kertaus Aiheet

Talousmatematiikan perusteet, L2 Kertaus Aiheet Talousmatematiikan perusteet, L2 Kertaus 1 Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat lausekkeet (alkaen sisältä ulospäin) 2. potenssit ja juurilausekkeet 3. kerto-

Lisätiedot

Radiointerferometria II

Radiointerferometria II Radiointerferometria II Kolme ALMA-antennia ALMA tulevaisuudessa Puuttuva informaatio Epätäydellinen uv-tason peitto: 1. Keskusaukko : pintamaisen lähteen kokonaisvuontiheys jää mittaamatta, V (0, 0) =

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, kevät 01 / ORMS1010 Matemaattinen Analyysi. harjoitus, viikko 1 R1 ke 1 16 D11 (..) R to 10 1 D11 (..) 1. Määritä funktion y(x) MacLaurinin sarjan kertoimet, kun y(0) = ja y (x) = (x

Lisätiedot

Ojitetuille suometsäalueille soveltuvan hydrologisen mallin kehitys ja sovellus käyttäen automaattista kalibrointia

Ojitetuille suometsäalueille soveltuvan hydrologisen mallin kehitys ja sovellus käyttäen automaattista kalibrointia Ojitetuille suometsäalueille soveltuvan hydrologisen mallin kehitys ja sovellus käyttäen automaattista kalibrointia Kersti Haahti, Harri Koivusalo, Lassi Warsta & Teemu Kokkonen, Luke, Vantaa Vesi- ja

Lisätiedot

VENÄLÄISTEN MAAHANMUUTTAJIEN SUOMEN PROSODIASTA

VENÄLÄISTEN MAAHANMUUTTAJIEN SUOMEN PROSODIASTA EIJA AHO MINNALEENA TOIVOLA VENÄLÄISTEN MAAHANMUUTTAJIEN SUOMEN PROSODIASTA aahanmuuttajien yleisin äidinkieli Suomessa on venäjä, jota vuoden 2006 lopussa puhui noin 42 000 henkilöä. Yli 18 000 äidinkieleltään

Lisätiedot

Miksi prosodiasta tulee olla kiinnostunut? Prosodia. Äänteiden yläpuolella. Mitä? ja Miten?

Miksi prosodiasta tulee olla kiinnostunut? Prosodia. Äänteiden yläpuolella. Mitä? ja Miten? Miksi prosodiasta tulee olla kiinnostunut? Prosodia Martti Vainio Fonetiikan laitos, Helsingin yliopisto Prosodiaa käytetään kaikissa kielissä ilmaisemaan rakenteellista, semanttista ja funktionaalista

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan liopisto, kevät 2015 / ORMS1010 Matemaattinen Analsi 8. harjoitus, viikko 18 R1 ma 16 18 D115 (27.4.) R2 ke 12 14 B209 (29.4.) 1. Määritä funktion (x) MacLaurinin sarjan kertoimet, kun (0) = 2 ja

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

Integroimistekniikkaa Integraalifunktio

Integroimistekniikkaa Integraalifunktio . Integroimistekniikkaa.. Integraalifunktio 388. Vertaa funktioiden ln ja ln, b) arctan ja arctan + k k, c) ln( + 2 ja ln( 2, missä a >, derivaattoja toisiinsa. Tutki funktioiden erotusta muuttujan eri

Lisätiedot

Harjoitus 2: Ohjelmointi (Matlab)

Harjoitus 2: Ohjelmointi (Matlab) Harjoitus 2: Ohjelmointi (Matlab) SCI-C0200 Fysiikan ja matematiikan menetelmien studio SCI-C0200 Fysiikan ja matematiikan menetelmien studio 1 2. Harjoituskerta Aiheet: - Matlabin kontrollirakenteet -

Lisätiedot

Harjoitus 2: Ohjelmointi (Matlab)

Harjoitus 2: Ohjelmointi (Matlab) Harjoitus 2: Ohjelmointi (Matlab) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 2. Harjoituskerta Aiheet: - Matlabin kontrollirakenteet - Funktiot ja komentojonotiedostot

Lisätiedot

Pinoautomaatit. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 6. lokakuuta 2016 TIETOTEKNIIKAN LAITOS

Pinoautomaatit. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 6. lokakuuta 2016 TIETOTEKNIIKAN LAITOS .. TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 6. lokakuuta 2016 Sisällys. Harjoitustehtävätilastoja Tilanne 6.10.2016 klo 8:28 passed potential redo submitters

Lisätiedot

Pakettisynkronointitestauksen automaatio

Pakettisynkronointitestauksen automaatio Pakettisynkronointitestauksen automaatio Risto Hietala valvoja: Prof. Riku Jäntti ohjaaja: DI Jonas Lundqvist ESITYKSEN RAKENNE Tietoverkkojen synkronointi Pakettikytkentäisten verkkojen synkronointi Ohjelmistotestaus

Lisätiedot

Prosodia. Martti Vainio. Fonetiikan laitos, Helsingin yliopisto. Prosodia p.1/43

Prosodia. Martti Vainio. Fonetiikan laitos, Helsingin yliopisto. Prosodia p.1/43 Prosodia Martti Vainio Fonetiikan laitos, Helsingin yliopisto Prosodia p.1/43 Miksi prosodiasta tulee olla kiinnostunut? Prosodiaa käytetään kaikissa kielissä ilmaisemaan rakenteellista, semanttista ja

Lisätiedot

PUHUJAN TEMPORAALISEN ÄÄNIALAN VISUALISOI NTISOVELLUS

PUHUJAN TEMPORAALISEN ÄÄNIALAN VISUALISOI NTISOVELLUS Puhe ja kieli, 24:1,31-39 (2004) 31 PUHUJAN TEMPORAALISEN ÄÄNIALAN VISUALISOI NTISOVELLUS Antti Iivonen, Helsingin yliopisto, Puhetieteiden laitos antti. iivonen@helsinki.fi Tapio Seppänen, Oulun yliopisto,

Lisätiedot

Puheen akustiikan perusteita Mitä puhe on? 2.luento. Äänet, resonanssi ja spektrit. Äänen tuotto ja eteneminen. Puhe äänenä

Puheen akustiikan perusteita Mitä puhe on? 2.luento. Äänet, resonanssi ja spektrit. Äänen tuotto ja eteneminen. Puhe äänenä Puheen akustiikan perusteita Mitä puhe on? 2.luento Martti Vainio Äänet, resonanssi ja spektrit Fonetiikan laitos, Helsingin yliopisto Puheen akustiikan perusteita p.1/37 S-114.770 Kieli kommunikaatiossa...

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta

Lisätiedot

0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,

0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7, HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä niistä

Lisätiedot

Puhesynteesin perusteet Luento 4: difonikonkatenaatio

Puhesynteesin perusteet Luento 4: difonikonkatenaatio Puhesynteesin perusteet Luento 4: difonikonkatenaatio Nicholas Volk 7.2.2008 Käyttäytymistieteellinen tiedekunta Idea Äänteet ovat stabiileimmillaan keskellä äännettä, joten mallinnetaan siirtymät äänteestä

Lisätiedot

d Todista: dx xn = nx n 1 kaikilla x R, n N Derivaatta Derivaatta ja differentiaali

d Todista: dx xn = nx n 1 kaikilla x R, n N Derivaatta Derivaatta ja differentiaali 6. Derivaatta 6.. Derivaatta ja differentiaali 72. Olkoon f () = 4. Etsi derivaatan määritelmän avulla f ( 3). f ( 3) = 08. 73. Muodosta funktion f () = derivaatta suoraan määritelmän mukaan, so. tarkastelemalla

Lisätiedot

Sinin muotoinen signaali

Sinin muotoinen signaali Sinin muotoinen signaali Pekka Rantala.. Sini syntyy tasaisesta pyörimisestä Sini-signaali syntyy vakio-nopeudella pyörivän osoittimen y-suuntaisesta projektiosta. y u û α positiivinen pyörimissuunta x

Lisätiedot

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0 Juuri 8 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 8.9.07 Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) K. a) b) c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 6 6 a a a, a > 0 6 6 a

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 14. Kirsi Valjus. Jyväskylän yliopisto. Luento 14 () Numeeriset menetelmät / 55

Numeeriset menetelmät TIEA381. Luento 14. Kirsi Valjus. Jyväskylän yliopisto. Luento 14 () Numeeriset menetelmät / 55 Numeeriset menetelmät TIEA381 Luento 14 Kirsi Valjus Jyväskylän yliopisto Luento 14 () Numeeriset menetelmät 15.5.2013 1 / 55 Luennon 14 sisältö Nopeat Fourier-muunnokset (FFT) Yleinen algoritmi 2-kantainen

Lisätiedot

Peto- ja saaliskanta

Peto- ja saaliskanta Peto- ja saaliskanta Peto- ja saaliskantojen keskinäistä vuorovaikutusta voiaan mallintaa toisistaan riippuvien ifferentiaaliyhtälöien avulla. Tässä tarkastellaan yksinkertaista mallia, joka perustuu ns.

Lisätiedot

r = r f + r M r f (Todistus kirjassa sivulla 177 tai luennon 6 kalvoissa sivulla 6.) yhtälöön saadaan ns. CAPM:n hinnoittelun peruskaava Q P

r = r f + r M r f (Todistus kirjassa sivulla 177 tai luennon 6 kalvoissa sivulla 6.) yhtälöön saadaan ns. CAPM:n hinnoittelun peruskaava Q P Markkinaportfolio on koostuu kaikista markkinoilla olevista riskipitoisista sijoituskohteista siten, että sijoituskohteiden osuudet (so. painot) markkinaportfoliossa vastaavat kohteiden markkina-arvojen

Lisätiedot

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu

Lisätiedot

805306A Johdatus monimuuttujamenetelmiin, 5 op

805306A Johdatus monimuuttujamenetelmiin, 5 op monimuuttujamenetelmiin, 5 op syksy 2018 Matemaattisten tieteiden laitos Logistinen regressioanalyysi Vastemuuttuja Y on luokiteltu muuttuja Pyritään mallittamaan havaintoyksikön todennäköisyyttä kuulua

Lisätiedot

Pakkauksen sisältö: Sire e ni

Pakkauksen sisältö: Sire e ni S t e e l m a t e p u h u v a n v a r a s h ä l y t ti m e n a s e n n u s: Pakkauksen sisältö: K e s k u s y k sikk ö I s k u n t u n n i s ti n Sire e ni P i u h a s a rj a aj o n e st or el e Ste el

Lisätiedot

Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II

Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II Dynaamisten systeemien teoriaa Systeemianalyysilaboratorio II 15.11.2017 Vakiot, sisäänmenot, ulostulot ja häiriöt Mallin vakiot Systeemiparametrit annettuja vakioita, joita ei muuteta; esim. painovoiman

Lisätiedot

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi Tehtävä. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi lyhyesti. a) a, c, e, g, b),,, 7,, Ratkaisut: a) i ja k - oikea perustelu ja oikeat kirjaimet, annetaan

Lisätiedot

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0102 Differentiaali- ja integraalilaskenta 1 MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 24.10.2016 Sisältö Derivaatta 1.1 Derivaatta Erilaisia lähestymistapoja: I geometrinen

Lisätiedot

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n))

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n)) Määritelmä: on O(g(n)), jos on olemassa vakioarvot n 0 > 0 ja c > 0 siten, että c g(n) kun n > n 0 O eli iso-o tai ordo ilmaisee asymptoottisen ylärajan resurssivaatimusten kasvun suuruusluokalle Samankaltaisia

Lisätiedot

Luento 9. Epälineaarisuus

Luento 9. Epälineaarisuus Lueno 9 Epälineaarisuus 9..7 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!

Lisätiedot

Epälineaaristen yhtälöiden ratkaisumenetelmät

Epälineaaristen yhtälöiden ratkaisumenetelmät Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin

Lisätiedot

RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.

RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu. RATKAISUT 198 197 198. Olkoon suorakulmion erisuuntaisten sivujen pituudet a ja b sekä neliön sivun pituus c. Tehtävä on mielekäs vain, jos suorakulmio ei ole neliö, joten oletetaan, että a b. Suorakulmion

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

I. AES Rijndael. Rijndael - Internal Structure

I. AES Rijndael. Rijndael - Internal Structure I. AES Rndael NOKIA T-79.53 Additional material Oct 3/KN Rndael - Internal Structure Rndael is an iterated block cipher with variable length block and variable key size. The number of rounds is defined

Lisätiedot

f(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2

f(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2 HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 7 Harjoitus 6 Ratkaisuehdotukset 6.. Olkoon f : G R, G = {(x, x ) R x > }, f(x, x ) = x x. Etsi differentiaalit d k f(, ), k =,,. Ratkaisu:

Lisätiedot

INTONAATIOJAKSOISTA EIJA AHO EEVA YLI-LUUKKO

INTONAATIOJAKSOISTA EIJA AHO EEVA YLI-LUUKKO EIJA AHO EEVA YLI-LUUKKO INTONAATIOJAKSOISTA ässä artikkelissa käsittelemme prosodisten jaksojen löytämisen ongelmia käytännön litterointityön kannalta. Prosodinen jakso on sellainen puheen jakso, jonka

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla

Lisätiedot

Kartio ja pyramidi

Kartio ja pyramidi Kartio ja pyramidi Kun avaruuden suora s liikkuu pitkin itseään leikkaamatonta tason T suljettua käyrää ja lisäksi kulkee tason T ulkopuolisen pisteen P kautta, suora s piirtää avaruuteen pinnan, jota

Lisätiedot

Gradient Sampling-Algoritmi

Gradient Sampling-Algoritmi 1/24 Gradient Sampling-Algoritmi Ville-Pekka Eronen April 20, 2016 2/24 Perusidea -"Stabiloitu nopeimman laskeutumisen menetelmä" - Laskevan suunnan haku: lasketaan gradientit nykyisessä pisteessä sekä

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 14 To 20.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 14 To 20.10.2011 p. 1/39 p. 1/39 Nopeat Fourier-muunnokset Diskreetti Fourier-muunnos ˆf k = 1 N 1 N

Lisätiedot

LUONNOLLINEN KIELI JA TEKOÄLYN KOGNITIO

LUONNOLLINEN KIELI JA TEKOÄLYN KOGNITIO LUONNOLLINEN KIELI JA TEKOÄLYN KOGNITIO Mathias Creutz kieliteknologian yliopistonlehtori Nykykielten laitos Humanistinen tiedekunta Helsingin yliopisto 4.5.2017 Faculty of Arts Mathias Creutz 4.5.2017

Lisätiedot

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2 HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Olkoon f : R R f(x 1, x ) = x 1 + x Olkoon C R. Määritä tasa-arvojoukko Sf(C) = {(x 1, x

Lisätiedot

Keskipisteen lisääminen 2 k -faktorikokeeseen (ks. Montgomery 9-6)

Keskipisteen lisääminen 2 k -faktorikokeeseen (ks. Montgomery 9-6) Mat-.3 Koesuunnittelu ja tilastolliset mallit kevät Keskipisteen lisääminen k -faktorikokeeseen (ks. Montgomery 9-6) Esim (Montg. ex. 9-, 6-): Tutkitaan kemiallisen prosessin saannon Y riippuvuutta faktoreista

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 21.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

Lineaarinen toisen kertaluvun yhtälö

Lineaarinen toisen kertaluvun yhtälö Lineaarinen toisen kertaluvun yhtälö Keijo Ruotsalainen Mathematics Division Lineaarinen toisen kertaluvun differentiaaliyhtälö Toisen kertaluvun täydellinen lineaarinen yhtälö muotoa p 2 (x)y + p 1 (x)y

Lisätiedot

Kompleksilukujen kunnan konstruointi

Kompleksilukujen kunnan konstruointi Kompleksilukujen kunnan konstruointi Seuraava esitys osoittaa, miten kompleksilukujoukko voidaan määritellä tunnetuista reaalisista käsitteistä lähtien. Määrittelyjen jälkeen on helppoa osoittaa Mathematican

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Vesanen MS-A0205/6 Differentiaali- ja integraalilaskenta 2, kevät 2017 Laskuharjoitus 4A (Vastaukset) alkuviikolla

Lisätiedot

MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM)

MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM) . Lasketaan valmiiksi derivaattoja ja niiden arvoja pisteessä x = 2: f(x) = x + 3x 3 + x 2 + 2x + 8, f(2) = 56, f (x) = x 3 + 9x 2 + 2x + 2, f (2) = 7, f (x) = 2x 2 + 8x + 2, f (2) = 86, f (3) (x) = 2x

Lisätiedot

Puhutun ja kirjoitetun rajalla

Puhutun ja kirjoitetun rajalla Puhutun ja kirjoitetun rajalla Tommi Nieminen Jyväskylän yliopisto Laura Karttunen Tampereen yliopisto AFinLAn syyssymposiumi Helsingissä 14. 15.11.2008 Lähtökohtia 1: Anekdotaaliset Daniel Hirst Nordic

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, 009-010 / ORMS1010 Matemaattinen Analyysi 7 harjoitus 1 Määritä seuraavien potenssisarjojen suppenemissäteet a) k k x 5)k b) k=1 k x 5)k = k k 1) k ) 1) Suppenemissäteen R käänteisarvo

Lisätiedot

Harjoitus 4: Differentiaaliyhtälöt (Matlab) MS-C2107 Sovelletun matematiikan tietokonetyöt 1

Harjoitus 4: Differentiaaliyhtälöt (Matlab) MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoitus 4: Differentiaaliyhtälöt (Matlab) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Matlab:n solver komento differentiaaliyhtöiden

Lisätiedot

Pienimmän Neliösumman Sovitus (PNS)

Pienimmän Neliösumman Sovitus (PNS) Pienimmän Neliösumman Sovitus (PNS) n = Havaintojen määrä (Kuvan n = 4 punaista palloa) x i = Havaintojen ajat/paikat/... (i = 1,..., n) y i = y(x i) = Havaintojen arvot (i = 1,..., n) σ i = Havaintojen

Lisätiedot

Kolmiot, L1. Radiaani. Kolmiolauseet. Aiheet. Kulmayksiköt, aste. Radiaani. Suorakulmainen kolmio. Kolmiolauseet

Kolmiot, L1. Radiaani. Kolmiolauseet. Aiheet. Kulmayksiköt, aste. Radiaani. Suorakulmainen kolmio. Kolmiolauseet Kolmiot, L1 Kulmayksiköt 1 Aste, 1 (engl. degree) Kun kellon viisari kiertyy yhden kierroksen, sanomme, että se kääntyy 360 (360 astetta). Ajatus täyden kierroksen jakamisesta 360 asteeseen, juontaa kaldealaiseen

Lisätiedot

Luento 11: Periodinen liike

Luento 11: Periodinen liike Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r Konseptitesti 1 Tehtävänanto Kuvassa on jouseen kytketyn massan sijainti ajan funktiona. Kuvaile

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 19 Derivaatan määritelmä Määritelmä

Lisätiedot

Lisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x

Lisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x MAA6 Lisätehtäviä Laske lisätehtäviä omaan tahtiisi kurssin aikan Palauta laskemasi tehtävät viimeistään kurssikokeeseen. Tehtävät lasketaan ilman laskint Rationaalifunktio Tehtäviä Hyvitys kurssiarvosanassa

Lisätiedot

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ 1 YLIOPPILASTUTKINTO- LAUTAKUNTA 25.9.2017 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän

Lisätiedot

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0 Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 K. a) b) c) d) 6 6 a a a, a > 0 6 6 a a a a, a > 0 5 5 55 5 5 5 5 5 5 5 5 5 5 a a a a a ( a ) a a a, a > 0 K.

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016) Tavoitteet (teoria): Ymmärtää kausivaihtelun käsite ja sen yhteys otoshetkiin. Oppia käsittelemään periodogrammia.. Tavoitteet (R): Periodogrammin,

Lisätiedot

Puhesynteesi. Martti Vainio. Fonetiikan laitos, Helsingin yliopisto. Puhesynteesi p.1/38

Puhesynteesi. Martti Vainio. Fonetiikan laitos, Helsingin yliopisto. Puhesynteesi p.1/38 Puhesynteesi Martti Vainio Fonetiikan laitos, Helsingin yliopisto Puhesynteesi p.1/38 Puhesynteesin historiaa Mekaaniset synteesit: 1700-luvulla asiaa harrastivat Wolfgang von Kempelen ja Christian Kratzenstein.

Lisätiedot

Puhesynteesin historiaa. Puhesynteesi. Historiaa: Kempelen. Historiaa: Kratzenstein

Puhesynteesin historiaa. Puhesynteesi. Historiaa: Kempelen. Historiaa: Kratzenstein Puhesynteesin historiaa Puhesynteesi Martti Vainio Fonetiikan laitos, Helsingin yliopisto Mekaaniset synteesit: 1700-luvulla asiaa harrastivat Wolfgang von Kempelen ja Christian Kratzenstein. 1900-luvulla

Lisätiedot

Harjoitus 1. Tehtävä 1. Malliratkaisut. f(t) = e (t α) cos(ω 0 t + β) L[f(t)] = f(t)e st dt = e st t+α cos(ω 0 t + β)dt.

Harjoitus 1. Tehtävä 1. Malliratkaisut. f(t) = e (t α) cos(ω 0 t + β) L[f(t)] = f(t)e st dt = e st t+α cos(ω 0 t + β)dt. Harjoitus Malliratkaisut Tehtävä L[f(t)] ˆ f(t) e (t α) cos(ω t + β) f(t)e st dt ˆ e st t+α cos(ω t + β)dt cos(ω t + β) 2 (ej(ωt+β) + e j(ωt+β) ) L[f(t)] 2 eα 2 ˆ ˆ e st t+α (e j(ω t+β) + e j(ω t+β) )

Lisätiedot

x n e x dx = n( e x ) nx n 1 ( e x ) = x n e x + ni n 1 x 4 e x dx = x 4 e x +4( x 3 e x +3( x 2 e x +2( xe x e x ))) = e x

x n e x dx = n( e x ) nx n 1 ( e x ) = x n e x + ni n 1 x 4 e x dx = x 4 e x +4( x 3 e x +3( x 2 e x +2( xe x e x ))) = e x Osittaisintegrointia käyttäen osoita integraalille I n x n e x dx oikeaksi reduktiokaava I n x n e x + ni n ja laske sen avulla mitä on I 4 kun x. x n e x dx n( e x ) nx n ( e x ) x n e x + ni n x 4 e

Lisätiedot

TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT

TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT 3.0.07 0 π TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT π = π 3π π = π 5π 6π = 3π 7π TRIGONOMETRISET FUNKTIOT, MAA7 Tarkastellaan aluksi sini-funktiota ja lasketaan sin :n arvoja, kun saa arvoja 0:sta 0π :ään

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto)

Lisätiedot

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16 MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos

Lisätiedot

Osa IX. Z muunnos. Johdanto Diskreetit funktiot

Osa IX. Z muunnos. Johdanto Diskreetit funktiot Osa IX Z muunnos A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 298 / 322 A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 299 / 322 Johdanto

Lisätiedot

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset MS-C350 Osittaisdifferentiaaliyhtälöt Haroitukset 5, syksy 207. Oletetaan, että a > 0 a funktio u on yhtälön u a u = 0 ratkaisu. a Osoita, että funktio vx, t = u x, t toteuttaa yhtälön a v = 0. b Osoita,

Lisätiedot

1.3 Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä

1.3 Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä OULUN YLIOPISTO Tietojenkäsittelytieteiden laitos Johdatus ohjelmointiin 811122P (5 op.) 12.12.2005 Ohjelmointikieli on Java. Tentissä saa olla materiaali mukana. Tenttitulokset julkaistaan aikaisintaan

Lisätiedot

Vfo254: Puhekorpusten käyttö. Puhekorpusten lingvistinen representaatio. Yleistä. Symbolinen representaatio. Martti Vainio. Transkription tarkkuus

Vfo254: Puhekorpusten käyttö. Puhekorpusten lingvistinen representaatio. Yleistä. Symbolinen representaatio. Martti Vainio. Transkription tarkkuus Symbolinen representaatio Vfo 254: Puhekorpusten käsittely: Puhekorpusten lingvistinen representaatio Martti Vainio Puhekorpuksen tutkimininen on mahdollista vain symbolisen representaation kautta näytteistettyä

Lisätiedot

II.1. Suppeneminen., kun x > 0. Tavallinen lasku

II.1. Suppeneminen., kun x > 0. Tavallinen lasku II. EPÄOLEELLISET INTEGRAALIT nt II.. Suppeneminen Esim. Olkoon f() =, kun >. Tvllinen lsku = / =. Kuitenkn tätä integrli ei ole ikisemmss mielessä määritelty, kosk f ei ole rjoitettu välillä [, ] (eikä

Lisätiedot

Pinoautomaatit. TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 6. kesäkuuta 2013 TIETOTEKNIIKAN LAITOS. Pinoautomaatit.

Pinoautomaatit. TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 6. kesäkuuta 2013 TIETOTEKNIIKAN LAITOS. Pinoautomaatit. TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 6. kesäkuuta 2013 Sisällys Aikataulumuutos Tämänpäiväinen demotilaisuus on siirretty maanantaille klo 14:15 (Ag Delta).

Lisätiedot

Optimaaliset riskinalentamisportfoliot vikapuuanalyysissä (valmiin työn esittely)

Optimaaliset riskinalentamisportfoliot vikapuuanalyysissä (valmiin työn esittely) Optimaaliset riskinalentamisportfoliot vikapuuanalyysissä (valmiin työn esittely) Markus Losoi 30.9.2013 Ohjaaja: DI Antti Toppila Valvoja: prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin

Lisätiedot

r > y x z x = z y + y x z y + y x = r y x + y x = r

r > y x z x = z y + y x z y + y x = r y x + y x = r HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Osoita, että avoin kuula on avoin joukko ja suljettu kuula on suljettu joukko. Ratkaisu.

Lisätiedot

Puhesynteesin historiaa. Puhesynteesi. Historiaa: Kempelen. Historiaa: Kratzenstein

Puhesynteesin historiaa. Puhesynteesi. Historiaa: Kempelen. Historiaa: Kratzenstein Puhesynteesin historiaa Puhesynteesi Martti Vainio Fonetiikan laitos, Helsingin yliopisto Mekaaniset synteesit: 1700-luvulla asiaa harrastivat Wolfgang von Kempelen ja Christian Kratzenstein. 1900-luvulla

Lisätiedot