Tietoliikenteen perusteet

Samankaltaiset tiedostot
Tietoliikenteen perusteet. Langaton linkki

Tietoliikenteen perusteet. Langaton linkki

Tietoliikenteen perusteet. Langaton linkki. Kurose, Ross: Ch 6.1, 6.2, 6.3. (ei: 6.2.1, ja 6.3.5)

Tietoliikenteen perusteet. Langaton linkki. Kurose, Ross: Ch 6.1, 6.2, 6.3. (ei: 6.2.1, ja 6.3.5)

Langaton linkki. Langaton verkko. Tietoliikenteen perusteet. Sisältö. Linkkikerros. Langattoman verkon komponentit. Langattoman linkin ominaisuuksia

Tietoliikenteen perusteet. Langaton linkki. Kurose, Ross: Ch 6.1, 6.2, 6.3. (ei: 6.2.1, ja 6.3.5) Tietoliikenteen perusteet /2010 1

Tietoliikenteen perusteet. Langaton linkki. Kurose, Ross: Ch 6.1, 6.2, 6.3. (ei: 6.2.1, ja 6.3.5) Tietoliikenteen perusteet /2011 1

Tietoliikenteen perusteet

Luento 10: Kaikki yhteen ja langaton linkki

Luento 10: Kaikki yhteen ja langaton linkki

Luento 10: Kaikki yhteen ja langaton linkki. Syksy 2014, Tiina Niklander

» multiaccess channel» random access channel LAN (Ethernet) langaton. ongelma: käyttövuoron jakelu Yhteiskäyttöisen kanavan käyttö

4. MAC-alikerros. yleislähetys (broadcast) ongelma: käyttövuoron jakelu. » multiaccess channel» random access channel LAN (Ethernet) langaton

Chapter 5 Link Layer and LANs

6. Erilaisia verkkoja. LAN, MAN ja WAN

6. Erilaisia verkkoja

Kanavan kuuntelu. Yleislähetysprotokollia ALOHA. CSMA (Carrier Sense Multiple Access) Viipaloitu ALOHA. Lähetyskanavan kuuntelu (carrier sense)

Kuva maailmasta Pakettiverkot (Luento 1)

5. Siirtoyhteyskerros linkkikerros (Data Link Layer) 5.1. Kaksipisteyhteydet. Kehysten kuljetus. Missä virhe hoidetaan? Virheet.

OSI ja Protokollapino

ELEC-C7241 Tietokoneverkot Linkkikerros

TW- EAV510 ketjutustoiminto (WDS): Kaksi TW- EAV510 laitetta

Siltojen haitat Yleisesti edut selvästi suuremmat kuin haitat

TW- EAV510 JA TW- LTE REITITIN: WDS- VERKKO

Siltojen haitat. Yleisesti edut selvästi suuremmat kuin haitat 2/19/ Kytkin (switch) Erittäin suorituskykyisiä, moniporttisia siltoja

ITKP104 Tietoverkot - Teoria 3

Linkkikerros, tiedonsiirron perusteet. Jyry Suvilehto T Johdatus tietoliikenteeseen ja multimediatekniikkaan kevät 2013

Linkkikerros: Ethernet ja WLAN

Linkkikerros: Ethernet ja WLAN

Tietoliikenteen perusteet

ELEC-C7241 Tietokoneverkot Linkkikerros

Linkkikerros: Ethernet ja WLAN

Luento 9: Linkkikerros. Syksy 2014, Tiina Niklander

Erilaisia verkkoja LAN, MAN ja WAN 10/17/2002 1

Tietoliikenteen perusteet

TW- EAV510 v2: WDS- TOIMINTO TW- EAV510 V2 LAITTEEN ja TW- LTE REITITTIMEN VÄLILLÄ. Oletus konfiguroinnissa on, että laitteet ovat tehdasasetuksilla

Erilaisia verkkoja 10/17/ SOVELLUKSIA SOVELLUSPROTOKOLLIA: HTTP, SMTP, SNMP, FTP, TELNET,.. TCP (UDP) IP

Luento 9: Linkkikerros

5. Siirtoyhteyskerros linkkikerros (Data Link Layer) 5.1. Kaksipisteyhteydet. Kehysten kuljetus. Virheet. Missä virhe hoidetaan?

Internet ja tietoverkot. 6 Langattomat ja mobiilit tietoverkot. Oulun yliopisto Tietojenkäsittelytieteiden laitos Periodi / 2015

Erilaisia verkkoja. Paljon erilaisia verkkoja! Eetteriverkon rakenne. Ethernet-lähiverkko. Lähiverkkostandardi IEEE 802: LAN, MAN ja WAN

5. Siirtoyhteyskerros linkkikerros (Data Link Layer)

Langattomat verkot. CSE-C2400 Tietokoneverkot Matti Siekkinen

Chapter 5 Link Layer and LANs

5. Siirtoyhteyskerros linkkikerros (Data Link Layer)

5. Siirtoyhteyskerros linkkikerros (Data Link Layer)

WL54AP2. Langattoman verkon laajennusohje WDS

Langattomat verkot ja liikkuvuus

Linkkikerros, Ethernet ja WLAN. Jouko Kurki T Johdatus tietoliikenteeseen kevät 2010

WLAN langaton lähiverkko (Wireless LAN)

WLAN langaton lähiverkko (Wireless LAN)

» multiaccess channel» random access channel LAN (Ethernet) langaton. ongelma: käyttövuoron jakelu Yhteiskäyttöisen kanavan käyttö

Eetteriverkon rakenne

CSMA/CD. Eetteriverkon rakenne. Signaalin koodaus. Törmäyksen jälkeinen uudelleenlähetys. Lyhyet etäisyydet, pieni määrä laitteita. Manchester-koodaus

Turvaa langattomat laitteesi ja verkkosi. Harri Koskinen Rossum Oy

Jos A:lla ei ole tietoa ARP-taulussaan, niin A lähettää ARP-kysely yleislähetyksenä

T Verkkomedian perusteet

Eetteriverkon rakenne

itää saada selville P-osoitetta vastaava erkko-osoite. leislähetyksenä ysely: Kenen IPsoite. IP-paketissa on vain vastaanottajan

Tietoliikenteen perusteet. Linkkikerros

WLAN langaton lähiverkko (Wireless LAN)

Langaton tietokone (vain tietyt mallit) Käyttöopas

WLAN langaton lähiverkko (Wireless LAN)

Siirtoyhteyskerros. Chapter 5 Link Layer and LANs Chapter 6 (part) Wireless Networks. Siirtoyhteyskerros: johdantoa. Siirtoyhteyskerros

S Tietoliikennetekniikan perusteet. Pakettikytkentäiset verkot. Helsinki University of Technology Networking Laboratory

Tietoliikenne I (muuntokoulutettaville) 2 ov Syksy 2002 Luennot Liisa Marttinen 11/6/2002 1

5. Siirtoyhteyskerros linkkikerros (Data Link Layer)

5. Siirtoyhteyskerros linkkikerros (Data Link Layer) 5.1. Kaksipisteyhteydet. Kehysten kuljetus. Missä virhe hoidetaan? Virheet.

5. Siirtoyhteyskerros linkkikerros (Data Link Layer)

ICMP-sanomia. 3. IP-kerroksen muita protokollia ja mekanismeja ICMP (Internet Control Message Protocol)

WLAN langaton lähiverkko (Wireless LAN) ISM. Hidden terminal -ongelma. CSMA/CA (Collision avoidance) IEEE standardi. exposed station problem:

Chapter 5 Link Layer and LANs

3. IP-kerroksen muita protokollia ja

Tietoliikenteen perusteet. Linkkikerros

Liikkuvuudenhallinta Mobile IP versio 6 - protokollalla

Tietoliikenne II. Syksy 2005 Markku Kojo. Tietoliikenne II (2 ov,, 4 op) Page1. Markku Kojo Helsingin yliopisto Tietojenkäsittelytieteen laitos

Linkkikerros: Ethernet ja WLAN. T Suuri osa kalvomateriaalista Ursula Holmströmiltä Kirja

WLAN langaton lähiverkko (Wireless LAN) Hidden terminal -ongelma ISM. IEEE standardi. Ratkaisu piilolähettäjän ongelmaan

Älypuhelinverkkojen 5G. Otto Reinikainen & Hermanni Rautiainen

MAC-protokolla. » 7 tavua tahdistusta varten» kehyksen alku

WLAN verkon käyttöönotto ja tietoturvallisuus

KEMI-TORNIONLAAKSON KOULUTUSKUNTAYHTYMÄ LAPPIA LANGATON VIERAILIJAVERKKO 2(7) VERKKOYHTEYDEN MÄÄRITTELY WINDOWS XP:LLE (WINDOWS XP SP3)

Tietokone. Tietokone ja ylläpito. Tietokone. Tietokone. Tietokone. Tietokone

Tietoliikenteen perusteet

Tekninen Tuki. Access Point asennusohje

Pika-aloitusopas. Langaton IP-kamera. Tekninen tuki QG4_B

Liikkuvien isäntäkoneiden reititys

5. Mobile IP (RFC 3220)

WLAN ja Quality of Service Tapio Väärämäki Jyväskylän yliopiston Tietotekniikan laitos

Väylää kuunneltava. kehyksen pituus. Ethernetin hyvät puolet. MAC-protokolla

TEKNIIKAN JA LIIKENTEEN TOIMIALA. Tietotekniikka. Tietoliikennetekniikka INSINÖÖRITYÖ KONSERNINLAAJUISEN WLAN-VERKON SUUNNITTELU

Tietoliikenne I 2 ov kevät 2004

Tietoliikenne I 2 ov kevät 2004

Tosiaikajärjestelmät Luento 8: Tietoliikenneverkkoja ja -protokollia. Tiina Niklander. Jane Liu: Real-time systems, luku 11 + artikkeleja

Langattoman kotiverkon mahdollisuudet

LYHYEN KANTAMAN LANGATTOMAT SIIRTOTAVAT

Kotitalouksien kiinteät internet - liittymät. Tero Karttunen Oy Mikrolog Ltd

Tietoliikenne I 2 ov kevät 2003

Luento 14: Kertausta. Syksy 2014, Tiina Niklander

Tietoliikenne I (muuntokoulutettaville) 2 ov syksy 2003 Luennot Liisa Marttinen

Transkriptio:

Tietoliikenteen perusteet Luento 10: langaton linkki Syksy 2017, Timo Karvi Kurose&Ross: Ch5.7 ja 6.1-6.3 Pääasiallisesti kuvien J.F Kurose and K.W. Ross, All Rights Reserved Tietoliikenteen perusteet, syksy 2016 Timo Karvi 16.2.2005

sanoma segmentti paketti tai datagrammi, kehys H n H l H n H t H t H t M M M M Lähettäjä (source) Sovellusk. Kuljetusk. Verkkok. Linkkik. Fyysinen k. Luennon sisältöä linkki fyysinen Kytkin (switch) message segment datagram frame H l Vastaanottaja (destination) H n H n H t H t H t M M M M application transport network link physical H l H n H n H t H t M M network link physical H n H t M Reititin (router) Tietoliikenteen perusteet, syksy 2016 Timo Karvi 2

Sisältö Langaton linkki Oppimistavoitteet: - Osa kuvata sanoman välityksen kerrokselta toiselle ja selittää mitä kaikkea pitää verkossa tapahtua piilossa käyttäjältä, jotta yksi wwwkysely tai sähköpostin lähetys saadaan tehtyä. Tietoliikenteen perusteet, syksy 2016 Timo Karvi 3

LANGATON VERKKO Ch 6.1, 6.2, 6.3.1,6.3.2 (ei: 6.2.1, 6.3.3-) Tietoliikenteen perusteet, syksy 2016 Timo Karvi 4

Langattoman verkon komponentit Tukiasema LAN-yhteys pääsy Internetiin Langattomat linkit koneesta tukiasemaan koneesta koneeseen Rajattu kuuluvuusalue Isäntäkoneet Laptop, PDA, IP-puhelin Suorittaa sovelluksia kiinteä tai liikkuva Haasteet virhealtis linkki liikkuva työasema Fig 6.1 [KR12] Tietoliikenteen perusteet, syksy 2016 Timo Karvi 5

Data rate (Mbps) LTE Advanced: 4G, 1 Gbps Langattoman linkin ominaisuuksia Fig 6.1 [KR12] 200 802.11n 54 5-11 4 1.384.056 802.11a,g 802.11b 802.15 802.11a,g point-to-point 4G: LTWE WIMAX 3G: UMTS/WCDMA-HSPDA, CDMA2000-1xEVDO 2.5G: UMTS/WCDMA, CDMA2000 2G: IS-95, CDMA, GSM Indoor 10-30m Outdoor 50-200m Ongelmallisempaa kuin kiinteässä verkossa: - signaalin vaimeneminen, heijastukset - muiden laitteiden aiheuttamat häiriöt Mid-range outdoor 200m 4 Km Long-range outdoor 5Km 20 Km Tietoliikenteen perusteet, syksy 2016 Timo Karvi 6

Langattoman verkon tekniikat (IEEE) Tekniikka Wireless personal area network (WPAN) Low-rate WPAN (LR- WPAN) Wireless local area network (WLAN) Wireless metropolitan area network (WMAN) IEEE standardi IEEE 802.15.1 IEEE 802.15.4 IEEE 802.11 IEEE 802.16 Nimi Bluetooth ZigBee WiFi WiMAX 3G ja 4G matkapuhelinverkkojen tekniikoita. Niitä standardoi kansainvälinen televiestintäliitto ITU. Tietoliikenteen perusteet, syksy 2016 Timo Karvi 7

Ad hoc -verkko Liikkuville koneille... Ei tukiasemia Keskustelu omalla kuuluvuusalueella olevien koneiden kanssa Ei valmiita palveluja Fig 6.8 [KR12] Reititys, IP-osoitteet, DNS,.. Itseorganisoituva Jonkun tuotettava tarvittavat palvelut Ketä läsnä? Reititys kuuluvuusalueelta toiselle? Tietoliikenteen perusteet, syksy 2016 Timo Karvi 8

Kätketyn aseman ongelma (Hidden terminal) Fig 6.4a [KR12] C Asemat A ja C eivät kuule toisiaan eivätkä huomaa, milloin toinen lähettää samaan aikaan ja syntyy törmäys. B Miten asema voi tietää, menikö sen lähetys perille? A A B C Tietoliikenteen perusteet, syksy 2016 Timo Karvi 9

Exposed terminal C ei voi lähettää D:lle, koska kuulee itse B:n lähetyksen eli joku on jo lähettämässä Vaikka tämä lähetys ei lainkaan häiritsisi C:n lähettämistä D:lle eikä B:n lähettämistä A:lle A B C D Tietoliikenteen perusteet, syksy 2016 Timo Karvi 10

IEEE 802.11 WLAN (WI-FI) Ch 6.3 (vain 6.3.1-6.3.3) (ei tällä kurssilla 6.3.4-) Tietoliikenteen perusteet, syksy 2016 Timo Karvi 11

IEEE 802.11 -lähiverkko (infrastructure wireless LAN, Wi-Fi) Fig 6.7 [KR12] BSS 1 switch or router Internet AP AP = access point = keskustukiasema SSID = service set identifier = tukiaseman tunniste BSS = basic service set = tukiaseman palvelemat koneet AP BSS 2 Tukiasema kotona: yhteys palveluntarjoajaan (ISP) myös kytkin / reititin samassa paikassa palvelut: palomuuri, NAT, DHCP Tietoliikenteen perusteet, syksy 2016 Timo Karvi 12

Ad hoc-verkko MANET (Mobile ad hoc network) VANET (Vehicular ad hoc network) Ei mitään infrastruktuuria ja solmut voivat liikkua BSS Solmujen on itse hoidettava kaikki toiminnot mm. reititys, jos eivät ole saman kuuluvuusalueen sisällä. Tietoliikenteen perusteet, syksy 2016 Timo Karvi 13

IEEE 802.11: Kanavat Standard Frequency Range Data Rate 802.11b 2.4 GHz up to 11 Mbps (802.11a 5 GHz up to 54 Mbps) 801.11g 2.4 GHz up to 54 Mbps Alue 2.4 GHz - 2.2485 GHz Jakaantuu 11 limittäiseen kanavaan (Eurooppa 13 ja Japani 14) Esim. kanavat 1, 6 ja 11 eivät mene keskenään päällekkäin Tukiaseman kanava on konfiguroitavissa Naapuritukiasemalla saattaa olla sama kanava Linkin käytössä CSMA/CA Kaikissa sama linkkitason kehysrakenne Tietoliikenteen perusteet, syksy 2016 Timo Karvi 14

802.11: Kanavan valinta (1) Koneen kuuluvuusalueella voi olla useita tukiasemia Kone liittyy tiettyyn tukiasemaan (associate) 'näkymätön' lanka ko. tukiasemaan Kone skannaa kanavat (passiivinen selaus) Kuuntelee merkkikehyksiä (beacon frames), joilla tukiasemat mainostavat itseään Kehyksessä tukiaseman nimi (SSID, Service set id) ja MACosoite Tai kone itse lähettää yleislähetyksenä kyselykehyksen (probe) kaikille kantaman sisällä oleville tukiasemille. (aktiivinen selaus) Tukiasemat vastaavat ja kertovat nimensä ja MACosoitteensa. Tietoliikenteen perusteet, syksy 2016 Timo Karvi 15

802.11: Kanavan valinta (2) Standardi ei määrittele tukiaseman valintaa varten mitään erityista algoritmia, vaan laitevalmistajat voivat toteuttaa sen eri tavoin Yleensä valitaan voimakkaimmalla signaalilla lähettävä tukiasema Yhteys valittuun asemaan Mahdollinen autentikointi (tukiasema konfiguroitavissa) Käyttö vain sallituilta MAC-osoitteilta, tunnus, salasana,.. Saa asemalta IP-osoitteen DHCP:llä WiFi Jungle Saa asemalta DNS-palvelijan IP-osoitteen DHCP:llä Tietoliikenteen perusteet, syksy 2016 Timo Karvi 16

802.11: Linkkitason protokolla (1) CSMA kuten Ethernet (carrier sense multiple access) Ei vuoronjakelua kilpailutilassa: lähetä, kun on lähetettävää (random access) Kuuntele ennen lähetystä, että linkki on vapaa Mutta ei CD (collision detection) Ei huomaa törmäyksiä eikä keskeytä kehyksen lähetystä Käyttää kuittauksia: jos kuittausta ei tule (=törmäys), lähetetään uudestaan Pyritään välttämään törmäyksen syntymistä CSMA /CA (collision avoidance) Tietoliikenteen perusteet, syksy 2016 Timo Karvi 17

802.11: Linkkitason protokolla (2) Miksi ei yritä huomata törmäystä? Vaikea lähettää ja ottaa vastaan yhtäaikaa. Saapuva signaali on vaimentunut matkalla ja voi siksi olla hyvinkin paljon heikompi kuin lähetettävä signaali. Ei voi huomata törmäystä, jossa toinen lähettävä solmu on oman kuuluvuusalueen ulkopuolella (hidden terminal) Tai voi luulla törmäykseksi, vaikka lähetys ei sotkisikaan omaa lähetystä (exposed terminal) Tietoliikenteen perusteet, syksy 2016 Timo Karvi 18

Lähetys 1. Jos kanava vapaa Kuuntele DIFS aikayksikköä Lähetä kehys kokonaan 2. Jos kanava varattu Käynnistä peruutuslaskuri (backoff) random(max), jota vähennetään vain kun kanava on vapaa, Lähetä, kun laskuri nollassa Jos ei tule kuittausta, niin yritä uudestaan max = 2*max Vastaanotto Jos kehys OK Odota SIFS aikayksikköä Lähetä ACK (linkkikerroksen ACK) 802.11: CSMA/CA DCF inter frame spacing Fig 6.10 [KR12] Short interframe spacing Tietoliikenteen perusteet, syksy 2016 Timo Karvi 19

Kehysten väliä käytetään niiden priorisointiin Kehysväli (inter frame spacing, IFS): Korkean prioriteetin kehystyypeille sallitaan lyhyempi kehysväli SIFS (Short Inter Frame Spacing) - Korkein prioriteetti; ACK, CTS, polling response PIFS (Point Coordination Function Spacing) - Keskivälin prioriteetti, tietyille aikarajoitteisille viesteille, PCF:lle DIFS (Distributed Coordination Function Spacing) - Alin prioriteetti, tavalliselle dataliikenteelle medium busy DIFS PIFS SIFS contention next frame DIFS Access point access if medium is free PIFS random direct access if medium is free DIFS t Tietoliikenteen perusteet, syksy 2016 Timo Karvi 20

DIFS ja SIFS kestoja (mikrosek.) DIFS DCF Interframe Space (DIFS) Aika, jolloin odotetaan DIFS = SIFS + (2*slot time) Tämä jälkeen voidaan lähettää frame 802.11b Slot time 20 µs, DIFS 50 µs 802.11g Slot time 9 tai 20 µs, DIFS 28 tai 50 µs SIFS Short Interframe Space Aika datakehyksen ja sen ackin välillä Tarvitaan että ehditään siirtyä kuuntelusta lähetykseen (tai toisinpäin) 802.11b 10 µs, 802.11g 10 µs Tietoliikenteen perusteet, syksy 2016 Timo Karvi 21

Koordinointifunktiot DCF (Distributed Coordination Function) Kilpailua, ei priorisointia PCF (Point Coordination Function) Keskitetty medianhallintafunktio Toimii infrastruktuuri-tilassa Kukin tilaaja saa lähetysvuoron (myös DCF periaate) Tietoliikenteen perusteet, syksy 2016 Timo Karvi 22

IEEE 802.11 MAC Logic Reference: W. Stallings: Data and Computer Communications, 7th ed IFS: Inter Frame Space (= DIFS, SIFS, or PIFS) Tietoliikenteen perusteet, syksy 2016 Timo Karvi 23

802.11: Kehyksen rakenne Langattomien MAC-osoitteet Reitittimen MAC-osoite Fig 6.13 [KR12] vastaanottaja lähettäjä HUOM: 4 osoitekenttää isännän ja tukiaseman MAC-osoitteet (kenttä 1 ja 2) Sen reitittimen osoite, jossa tukiasema on kiinni (kenttä 3) Reitittimen ja tukiaseman välillä tavallinen kehys (esim. Ethernet) Tukiasema on 'näkymätön' reitittimelle, reititin luulee saavansa kehyksen suoraan isäntäkoneelta Kenttä 4 käytössä vain ad hoc -verkossa Request To Send Lähetyksen kesto (duration) Clear To Send Jos RTS/CTS kehys, varauksen kesto (lähetys-kuittaus) Seq control - järjestysnumeroa tarvitaan kuittauksia varten Tietoliikenteen perusteet, syksy 2016 Timo Karvi 24

Osoitteiden käyttö: Internetistä langattomalle H1 R1 router Internet AP H1 MAC addr R1 MAC addr dest. address source address Ethernet-kehys H1 MAC addr AP MAC addr R1 MAC addr address 1 address 2 address 3 WLAN-kehys (802.11) Katso Fig 6.14 [KR12] Tietoliikenteen perusteet, syksy 2016 Timo Karvi 25

Osoitteiden käyttö: langattomalta Internetiin H1 R1 router Internet AP R1 MAC addr H1 MAC addr dest. address source address Ethernet-kehys AP MAC addr H1 MAC addr R1 MAC addr address 1 address 2 address 3 WLAN-kehys (802.11) Katso Fig 6.14 [KR12] Tietoliikenteen perusteet, syksy 2016 Timo Karvi 26

Frame control 802.11: Kehyksen rakenne Type, Suptype - miten kehystä tulkittava: RTS/CTS/ACK/ data? ToAP ja FromAP osoitekenttien tulkinta: lähettäjä/vastaanottaja/adhoc? WEP (Wired Equivalent Privacy) ja WPA (WiFi Protected Acces) - Käyttääkö salausta (Huom. WEPin tietoturva surkea ÄLÄ KÄYTÄ)... bits 6.13 Tietoliikenteen perusteet, syksy 2016 Timo Karvi 27

Kertauskysymyksiä Miksi WLAN:ssa ei hyödytä käyttää törmäysten havaitsemista? Miten sitten tiedetään, onko törmäystä tapahtunut? Miten WLAN:ssa hoidetaan linkin yhteiskäyttö? Miksi WLAN-kehyksessä kaksi osoitetta ei oikein riitä? Onko törmäys lainkaan mahdollinen, jos käytetään RTS/CTS-varausmenetelmää? Ks. myös kurssikirja s. 579-580 Tietoliikenteen perusteet, syksy 2016 Timo Karvi 28

CDMA (Code Division Multiple Access) yksi kanava usea samanaikainen lähetys kukin koko kanavan taajuudella! yhden bitin lähetysaika jaetaan pienempiin osiin (aikasiruihin) 64 tai 128 sirua bittiä kohden kullakin asemalla oma sirukuvio 1-bitin lähetykseen 0-bitti on tämän komplementti (merkitään siksi -1) Bittikuviot ortogonaalisia: bittikuvioiden sisätulot nollia Tietoliikenteen perusteet, syksy 2016 Timo Karvi 29

CDMA encode/decode Fig 6.5 [KR12] channel output Z i,m sender data bits code d 0 = 1 d 1 = -1 1 1 1 1 1 1 1 1-1 - 1-1 - 1-1 - 1-1 - 1 slot 1 slot 0 Z i,m = d i. c m - 1-1 - 1 1-1 1 1 1 slot 1 channel output 1 1 1 1-1 - 1-1 - 1 slot 0 channel output receiver received input code - 1-1 - 1 1-1 1 1 1 1 1 1 1-1 - 1-1 - 1 1 1 1 1 1 1 1 1-1 - 1-1 - 1-1 - 1-1 - 1 slot 1 slot 0 M D i = S Z i,m. c m=1 m M d 1 = -1 slot 1 channel output d 0 = 1 slot 0 channel output Tietoliikenteen perusteet, syksy 2016 Timo Karvi 30

Sender 1 Sender 2 CDMA: kahden lähettäjän interferenssi Kanava summaa lähettäjien 1 ja 2 signaalit yhdeksi signaaliksi Fig 6.6 [KR12] Vastaanottaja käyttää samaa koodia kuin lähettäjä 1 ja voi erottaa lähettäjä 1:n signaalin summatusta kanavalla kuuluvasta yhteissignaalista! Tietoliikenteen perusteet, syksy 2016 Timo Karvi 31

Esimerkki: 8-siruinen koodi aseman A 1-bitti: 00011011 = -1-1 -1 1 1-1 1 1 0-bitti: 11100100 = 1 1 1-1 -1 1-1 -1 aseman B 1-bitti: 00101110 = -1-1 1-1 1 1 1-1 0-bitti: 11010001 = 1 1-1 1-1 -1-1 1 aseman C 1-bitti: 01011100 = -1 1-1 1 1 1-1 -1 0-bitti: 10100011 = 1-1 1-1 -1-1 1 1 aseman D 1-bitti: 01000010 = -1 1-1 -1-1 -1 1-1 0-bitti: 10111101 = 1-1 1 1 1 1-1 1 0 = -1 1 = 1 Ps. Oikeasti käytetään 64 tai 128 sirua Tietoliikenteen perusteet, syksy 2016 Timo Karvi 32

Kaikki sirukuviot pareittain ortogonaalisia: A B = 0 = (1/m) S A i B i (sisätulo) A A = 1 -A A = -1 => yhteissignaalista löydetään eri asemien omat lähetykset! A:n 1-bitti: 00011011 = -1-1 -1 1 1-1 1 1 B:n 1-bitti: 00101110 = -1-1 1-1 1 1 1-1 A B = 1+1+-1+-1+1+-1+1+-1 = 0 => keskenään ortogonaalisia Tietoliikenteen perusteet, syksy 2016 Timo Karvi 33

Yhteissignaali kukin asema lähettää omat 1-bittinsä ja 0-bittinsä kun moni lähettää samanaikaisesti tuloksena on yhteissignaali S. lähetettyjen signaalien summa aseman datan purkaminen yhteissignaalista A = aseman oma bittikuvio S A tuottaa aseman lähettämän bitin kerrottuna bitin aikasirujen lukumäärällä Tietoliikenteen perusteet, syksy 2016 Timo Karvi 34

Esimerkki: Mitä C lähetti? S = (-2-2 0-2 0-2 4 0) C = (-1 1-1 1 1 1-1 -1) S C = ( 2-2 0-2 0-2 -4 0) = -8 => -1 eli C lähetti 0-bitin Tietoliikenteen perusteet, syksy 2016 Timo Karvi 35

Esimerkki jatkuu: Mitä B lähetti? S = (-2-2 0-2 0-2 4 0) B = (-1-1 1-1 1 1 1-1) S B = ( 2 2 0 2 0-2 4 0) = 8 => 1 eli B lähetti 1-bitin Tietoliikenteen perusteet, syksy 2016 Timo Karvi 36

Esimerkki jatkuu: Entä mitä A lähetti? S = (-2-2 0-2 0-2 4 0) A = (-1-1 -1 1 1-1 1 1) S A = ( 2 2 0-2 0 2 4 0) = 8 => 1 eli A lähetti 1-bitin Lähettikö myös D jotain? Tietoliikenteen perusteet, syksy 2016 Timo Karvi 37

Käytännössä CDMA on vaativa toteuttaa 64 tai 128 bitin ortogonaalisia koodeja edellyttää signaalien voimakkuuksien vertailua ja yhteenlaskua => signaalien heikkeneminen eri etäisyyksillä otettava huomioon tarkat ajoitukset tunnettava lähettäjien sirukoodit Tietoliikenteen perusteet, syksy 2016 Timo Karvi 38

Miten lähiverkko rakennetaan? Reititin vs. kytkin vs. keskitin? IP-osoite vs. MAC-osoite? ARP-protokolla ja ARP-taulu? Takaperinoppiminen ja kytkentätaulu? Bittivirheiden havaitseminen? CRC? Lähetyskanavanjako? CSMA/CD? ks. kurssikirja s. 528 (ja 604) Tietoliikenteen perusteet, syksy 2016 Timo Karvi 39