ELEC-A3110 Mekaniikka (5 op) Vastuuopettaja: Sami Kujala; Markku Sopanen Opetusperiodi: I-II Työmäärä toteutustavoittain: Kontaktiopetus: 60 h (Luennot 48 h, sisältäen arvioinnin; laskuharjoitukset 12h) Itsenäinen opiskelu: 74 h (n. 6h viikossa lukukauden ajan) Osaamistavoitteet: Keskeisimpänä tavoitteena on että opiskelija konstruoi itselleen käsityksen klassisen mekaniikan tärkeimmistä abstraktioista, periaatteista, määritelmistä sekä käsitteistä, sekä kyvyn soveltaa niitä yksinkertaisiin laskutehtäviin. Tämä edellyttää opiskelijalta sellaisten ajatusrakenteiden ja matemaattisten taitojen muodostumista, joiden avulla hän osaa kääntää puhutulla kielellä olevat periaatteet ja määritelmät matemaattisiksi lausekkeiksi. Toissijaisena tavoitteena on että opiskelija tutustuu matemaattisten ohjelmistojen käyttämiseen ja soveltamiseen klassisen mekaniikan probleemien ratkaisemiseen. Sisältö: Ydinaines Fysiikan matemaattiset apuneuvot: vektori- ja differentiaalilaskenta, derivointi ja integrointi, trigonometria. Kinematiikkaa; translaatio- ja rotaatioliike, suhteellinen liike ja Galilein koordinaatistomuunnokset. Newtonin liikelait. Hiukkasen ja jäykän kappaleen dynamiikka. Liikemäärä, työ ja energia; säilymislait. Aaltoliike; ääniaallot ja mekaaniset aallot. Gravitaatio. Täydentävä aines Matemaattisten ohjelmistojen alkeet fysiikan ongelmien ratkaisussa Erityisaines Nestevirtaukset, tasapainotehtävät. Toteutus, työmuodot ja arvosteluperusteet: Luennot, laskuharjoitukset ja ryhmätyönä tehtävät tietokoneharjoitukset. Arviointikriteerit: Luentoaktiivisuus, laskuharjoitukset, ryhmätyöt sekä luentokuulustelut. Oppimateriaali: Ydinmateriaali Young & Freedman: University Physics with Modern Physics, 13. painos. Luvut 1-16. tai Wolfson, R.: Essential University Physics, 2. painos. Luvut 1-15. Luentokalvot (eivät sovellu yksinään itseopiskelumateriaaliksi) Täydentävä materiaali Hasbun, Javier E.: Classical mechanics with Matlab applications, 1. painos. Giordano, Nicholas and Nakanishi, Hisao: Computational Physics, 2. painos. Korvaavuudet: S-104.1011 ja S-104.1012 Esitiedot: Pakolliset esitiedot Lukion fysiikka (kurssit 1 ja 3-5) ja matematiikan pitkä oppimäärä (kurssit 1-5 ja 7-10), tai vastaavat tiedot ja taidot. Arvosteluasteikko: 0-5 Ilmoittautuminen: Weboodi Opetuskieli: Suomi ELEC-C3210 Materiaalien ominaisuudet (5 op) Vastuuopettaja: Markku Sopanen; Ilkka Tittonen Opetusperiodi: III-V Työmäärä toteutustavoittain: Kontaktiopetus: 57h (Luennot 24h, laskuharjoitukset 24h, kokeet 6h, posterisessio 3h) Itsenäinen opiskelu: 73h Osaamistavoitteet: Tavoitteena on ymmärtää aineen mikrorakenteen vaikutus kiinteän aineen mekaanisiin, termisiin ja sähkönjohtavuusominaisuuksiin. Lisäksi tavoitteena on ymmärtää termodynamiikan ja statistisen fysiikan peruskäsitteet. Tavoitteena on 1
tutustuttaa opiskelija modernin elektroniikan taustalla olevien puolijohdekomponenttien toimintaan. Sisältö: Termodynamiikan ja statistisen fysiikan perusteet, aineen mikrorakenne, kiteisen aineen rakenne, mekaaniset ja termiset ominaisuudet, sähkönjohtavuus, metallit, eristeet, puolijohteet, puolijohdekomponenttien fysiikkaa. Toteutus, työmuodot ja arvosteluperusteet: Välikokeet + laskuharjoitukset + posteri ryhmätyönä Oppimateriaali: Philip Hoffmann: Solid State Physics: An Introduction Chenming Calvin Hu: Modern Semiconductor Devices for Integrated Circuits + jaettava lisämateriaali Korvaavuudet: S-129.1032 Molekyylien ja kiinteän aineen fysiikka Esitiedot: Mekaniikka, Sähkö ja magnetismi, Kvantti-ilmiöt Arvosteluasteikko: 0-5 Ilmoittautuminen: Weboodi Opetuskieli: Suomi ELEC-C3220 Kvantti-ilmiöt (5 op) Vastuuopettaja: Ilkka Tittonen; Markku Sopanen; Sami Kujala Opetusperiodi: IV-V Työmäärä toteutustavoittain: Kontaktiopetus: 56h (Luennot 25h, laskuharjoitukset 25h, kokeet 6h) Itsenäinen opiskelu: 73h. Osaamistavoitteet: Kurssin tavoitteena on tutustuttaa opiskelija suhteellisuusteorian ja kvanttimekaniikan perusteisiin ja konsepteihin, sekä opettaa, kuinka aineen ominaisuuksia voidaan selittää näiden teorioiden pohjalta. Lisäksi tutustutaan modernin fysiikan sovelluksiin, kuten laser ja modernin mikroelektroniikan komponentit. Sisältö: Suhteellisuusteoria, Compton sironta, Valosähköinen ilmiö, de Broglie aallonpituus, Planckin fotonihypoteesi, Kvanttimekaniikan perusteet, Atomien kvanttirakenne, Elektronin spin, Paulin kieltosääntö, Elektronitilat molekyyleissä ja kiinteässä aineessa. Toteutus, työmuodot ja arvosteluperusteet: Välikokeet, laskuharjoitukset ja tietokoneharjoitukset. Oppimateriaali: Randy Harris Modern Physics (Pearson)+ jaettava lisämateriaali. Korvaavuudet: Korvaa kurssin S-129.1031 Kvanttifysiikka. Esitiedot: Mekaniikka, Sähkö ja magnetismi. Arvosteluasteikko: 0-5. Ilmoittautuminen: WebOodi. Opetuskieli: Suomi. ELEC-C3230 Elektroniikka 1 (5 op) Vastuuopettaja: Marko Kosunen; Sanna Heikkinen; Jussi Ryynänen Kurssin taso: Kandidaatti. Opetusperiodi: I-II (syksy 2015) Työmäärä toteutustavoittain: Luennot 20h (2h, 10 kertaa): asioiden yleisesittely, motivointi. Laskuharjoitukset 20h (2h, 10 kertaa): matemaattinen johtaminen, laskeminen. Simuloinnit 8h (2h, 4 kertaa) Laboratoriotyöt 8h (2 x 4h mittaukset) Omaa työtä 52h (2h, 26 kertaa): luennoille valmistautuminen ja kertaus, omatoiminen laskeminen, tenttiin valmistautuminen ja kertaaminen. Tentti 4h (2h, 2 kertaa) 2
Osaamistavoitteet: Tuntea eri perusvahvistinkytkentöjen ominaisuudet ja ymmärtää niiden erot. Tuntea tavallisimmat esijännityskytkennät ja niiden rajoitukset. Tietää elektroniikkakomponenttien ja lohkojen taajuusriippuvuudesta ja muista epäideaalisuuksista aiheutuvat rajoitukset sekä osata analysoida niitä yksinkertaisissa tapauksissa. Ymmärtää CMOS- ja muiden tärkeimpien logiikkaperheiden toiminta sähköisellä tasolla. Ymmärtää, mitä etuja saavutetaan tietyillä perusvahvistinkytkentöjen yhdistelmillä sekä analysoida niiden ominaisuuksia. Sisältö: Vahvistimien mallit ja taajuusvaste. Pn-diodin toiminta ja diodikytkentöjä. Operaatiovahvistinkytkennät ja epäideaalisuuksien vaikutus. MOSFET-transistorit ja - vahvistinkytkennät. Transistorien parasiittiset komponentit ja niiden vaikutus vahvistimien taajuusvasteeseen. Miller-efekti. Useamman transistorin vahvistinkytkentöjä. Labrat. Toteutus, työmuodot ja arvosteluperusteet: Tentti 50%, laboratoriotyöt 20%, luentokuulustelut 10%, aktiivinen laskuharjoituksiin osallistuminen 10%, simulaatiot 10% Oppimateriaali: Sedra - Smith: Microelectronic Circuits (4th, 5th tai 6th edition), Oxford University Press, 1998 ja opetusmonisteita. Korvaavuudet: Korvaa opintojakson S-87.1010 Esitiedot: Lineaaripiirien analyysi, Laplace-muunnos eli esimerkiksi piirianalyysin kurssit. Arvosteluasteikko: 0-5 Ilmoittautuminen: Kaikille kursseille ilmoittaudutaan WebOodissa. Opetuskieli: Suomi Lisätietoja: Osasuoritukset voimassa vain yhden lukuvuoden. ELEC-C3240 Elektroniikka 2 (5 op) Vastuuopettaja: Marko Kosunen; Sanna Heikkinen; Jussi Ryynänen Kurssin taso: Kandidaatti. Opetusperiodi: III-IV (kevät 2016) Työmäärä toteutustavoittain: Luennot 20h (2h, 10 kertaa): asioiden yleisesittely, motivointi. Laskuharjoitukset 20h (2h, 10 kertaa): matemaattinen johtaminen, laskeminen. Simuloinnit 8h (2h, 4 kertaa) Laboratoriotyöt 8h (2 x 4h mittaukset) Omaa työtä 52h (2h, 26 kertaa): luennoille valmistautuminen ja kertaus, omatoiminen laskeminen, tenttiin valmistautuminen ja kertaaminen. Tentti 4h (2h, 2 kertaa) Osaamistavoitteet: Ymmärtää ja pystyä analysoimaan kohinan ja epälineaarisuuden vaikutusta vahvistimissa. Ymmärtää takaisinkytkennän vaikutus vahvistimen eri ominaisuuksiin ja analysoida tavallisimpia kytkentöjä. Tuntea tavallisimpia ylemmän tason lohkoja ja niiden toiminta ja suunnitteluperiaatteita. Osaa soveltaa yksinkertaisten logiikkapiirien suunnittelun Boolean algebran, Karnaugh'n kartan ja logiikkaporttien avulla. Sisältö: Kohina ja epälineaarinen särö vahvistimissa. Vahvistimien takaisinkytkentä, stabiilius ja taajuuskompensointi. Suodatin- ja oskillaattorikytkentöjä. A/D- ja D/Amuuntimet. Totuustaulu, POS- ja SOP-esitys, Karnaugh'n kartat, Boolean algebra, CMOS-logiikkaportit ja niiden toteuttaminen. Tilakoneet. Labrat. Toteutus, työmuodot ja arvosteluperusteet: Tentti 50%, laboratoriotyöt 20%, luentokuulustelut 10%, aktiivinen laskuharjoituksiin osallistuminen 10%, simulaatiot 10% Oppimateriaali: Sedra - Smith: Microelectronic Circuits (4th, 5th tai 6th edition), Oxford University Press, 1998 ja opetusmonisteita. Lisäksi Mano - Kime: Logic and Computer Design Fundamentals (4th edition), Pearson Prentice Hall, 2007 Korvaavuudet: Korvaa opintojakson S-87.2020 Esitiedot: Elektroniikka 1 tai vastaavat tiedot. Arvosteluasteikko: 0-5 Ilmoittautuminen: Kaikille kursseille ilmoittaudutaan WebOodissa. Opetuskieli: Suomi 3
Lisätietoja: Osasuoritukset voimassa vain yhden lukuvuoden. ELEC-E3120 Analysis and Design of Electronic Circuits (5 cr) Responsible teacher: Anu Lehtovuori; Jussi Ryynänen Learning Outcomes: The student understands fundamental analysis methods related to circuit theory and is familiar with the basic components used in electrical circuits. Student can use an apply this knowledge to simple analog and digital circuits and can do simple simulation and measurements of these circuits.in addition,the student knows how the essentials of the circuit analysis and design are linked to large and complex electronic circuits and has the needed knowledge to continue studies in microelectronic circuit design or radio engineering majors. ELEC-E3140 Semiconductor Physics (5 cr) Responsible teacher: Ilkka Tittonen; Markku Sopanen Teaching period: I-II Contact teaching: 51h (lectures 24h, exercises 24h, exam 3h) Individual studies: 79 h Learning Outcomes: The student is able to understand the relevant properties of semiconductors and other materials related to micro and nanotechnology. The student is able to solve basic problems in this topic. The student also understands the basic concepts of modern physics like quantization and statistical distributions. Content: Structure of crystalline materials, energy band structure of semiconductors, electrical and optical properties of semiconductors, semiconductor nanostructures and properties of pn-junctions Assessment Methods and Criteria: Exam and home exercises Study Material: TBA Prerequisites: Basic university physics Registration for Courses: Weboodi ELEC-E3150 Mathematical Methods (5 cr) Responsible teacher: Keijo Nikoskinen; Ilkka Tittonen Teaching period: I-II (Autumn 2015) This course contains 8 different mathematical practical topic. Each topic is lectured in two hours time and the exercises can in almost all cases be solved using computers with either Matlab or Mathematica. Lectures 8 x 2 h Computer exercises 8 x 4h Scientific writing 8 x 0.5h Learning Outcomes: This course intends to give the basic mathematical knowhow and update that is needed in finishing the Master's degree. The contents include data analysis, mathematical transforms, matrix operations and basic differential equation and equation systems solving tools. Most exercises can be solved using matlab and/or mathematica. Content: 1. Data analysis i. Curve fitting (theory/exercises) ii. Error/uncertainty analysis 4
2. Matrix calculus with practical examples from engineering and physics 3. Mathematical transforms i. Fourier analysis, theory, exercises, practical uses ii. Laplace transforms 4. Differential equations i. Basic solving methods ii. Numerical methods iii. Computer exercises 5. Green's functions, special problems 6. Differential equation systems i. Formulation of differential systems with boundary conditions ii. Closed form and numerical analysis 7. Numerical methods on differential equations 8. Finite element analysis with various technical problems Assessment Methods and Criteria: Home exercises 100% Prerequisites: Basic courses in mathematics on the BSc level. Familiarity with Matlab/ Mathematica will be beneficial. Registration for Courses: weboodi ELEC-E3210 Optoelectronics (5 cr) Responsible teacher: Teppo Huhtio; Markku Sopanen Teaching period: III Lectures: 12 x 2h = 24h Exercises: 6 x 2h = 12 h Exam: 3h Independent study: 96 h Learning Outcomes: Knowledge of physics, operational principles, technological solutions and applications of optoelectronic devices. Content: Physics, technology, and applications of optoelectronic devices based on compound semiconductors: lasers, light emitting diodes, photodetectors, solar cells, and modulators. Assessment Methods and Criteria: Examination or written weekly summaries. Extra points from home exercises. Study Material: P. Bhattacharya: Semiconductor Optoelectronic Devices, 2nd edition, Prentice-Hall, 1997. Lecture slides and other given materials. Substitutes for Courses: S-104.3310 Optoelectronics Prerequisites: ELEC-3140 Semiconductor Physics or similar knowledge Evaluation: 0-5 Registration for Courses: Oodi ELEC-E3220 Semiconductor Devices (5 cr) Responsible teacher: Hele Savin; Ville Vähänissi Teaching period: III 28+14 (4+2) Learning Outcomes: At the completion of the course, the student will be able to - explain the physics behind MOS and pnp structures and apply this information in devices 5
- explain the most common semiconductor fabrication technologies - explain the fundamental physical phenomena behind the common microsensor types - describe the main operation principles and fabrication of s-o-t-a microsensors - critically review the information found from internet regarding microsensors - present his/her own results in front of the audience Content: - summary of pn- junction and metal-semiconductor junction physics - MOS - MOSFET - Bipolar technology - MOSFETs in IC's - Semiconductor device fabrication (basics, background for Microfabrication course) - Physical operation principle and latest application examples of radiation sensors, mechanical sensors, thermal sensors Course emphasis: 50% MOS, MOSFET, BJT operation 20% Fabrication methods 30% Sensors Assessment Methods and Criteria: - lectures - home exercises - one large group work that lasts throughout the course - mid-term exam - small exercises during the lectures - Moodle Study Material: Hu: Modern semiconductor devices for integrated circuits (device part) Gardner: Microsensors (2015 version) Substitutes for Courses: S-69.2111 Mikro- ja nanoelektroniikan perusteet S-69.3114 Microsensors Prerequisites: ELEC-E3140 Semiconductor Physics Registration for Courses: WebOodi ELEC-E3230 Nanotechnology (5 cr) Responsible teacher: Harri Lipsanen; Teppo Huhtio Teaching period: IV Lectures 24 h (12 x 2h) Exercises 12 h (6 x 2h) Exam 3h Independent study 96h Learning Outcomes: Students get familiar with various topics in multidiciplinary nanoscience and nanotechnology Content: Multidiciplinary nanoscience and nanotechnology including introduction to key topics such as nanolithography, self-assembly, scanning probe microscopy, nanocarbons (fullerenes, carbon nanotubes, and graphene), semiconductor quantum dots and nanowires, molecular electronics, single electron devices, quantum computation, magnetoresistance, NEMS, quantum confined optoelectronics, organic optoelectronic nanostructures, photonic crystals, biomimetic nanostructures and nanofluidics. Assessment Methods and Criteria: Examination. Extra points from solved home exercises Study Material: 6
Lecture slides, that are originally based on the book of Di Ventra et al: "Introduction to nanoscale science and technology", 2004. Additional supporting materials and articles. Substitutes for Courses: Replaces course S-104.3610 Registration for Courses: WebOodi ELEC-E3240 Photonics (5 cr) Responsible teacher: Antti Säynätjoki; Zhipei Sun Teaching period: V Lectures: 24 h (12 x 2h) Exercises: 12 h (6 x 2h) Lab work: 2h (1 x 2h) Exam: 3 h Independent study: 94 h Learning Outcomes: Knowledge of the photonic materials, structures and fabrication technologies, devices (e.g., integrated photonic and optical devices), and their applications (e.g., optical data- and telecommunications and sensors) Content: Photonic materials, structures, and device fabrication technologies; Integrated optics and photonics; Applications (e.g., optical data- and telecommunications and sensors). Assessment Methods and Criteria: Exercises, seminar presentations and examination. Study Material: 1. B. E. A. Saleh, & M. Carl Teich, Fundamentals of Photonics. 2. G. T. Reed, & A. P. Knights, Silicon Photonics: An Introduction. 3. G. P. Agrawal, Fiber-Optic Communication Systems. 4. K. Izuka, Elements of Photonics, Vol. II, Fiber and Integrated Optics Substitutes for Courses: S-104.3410 Photonics and Integrated Optics Registration for Courses: WebOodi ELEC-E3250 Optical Fibers: Physics and Applications L (5 cr) Responsible teacher: Hanne Ludvigsen; Matti Kaivola Teaching period: II (First time autumn 2016) This course has been developed with 12 hours of classroom lectures, 10 hours of exercises including demo exercises, 8 hours of hands-on skills of computer simulations, and 4 hours scientific writing. Lectures 4 x 3 h Exercises 5 x 2 h Computer exercises 4 x 2h Scientific writing 2 x 2h Learning Outcomes: The course provides an understanding of the principles and technologies of optical fiber. It covers optical fiber waveguide theory, the structure and performance of active and passive fiber-optical devices, and discusses the new technologies and developing trends of optical fibers. 7
The objective of the course is to acquire an understanding of the physical principles of optical fibers and components on a level that allows participation in research in the field. An ideal course for those entering the fiber-optic field. The students will have the opportunity to get acquainted with the modern simulation tools: COMSOL Multiphysics and RP Fiber Power. A visit to nlight (formerly Liekki Oy) a leading supplier and innovator of high power fiber lasers and fibers for industrial, medical, defense and consumer applications is organized. The course also includes a special lecture on industrial applications of fiber optics by an industrial expert. Support on report writing will be provided by the Language Centre. Content: 1 Optical waveguide theory 1.1 Planar optical waveguide 1.2 Cylindrical optical waveguide 2 Characteristics of optical fibers 2.1 Attenuation, dispersion and nonlinear effects in optical fibers 2.2 Transmission characteristics of optical pulses in optical fibers 3 Optical fiber devices 3.1 Passive devices 3.2 Active devices 3.3 Fiber lasers, supercontinuum sources Assessment Methods and Criteria: 2 computer exercises: 1) Numerical modeling of dispersion in optical fibers (COMSOL Multiphysics ) and 2) Simulation tool for fiber laser and amplifier development (RP Fiber Power). The students return a report on the COMSOL exercise. #Bonus points from home exercises. Grading: Exam 60% Home exercises 20% Compulsory computer exercises 20% Substitutes for Courses: Replaces course S-129.3310 Prerequisites: Any basic course on optics. Familiarity with the syntax of Matlab will be beneficial Registration for Courses: weboodi ELEC-E3260 Biomolecules L (5 cr) Responsible teacher: Ilkka Tittonen Teaching period: III (Kevät 2016) This course contains annually slightly varying topics in molecular physics, biological physics and even molecular quantum mechanics. The course contains lectures, exercises and individual writing topics. Lectures 8 x 2 h Computer exercises 8 x 2h Scientific writing 8 x 0.5h Learning Outcomes: The course gives basic knowledge of biological molecules and physical insight of biological systems for sensing and for applications in electronics. The contents include light-harvesting systems, charge transfer mechanisms, optically active molecules, molecular sensing schemes and the use of different available library softwares for making the home exercises. Assessment Methods and Criteria: Exam 50% Home exercises 50%. 8
Prerequisites: Basic courses in mathematics and physics on the BSc level. Familiarity with the syntax of Matlab/Mathermatica will be beneficial. ELEC-E3280 Micronova Laboratory Course (5 cr) Responsible teacher: Sami Suihkonen; Teppo Huhtio Teaching period: I-II (first time autumn 2016) Learning Outcomes: Students get familiar with laboratory works within micro and nanotechnology. They also gather knowledge of the characterization methods and equipment available in Micronova. Content: Lab works. Written pre- and post-lab reports. Assessment Methods and Criteria: Lab works, approved pre- and post-lab reports. Study Material: Variable literature related to the lab works. Prerequisites: First year studies of the NanoRad Masters Programme Evaluation: pass / fail Registration for Courses: WebOodi. Separate email registration for every lab work. ELEC-E3285 N5T Grand Exercise in Micro and Nanotechnology L V (V) (3 cr) Responsible teacher: Hele Savin; Ville Vähänissi Status of the Course: Optional Level of the Course: MSc Teaching period: Summer/June 3 ECTS Learning Outcomes: The course aims at giving you an opportunity to conduct an exercise at an advanced level within Nano- and Microtechnology at one of the partner universities in the Nordic Five Tech alliance ( http://www.nordicfivetech.org/). The exercises at the partner universities cover the field broadly e.g. fabrication and characterization of crystalline silicon solar cells; high throughput single cell analysis and screening by droplet microfluidics; synthesis and characterization of nanoporous oxides for Li-ion battery applications. The N5T-GE was launched in 2013 and is expected to broaden in scope in the coming years. A student who has met the objectives of the course will be able to: - Do experiments in a foreign environment at an advanced level within micro- and nanotechnology - Participate contrustively in a cross disciplinary research team - Communicate and collaborate with students from other universities on experiments - Treat experimental data based on relevant theory - Communicate the results from the experiments - Describe experimental setup not constructed by themselves - Work in the laboratory with focus on safety - Account for experimental errors and discuss the sources of error Content: Students from the Nordic Five Tech partners are working for one week at another university on an exercise within micro- and nanotechnology. A diverse portfolio of exercises will be offered and students signed up for the course will be offered the opportunity to select from a list of possible experiments. The travel and stay at the N5Tpartner is supported by Aalto up to 300 Euros. Assessment Methods and Criteria: Report for the conducted experiment. Evaluation of experimental report. You will pass the course by active participation in the experiments and writing the associated experimental reports. Study Material: To be given 9
Course Homepage: http://www.nordicfivetech.org/joint-projects/grand-exercises Prerequisites: Completed 45 ECTS in the Physics and Nanotechnology MSc study line Evaluation: pass / not passed, internal examiner Registration for Courses: To be announced ELEC-E3290 Micronova Special Assignment (5 cr) Responsible teacher: Harri Lipsanen; Hele Savin; Ilkka Tittonen; Zhipei Sun; Markku Sopanen Teaching period: I-V, to be agreed with the teacher Learning Outcomes: The student gets familiar with the basics of scientific research and scientific writing/reporting. He/She concentrates on one specific topic and deepens his/ her knowledge on the topic. Content: Independent research project related to the research fields in Micronova. Results presented in a written report. Topic to be agreed with the teacher. Assessment Methods and Criteria: Written report. Study Material: To be agreed with the teacher. Registration for Courses: To be agreed with the teacher. Language of Instruction: Finnish/English ELEC-E3510 Basics of IC Design (5 cr) Responsible teacher: Olli Viitala; Kari Halonen Level of the Course: Master Teaching period: III (Spring 2016) Lectures 21h (3h, 7 times) Exercises 14h (2h, 7 times) Project work 28h (2h, 14 times) Independent work 72h: preparation for lectures and revision, independent calculation & project work. Learning Outcomes: To understand the basic building blocks of analog integrated circuits. To understand the large and small signal transistor models, learn to design analog integrated circuits and to analyse them. Learn to design an operational amplifier with CMOS technology using the CAD design tools. Content: The course includes single stage amplifiers, differential amplifier, operational amplifiers, comparators, analog multiplier, current biasing circuits and voltage reference circuits. Also noise, linearity and power supply rejection of the operational amplifiers are discussed. A CMOS operational amplifier is designed during the course. Assessment Methods and Criteria: Lecture examination 30%, Exercises 30% and Project work 40%. Study Material: Allen-Holmberg: CMOS analog circuit design, 2nd edition Substitutes for Courses: S-87.3137 Integrated circuit Design and S-87.3141 Analog Integrated Circuits Prerequisites: Electronics I and basic circuit analysis courses or equivalent.. ELEC-E3520 Digital Microelectronics I L (5 cr) Responsible teacher: Marko Kosunen; Kari Stadius Level of the Course: Master. 10
Teaching period: III (Spring 2016) Lecture 14h (2h, 7 times): Introduction to theory and motivation. Exercises (14h 7 times) Mathematical handling of the topic and design methods. Presentation (preparations 6h) and listening the presentations of the others (4h). Design project ca. 10h. Exam 2h. Independent work ca. 60h Learning Outcomes: Student gets acquainted with the history of digital microelectronics, elementary building blocks (logic gates), and is familiar with the electrical functionality of the gates and the most important electrical relationships affecting the functionality. Student knows is familiar with the most common methods for power consumption and delay optimization. He also knows the most common arithmetic building blocks, understand their functionality, and is familiar with the optimization methods used for adders and multipliers. Student is familiarized with the commonly used power/speed trade-off methiods on algorithmic level, and is familiar with the commonly used advanced algoritms, and understand what the algorithm optimization is based on. Content: Introduction (history of digital microelectronics), Inverter, Logic, Synchronization circuits, Bit transfer and signaling, elementary arithmetic building blocks, algorithm level optimization methods. Assessment Methods and Criteria: Exercises 30%, Presentation 20%, design project 20%, Exam 30%. 50% of exam points are required to qualify. Study Material: Lecture slides Rabaey, Chandrakasan, Nikolic, "Digital Integrated Circuits- A design perspective", Prentice Hall 2003. Parhi, "VLSI Digital Signal Processing Systems-design and implementation", Wiley 1999. Substitutes for Courses: S-87.3182 Digital Microelectronics I Prerequisites: Basic knowledge of electronics.. ELEC-E3530 Integrated Analog Systems L (5 cr) Responsible teacher: Olli Viitala; Kari Halonen Learning Outcomes: Student learns to design switched-capacitor filters, active RCfilters, transconductance-capacitor filters, switched-current source filters, D/A-converters and A/D-converters with CMOS technology. Content: Realization of an analog system as an integrated circuit. SC-filters. Integrated A/D and D/A converters. Modulators. Phase locked loops. Determination of performance characteristics of integrated circuit blocks. ELEC-E3540 Digital Microelectronics II L (5 cr) Responsible teacher: Marko Kosunen; Kari Stadius : Master. : IV-V (Spring 2016) : Introductory lectures (2h, 2 times) VHDL-coding exercises (2h, 6 times) Microcontroller implementation with VHDL as self-paced project 110h. Possibility for guidance in weekly exercise hours (2h per week). 11
: Is familiar with the VHDL-hardware description language and the digital design implementation flow (synthesis tools) from VHDL to layout. Is familiar with the functionality of microcontrollers and basics of programming with assembly language. : Six coding exercises that teach the elementary structures of VHDL and simulation methods. Self -guided design project about VHDL description of a microcontroller and its synthesis to layout with digital synthesis and place-and-route-tools. : Passed VHDL-coding exercises and study diary of the design project. : Handout. : Substitutes S-87.3186 and S-87.3187. : ELEC-E3520 : Registration for all courses via WebOodi. : English. ELEC-E3550 Integrated RF-circuit L (5 cr) Responsible teacher: Jussi Ryynänen; Kari Stadius Level of the Course: Master. Teaching period: IV-V (Spring 2016) Lectures 14 hrs (1 x 2hrs / week, 7 times): general overview of the course content, motivating students. In-class guidance to homeworks and CAD exercises 14 hrs (1 x 2hrs / week, 7 times): homeworks include mathematical derivations and calculations, CAD exercises familiarize student to modern RF IC design environment. Independent studies: obligatory special project in groups, homeworks, CAD exercises and literature assignments. 94 hrs (1 x 13.4 hrs / week, 7 times): the design of an integrated RF-circuit, CAD exercises and independent calculations, literature summary assignments. Learning Outcomes: After the course the student is familiar with the basic IC structures used in RFIC design and is capable of using these in different building blocks. In addition, the student knows different IC technologies used in RF design and is familiar of RFIC system design basics. Content: Special features of linear and non-linear integrated high frequency circuits. Non-linear analysis and circuit models. Integrated high frequency modules of telecommunications: amplifiers, mixers, oscillators. Assessment Methods and Criteria: Obligatory special project (30%), homeworks (20%), CAD-exercises (20%), assignments (30%). Study Material: Handout Substitutes for Courses: S-87.3156 Integrated RF-circuit P Prerequisites: ELEC-E3510 (Basics of IC Design) or equivalent knowledge on basic electronics and some experience with a SPICE-type circuit simulator. ELEC-E3560 IC Design Project (5 cr) Responsible teacher: Marko Kosunen; Kari Stadius Level of the Course: Master. Teaching period: IV-V (Spring 2016) Independent work 126h. 12
Learning Outcomes: Student learns to use CAD tools for IC design and gathers experience on real IC design. Student becomes familiar with design procedure from definitions to circuit implementation. He is able to present the work flow and results. Content: Special project with emphasis on practical IC design: topic from analog IC, digital IC, or RF IC. Assessment Methods and Criteria: Personal project work with an advisor. Study diary and final presentation will be evaluated. Study Material: Material provided by the advisor Substitutes for Courses: S-87.3163 Piiritekniikan erikoistyö Prerequisites: Basics of IC design or Digital IC I. ELEC-E3570 Special Course in Electronic Circuit Design L V (V) (5 cr) Responsible teacher: Jussi Ryynänen; Kari Halonen Level of the Course: Master. Teaching period: Will be lectured in a period to be specified later. Independent work 128h. Learning Outcomes: Expand the knowledge of circuit technics. Content: Variable. A special course in electronic circuit design. Assessment Methods and Criteria: To be announced later. Study Material: To be announced later. Substitutes for Courses: S-87.3200 Prerequisites: ELEC-C3230. Further Information: V, varying content. ELEC-L3210 Postgraduate Course in Micro and Nanosciences I V (V) (5 cr) Responsible teacher: Harri Lipsanen; Hele Savin; Ilkka Tittonen; Zhipei Sun; Markku Sopanen Teaching period: I-II Content: Content varies yearly Assessment Methods and Criteria: To be agreed separately every year Registration for Courses: Contact the responsible teachers Further Information: Variable contents. Course can be taken several times. ELEC-L3220 Postgraduate Course in Micro and Nanosciences II V (V) (5 cr) Responsible teacher: Harri Lipsanen; Hele Savin; Ilkka Tittonen; Zhipei Sun; Markku Sopanen Teaching period: III-V Content: Variable contents, decided separately every year Assessment Methods and Criteria: Assessment Methods decided separately for every year. Typically seminar presentations, lectures, exercises, literature surveys. Registration for Courses: Contact the responsible teachers Further Information: Variable contents. Course can be taken several times. 13
ELEC-L3510 Postgraduate Course in Electronic Circuit Design I V (V) (8 cr) Responsible teacher: Jussi Ryynänen; Kari Stadius Level of the Course: Postgraduate. Teaching period: I-II (Autumn 2015) Seminars and assigments, 208 h Learning Outcomes: Expand students technical know-how and academic expertise Content: Varies annually: A postgraduate-level seminar course. Assessment Methods and Criteria: Mandatory attendance at seminars. Complete all assignments. Study Material: To be decided - varies annually Substitutes for Courses: S-87.4193 Postgraduate Course in Electronic Circuit Design I PV Prerequisites: Advanced studies in electronic circuit design. Evaluation: Pass / fail. Further Information: Variable. ELEC-L3520 Postgraduate Course in Electronic Circuit Design II V (V) (1-8 cr) Responsible teacher: Kari Halonen; Kari Stadius Level of the Course: Postgraduate. Teaching period: IV-V (Spring 2016) Varies in accordance with the course content 26-208h. Learning Outcomes: Expand technical know-how to new fields of circuit technics. Content: Variable. A postgraduate-level seminar course. Assessment Methods and Criteria: One seminar presentation and homeworks. Mandatory attendance in seminars. Study Material: To be announced later. Substitutes for Courses: S-87.4198 Prerequisites: Advanced studies in electronic circuit design.. ELEC-L3530 Postgraduate Course in Electronic Circuit Design III V (V) (1-8 cr) Responsible teacher: Kari Halonen; Jussi Ryynänen Level of the Course: Postgraduate. Teaching period: Will be lectured in a period to be specified later. Varies in accordance with the course content 26-208h. Learning Outcomes: Expand technical know-how to new fields of circuit technics. Content: Variable. A postgraduate-level seminar course. Assessment Methods and Criteria: To be announced later. Study Material: To be announced later. Substitutes for Courses: Replaces S-87.4199 Prerequisites: Advanced studies in electronic circuit design. Further Information: Variable. 14