Laskennan mallit

Koko: px
Aloita esitys sivulta:

Download "Laskennan mallit"

Transkriptio

1 Laskennan mallit luennot syksyllä 2010, periodit I II Jyrki Kivinen tietojenkäsittelytieteen aineopintokurssi, 6 op, pääaineopiskelijoille pakollinen esitietoina Tietorakenteet (ja sen esitiedot) opittuja asioita sovelletaan ja ymmärrystä syvennetään mm. algoritmeihin ja tekoälyyn liittyvillä kursseilla 1

2 Annettava opetus, kurssin suorittaminen luentoja 2 tuntia viikossa harjoituksia 2 tuntia viikossa; tarkemmin seuraavilla kalvoilla kaksi kurssikoetta (kummankin periodin tenttiviikolla) kurssikirja Sipser: Introduction to the Theory of Computation, luvut 1 4 (ja pieniä osia myöhemmistä luvuista) (ei luentoja eikä harjoituksia tenttiviikoilla eikä väliviikolla) Huom. kurssin arvioitu työmäärä on 160 tuntia (eli syksyn aikana keskimäärin yli 10 tuntia viikossa) maksimipisteet harjoituksista (tarkemmin seuraavilla sivuilla), tenteistä , yhteensä 60; hyväksymisraja n. 30, arvosanan 5/5 raja n. 50 2

3 Palautetta syksyn 2006 kurssilta Mielipiteitä oppimateriaalista: Sipserin kirja oli hyvä ja selkeä oppimisen kannalta välttämätön melko selkeä ok todella hyvä selkeä havainnollinen hyvä apu jos ei välttämätön niin hyödyllinen 3

4 Laskuharjoitukset Paritonnumeroisilla harjoituskerroilla (periodin I viikolta 1 alkaen joka toinen kerta) käsitellään kotitehtäviä: laitoksen perinteinen harjoitusmuoto: opiskelijat ratkaisevat tehtävät etukäteen, laskaritilaisuudessa ratkaisut kirjataan kalvolle ja esitetään ryhmätyönä 4 tehtävää per viikko, yhteensä siis 24 tehtävää (viikolla 1 yksi ylimääräinen tehtävä) kotitehtävien tekeminen on pakollista: ainakin 8 tehtävää vaaditaan tehdyistä kotitehtävistä saatavat pisteet (max. 10): tehtäviä alle pisteitä hylätty Käytännössä kurssin menestyksekäs opiskeleminen edellyttää huomattavasti minimin ylittävää tehtävien ratkaisemista. 4

5 Parillisnumeroisilla harjoituskerroilla (periodin I viikolta 2 alkaen joka toinen kerta) perustehtäviä ja yhteistehtäviä: Perustehtävät ovat suoria sovelluksia luennoilla esitetyille tekniikoille. Tarkoitus on, että kukin opiskelija ratkaisee ne etukäteen ja ne käsitellään laskaritilaisuudessa melko lyhyesti (ellei ilmene keskustelunaihetta). Yhteistehtävien tarkoituksena on harjoitella laskarinpitäjän avustuksella ongelmanratkaisua. Tehtäviin on syytä tutustua etukäteen ja varmistaa, että muistaa asiaan liittyvät määritelmät jne., mutta varsinainen ratkaisun miettiminen on tarkoitus jättää laskaritilaisuuteen. Parillisnumeroisista harjoituskerroista saa pisteitä osallistumiskertojen mukaan: yksi osallistuminen 1 piste, kaksi tai useampia osallistumisia 2 pistettä. 5

6 Sisällysluettelo 0. Johdanto: yleiskatsaus, esitietojen kertaus 1. Säännölliset kielet: äärelliset automaatit, säännölliset lausekkeet 2. Yhteydettömät kielet: pinoautomaatit, yhteydettömät kieliopit 3. Ratkeavuus: Turingin koneet, ratkeavat ja ratkeamattomat ongelmat; laskennan vaativuus (lyhyesti) Kurssin peruskysymykset ovat mitkä periaatteelliset seikat rajoittavat automaattista laskentaa (ja siis erityisesti nykyisiä tietokoneita) ja miten tällaiset asiat voidaan esittää täsmällisesti. Näihin ei toki anneta mitään kovin yksiselitteisiä vastauksia. 6

7 Sisältö lyhyesti selitettynä Äärelliset ja pinoautomaatit ovat matemaattisia abstraktioita yksinkertaisille tai monimutkaisille laskentalaitteille. Automaatteja tarkastelemalla opimme, miten laskentaan liittyviä ilmiöitä mallinnetaan ja analysoidaan. Säännöllisyys, yhteydettömyys ja ratkeavuus ovat laskentaongelmien vaikeusluokituksia. Vaikeusluokitusten avulla voimme täsmälleen rajata, millaisia asioita esim. äärellinen automaatti osaa laskea. Erityisesti ratkeamattomat ongelmat ovat sellaisia, ettei niitä voi ratkaista millään nykytietämyksen mukaisella laskentalaitteella. 7

8 Kurssin asioilla on myös käytännön sovelluksia: äärelliset automaatit ja säännölliset kielet ovat tärkeitä merkkijonoalgoritmeissa erilaisia automaatteja käytetään hajautettujen järjestelmien mallintamisessa yhteydettömät kielet ovat tärkeitä luonnollisen kielen ja ohjelmointikielten käsittelyssä ratkeamattomiin ongelmiin voi törmätä ainakin tekoälyssä ja formaalissa verifioinnissa (jos ei osaa varoa). Tällä kurssilla sovelluksiin ei ehditä kuin hyvin pintapuolisesti. 8

9 Tavoitteet: kurssin jälkeen opiskelija tuntee automaattien ja kielioppien tärkeimmät luokat ja niiden yhteydet + osaa muodostaa automaatteja ja kielioppeja annetuille yksinkertaisille kielille + osaa soveltaa kurssilla esitettyjä muunnoksia automaatti- ja kielioppiformalismien välillä ymmärtää Churchin-Turingin teesin ja sen seuraukset tuntee keskeisimmät ratkeamattomuustulokset ja niiden seuraukset + osaa laatia yksinkertaisia ratkeamattomuustodistuksia osaa formalisoida laskentaan liittyviä ongelmia ja esittää formalismeihin perustuvia täsmällisiä argumentteja. Kurssilla on teknisiä (+), käsitteellisiä ( ) ja metodisia ( ) tavoitteita. Listaan kannattanee palata kurssin aikana. 9

10 0. Johdanto Erästä suosittua määritelmää mukaillen tietojenkäsittelytiede tutkii, 1. millaiset tietojenkäsittelytehtävät on mahdollista automatisoida ja 2. miten tämä automatisointi tulisi suorittaa. Tietojenkäsittelytieteen peruskursseilla keskitytään yleensä konstruktiiviseen puoleen eli kysymykseen 2. Tällä kurssilla tarkastellaan kysymystä 1. Osoittautuu (yllättäen? odotetusti?), että tosiaan on olemassa tehtäviä, joita ei periaatteessakaan voi automatisoida. Tämä tarkoittaa paljon enemmän kuin pelkästään, että automatisointia ei (vielä?) osata tehdä. Tällaisten väittämien perusteleminen edellyttää tietysti, että käsitteet määritellään huolellisesti. 10

11 Laskettavuuden teoria Edellisellä sivulla mainittu automatisointi tarkoittaa tämän kurssin kannalta algoritmin esittämistä. Intuitiivisesti algoritmi kuvaa tietojenkäsittelyprosessin niin täsmällisesti, että se voidaan tämän kuvauksen perusteella suorittaa mekaanisesti (ilman luovaa ajattelua ). Mekaanisen laskennan tarkemmaksi määrittelemiseksi, eli algoritmikäsitteen matemaattiseksi formalisoimiseksi, on kaksi lähestymistapaa: 1. Lähdetään liikkeelle tyhjästä ja mietitään, mitä voidaan pitää mekaanisena laskentana. 2. Otetaan lähtökohdaksi nykyiset tietokoneet, jotka selvästi suorittavat mekaanista laskemista, ja pelkistetään pois epäolennaisuudet. 11

12 Koska mekaaninen laskenta on keskeistä matematiikan perusteiden tarkastelussa, matemaatikot ja loogikot miettivät asiaa paljon 1930-luvulla. He sovelsivat luonnollisesti lähestymistapaa 1. Jos taas halutaan soveltaa tuloksia käytännön tietojenkäsittelyyn, lähestymistapa 2 tuntuisi lupaavammalta. Onneksi osoittautuu, että lähestymistavat 1 ja 2 johtavat samaan algoritmikäsitteen formalisointiin. Siis matemattista logiikkaa ja tietokoneita koskevilla periaatteellisilla rajoituksilla on syvällinen yhteys. Laskettavuuden teoria tarkastelee näitä rajoituksia, eli sitä millaisille ongelmille on olemassa ratkaisualgoritmi. 12

13 Laskennan vaativuus Laskettavuuden teoriassa algoritmeja tarkastellaan olettaen, että käytettävissä on mielivaltaisen paljon resursseja (laskenta-aikaa, muistia,...). Laskennan vaativuusteoriassa kysytään, millaisille ongelmille on olemassa tehokas algoritmi. Yleisimmin tämä tarkoittaa, että laskenta-ajan pitäisi skaalautua kohtuullisesti (esim. polynomisesti) syötteen koon suhteen. Jos tehokasta algoritmia ei ole, joudutaan miettimään korvikkeita: satunnaisalgoritmit, approksimointialgoritmit, rajoittuminen helppoihin erikoistapauksiin,... (Tällä kurssilla ei juuri käsitellä laskennan vaativuuskysymyksiä.) 13

14 Automaattiteoria Kun on saatu valmiiksi abstrakti malli tietokoneelle, voidaan kysyä, mikä muuttuu, jos mallista jätetään jokin piirre pois. Rajoitettujen mallien tarkasteleminen auttaa ymmärtämään yleisempiä malleja. Äärellinen automaatti on hyvin yksinkertainen (abstrakti) laskentalaite, jolla kuitenkin voi tehdä mielenkiintoisia asioita. Teoreettisen mielenkiinnon lisäksi se on hyödyllinen käytännössä ohjelmointi- ja mallinnustekniikkana. Yhteydettömät kieliopit ovat hieman äärellisiä automaatteja ilmaisuvoimaisempi mekanismi, jolla on tärkeitä sovelluksia esim. ohjelmointikielten määrittelemisessä ja kääntämisessä ja luonnollisen kielen mallintamisessa. Kurssilla aloitamme äärellisistä automaateista, jotka yksinkertaisuutensa takia ovat hyvä paikka harjoitella tarvittavia ajattelutapoja. Etenemme sitten yhteydettömien kielioppien kautta yleiseen laskettavuuteen. 14

15 Matemaattisia perustietoja [Sipser luku 0.2] Logiikan, joukko-opin ja verkkojen peruskäsitteet edellytetään tutuiksi kursseilta Johdatus diskreettiin matematiikkaan ja Tietorakenteet. Kurssilla tehdään jonkin verran induktiotodistuksia, mutta ne eivät ole keskeisessä roolissa. Jatkossa ajattelemme yleensä, että algoritmin (tms.) syötteenä on jokin merkkijono. Tätä varten tarvitsemme ensin aakkoston, joka voi olla mikä tahansa äärellinen joukko. Esimerkkejä tyypillisistä aakkostoista: ASCII-merkistö Σ 1 = { 0, 1 } Σ 2 = { a, b, c,..., z } Γ 1 = { A, C, G, T } Γ 2 = { HiiriVasen, HiiriKeski, HiiriOikea, ShiftHiiriVasen, ShiftHiiriKeski, ShiftHiiriOikea } Γ 3 = { tkt, mat, fys, kem, muu } Kuten yleensäkin, tarkoittaa alkioiden lukumäärää; siis yllä Γ 1 = 4. 15

16 Aakkoston Σ merkkijono on mikä tahansa äärellinen jono joukon Σ alkioita (eli merkkejä eli symboleita). Esim on aakkoston Σ 1 merkkijono. Merkkijonon z pituutta merkitään z ; siis = 5. Symbolilla ε merkitään minkä tahansa aakkoston tyhjää merkkijonoa, jonka pituus on nolla. Mitä tahansa (äärellistä tai ääretöntä) joukkoa annetun aakkoston merkkijonoja sanotaan (formaaliksi) kieleksi. Merkintä Σ tarkoittaa kieltä, jossa on kaikki aakkoston Σ merkkijonot. Esimerkki 0.1: Olkoon R aakkoston { +,, 0,..., 9 } kieli, joka koostuu yksinkertaisista kokonaislukuvakioista (esim. hieman yksinkertaistetussa Java-kielessä). Siis 0 R, R ja 32 R, mutta R. Kieli R on esimerkki säännöllisestä kielestä (luku 1). Esimerkki 0.2: Olkoon S aakkoston { +,,, (, ), 0,..., 9 } kieli, joka koostuu laillisista kokonaislukulausekkeista. Esim S ja ( ) 4 5 S, mutta (1 + 2)) S ja 3+ S. Kieli S on esimerkki yhteydettömästä kielestä (luku 2). Esimerkki 0.3: Muodostukoon ASCII-aakkoston kieli T niistä C-kielisistä ohjelmista, jotka tyhjällä syöttötiedostolla joutuvat ikuiseen silmukkaan. Kieli T on esimerkki ratkeamattomasta kielestä (luku 3). 16

17 Tällä kurssilla ajatellaan yleensä perinteistä laskentaa, jossa annetusta syötteestä lasketaan tuloste. (Esim. interaktiivisuuden tai hajautetun laskennan mallintaminen jää tarkastelun ulkopuolelle.) Syöte voidaan aina ajatella koodatuksi yhdeksi merkkijonoksi, vieläpä binääriaakkostossa { 0, 1 }; samoin tuloste. Laskentaongelman prototyyppi on siis Annettu: syöte x { 0, 1 } Laskettava: oikea tuloste y { 0, 1 }. Tällainen ongelma voidaan palauttaa joukoksi kyllä/ei-kysymyksiä: Annettu: syöte x { 0, 1 } Kysymys A: onko oikeassa tulosteessa ainakin k bittiä? Kysymys B: onko oikean tulosteen k. bitti ykkönen? Kyllä/ei-kysymykset taas voidaan samaistaa formaalin kielten kanssa (niiden syötteiden joukko, joilla vastaus on kyllä ). Jatkossa tarkastelemme yksinkertaisuuden vuoksi vain formaaleihin kieliin liittyviä ongelmia sillä ajatuksella, että oleellisesti samat lainalaisuudet koskevat yleisempiäkin laskentaongelmia. 17

18 Merkkijonon w = w 1 w 2... w n käänteismerkkijono on w R = w n w n 1... w 1. Merkkijono v on merkkijonon w osajono, jos v esiintyy yhtenäisenä osana merkkijonossa w. Siis acad on merkkijonon abracadabra osajono, mutta rcd ei ole. Merkkijonojen v = v 1... v n ja w = w 1... w m konkatenaatio on vw = v 1... v n w 1... w m. Siis v on merkkijonon w osajono, jos w = xvy joillakin merkkijonoilla x ja y. Kun k N, niin merkkijonon w konkatenaatiota itsensä kanssa k kertaa merkitään w k. Siis w k = k w ja erityisesti w 0 = ε. Leksikografisessa järjestyksessä merkkijonot ovat 1. pituuden mukaan kasvavassa järjestyksessä ja 2. samanpituiset jonot keskenään aakkosjärjestyksessä. Siis binääriaakkoston { 0, 1 } merkkijonojen leksikografinen järjestys on ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101,

19 1. Säännölliset kielet Äärellinen automaatti on hyvin yksinkertainen laskennan malli (eli abstrakti laskentalaite). Säännölliset kielet on se luokka laskentaongelmia, jonka näin yksinkertaisella laitteella pystyy ratkaisemaan. Näillä tekniikoilla on sovelluksia esim. merkkijonoalgoritmeissa. Tämän luvun jälkeen opiskelija osaa selittää äärelliset automaatit, säännölliset lausekkeet ja niiden suhteen osaa muodostaa yksinkertaisia äärellisiä automaatteja ja säännöllisiä lausekkeita osaa tehdä muunnoksia determinististen ja epädeterminististen äärellisten automaattien ja säännöllisten lausekkeiden välillä osaa osoittaa kielen ei-säännölliseksi esim. pumppauslemmalla. 19

20 Äärellinen automaatti: johdattelua [Sipser s ] Havainnollistamme äärellistä automaattia tilanteessa, jossa kahviautomaatista voi ostaa kahvin 50 sentillä. Laite hyväksyy 10 ja 20 sentin kolikoita. Kahvia saa vain maksamalla tasan 50 senttiä. Laitteessa on kuitenkin rahanpalautuspainike, jolla saa takaisin kaikki sinne laittamansa rahat. Muodostamme äärellisen automaatin, jonka syötteenä on jono aakkoston { 10, 20, P } symboleja. Nämä esittävät koneeseen laitettuja 10 ja 20 sentin kolikoita ja palautusnappulan painalluksia. Automaatin täytyy muistaa sen verran, että se tietää, milloin sen saama rahamäärä viimeisen rahanpalautuksen jälkeen on tasan 50 senttiä. Tämän se tekee siirtymällä syötteen määräämällä tavalla tilasta toiseen. (Tiloja on äärellinen määrä, mistä mallin nimi.) 20

21 Saamme seuraavanlaisen äärellisen automaatin: P P P P P P Y P 21

22 Automaatilla on tiloja (7 kappaletta), jotka on esitetty ympyröinä ja nimetty 0, 10, 20, 30, 40, 50 ja Y; siirtymiä, jotka on esitetty tilojen välisinä kaarina; aakkosto, jonka symboleilla siirtymät on merkitty; alkutila (tila 0), joka on merkitty tyhjästä tulevalla kaarella; ja hyväksyvä tila (tila 50), joka on rengastettu. Tilojen nimet on tässä valittu kuvaaviksi (ne kertovat, paljonko rahaa koneessa on), mutta automaatin toimintaan nimet eivät vaikuta. Tilassa Y rahaa on liikaa. Tilassa 50 rahaa on tasan oikea määrä. Kaikissa tiloissa palautuspainike nollaa rahat. Kolikon laittaminen koneeseen taas kasvattaa laskuria vastaavalla määrällä. Tilassa Y kone pyörii silmukassa sekä 10 että 20 sentin syötteellä, kunnes tulee P. 22

23 Äärellinen automaatti: formaali määritelmä [Sipser s ] Äärellinen automaatti on viisikko (Q, Σ, δ, q 0, F ), missä 1. Q on äärellinen tilajoukko; sen alkioita sanotaan tiloiksi 2. Σ on äärellinen aakkosto 3. δ : Q Σ Q on siirtymäfunktio 4. q 0 Q on alkutila 5. F Q on hyväksyvien tilojen joukko (joita toisinaan hieman harhaanjohtavasti kutsutaan lopputiloiksi). Siirtymäfunktio on tässä kaikkein kiinnostavinta. Jos tiloilla q ja q ja symbolilla a Σ pätee δ(q, a) = q, niin intuitiivisesti tämä tarkoittaa, että jos ollaan tilassa q ja seuraavaksi tulee merkki a, niin siirrytään tilaan q. 23

24 Esimerkki Tarkastellaan äärellistä automaattia M 1 = (Q, Σ, δ, q 0, F ), missä 1. Q = { q 0, q 1, q 2 }, 2. Σ = { 0, 1 }, 3. δ saadaan taulukosta δ 0 1 q 0 q 1 q 0 q 1 q 1 q 2 q 2 q 1 q 0 (siis esim. δ(q 1, 0) = q 1 ja δ(q 1, 1) = q 2 ), 4. alkutila on q 0 ja 5. F = { q 2 }. 24

25 Edellisen sivun automaatti M 1 voidaan esittää havainnollisemmin tilakaaviona q 0 q 1 q Automaatin toiminta syötteellä voidaan kuvata siirtymäjonona q 0 1 q0 0 q1 0 q1 1 q2 1 q0 0 q1 1 q2. Syötemerkkien loppuessa automaatti on hyväksyvässä tilassa q 2, ja sanomme, että se hyväksyy merkkijonon Toisaalta syötteen automaatti hylkää: q 0 0 q1 0 q1 1 q2 0 q1 0 q1 ja päädymme ei-hyväksyvään tilaan q 1. 25

26 Formalisoimme nyt edellä kuvatun laskennan. Jos M = (Q, Σ, δ, q 0, F ) on äärellinen automaatti ja w = w 1... w n on n merkkiä pitkä aakkoston Σ merkkijono, niin automaatti M hyväksyy merkkijonon w, jos on olemassa n + 1 tilan jono (r 0, r 1,..., r n ) Q n+1, jolla r 0 = q 0, r i+1 = δ(r i, w i+1 ) kun 0 i n 1 ja r n F. Siis laskenta alkaa alkutilasta, noudattaa syötemerkkien mukaisia siirtymiä ja päätyy hyväksyvään tilaan. Jos M ei hyväksy, se hylkää merkkijonon w. 26

27 Hyväksymisen ja hylkäämisen kannalta vain tilajonon ensimmäisellä ja viimeisellä tilalla on väliä. Tämän takia on luonnollista määritellä kuvaus δ : Q Σ Q seuraavasti: δ (q, w) on se tila, johon tilasta q päädytään merkkijonolla w. Erityisesti δ (q, ε) = q kaikilla q. Toinen perustapaus on δ (q, a) = δ(q, a) kaikilla a Σ. Nyt voimme sanoa, että automaatti hyväksyy merkkijonon w, jos δ (q 0, w) F. 27

28 Funktio δ voidaan määritellä siirtymäfunktion δ avulla rekursiivisesti: { δ q jos w = ε (q, w) = δ(δ (q, v), a) jos w = va missä a Σ. Tämä tarkoittaa samaa kuin rekursiivinen proseduuri DeltaStar(q, w) 1 olkoon w = w 1... w n, missä w i Σ kaikilla i 2 if n = 0 3 then return q w = ε 4 else p DeltaStar(q, w 1... w n 1 ) v = w 1... w n 1 5 return δ(p, w n ) a = w n Rekursio aina päättyy, sillä 1. rivin 4 rekursiivisessa kutsussa parametrina olevan merkkijonon pituus aina pienenee ja 2. merkkijonon pituudella on ehdoton alaraja 0. 28

29 Reunahuomatus: miksi formalismia On sinänsä arvokasta, että laskenta saadaan esitetyksi täsmällisessä matemaattisessa muodossa. Jatkossa haluamme esittää väitteitä muotoa Kaikki äärelliset automaatit toteuttavat ehdon p ja konstruktioita Mistä tahansa ehdon r toteuttavasta automaatista voidaan muodostaa automaatti, joka toteuttaa ehdon s. Tätä voidaan tiettyyn rajaan saakka tehdä piirtämällä kuvia, mutta uskottavuuden ja ymmärrettävyyden rajat tulevat melko pian vastaan. Matemaattinen formalismi on voimakas työkalu, jota on hyvä opetella käyttämään. 29

30 Automaatin M tunnistama kieli L(M) on kaikkien niiden merkkijonojen joukko, jotka M hyväksyy. Esim. edellistä automaattia M 1 tarkastelemalla voidaan todeta, että se hyväksyy tasan ne merkkijonot, jotka loppuvat 01; siis L(M 1 ) = { w 1... w n 01 n 0, w i { 0, 1 } kaikilla i. } Sanomme, että kieli A on säännöllinen, jos jokin äärellinen automaatti tunnistaa sen, ts. A = L(M) jollain M. Huomaa, että säännöllisyys on kielen ominaisuus, ei yksittäisen merkkijonon. Ei ole mielekästä kysyä yksittäisestä merkkijonosta, onko se säännöllinen. (Mistä tahansa merkkijonosta w Σ voidaan toki muodostaa yksialkioinen kieli { w } Σ, joka on selvästi säännöllinen.) 30

31 Äärellinen automaatti on hyvin rajoittunut laskennan malli. Esim. niinkin yksinkertainen kieli kuin { 0 n 1 n n N } (eli merkkijonot joissa on ensin jono nollia ja sitten saman verran ykkösiä) ei ole säännöllinen. (Tähän palataan.) Äärelliseen automaattiin voidaan helposti lisätä muutakin tulostusta kuin pelkkä hyväksyminen tai hylkääminen. Tällaisen modifikaatiot eivät tämän kurssin kannalta toisi mitään oleellista uutta asiaan. Muissa yhteyksissä ne voivat kuitenkin olla hyödyllisiä. 31

32 Äärellisen automaatin laatiminen [Sipser s ] Halutaan laatia äärellinen automaatti, joka tunnistaa kielen L 1 = { 0 n 1 m n, m N } { 1 n 0 m n, m N }. Siis joko nollat ovat ennen ykkösiä tai toisin päin; lukumäärällä ei ole väliä. Toisin sanoen vaihdoksia nollan ja ykkösen välillä saa olla korkeintaan 1. Lähtökohta: seuraava algoritmi ratkaisee, kuuluuko syötejono kieleen L 1 : vaihtunut False Get(nykyinen) while syöte ei loppu do edellinen nykyinen Get(nykyinen) if nykyinen edellinen then if not vaihtunut then vaihtunut True ensimmäinen vaihdos else return False toinen vaihdos return True Tässä nykyinen ja edellinen ovat merkkejä ja Get lukee seuraavan syötemerkin. 32

33 Koska algoritmi tarvitsee vain vakiomäärän muistia, toteutus äärellisenä automaattina on realistinen ajatus. Äärellisen automaatin siirtymämekanismi huolehtii sellaisenaan uuden merkin lukemisesta. Algoritmin muisti pitää sen sijaan toteuttaa tilojen avulla. Tässä meillä on kaksi muuttujaa, kummallakin kaksi arvoa, joten valitsemme neljä tilaa: F 0: vaihtunut = False ja edellinen = 0 F 1: vaihtunut = False ja edellinen = 1 T 0: vaihtunut = True ja edellinen = 0 T 1: vaihtunut = True ja edellinen = 1 Yleisemmin tarvitaan oma tila jokaista mahdollista muuttujien arvokombinaatiota varten. 33

34 Seuraava hahmotelma toteuttaa while-silmukan em. tilojen avulla: 0 0 F 0 1 T hylkää F 1 T 1 0 Tätä pitää vielä täydentää, että alustukset ja hyväksyminen 1 1 saadaan hoidetuksi äärellinen automaatti -formalismin mukaisesti. 34

35 Alustukset hoituvat helposti lisäämällä alkutila. Koska algoritmin oletusarvo on hyväksyminen, tehdään ensin kaikista tiloista hyväksyviä. Lisätään sitten virhetila, johon mennään hylkäämistapauksessa: F 0 1 T 0 1 0, F 1 T

36 Toisena esimerkkinä olkoon L 2 = { b 1... b n 2 0b n { 0, 1 } n 2 } eli ainakin kahden pituiset bittijonot, joiden toiseksi viimeinen bitti on 0. Nyt pitää muistaa kaksi viimeisintä merkkiä: ε Tilojen nimet esittävät viimeksi luettuja kahta merkkiä. 36

37 Aiemmin mainittiin, että kieli L 3 = { 0 n 1 n n N } eli merkkijonot, joissa on ensin nollia ja sitten sama määrä ykkösiä, ei ole säännöllinen. Kielen tunnistavan automaatin tulisi muistaa nollien lukumäärä, jotta se voi varmistaa, ett ykkösiä on yhtä monta. Ohjelmassa tähän tarvitaan vain yksi muuttuja, mutta muuttujan arvolla ei ole ylärajaa. Automaatissa tarvittaisiin oma tila jokaista n:n arvoa kohti, siis ääretön määrä tiloja. Tämä on selitys kielen L 3 ei-säännöllisyydelle. Huomaa kuitenkin, että tämä ei ole täsmällinen todistus. 37

38 Tilasiirtymäjärjestelmien sovelluksia Äärelliset automaatit sellaisenaan ovat hyödyllisiä merkkijonojen käsittelyssä, mistä kohta lisää. Lisäämällä tilasiirtymiin satunnaisuutta saadaan Markovin ketjut eli satunnaisprosessit, joilla on äärellinen muisti. Perusversiossa Markovin ketjuihin ei tosin liity mitään syötettä. Markovin piilomallit (hidden Markov models) ovat lähempänä tässä esitettyjä äärellisiä automaatteja. Tilasiirtymäjärjestelmiä käytetään (etenkin hajautettujen järjestelmien) spesifioinnissa ja verifioinnissa. 38

39 Sovellusesimerkki: vuorottelevan bitin protokolla Lähettäjä S lähettää datapaketteja d 0, d 1, d 2,... vastaanottajalle R. Paketti voi hukkua matkalla. Seuraava datapaketti lähetetään vasta, kun on edelliseen saatu kuittaus a. Jos kuittausta ei tule kohtuullisen ajan kuluessa, lähetys uusitaan: timeout S d 0 d 1 d 1 d 2 R a a 39

40 Ongelma: jos kuittaus hukkuu, R voi saada duplikaattiviestin. S timeout d 0 d 1 d 1 d 2 R a a a Ratkaisu: numeroidaan viestit ja kuittaukset S timeout d 0, 0 d 1, 1 d 1, 1 d 2, 2 R a, 0 a, 1 a, 1 40

41 Parannus: itse asiassa riittää käyttää kahta numeroa (0 ja 1): S timeout d 0, 0 d 1, 1 d 1, 1 d 2, 0 R a, 0 a, 1 a, 1 Lähettäjä ja vastaanottaja voidaan mallintaa tilasiirtymäjärjestelminä: a, 1 a, 1 d, 1 timeout timeout d, 0 d, 1 d, 0 d, 1 d, 0 d, 1 a, 0 d, 0 a, 0 lähettäjä vastaanottaja Huom. Esimerkin yksityiskohdat eivät ole tärkeitä tämän kurssin kannalta; ks. Spesifioinnin ja verifioinnin perusteet. 41

42 Hahmon etsiminen syötteestä (johdatteleva esimerkki) Unix-komennolla grep hahmo [ tiedosto ] voidaan etsiä hahmon esiintymiä tiedostosta (tai syötevirrasta): $ grep Kisaveikot SM-tulokset.txt $ ps aux grep mmeikala $ ps aux grep \(mmeikala\ tteikala\) Tässä siis haetaan SM-tuloksista rivit, joilla esiintyy seura Kisaveikot prosessilistasta ne rivit, joilla esiintyy käyttäjätunnus mmeikala, ja prosessilistasta ne rivit, joilla esiintyy käyttäjätunnus mmeikala tai tteikala. 42

43 Eräs idea grep-toiminnon toteuttamiseksi olisi seuraava: 1. Muodostetaan äärellinen automaatti, joka hyväksyy tasan sellaiset merkkijonot, joissa esiintyy hahmo. 2. Selataan syöte rivi kerrallaan käyttämällä tätä automaattia, ja tulostetaan hyväksytyt rivit. Selausvaihe toimii nopeasti eikä edellytä syötteen esiprosessointia, mikä on tässä tärkeää. Kysymys: Kuinka monimutkaisia hahmoja tällä periaatteella voidaan käsitellä? Esim. edellä muodostettiin hahmoista mmeikala ja tteikala uusi hahmo tai-operaattorilla. Kuinka voimakkaat operaattorit voidaan siis sallia? 43

44 Operaatiot (säännöllisillä) kielillä [Sipser s ] Kuten muistetaan, kielet ovat merkkijonojoukkoja. Niillä voidaan siis suorittaa normaaleja joukko-opillisia operaatioita, kuten yhdiste, leikkaus ja komplementointi: jos A ja B ovat kieliä, niin kieli A B koostuu niistä merkkijonoista, jotka kuuluvat ainakin toiseen kielistä A ja B, kieli A B koostuu niistä merkkijonoista, jotka kuuluvat sekä kieleen A että B, ja kieli A koostuu niistä merkkijonoista, jotka eivät kuulu kieleen A. (Komplementin A määrittelyssä oletetaan, että puhutaan jonkin tietyn aakkoston Σ merkkijonoista, jolloin A = Σ A. Yleensä aakkosto Σ selviää asiayhteydestä.) 44

45 Nimenomaan merkkijonojoukoille on kätevää määritellä myös konkatenaatio ja tähti: kieli A B koostuu merkkijonoista w, jotka voidaan esittää muodossa w = xy joillakin x A ja y B ja kieli A koostuu merkkijonoista w 1... w k, missä k 0 ja w i A kaikilla i. Toisin sanoen ja A B = { x y x A ja y B } A = A 0 A 1 A 2 A 3..., missä A 0 = { ε } ja muuten A k on kielen A konkatenaatio itsensä kanssa k kertaa: A k = } A A {{... A}. k kertaa 45

46 Esimerkki Tarkastellaan aakkoston { a,..., z, 0,..., 9 } kieliä A = { aa, bb } ja B = { 01, 02 }. Nyt A B = { aa, bb, 01, 02 } A B = { aa01, aa02, bb01, bb02 } A = { ε, aa, bb, aaaa, aabb, bbaa, bbbb, aaaaaa, aaaabb, aabbaa, aabbbb, bbaaaa,... }. Seuraavana tavoitteenamme on osoittaa, että säännöllisten kielten luokka on suljettu operaatioiden, ja suhteen. Toisin sanoen jos A ja B ovat säännöllisiä, niin myös A B, A B ja A ovat. Tapaus A B on melko suoraviivainen, ja aloitamme siitä. 46

47 Aloitetaan konkreettisella esimerkillä. Seuraava automaatti hyväksyy merkkijonot, jotka loppuvat nollaan: a b 1 Toisaalta seuraava automaatti hyväksyy merkkijonot, jotka loppuvat 01: A B C 0 1 Tilat on nimetty pienillä ja isoilla kirjaimilla jatkoa silmälläpitäen. Voidaanko näistä automaateista muodostaa yhdisteautomaatti, joka hyväksyy merkkijonot, jotka päättyvät 01 tai 0? 47

48 Tarkastellaan esimerkkinä merkkijonoa 00101, jonka ensimmäinen automaatti hylkää: ja toinen hyväksyy: a 0 b 0 b 1 a 0 b 1 a A 0 B 0 B 1 C 0 B 1 C. Yhdisteautomaatin pitäisi simuloida kumpaakin laskentaa, koska etukäteen ei voi tietää, kumpi hyväksyy, jos kumpikaan. Laskentojen laittaminen peräkkäin ei onnistu, koska äärellinen automaatti lukee kunkin syötemerkin vain kerran, minkä jälkeen se on mennyttä. Siis ensimmäisen simulaation jälkeen ei olisi enää mahdollista simuloida uudestaan samalla syötteellä. Laitetaan kokeeksi laskennat päällekkäin: (a, A) 0 (b, B) 0 (b, B) 1 (a, C) 0 (b, B) 1 (a, C). Mitä tämä voisi tarkoittaa? 48

49 Saamme päällekkäiselle laskennalle (a, A) 0 (b, B) 0 (b, B) 1 (a, C) 0 (b, B) 1 (a, C) tulkinnan valitsemalla yhdisteautomaatille tilajoukoksi { (a, A), (a, B), (a, C), (b, A), (b, B), (b, C) } eli alkuperäisten tilajoukkojen karteesinen tulo { a, b } { A, B, C }. Siirtymien suhteen esim. (b,b) 1 (a,c) tarkoittaa, että alkuperäisissä automaateissa on siirtymät b 1 a 1 ja B C Huomaa, että kummassakin on sama merkki 1. 49

50 Graafisesti tämän voi esittää laittamalla yhdisteautomaatin tilat taulukoksi, jossa ensimmäisen automaatin tilat vastaavat rivejä toisen automaatin tilat vastaavat sarakkeita. Vastaavasti ensimmäinen automaatti antaa siirtymien pystykomponentin ja toinen automaatti vaakakomponentin. Alkutilaksi tulee (a, A) eli alkuperäisten automaattien alkutilojen kombinaatio. Koska kyseessä on unioni, hyväksyviä tiloja ovat kaikki, joissa esiintyy b tai C eli ainakin toisen alkuperäisen automaatin hyväksyvä tila. 50

51 a b ba bb bc aa ab ac A B C

52 Esitetään edellinen konstruktio yleisemmässä muodossa. Lause 1.1: [Sipser Thm. 1.25] Jos kielet A ja B ovat säännöllisiä, niin myös A B on. Todistus: Oletetaan siis, että A = L(M 1 ) ja B = L(M 2 ) äärellisillä automaateilla M 1 = (Q 1, Σ, δ 1, q 1, F 1 ) ja M 2 = (Q 2, Σ, δ 2, q 2, F 2 ). Muodostamme äärellisen automaatin jolla L(M ) = A B. M = (Q, Σ, δ, q, F ), Koska A B on kieli samassa aakkostossa Σ kuin A ja B, niin aakkosto Σ pysyy samana. Edellä esitetyn mukaan yhdisteautomaatin tilat ovat pareja (q, q ), missä q ja q ovat automaattien M 1 ja M 2 tiloja; siis Q = Q 1 Q 2. 52

53 Edelleen alkutilaksi tulee alkuperäisten alkutilojen kombinaatio q = (q 1, q 2 ). Tila on hyväksyvä, jos se vastaa ainakin toisen alkuperäisen automaatin hyväksyvää tilaa, eli F = { (r, s) Q 1 Q 2 r F 1 tai s F 2 } = (F 1 Q 2 ) (Q 1 F 2 ). Siirtymäfunktio määritellään siten, että automaatti M 1 kertoo siirtymät ensimmäisen ja M 2 toisen komponentin suhteen: δ ((r, s), a) = (δ 1 (r, a), δ 2 (s, a)), kun r Q 1, s Q 2 ja a Σ. Konstruktion perusteella on selvää, että L(M ) = L(M 1 ) L(M 2 ) kuten haluttiin. 53

54 Reunahuomautus (jos tuntuu sekavalta, niin sivuuta) Jos ei halua hyväksyä edellisen konstruktion olevan selvästi toimiva, asian voi perustella yksityiskohtaisemminkin. Todistetaan ensin induktiolla merkkijonon w pituuden suhteen, että δ ((r, s), w) = (δ 1 (r, w), δ 2 (s, w)), missä δ on siirtymäfunktion δ yleistys kuten kalvoilla Tapaus w = 0: Siis w = ε, ja suoraan määritelmistä δ ((r, s), ε) = (r, s) = (δ 1 (r, ε), δ 2 (s, ε)). 54

55 Tapaus w = n + 1: Oletetaan, että väite δ ((r, s), w) = (δ 1 (r, w), δ 2 (s, w)) pätee, kun w = n. Kun w = n + 1, voidaan kirjoittaa w = va, missä v = n ja a Σ. Tällöin kuten haluttiin. δ ((r, s), w) = δ ((r, s), va) = δ (δ ((r, s), v), a) ind.ol. = δ ((δ1 (r, v), δ 2 (s, v)), a) = (δ 1 (δ1 (r, v), a), δ 2(δ2 (s, v), a)) = (δ1 (r, va), δ 2 (s, va)) = (δ1 (r, w), δ 2 (s, w)) 55

56 Nyt eli w L(M ) δ (q, w) F δ ((q 1, q 2 ), w) = (r, s) missä r F 1 tai s F 2 δ 1 (q 1, w) F 1 tai δ 2 (q 2, w) F 2 w L(M 1 ) tai w L(M 2 ) L(M ) = L(M 1 ) L(M 2 ). Tämäntyyppisiä induktiotodistuksia tarvitaan monimutkaisempien konstruktioiden oikeellisuudelle. Niillä voidaan tarkistaa, ettei konstruktioon jäänyt virheitä. Usein (kuten tässäkin) induktio ei kuitenkaan tuo mitään lisävalaistusta konstruktion ideaan, vaan helposti peittää sen alleen. Ensin pitää ymmärtää konstruktion idea, minkä jälkeen induktiotodistuksen laatiminen on (toisinaan vaativa) tekniikkaharjoitus. Siksi emme jatkossa vie oikeellisuustodistuksia näin formaaleiksi, ellei konstruktion toimivuus ole oikeasti epäilmeinen. (Reunahuomautus loppuu.) 56

57 Varoitus: älä tee näin Tentissä pyydettiin todistamaan, että kahden säännöllisen kielen A ja B leikkaus A B on säännöllinen. Tyypillinen virheellinen todistusyritys oli seuraavanlainen: Oletuksen mukaan joukkojen A ja B merkkijonot ovat säännöllisiä. Siis myös kaikki joukon A B merkkijonot ovat säännöllisiä (ks. kuva) Siis A B on säännöllinen. Σ A A B B Tässä ei ole mitään järkeä, koska ei ole olemassa sellaista kuin säännöllinen merkkijono. Säännöllisyys on kielen eli merkkijonojoukon ominaisuus. (Varoitus loppuu.) Oikea tapa ratkaista tehtävä on soveltaa edellisen lauseen konstruktiota (tai kohta esitettäviä vaihtoehtoisia tekniikoita). 57

58 Kielen L säännöllisyys on eräänlainen mittari sille, kuinka vaikeaa on erottaa tapaukset x L ja x L. Jos tämän voi tehdä ohjelmalla, joka lukee syötteen vain kerran vasemmalta oikealle tarvitsee vain vakiomäärän muistia niin kieli on säännöllinen. Huom. laskuri, joka voi saada mielivaltaisen suuria arvoja, ei ole vakiokokoinen. Jos säännöllisyyttä haluaa visualisoida, sen voi (kenties) ajatella tarkoittavan kielen reunaviivan yksinkertaisuutta. Σ Σ A B A on säännöllinen B ei ole säännöllinen Tällaisia kuvia ei kuitenkaan pidä ottaa kovin vakavasti. 58

59 Jatkossa osoitetaan myös Lause 1.2: [Sipser Thm. 1.26] Säännöllisten kielten joukko on suljettu konkatenaation suhteen; ts. jos kielet A ja B ovat säännöllisiä, niin myös A B on. Todistaminen on kuitenkin edellistä lausetta hankalampaa. Oletaan A = L(M 1 ) ja B = L(M 2 ), ja halutaan muodostaa M, jolla L(M) = A B. Luonnollinen ajatus olisi pistää automaatit M 1 ja M 2 peräkkäin. Tässä tulee ongelmaksi, milloin pitäisi siirtyä automaatista M 1 automaattiin M 2. Erityisesti jollain w A B voi olla kaksi esitystä w = uv = u v, missä u A ja u A, ja v B mutta v B. Jos tässä vielä u on merkkijonon u alkuosa (eli u = u x jollain x), niin emme voi ilman muuta siirtyä automaattiin M 2 heti, kun M 1 pääsee hyväksyvään tilaan. Jotta pääsemme eteenpäin, yleistämme äärellistä automaattia sallimalla epädeterminismin. 59

60 Epädeterministiset äärelliset automaatit [Sipser s ] Tarkastellaan esimerkkinä seuraavaa automaattia: a, b a b a, ε b. Tämä ei noudata edellä esitettyä formalismia: tilasta 0 pääsee merkillä b sekä tilaan 0 että tilaan 1, tilasta 1 on ε-siirtymä, jolla pääsee tilaan 2 käyttämättä yhtään syötemerkkiä ja joitain siirtymiä ei ole määritelty. Aiottu tulkinta on, että annetulla syötteellä kokeillaan kaikkia mahdollisia siirtymävaihtoehtoja. Automaatti hyväksyy, jos yksikin näistä vaihtoehdoista päätyy hyväksyvään tilaan. 60

61 Tällaisen automaatin laskentaa voidaan havainnollistaa ryhmittämällä vaihtoehdot puuksi: 0 a esimerkkinä syöte abbab vaakanuolet kuvaavat ε-siirtymiä viimeisellä rivillä esiintyy (kahteenkin kertaan) hyväksyvä tila 3, joten automaatti hyväksyy merkkijonon abbab b b a b

62 Kutsumme tällaista yleisempää automaattia epädeterministiseksi äärelliseksi automaatiksi (nondeterministic finite automaton, NFA). Aluksi esitetty perusversio on vastaavasti deterministinen äärellinen automaatti (deterministic finite automaton, DFA). NFA:lle ei ole mitään samalla lailla ilmeistä fyysistä toteutusmallia kuin DFA:lle. Se kannattaa mieltää lähinnä kuvausformalismiksi. Näemme jatkossa, että mille tahansa NFA:lle voidaan muodostaa DFA, joka tunnistaa saman kielen. Siis epädeterminismi ei anna tässä mielessä lisää ilmaisuvoimaa. Epädeterminismiä käyttämällä esitystä voidaan kuitenkin usein selkeyttää ja yksinkertaistaa. 62

63 Seuraava NFA hyväksyy merkkijonot, joissa on osajonona ensin abb ja sen jälkeen ca tai ac. Huomaa konstruktion modulaarisuus. (Juuri tämän kielen voisi tunnistaa DFA:lla helpomminkin.) a, b, c a, b, c ε a b b ε ε c a ε a, b, c ε a c ε 63

64 Mille tahansa aakkostolle Σ merkitsemme Σ ε = Σ { ε }. Muistetaan, että joukon A potenssijoukkoa eli kaikkien osajoukkojen joukkoa merkitään P(A). Muodollisesti NFA on viisikko (Q, Σ, δ, q 0, F ), missä 1. Q on äärellinen tilajoukko, 2. Σ on äärellinen aakkosto, 3. δ : Q Σ ε P(Q) on siirtymäfunktio, 4. q 0 Q on alkutila ja 5. F Q on hyväksyvien tilojen joukko. Erotukseksi DFA:sta siirtymäfunktio siis antaa yhden seuraajatilan sijaan joukon tiloja. Nämä tulkitaan mahdollisiksi seuraajatiloiksi. 64

65 Esimerkkiautomaattimme a, b a b a, ε b. formaali esitys on siis ({ 0, 1, 2, 3 }, { a, b }, δ, 0, { 3 }), missä δ saadaan taulukosta δ a b ε 0 { 0 } { 0, 1 } 1 { 2 } { 2 } 2 { 3 } 3 { 2 } 65

66 Määrittelemme nyt, että epädeterministinen äärellinen automaatti (Q, Σ, δ, q 0, F ) hyväksyy merkkijonon w, jos jollain n voidaan valita jonot (y 1,..., y n ) Σ n ε ja (r 0,..., r n ) Q n+1, joilla w = y 1... y n, r 0 = q 0, r i+1 δ(r i, y i+1 ) kun i = 0,..., n 1 ja r n F. Edellisen sivun automaatilla ja merkkijonolla abbab voidaan valita esim. n = 6 (y 1, y 2, y 3, y 4, y 5, y 6 ) = (a, b, ε, b, a, b) (r 0, r 1, r 2, r 3, r 4, r 5, r 6 ) = (0, 0, 1, 2, 3, 2, 3), mistä nähdään, että automaatti hyväksyy merkkijonon. 66

67 Determinismi vs. epädeterminismi Deterministisessä automaatissa siirtymä δ(q, a) = r tarkoittaa, että tilasta q syötteellä a mennään aina tilaan r. Epädeterministisessä automaatissa siirtymä r δ(q, a) tarkoittaa, että tilasta q syötteellä a eräs mahdollisuus on mennä tilaan r. Epädeterministinen automaatti hyväksyy, jos on mahdollista päätyä hyväksyvään tilaan. Huomaa epäsymmetria: jos jollain syötteellä sekä hyväksyvään että ei-hyväksyvään tilaan voi päätyä, niin syöte hyväksytään. Epädeterminismi voidaan mieltää korkean tason kontrollirakenteeksi. Jos DFA-formalismia ajatellaan primitiivisenä ohjelmointikielenä, niin NFA-formalismi on sama kieli laajennettuna operaatiolla kokeile kaikki vaihtoehdot. Seuraavaksi tarkastelemme, miten tämä kontrollirakenne voidaan toteuttaa. 67

68 Lähtökohtana on NFA:n simuloiminen. Simulaation ideana on laskentapuun (ks. sivu 61) läpikäynti leveyssuuntaisesti (taso kerrallaan). Algoritmi pitää muuttujassa CurrentStates listaa niistä tiloista, joissa se tällä hetkellä voisi olla (laskentapuun taso). Kullakin aika-askelella CurrentStates päivitetään: 1. haetaan saatua syötemerkkiä vastaavat seuraajatilat ja 2. lisätään mahdolliset ε-siirtymät. Kun R Q on joukko tiloja, olkoon E(R) niiden tilojen joukko, joihin päästään jostain joukon R tilasta suorittamalla 0 tai useampia ε-siirtymiä: q E(R) on olemassa k N ja tilat r 0, r 1,..., r k Q joilla r 0 R, r k = q ja r i δ(r i 1, ε) kun i = 1,..., k. Siis erityisesti aina R E(R). 68

69 Saadaan seuraava algoritmi: SimulateNFA(Q, Σ, δ, q 0, F ) CurrentStates E({ q 0 }) while syötettä riittää do lue seuraava syötemerkki a NextStates for q CurrentStates do NextStates NextStates δ(q, a) CurrentStates E(NextStates) if CurrentStates F then return accept else return reject 69

70 Algoritmi SimulateNFA osoittaa, miten epädeterminismi voidaan implementoida tulkkaamalla. Algoritmi antaa myös idean, miten epädeterminismi voidaan implementoida kääntämällä : annetusta NFA:sta voidaan muodostaa DFA, joka tunnistaa saman kielen. (DFA:ta ei enää tarvitse kääntää mihinkään, sen toteutus laitteistotasolla on ilmeinen.) Havainto: muuttujan CurrentStates arvot kuuluvat potenssijoukkoon P(Q) muuttujalla CurrentStates on korkeintaan 2 Q mahdollista arvoa algoritmin vaatima muistitila on vakio (syötteen suhteen) DFA-toteutus mahdollinen. 70

71 Esitämme muunnoksen täsmällisemmin: Lause 1.3: [Sipser Thm. 1.39] Mille tahansa NFA:lle on olemassa DFA, joka tunnistaa saman kielen. Todistus: On siis annettu epädet. automaatti N = (Q, Σ, δ, q 0, F ), ja halutaan muodostaa det. automaatti M = (Q, Σ, δ, q 0, F ), jolla L(M) = L(N). Edellä esitetyn mukaisesti idea on, että yksi DFA:n tila esittää joukkoa NFA:n tiloja. Siis valitsemme Q = P(Q). Automaatin M tila annetulla hetkellä tulkitaan automaatin N mahdollisten tilojen joukoksi. Huomaa, että Q = 2 Q. Jos r Q on mahdollinen tila nykyhetkellä, seuraavaksi luetaan merkki a, ja s δ(r, a), niin s on eräs mahdollinen tila seuraavalla hetkellä. Siis jos δ (R, a) = S (missä siis R, S Q), niin joukossa S pitää olla kaikki ne tilat, jotka voivat seurata jotain joukon R tilaa merkillä a. 71

72 Esitetään sama formaalisti olettaen ensin, että automaatissa N ei ole ε-siirtymiä (eli δ(r, ε) = kaikilla r Q). Siis M = (Q, Σ, δ, q 0, F ), missä 1. Q = P(Q), 2. jos R Q ja a Σ, niin δ (R, a) = r R δ(r, a) = { s Q s δ(r, a) jollain r R, } 3. q 0 = { q 0 } ja 4. F = { R Q R F }. 72

73 Sallitaan nyt automaatissa N myös ε-siirtymät. Kuten edellä, joukko E(R) koostuu niistä tiloista, joihin pääsee jostain tilasta r R tekemällä nolla tai useampia ε-siirtymiä. Siirtymäfunktion määritelmä muutetaan muotoon δ (R, a) = r R E(δ(r, a)). Alkutilaksi asetetaan q 0 = E({ q 0 }). Konstruktion perusteella on selvää, että L(M) = L(N). Käänteinen suunta eli DFA:n muuntaminen NFA:ksi on triviaali. Siis DFA:t ja NFA:t ovat yhtä ilmaisuvoimaisia: Korollaari 1.4: [Sipser Cor. 1.40] Kieli on säännöllinen, jos ja vain jos se voidaan tunnistaa epädeterministisellä äärellisellä automaatilla. 73

74 Esimerkki 1.5: Muodostetaan DFA, joka vastaa seuraavaa NFA:ta: 0 0 a ε c 0 1 1, ε b d Koska DFA:n alkutila on a, NFA:n alkutilaksi tulee E({ q 0 }) = { a, c, d }. DFA:n tiloja ovat periaatteessa kaikki joukon { a, b, c, d } osajoukot, joita on 2 4 = 16 kappaletta. Meidän ei kuitenkaan kannata välittää tiloista, joihin ei koskaan päästä alkutilasta. Ruvetaan siis purkamaan siirtymäfunktiota alkutilasta alkaen (seur. sivu). 74

75 δ ({ a, c, d }, 0) = E(δ(a, 0) δ(c, 0) δ(d, 0)) = E({ a, b } { c } ) = { a, b, c, d } δ ({ a, c, d }, 1) = E(δ(a, 1) δ(c, 1) δ(d, 1)) = E( { d } ) = { d } δ ({ a, b, c, d }, 0) = E(δ(a, 0) δ(b, 0) δ(c, 0) δ(d, 0)) = E({ a, b } { c } ) = { a, b, c, d } δ ({ a, b, c, d }, 1) = E(δ(a, 1) δ(b, 1) δ(c, 1) δ(d, 1)) = E( { c } { d } ) = { c, d } δ ({ c, d }, 0) = E(δ(c, 0) δ(d, 0)) = E({ c } ) = { c, d } δ ({ c, d }, 1) = E(δ(c, 1) δ(d, 1)) = E({ d } ) = { d } δ ({ d }, 0) = E(δ(d, 0)) = E( ) = δ ({ d }, 1) = E(δ(d, 1)) = E( ) = Voidaan lopettaa, koska uusia tiloja ei enää löydy. (Määritelmistä seuraa, että aina δ (, a) =.) 75

76 DFA:n hyväksyviä tiloja ovat kaikki, jotka sisältävät NFA:n hyväksyvän tilan d, eli tässä tapauksessa kaikki muut kuin { a, c, d } { a, b, c, d } { c, d } 1 1 0, 1 { d } 0, 1 76

77 Epädeterminismin sovelluksia Näemme pian, että epädeterminismi yksinkertaistaa huomattavasti monia automaattikonstruktioita. Sillä on käyttöä tietojenkäsittelytieteessä laajemminkin, esim. Rinnakkaisjärjestelmät: Asynkronisessa laskennassa eri prosessorien suoritusjärjestys ei ole kontrolloitavissa. Ajattelemme siis, että suoritusjärjestys määräytyy epädeterministisesti ja vaadimme esim. että järjestelmä ei saa lukkiutua millään suoritusjärjestyksellä. Laskennan vaativuus: Monille tärkeille etsintä- ja optimointiongelmille on helppo esittää epädeterministinen ratkaisu, mutta epädeterminismin tehokas simuloiminen deterministisellä (=oikealla) tietokoneella on avoin ongelma. Vrt. edellä: NFA:n muuntaminen DFA:ksi saattaa aiheuttaa tilojen lukumäärän eksponentiaalisen kasvun. 77

78 Säännöllisten kielten sulkeumaominaisuudet [Sipser s ] Osoitamme nyt, että säännöllisten kielten joukko on suljettu yhdisteen, konkatenaation ja tähtioperaation suhteen. Toisin sanoen jos A ja B ovat säännöllisiä, niin myös A B, A B ja A ovat. Kieli on määritelmän mukaan säännöllinen, jos se voidaan tunnistaa deterministisellä äärellisellä automaatilla. Todistimme juuri (korollaari 1.4), että voimme yhtä hyvin käyttää epädeterministisiä automaatteja. Katsotaan ensin, miten tämä yksinkertaistaa jo esitetyn tapauksen A B (lause 1.1) todistusta. Lause 1.6: [Sipser Thm. 1.45] Jos A ja B ovat säännöllisiä, niin A B on. Todistus: Oletetaan siis annetuksi NFA:t N 1 ja N 2, joilla A = L(N 1 ) ja B = L(N 2 ). Muodostetaan NFA N, jolla L(N) = A B. 78

79 Konstruktion periaate on seuraava: ε N 1 ε N 2 N 79

80 Muodollisemmin olkoon N 1 = (Q 1, Σ, δ 1, q 1, F 1 ) ja N 2 = (Q 2, Σ, δ 2, q 2, F 2 ). Voidaan tietysti olettaa, että Q 1 Q 2 =. Nyt N = (Q, Σ, δ, q 0, F ), missä 1. q 0 Q 1 Q 2 on uusi tila 2. Q = { q 0 } Q 1 Q 2 3. δ toteuttaa δ(q, a) = δ 1 (q, a) kun q Q 1 ja a Σ ε δ(q, a) = δ 2 (q, a) kun q Q 2 ja a Σ ε δ(q 0, ε) = { q 1, q 2 } δ(q 0, b) = kun b ε 4. F = F 1 F 2. Selvästi N tunnistaa kielen A B. 80

81 Sovelletaan samaa ideaa konkatenaatioon. Lause 1.7: [Sipser Thm. 1.47] Jos A ja B ovat säännöllisiä, myös A B on. Todistus: Periaatepiirros on nyt seuraava: N 1 N 2 ε ε N 81

82 Muodollisesti olkoon taas A = L(N 1 ) ja B = L(N 2 ), missä N 1 = (Q 1, Σ, δ 1, q 1, F 1 ), N 2 = (Q 2, Σ, δ 2, q 2, F 2 ) ja Q 1 Q 2 =. Muodostetaan N = (Q, Σ, δ, q 0, F ), missä 1. Q = Q 1 Q 2, 2. q 0 = q 1, 3. F = F 2 ja 4. kun q Q ja a Σ ε, niin δ(q, a) on seuraava: Selvästi L(N) = A B. δ(q, a) = δ 1 (q, a) kun q Q 1 F 1 δ(q, a) = δ 1 (q, a) kun q F 1 ja a ε δ(q, ε) = δ 1 (q, ε) { q 2 } kun q F 1 δ(q, a) = δ 2 (q, a) kun q Q 2. 82

83 Vielä viimeiseksi tähtioperaatio: Lause 1.8: [Sipser Thm 1.49] Jos A on säännöllinen, niin A on. Todistus: Oletetaan taas A = L(N 1 ), ja muodostetaan N jolla L(N) = A. Periaate: ε ε N 1 N ε (Huomaa, että alkutilan vaihtaminen hyväksyväksi ei välttämättä toimisi.) 83

84 Olkoon siis N 1 = (Q 1, Σ, δ 1, q 1, F 1 ). Nyt N = (Q, Σ, δ, q 0, F ), missä 1. q 0 Q 1 on uusi tila, 2. Q = Q 1 { q 0 }, 3. F = F 1 { q 0 } ja 4. δ määritellään δ(q 0, ε) = { q 1 } δ(q 0, a) = kun a ε δ(q, a) = δ 1 (q, a) kun q Q 1 F 1 δ(q, a) = δ 1 (q, a) kun q F 1 ja a ε δ(q, ε) = δ 1 (q, ε) { q 1 } kun q F 1. Selvästi L(N) = A. 84

85 Säännölliset lausekkeet [Sipser luku 1.3] Kiinnitetään jokin aakkosto Σ. Säännöllinen lauseke on kaava, jonka arvona on jokin aakkoston Σ kieli. Kun R on säännöllinen lauseke, sen arvoa eli sen esittämää kieltä merkitään L(R). Perusajatuksena on muodostaa uusia kieliä edellä esitettyjen operaatioiden, ja avulla. Esimerkki Säännöllisen lausekkeen a(b c) esittämään kieleen kuuluvat ne merkkijonot, joiden alussa on a ja sen jälkeen nolla tai useampia b- ja c-merkkejä. Siis L(a(b c) ) = { a } ({ b, c }) = { a, ab, ac, abb, abc, acb, acc, abbb,... }. Osoitamme jatkossa, että tälla tavoin voidaan esittää (tai kuvata) tasan ne kielet, jotka voidaan tunnistaa äärellisellä automaatilla, eli säännölliset kielet (mistä nimi). 85

86 Määrittelemme säännölliset lausekkeet seuraavasti: 1. ja ε ovat säännöllisiä lausekkeita, ja L( ) = ja L(ε) = { ε }. 2. a on säännöllinen lauseke kaikilla a Σ, ja L(a) = { a }. 3. Jos R 1 ja R 2 ovat säännöllisiä lausekkeita, niin myös (R 1 R 2 ) ja (R 1 R 2 ) ovat, ja L((R 1 R 2 )) = L(R 1 ) L(R 2 ) ja L((R 1 R 2 )) = L(R 1 ) L(R 2 ). 4. Jos R on säännöllinen lauseke, niin myös (R ) on, ja L((R )) = (L(R)) ; ja 5. ei ole muita säännöllisiä lausekkeita, kuin mitä edelläolevasta seuraa. Siis säännöllinen lauseke muodostetaan lähtemällä liikkeelle peruslausekkeista, ε ja a, a Σ, ja soveltamalla yhdistettä, konkatenaatiota ja tähteä äärellinen määrä kertoja. 86

87 Yksinkertaistamme säännöllisten lausekkeiden kirjoitusasua seuraavilla konventioilla: Konkatenaatio jätetään merkitsemättä; esim. a b a kirjoitetaan aba. Operaatiot evaluoidaan presedenssijärjestyksessä tähti, konkatenaatio, yhdiste ja turhat sulut jätetään pois. Siis a bc tarkoittaa (a (b (c ))). Jos Σ = { a 1,..., a k }, niin lauseketta a 1... a k merkitään lyhyesti Σ. Lausekkeen R konkatenaatiota itsensä kanssa k kertaa merkitään R k. R... R }{{} k kertaa Lauseke RR lyhennetään R + ; siis R = ε R +. 87

88 Jos sekaannuksen vaaraa ei ole, samastamme säännöllisen lausekkeen ja sen esittämän kielen (eli kirjoitamme R vaikka tarkoitammekin L(R)). Esimerkkejä: Σ koostuu kaikista aakkoston Σ merkkijonoista ja Σ + kaikista aakkoston Σ ei-tyhjistä merkkijonoista. 1Σ esittää kaikkia ykkösellä alkavia merkkijonoja. (0(0 1) 1) (1(0 1) 0) esittää kaikkia aakkoston { 0, 1 } merkkijonoja, joiden viimeinen merkki on eri kuin ensimmäinen. R = kaikilla R, ja = ε. Operaatioilla ja on neutraalialkiot ja ε: kaikilla R pätee R = R = R R ε = ε R = R. 88

89 Säännöllisiä lausekkeita käytetään erilaisissa tekstinkäsittelytyökaluissa kuten Unixin grep. Säännölliset lausekkeet ovat myös tärkeä formalismi ohjelmointikielten syntaktisten perusalkioiden esittämisessä. Esim. jossain ohjelmointikielessä sallitut tunnukset voisivat olla muotoa kokonaislukuvakiot muotoa ja liukulukuvakiot muotoa kirjain(kirjain numero alaviiva), (ε + )numero + (ε + )(numero.numero + numero +.numero ), missä kirjain tarkoittaa a... z ja numero tarkoittaa Tätä voidaan käyttää hyväksi kääntämisen ensimmäisessä vaiheessa muodostamalla sitä varten äärellinen automaatti (kuten seuraavaksi nähdään). 89

90 Äärellisten automaattien ja säännöllisten lausekkeiden ekvivalenssi [Sipser s ] Osoitamme seuraavan keskeisen tuloksen: Lause 1.9: [Sipser Thm. 1.54] Kieli on säännöllinen, jos ja vain jos jokin säännöllinen lauseke esittää sitä. Siis säännöllisillä lausekkeilla voidaan esittää tasan ne kielet, jotka voidaan tunnistaa äärellisillä automaateilla. Todistuksen helpompi suunta on seuraava: Lemma 1.10: [Sipser Lemma 1.55] Säännöllisen lausekkeen kuvaama kieli voidaan tunnistaa äärellisellä automaatilla. Seuraavalla sivulla on esimerkkinä muodostettu säännöllistä lauseketta (abc b ) vastaava NFA. Tämä perustuu edellä esitettyihin muunnoksiin, jotka esimerkin jälkeen kokoamme Lemman 1.10 todistukseksi. 90

91 a a b b c c abc a ε b ε c b ε b ε ε a ε b ε c abc b ε ε b ε ε ε a ε b ε c (abc b ) ε ε ε ε b ε ε 91

92 Todistus: Ennen yksityiskohtiin menemistä tarkastellaan yleisesti tällaisen todistuksen luonnetta. Säännöllisen lausekeen määritelmä on induktiivinen (eli rekursiivinen). Vertaa induktiiviseen luonnollisen luvun määritelmään: 1. 0 on luonnollinen luku ja 2. jos n on luonnollinen luku, niin n + 1 on luonnollinen luku. Luonnollisten lukujen induktioperiaatteesta seuraa, että jos 1. luvulla 0 on ominaisuus P ja 2. jos luvulla n on ominaisuus P niin luvulla n + 1 on ominaisuus P niin kaikilla luonnollisilla luvuilla on ominaisuus P. Todistamme lemman suorittamalla analogisen induktion säännöllisten lausekkeiden yli. 92

93 Haluamme siis osoittaa, että kaikilla säännöllisillä lausekkeilla R kieli L(R) on säännöllinen. Teemme tämän osoittamalla, että 1. L( ) ja L(ε) ovat säännöllisiä, 2. L(a) on säännöllinen kaikilla a Σ, 3. jos L(R 1 ) ja L(R 2 ) ovat säännöllisiä, niin L(R 1 R 2 ) ja L(R 1 R 2 ) ovat säännöllisiä ja 4. jos L(R) on säännöllinen, niin L(R ) on säännöllinen. Kohdat (1) ja (2) ovat ilmeisiä: on helppoa muodostaa äärellinen automaatti tunnistamaan kieli, kieli { ε } ja kieli { a }, missä a Σ. Koska L(R 1 R 2 ) = L(R 1 ) L(R 2 ) ja L(R 1 R 2 ) = L(R 1 ) L(R 2 ), niin kohta (3) seuraa lauseista 1.6 ja 1.7. Samoin kohta (4) seuraa lauseesta

94 Säännöllisten kielten luokka on suljettu myös leikkauksen ja komplementin suhteen, joten edellä nähty todistus toimisi edelleen, jos säännöllisten lausekkeiden määritelmää laajennettaisiin leikkaus- ja komplementtioperaatioilla. Näin ei kuitenkaan tehdä paristakin syystä: Säännöllinen lauseke muunnetaan usein NFA:ksi edellä nähdyn kaltaisella konstruktiolla, joka on yksinkertainen ja jolla on useita hyödyllisiä ominaisuuksia. Esim. jokaista säännöllisen lausekkeen itsenäistä osaa kohti on automaatissa erotettavissa vastaava osa-automaatti. Leikkaukselle ja komplementille ei vastaavanlaista konstruktiota ole. (Tätä käsitellään vähän tarkemmin harjoituksissa.) Leikkaus ja komplementti ovat myös turhia operaatioita siinä mielessä, että niiden salliminen ei laajentaisi esitettävissä olevien kielten joukkoa. Jo nykyisillä operaatioilla voidaan esittää kaikki säännölliset kielet, kuten seuraavaksi osoitetaan. 94

95 Osoitetaan nyt kääntën, että mille tahansa äärelliselle automaatille M voidaan muodostaa säännöllinen lauseke R, jolle L(R) = L(M). Jos M on automaatti b a c q 1 q 2 q 3 d niin selvästi voidaan valita R = (ab c) d. Jotta voisimme hyödyntää tätä havaintoa osana monimutkaisemman automaatin analysoimista, otamme käyttöön yleistetyt NFA:t (generalized NFA, GNFA), joissa kaareen voi liittyä yksittäisen symbolin tai symbolijoukon sijasta kokonainen säännöllinen lauseke. 95

Yllä osoitettiin, että säännöllisten kielten joukko on suljettu yhdisteen

Yllä osoitettiin, että säännöllisten kielten joukko on suljettu yhdisteen Yllä osoitettiin, että säännöllisten kielten joukko on suljettu yhdisteen suhteen, eli jos kielet A ja B ovat säännöllisiä, niin myös A B on. Tätä voi havainnollistaa seuraavalla kuvalla: P(Σ ) Säännölliset

Lisätiedot

Hahmon etsiminen syotteesta (johdatteleva esimerkki)

Hahmon etsiminen syotteesta (johdatteleva esimerkki) Hahmon etsiminen syotteesta (johdatteleva esimerkki) Unix-komennolla grep hahmo [ tiedosto ] voidaan etsia hahmon esiintymia tiedostosta (tai syotevirrasta): $ grep Kisaveikot SM-tulokset.txt $ ps aux

Lisätiedot

Formalisoimme nyt edellä kuvatun laskennan.

Formalisoimme nyt edellä kuvatun laskennan. Formalisoimme nyt edellä kuvatun laskennan. Jos M = (Q, Σ, δ, q, F ) on äärellinen automaatti ja w = w... w n on n merkkiä pitkä aakkoston Σ merkkijono, niin automaatti M hyväksyy merkkijonon w, jos on

Lisätiedot

Säännöllisten kielten sulkeumaominaisuudet

Säännöllisten kielten sulkeumaominaisuudet Säännöllisten kielten sulkeumaominaisuudet Osoitamme nyt, että säännöllisten kielten joukko on suljettu yhdisteen, konkatenaation ja tähtioperaation suhteen. Toisin sanoen jos A ja B ovat säännöllisiä,

Lisätiedot

582206 Laskennan mallit

582206 Laskennan mallit 582206 Laskennan mallit luennot syksylla 2006, periodit I{II Jyrki Kivinen tietojenkasittelytieteen aineopintokurssi, 6 op, paaaineopiskelijoille pakollinen esitietoina Tietorakenteet (ja sen esitiedot)

Lisätiedot

Jos sekaannuksen vaaraa ei ole, samastamme säännöllisen lausekkeen ja sen esittämän kielen (eli kirjoitamme R vaikka tarkoitammekin L(R)).

Jos sekaannuksen vaaraa ei ole, samastamme säännöllisen lausekkeen ja sen esittämän kielen (eli kirjoitamme R vaikka tarkoitammekin L(R)). Jos sekaannuksen vaaraa ei ole, samastamme säännöllisen lausekkeen ja sen esittämän kielen (eli kirjoitamme R vaikka tarkoitammekin L(R)). Esimerkkejä: Σ koostuu kaikista aakkoston Σ merkkijonoista ja

Lisätiedot

Äärellisten automaattien ja säännöllisten kielten ekvivalenssi

Äärellisten automaattien ja säännöllisten kielten ekvivalenssi Äärellisten automaattien ja säännöllisten kielten ekvivalenssi Osoitamme seuraavan keskeisen tuloksen: Lause 1.8: [Sipser Thm. 1.54] Kieli on säännöllinen, jos ja vain jos jokin säännöllinen lauseke esittää

Lisätiedot

Laskennan mallit

Laskennan mallit 582206 Laskennan mallit luennot syksyllä 2010, periodit I II Jyrki Kivinen tietojenkäsittelytieteen aineopintokurssi, 6 op, pääaineopiskelijoille pakollinen esitietoina Tietorakenteet (ja sen esitiedot)

Lisätiedot

Laskennan mallit

Laskennan mallit 582206 Laskennan mallit luennot syksyllä 2011, periodit I II Jyrki Kivinen tietojenkäsittelytieteen aineopintokurssi, 6 op, pääaineopiskelijoille pakollinen esitietoina Tietorakenteet (ja sen esitiedot)

Lisätiedot

Laskennan mallit. luennot syksyllä 2018, periodi I Jyrki Kivinen. tietojenkäsittelytieteen aineopintokurssi, pääaineopiskelijoille pakollinen

Laskennan mallit. luennot syksyllä 2018, periodi I Jyrki Kivinen. tietojenkäsittelytieteen aineopintokurssi, pääaineopiskelijoille pakollinen Laskennan mallit luennot syksyllä 2018, periodi I Jyrki Kivinen tietojenkäsittelytieteen aineopintokurssi, pääaineopiskelijoille pakollinen laajuus 5 op (korvaa vanhan samannimisen 8 op:n kurssin) esitietoina

Lisätiedot

Laskennan mallit

Laskennan mallit 582206 Laskennan mallit luennot syksyllä 2007, periodit I II Jyrki Kivinen tietojenkäsittelytieteen aineopintokurssi, 6 op, pääaineopiskelijoille pakollinen esitietoina Tietorakenteet (ja sen esitiedot)

Lisätiedot

Laskennan mallit

Laskennan mallit 582206 Laskennan mallit luennot syksyllä 2008, periodit I II Jyrki Kivinen tietojenkäsittelytieteen aineopintokurssi, 6 op, pääaineopiskelijoille pakollinen esitietoina Tietorakenteet (ja sen esitiedot)

Lisätiedot

Kertausta 1. kurssikokeeseen

Kertausta 1. kurssikokeeseen Kertausta. kurssikokeeseen. kurssikoe on to 22.0. klo 9 2 salissa A (tai CK2). Koealueena johdanto ja säännölliset kielet luentokalvot 3 ja nämä kertauskalvot harjoitukset 6 Sipser, luvut 0 ja Edellisvuosien.

Lisätiedot

Laskennan mallit (syksy 2010) Harjoitus 4, ratkaisuja

Laskennan mallit (syksy 2010) Harjoitus 4, ratkaisuja 582206 Laskennan mallit (syksy 2010) Harjoitus 4, ratkaisuja 1. Esitä tilakaaviona NFA N = (Q, Σ, δ, q 0, F ), missä Q = { q 0, q 1, q 2, q 3, q 4, q 5, q 6, q 7 }, Σ = { a, b, c }, F = { q 4 } ja δ on

Lisätiedot

Yhteydettömän kieliopin jäsennysongelma

Yhteydettömän kieliopin jäsennysongelma Yhteydettömän kieliopin jäsennysongelma Yhteydettömän kieliopin jäsennysongelmalla tarkoitetaan laskentaongelmaa Annettu: yhteydetön kielioppi G, merkkijono w Kysymys: päteekö w L(G). Ongelma voidaan periaatteessa

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 19. syyskuuta 2016

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 19. syyskuuta 2016 TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. syyskuuta 2016 Sisällys Neuvoja opintoihin tee joka päivä ainakin vähän uskalla mennä epämukavuusalueelle en

Lisätiedot

Automaatit. Muodolliset kielet

Automaatit. Muodolliset kielet Automaatit Automaatit ovat teoreettisia koneita, jotka käsittelevät muodollisia sanoja. Automaatti lukee muodollisen sanan kirjain kerrallaan, vasemmalta oikealle, ja joko hyväksyy tai hylkää sanan. Täten

Lisätiedot

Testaa: Vertaa pinon merkkijono syötteeseen merkki kerrallaan. Jos löytyy ero, hylkää. Jos pino tyhjenee samaan aikaan, kun syöte loppuu, niin

Testaa: Vertaa pinon merkkijono syötteeseen merkki kerrallaan. Jos löytyy ero, hylkää. Jos pino tyhjenee samaan aikaan, kun syöte loppuu, niin Yhteydettömien kielioppien ja pinoautomaattien yhteys [Sipser s. 117 124] Todistamme, että yhteydettömien kielioppien tuottamat kielet ovat tasan samat kuin ne, jotka voidaan tunnistaa pinoautomaatilla.

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. marraskuuta 2015

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. marraskuuta 2015 TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. marraskuuta 2015 Sisällys Muistathan A B -konstruktion 0 k 1 i 2 s 3 s 4 a 5 0 k 1 o 2 i 3 r 4 a 5 00 k 11 i

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 31. maaliskuuta 2011 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti

Lisätiedot

Tarkastelemme ensin konkreettista esimerkkiä ja johdamme sitten yleisen säännön, joilla voidaan tietyissä tapauksissa todeta kielen ei-säännöllisyys.

Tarkastelemme ensin konkreettista esimerkkiä ja johdamme sitten yleisen säännön, joilla voidaan tietyissä tapauksissa todeta kielen ei-säännöllisyys. Ei-säännöllisiä kieliä [Sipser luku 1.4] Osoitamme, että joitain kieliä ei voi tunnistaa äärellisellä automaatilla. Tulos ei sinänsä ole erityisen yllättävä, koska äärellinen automaatti on äärimmäisen

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 5. marraskuuta 2015

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 5. marraskuuta 2015 TIEA24 Automaatit ja kieliopit, syksy 205 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 5. marraskuuta 205 Sisällys Käsiteanalyysiä Tarkastellaan koodilukkoa äärellisenä automaattina. Deterministinen äärellinen

Lisätiedot

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 22. toukokuuta 2013

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 22. toukokuuta 2013 TIEA24 Automaatit ja kieliopit, kesä 3 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 22. toukokuuta 3 Sisällys Äärellisiä automaatteja ON PUSH PUSH OFF Q T J Q C C H S C,Q C,Q 0 40 60 80 00, 70 90 Deterministinen

Lisätiedot

Turingin koneen laajennuksia

Turingin koneen laajennuksia Turingin koneen laajennuksia Turingin koneen määritelmään voidaan tehdä erilaisia muutoksia siten että edelleen voidaan tunnistaa tasan sama luokka kieliä. Moniuraiset Turingin koneet: nauha jakautuu k

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 16. marraskuuta 2015

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 16. marraskuuta 2015 ja ja TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho NFA:ksi TIETOTEKNIIKAN LAITOS 16. marraskuuta 2015 Sisällys ja NFA:ksi NFA:ksi Kohti säännöllisiä lausekkeita ja Nämä tiedetään:

Lisätiedot

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 29. toukokuuta 2013

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 29. toukokuuta 2013 TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 29. toukokuuta 2013 Sisällys Chomskyn hierarkia (ja muutakin) kieli LL(k) LR(1) kontekstiton kontekstinen rekursiivisesti

Lisätiedot

Säännölliset kielet. Sisällys. Säännölliset kielet. Säännölliset operaattorit. Säännölliset kielet

Säännölliset kielet. Sisällys. Säännölliset kielet. Säännölliset operaattorit. Säännölliset kielet TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 24. toukokuuta 2013 Sisällys Formaalit kielet On tapana sanoa, että merkkijonojen joukko on (formaali) kieli. Hieman

Lisätiedot

Laskennan mallit

Laskennan mallit 582206 Laskennan mallit luennot syksyllä 2006, periodit I II Jyrki Kivinen tietojenkäsittelytieteen aineopintokurssi, 6 op, pääaineopiskelijoille pakollinen esitietoina Tietorakenteet (ja sen esitiedot)

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 12. tammikuuta 2012

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 12. tammikuuta 2012 TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. tammikuuta 2012 Sisällys Sisällys Äärellisiä automaatteja PUSH ON PUSH OFF Q T Q J C C H S C,Q C,Q 0 50s 1e

Lisätiedot

(0 1) 010(0 1) Koska kieli on yksinkertainen, muodostetaan sen tunnistava epädeterministinen q 0 q 1 q 2 q3

(0 1) 010(0 1) Koska kieli on yksinkertainen, muodostetaan sen tunnistava epädeterministinen q 0 q 1 q 2 q3 T-79.48 Tietojenkäsittelyteorian perusteet Tentti 25..23 mallivastaukset. Tehtävä: Kuvaa seuraavat kielet sekä säännölisten lausekkeiden että determinististen äärellisten automaattien avulla: (a) L = {w

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 19. tammikuuta 2012

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 19. tammikuuta 2012 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. tammikuuta 2012 Sisällys Sisällys Muistathan A B -konstruktion 0 k 1 i 2 s 3 s 4 a 5 0 k 1 o 2 i 3 r 4

Lisätiedot

Rekursiivinen Derives on periaatteessa aivan toimiva algoritmi, mutta erittäin tehoton. Jos tarkastellaan esim. kieliopinpätkää

Rekursiivinen Derives on periaatteessa aivan toimiva algoritmi, mutta erittäin tehoton. Jos tarkastellaan esim. kieliopinpätkää Rekursiivinen Derives on periaatteessa aivan toimiva algoritmi, mutta erittäin tehoton. Jos tarkastellaan esim. kieliopinpätkää S AB CA... A CB...... ja kutsua Derives(S, abcde), niin kutsu Derives(B,

Lisätiedot

Lisää pysähtymisaiheisia ongelmia

Lisää pysähtymisaiheisia ongelmia Lisää pysähtymisaiheisia ongelmia Lause: Pysähtymättömyysongelma H missä H = { w111x w validi koodi, M w ei pysähdy syötteellä x } ei ole rekursiivisesti lueteltava. Todistus: Pysähtymisongelman komplementti

Lisätiedot

1. Universaaleja laskennan malleja

1. Universaaleja laskennan malleja 1. Universaaleja laskennan malleja Laskenta datan käsittely annettuja sääntöjä täsmällisesti seuraamalla kahden kokonaisluvun kertolasku tietokoneella, tai kynällä ja paperilla: selvästi laskentaa entä

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2000 Tietojenkäsittelyteoria Kevät 206 Kierros 0, 2. 24. maaliskuuta Huom! Perjantaina 25. maaliskuuta ei ole laskareita (pitkäperjantai), käykää vapaasti valitsemassanne ryhmässä aiemmin viikolla.

Lisätiedot

uv n, v 1, ja uv i w A kaikilla

uv n, v 1, ja uv i w A kaikilla 2.8 Säännöllisten kielten rajoituksista Kardinaliteettisyistä on oltava olemassa (paljon) ei-säännöllisiä kieliä: kieliä on ylinumeroituva määrä, säännöllisiä lausekkeita vain numeroituvasti. Voidaanko

Lisätiedot

vaihtoehtoja TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho 13. lokakuuta 2016 TIETOTEKNIIKAN LAITOS

vaihtoehtoja TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho 13. lokakuuta 2016 TIETOTEKNIIKAN LAITOS TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 13. lokakuuta 2016 Sisällys Harjoitustehtävätilastoa Tilanne 13.10.2016 klo 9:42 passed waiting redo submitters

Lisätiedot

Pysähtymisongelman ratkeavuus [Sipser luku 4.2]

Pysähtymisongelman ratkeavuus [Sipser luku 4.2] Pysähtymisongelman ratkeavuus [Sipser luku 4.2] Osoitamme nyt vihdoin, että jotkin Turing-tunnistettavat kielet ovat ratkeamattomia ja jotkin kielet eivät ole edes Turing-tunnistettavia. Lisäksi toteamme,

Lisätiedot

Rekursiiviset palautukset [HMU 9.3.1]

Rekursiiviset palautukset [HMU 9.3.1] Rekursiiviset palautukset [HMU 9.3.1] Yleisesti sanomme, että ongelma P voidaan palauttaa ongelmaan Q, jos mistä tahansa ongelmalle Q annetusta ratkaisualgoritmista voidaan jotenkin muodostaa ongelmalle

Lisätiedot

Epädeterministisen Turingin koneen N laskentaa syötteellä x on usein hyödyllistä ajatella laskentapuuna

Epädeterministisen Turingin koneen N laskentaa syötteellä x on usein hyödyllistä ajatella laskentapuuna Epädeterministisen Turingin koneen N laskentaa syötteellä x on usein hyödyllistä ajatella laskentapuuna. q 0 x solmuina laskennan mahdolliset tilanteet juurena alkutilanne lehtinä tilanteet joista ei siirtymää,

Lisätiedot

DFA:n käyttäytyminen ja säännölliset kielet

DFA:n käyttäytyminen ja säännölliset kielet säännölliset kielet TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 9. marraskuuta 2015 Sisällys toiminta formaalisti Olkoon M = (Q, Σ, δ, q 0, F) deterministinen

Lisätiedot

TKT20005 Laskennan mallit (syksy 2018) Kurssikoe, malliratkaisut

TKT20005 Laskennan mallit (syksy 2018) Kurssikoe, malliratkaisut TKT20005 Laskennan mallit (syksy 2018) Kurssikoe, malliratkaisut Pisteytys on ilmoitettu välikoevaihtoehdon mukaan (joko tehtävät 1, 2 ja 3 välikokeen 1 uusintana tai tehtävät 4, 5 ja 6 välikokeen 2 uusintana).

Lisätiedot

Täydentäviä muistiinpanoja Turingin koneiden vaihtoehdoista

Täydentäviä muistiinpanoja Turingin koneiden vaihtoehdoista Täydentäviä muistiinpanoja Turingin koneiden vaihtoehdoista Antti-Juhani Kaijanaho 15. maaliskuuta 2012 1 Apumääritelmä Määritelmä 1. Olkoon Σ merkistö, jolla on olemassa täydellinen järjestys ( ) Σ 2.

Lisätiedot

Algoritmin määritelmä [Sipser luku 3.3]

Algoritmin määritelmä [Sipser luku 3.3] Algoritmin määritelmä [Sipser luku 3.3] Mitä algoritmilla yleensä tarkoitetaan periaatteessa: yksiselitteisesti kuvattu jono (tietojenkäsittely)operaatioita, jotka voidaan toteuttaa mekaanisesti käytännössä:

Lisätiedot

Äärellisten automaattien ja säännöllisten lausekkeiden minimointi

Äärellisten automaattien ja säännöllisten lausekkeiden minimointi Äärellisten automaattien ja säännöllisten lausekkeiden minimointi Timi Suominen, Riia Ohtamaa ja Pessi Moilanen Helsinki..01 HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Äärellisten automaattien

Lisätiedot

Vasen johto S AB ab ab esittää jäsennyspuun kasvattamista vasemmalta alkaen:

Vasen johto S AB ab ab esittää jäsennyspuun kasvattamista vasemmalta alkaen: Vasen johto S AB ab ab esittää jäsennyspuun kasvattamista vasemmalta alkaen: S A S B Samaan jäsennyspuuhun päästään myös johdolla S AB Ab ab: S A S B Yhteen jäsennyspuuhun liittyy aina tasan yksi vasen

Lisätiedot

Chomskyn hierarkia ja yhteysherkät kieliopit

Chomskyn hierarkia ja yhteysherkät kieliopit Chomskyn hierarkia ja yhteysherkät kieliopit Laskennan teorian opintopiiri Tuomas Hakoniemi 21. helmikuuta 2014 Käsittelen tässä laskennan teorian opintopiirin harjoitustyössäni muodollisten kielioppien

Lisätiedot

Säännöllisten operaattoreiden täydentäviä muistiinpanoja

Säännöllisten operaattoreiden täydentäviä muistiinpanoja Säännöllisten operttoreiden täydentäviä muistiinpnoj Antti-Juhni Kijnho 1. huhtikuut 2011 Vnht määritelmät Määritelmä 1. Äärellinen epätyhjä joukko on merkistö, j sen lkioit kutsutn merkeiksi. Määritelmä

Lisätiedot

Pinoautomaatit. TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 6. kesäkuuta 2013 TIETOTEKNIIKAN LAITOS. Pinoautomaatit.

Pinoautomaatit. TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 6. kesäkuuta 2013 TIETOTEKNIIKAN LAITOS. Pinoautomaatit. TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 6. kesäkuuta 2013 Sisällys Aikataulumuutos Tämänpäiväinen demotilaisuus on siirretty maanantaille klo 14:15 (Ag Delta).

Lisätiedot

Laskennan teoria

Laskennan teoria 581336-0 Laskennan teoria luennot syyslukukaudella 2003 Jyrki Kivinen tietojenkäsittelytieteen laudatur-kurssi, 3 ov pakollinen tietojenkäsittelytieteen suuntautumisvaihtoehdossa esitiedot käytännössä

Lisätiedot

Täydentäviä muistiinpanoja laskennan rajoista

Täydentäviä muistiinpanoja laskennan rajoista Täydentäviä muistiinpanoja laskennan rajoista Antti-Juhani Kaijanaho 10. joulukuuta 2015 1 Diagonaalikieli Diagonaalikieli on D = { k {0, 1} k L(M k ) }. Lause 1. Päätösongelma Onko k {0, 1} sellaisen

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 26. tammikuuta 2012

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 26. tammikuuta 2012 TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 26. tammikuuta 2012 Sisällys Luennon pähkinä Millä tavalla voidaan rakentaa tietokoneohjelma (tai kirjasto), joka

Lisätiedot

Tietojenkäsittelyteorian alkeet, osa 2

Tietojenkäsittelyteorian alkeet, osa 2 TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. syyskuuta 2016 Sisällys vs Ovat eri asioita! Älä sekoita niitä. Funktiot Funktio f luokasta A luokkaan B, merkitään

Lisätiedot

Rekursiolause. Laskennan teorian opintopiiri. Sebastian Björkqvist. 23. helmikuuta Tiivistelmä

Rekursiolause. Laskennan teorian opintopiiri. Sebastian Björkqvist. 23. helmikuuta Tiivistelmä Rekursiolause Laskennan teorian opintopiiri Sebastian Björkqvist 23. helmikuuta 2014 Tiivistelmä Työssä käydään läpi itsereplikoituvien ohjelmien toimintaa sekä esitetään ja todistetaan rekursiolause,

Lisätiedot

Esimerkki 2.28: Tarkastellaan edellisen sivun ehdot (1) (3) toteuttavaa pinoautomaattia, jossa päätemerkit ovat a, b ja c ja pinoaakkoset d, e ja $:

Esimerkki 2.28: Tarkastellaan edellisen sivun ehdot (1) (3) toteuttavaa pinoautomaattia, jossa päätemerkit ovat a, b ja c ja pinoaakkoset d, e ja $: Esimerkki 2.28: Tarkastellaan edellisen sivun ehdot (1) (3) toteuttavaa pinoautomaattia, jossa päätemerkit ovat a, b ja c ja pinoaakkoset d, e ja $: a, ε d b, d ε ε, ε $ b, d ε 1 2 3 6 c, ε e c, ε e c,

Lisätiedot

M =(K, Σ, Γ,, s, F ) Σ ={a, b} Γ ={c, d} = {( (s, a, e), (s, cd) ), ( (s, e, e), (f, e) ), (f, e, d), (f, e)

M =(K, Σ, Γ,, s, F ) Σ ={a, b} Γ ={c, d} = {( (s, a, e), (s, cd) ), ( (s, e, e), (f, e) ), (f, e, d), (f, e) Tik-79.148 Kevät 2001 Tietojenkäsittelyteorian perusteet Laskuharjoitus 7 Demonstraatiotehtävien ratkaisut 1. Pinoautomaatti M = K Σ Γ s F missä K Σ s ja F on määritelty samalla tavalla kuin tilakoneellekin.

Lisätiedot

Pinoautomaatit. Pois kontekstittomuudesta

Pinoautomaatit. Pois kontekstittomuudesta TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 3. joulukuuta 2015 Sisällys Pinoautomaatti NFA:n yleistys automaatilla on käytössään LIFO-muisti 1 eli pino Pino

Lisätiedot

Rajoittamattomat kieliopit

Rajoittamattomat kieliopit Rajoittamattomat kieliopit Ohjelmoinnin ja laskennan perusmalleista muistetaan, että kieli voidaan kuvata (esim.) kieliopilla joka tuottaa sen, tai automaatilla joka tunnistaa sen. säännölliset lausekkeet

Lisätiedot

Turingin koneet. Sisällys. Aluksi. Turingin koneet. Turingin teesi. Aluksi. Turingin koneet. Turingin teesi

Turingin koneet. Sisällys. Aluksi. Turingin koneet. Turingin teesi. Aluksi. Turingin koneet. Turingin teesi TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 17. kesäkuuta 2013 Sisällys Chomskyn hierarkia (ja vähän muutakin) kieli säännöllinen LL(k) LR(1) kontekstiton kontekstinen

Lisätiedot

Esimerkkejä polynomisista ja ei-polynomisista ongelmista

Esimerkkejä polynomisista ja ei-polynomisista ongelmista Esimerkkejä polynomisista ja ei-polynomisista ongelmista Ennen yleisempiä teoriatarkasteluja katsotaan joitain tyypillisiä esimerkkejä ongelmista ja niiden vaativuudesta kaikki nämä ongelmat ratkeavia

Lisätiedot

Laskennan mallit (syksy 2009) Harjoitus 11, ratkaisuja

Laskennan mallit (syksy 2009) Harjoitus 11, ratkaisuja 582206 Laskennan mallit (syksy 2009) Harjoitus 11, ratkaisuja 1. Seuraavissa laskennoissa tilat on numeroitu sarakkeittain ylhäältä alas jättäen kuitenkin hyväksyvä tila välistä. Turingin koneen laskenta

Lisätiedot

Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia, niin A on rekursiivinen.

Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia, niin A on rekursiivinen. Lause: Tyhjyysongelma ei ole osittain ratkeava; ts. kieli ei ole rekursiivisesti lueteltava. L e = { w { 0, 1 } L(M w ) = } Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia,

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 31. maaliskuuta 2011 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti

Lisätiedot

Ei-yhteydettömät kielet [Sipser luku 2.3]

Ei-yhteydettömät kielet [Sipser luku 2.3] Ei-yhteydettömät kielet [Sipser luku 2.3] Yhteydettömille kielille pätee samantapainen pumppauslemma kuin säännöllisille kielille. Siinä kuitenkin pumpataan kahta osamerkkijonoa samaan tahtiin. Lause 2.25

Lisätiedot

Laskennan teoria

Laskennan teoria 581336-0 Laskennan teoria luennot syyslukukaudella 2004 Jyrki Kivinen tietojenkäsittelytieteen laudatur-kurssi, 3 ov pakollinen tietojenkäsittelytieteen suuntautumisvaihtoehdossa, opettajan suuntautumisvaihtoehdossa

Lisätiedot

8. Kieliopit ja kielet

8. Kieliopit ja kielet 8. Kieliopit ja kielet Suomen kielen sanoja voidaan yhdistellä monella eri tavalla. Kielioppi määrää sen, milloin sanojen yhdistely antaa oikein muodostetun lauseen. "Mies räpyttää siipiään" on kieliopillisesti

Lisätiedot

Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja

Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja 581336 Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja 1. S! axc X! axc X! by c Y! by c Y! " 2. (a) Tehtävänä on konstruoida rajoittamaton kielioppi, joka tuottaa kielen f0 n 1 n jn 1g. Vaihe1: alkutilanteen

Lisätiedot

5.3 Ratkeavia ongelmia

5.3 Ratkeavia ongelmia 153 5.3 Ratkeavia ongelmia Deterministisen äärellisten automaattien (DFA) hyväksymisongelma: hyväksyykö annettu automaatti B merkkijonon w? Ongelmaa vastaava formaali kieli on A DFA = { B, w B on DFA,

Lisätiedot

M = (Q, Σ, Γ, δ, q 0, q acc, q rej )

M = (Q, Σ, Γ, δ, q 0, q acc, q rej ) 6. LASKETTAVUUSTEORIAA Churchin Turingin teesi: Mielivaltainen (riittävän vahva) laskulaite Turingin kone. Laskettavuusteoria: Tarkastellaan mitä Turingin koneilla voi ja erityisesti mitä ei voi laskea.

Lisätiedot

4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi:

4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi: T-79.148 Kevät 2004 Tietojenkäsittelyteorian perusteet Harjoitus 12 Demonstraatiotehtävien ratkaisut 4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi: Hyväksyykö annettu Turingin kone

Lisätiedot

S BAB ABA A aas bba B bbs c

S BAB ABA A aas bba B bbs c T-79.148 Kevät 2003 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut 4. Tehtävä: Laadi algoritmi, joka testaa onko annetun yhteydettömän kieliopin G = V, Σ, P, S) tuottama

Lisätiedot

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 10. joulukuuta 2015 TIETOTEKNIIKAN LAITOS.

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 10. joulukuuta 2015 TIETOTEKNIIKAN LAITOS. TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 10. joulukuuta 2015 Sisällys TM vs yleiset kieliopit Lause Jokaiselle kielelle A seuraavat ovat yhtäpitävät: 1.

Lisätiedot

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut T-79.148 Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut 4. Tehtävä: Laadi algoritmi, joka testaa onko annetun yhteydettömän kieliopin G = V, Σ, P, S tuottama

Lisätiedot

3. Laskennan vaativuusteoriaa

3. Laskennan vaativuusteoriaa 3. Laskennan vaativuusteoriaa tähän asti puhuttu siitä, mitä on mahdollista laskea äärellisessä ajassa siirrytään tarkastelemaan laskemista kohtuullisessa ajassa vaihtoehtoisesti voidaan laskenta-ajan

Lisätiedot

Se mistä tilasta aloitetaan, merkitään tyhjästä tulevalla nuolella. Yllä olevassa esimerkissä aloitustila on A.

Se mistä tilasta aloitetaan, merkitään tyhjästä tulevalla nuolella. Yllä olevassa esimerkissä aloitustila on A. Tehtävä. Tämä tehtävä on aineistotehtävä, jossa esitetään ensin tehtävän teoria. Sen jälkeen esitetään neljä kysymystä, joissa tätä teoriaa pitää soveltaa. Mitään aikaisempaa tehtävän aihepiirin tuntemusta

Lisätiedot

Osoitamme, että jotkut kielet eivät ole säännöllisiä eli niitä ei voi tunnistaa äärellisellä automaatilla.

Osoitamme, että jotkut kielet eivät ole säännöllisiä eli niitä ei voi tunnistaa äärellisellä automaatilla. Ei-säännöllisiä kieliä [Sipser luku 1.4] Osoitamme, että jotkut kielet eivät ole säännöllisiä eli niitä ei voi tunnistaa äärellisellä automaatilla. Tulos ei sinänsä ole erityisen yllättävä, koska äärellinen

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. lokakuuta 2016

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. lokakuuta 2016 ja ja TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. lokakuuta 2016 Sisällys ja ja Vuosi on 1936, eikä tietokoneita ollut. Computer oli ammattinimike. http://www.nasa.gov/centers/dryden/

Lisätiedot

Pinoautomaatit. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 6. lokakuuta 2016 TIETOTEKNIIKAN LAITOS

Pinoautomaatit. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 6. lokakuuta 2016 TIETOTEKNIIKAN LAITOS .. TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 6. lokakuuta 2016 Sisällys. Harjoitustehtävätilastoja Tilanne 6.10.2016 klo 8:28 passed potential redo submitters

Lisätiedot

Tietotekniikan valintakoe

Tietotekniikan valintakoe Jyväskylän yliopisto Tietotekniikan laitos Tietotekniikan valintakoe 2..22 Vastaa kahteen seuraavista kolmesta tehtävästä. Kukin tehtävä arvostellaan kokonaislukuasteikolla - 25. Jos vastaat useampaan

Lisätiedot

1. Universaaleja laskennan malleja

1. Universaaleja laskennan malleja 1. Universaaleja laskennan malleja Esimerkkinä universaalista laskennan mallista tarkastellaan Turingin konetta muunnelmineen. Lyhyesti esitellään myös muita malleja. Tämän luvun jälkeen opiskelija tuntee

Lisätiedot

Säännöllisen kielen tunnistavat Turingin koneet

Säännöllisen kielen tunnistavat Turingin koneet 186 Säännöllisen kielen tunnistavat Turingin koneet Myös säännöllisen kielen hyväksyvien Turingin koneiden tunnistaminen voidaan osoittaa ratkeamattomaksi palauttamalla universaalikielen tunnistaminen

Lisätiedot

Laskennan rajoja. Sisällys. Meta. Palataan torstaihin. Ratkeavuus. Meta. Universaalikoneet. Palataan torstaihin. Ratkeavuus.

Laskennan rajoja. Sisällys. Meta. Palataan torstaihin. Ratkeavuus. Meta. Universaalikoneet. Palataan torstaihin. Ratkeavuus. TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 17. lokakuuta 2016 Sisällys Harjoitustehtävätilastoa Tilanne 17.10.2016 klo 15:07 passed waiting redo submitters

Lisätiedot

Kielenä ilmaisten Hilbertin kymmenes ongelma on D = { p p on polynomi, jolla on kokonaislukujuuri }

Kielenä ilmaisten Hilbertin kymmenes ongelma on D = { p p on polynomi, jolla on kokonaislukujuuri } 135 4.3 Algoritmeista Churchin ja Turingin formuloinnit laskennalle syntyivät Hilbertin vuonna 1900 esittämän kymmenennen ongelman seurauksena Oleellisesti Hilbert pyysi algoritmia polynomin kokonaislukujuuren

Lisätiedot

on rekursiivisesti numeroituva, mutta ei rekursiivinen.

on rekursiivisesti numeroituva, mutta ei rekursiivinen. 6.5 Turingin koneiden pysähtymisongelma Lause 6.9 Kieli H = { M pysähtyy syötteellä w} on rekursiivisesti numeroituva, mutta ei rekursiivinen. Todistus. Todetaan ensin, että kieli H on rekursiivisesti

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria. Tähän mennessä: säännölliset kielet. Säännöllisten kielten pumppauslemma M :=

ICS-C2000 Tietojenkäsittelyteoria. Tähän mennessä: säännölliset kielet. Säännöllisten kielten pumppauslemma M := ICS-C2000 Tietojenkäsittelyteoria Luento 5: Säännöllisten kielten pumppauslemma; yhteydettömät kieliopit Aalto-yliopisto Perustieteiden korkeakoulu Tietotekniikan laitos Alue ja aiheet: Orposen prujun

Lisätiedot

Automaattiteoria diskreetin signaalinkäsittelyn perusmallit ja -menetelmät ( diskreettien I/O-kuvausten yleinen teoria)

Automaattiteoria diskreetin signaalinkäsittelyn perusmallit ja -menetelmät ( diskreettien I/O-kuvausten yleinen teoria) 1.6 Aakkostot, merkkijonot ja kielet Automaattiteoria diskreetin signaalinkäsittelyn perusmallit ja -menetelmät ( diskreettien I/O-kuvausten yleinen teoria) 1011 Input Automaton Output Automaatin käsite

Lisätiedot

Vaihtoehtoinen tapa määritellä funktioita f : N R on

Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot

Lisätiedot

Laskennan mallit (syksy 2008) 2. kurssikoe , ratkaisuja

Laskennan mallit (syksy 2008) 2. kurssikoe , ratkaisuja 582206 Laskennan mallit (syksy 2008) 2. kurssikoe 11.12., ratkaisuja Tehtävän 1 tarkasti Harri Forsgren, tehtävän 2 Joel Kaasinen ja tehtävän 3 Jyrki Kivinen. Palautetilaisuuden 19.12. jälkeen arvosteluun

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 8. maaliskuuta 2012

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 8. maaliskuuta 2012 TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 8. maaliskuuta 2012 Sisällys Ongelma-analyysiä Sisällys Ongelma-analyysiä Hypoteettinen ongelma The Elite Bugbusters

Lisätiedot

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: Rekursio Funktio f : N R määritellään yleensä

Lisätiedot

δ : (Q {q acc, q rej }) (Γ k {, }) Q (Γ k {, }) {L, R}.

δ : (Q {q acc, q rej }) (Γ k {, }) Q (Γ k {, }) {L, R}. 42 Turingin koneiden laajennuksia 1 oniuraiset koneet Sallitaan, että Turingin koneen nauha koostuu k:sta rinnakkaisesta urasta, jotka kaikki kone lukee ja kirjoittaa yhdessä laskenta-askelessa: Koneen

Lisätiedot

2. Laskettavuusteoriaa

2. Laskettavuusteoriaa 2. Laskettavuusteoriaa Käymme läpi ratkeamattomuuteen liittyviä ja perustuloksia ja -tekniikoita [HMU luku 9]. Tämän luvun jälkeen opiskelija tuntee joukon keskeisiä ratkeamattomuustuloksia osaa esittää

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 9. lokakuuta 2016

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 9. lokakuuta 2016 TIEA24 Automaatit ja kieliopit, syksy 206 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 9. lokakuuta 206 Sisällys Kolme laskennan mallia kuvitteellisia (abstrakteja) koneita eli automaatteja lukevat syötteen

Lisätiedot

Output. Input Automaton

Output. Input Automaton 16 Aakkostot, merkkijonot ja kielet Automaattiteoria diskreetin signaalinkäsittelyn perusmallit ja -menetelmät ( diskreettien I/O-kuvausten yleinen teoria) 1011 Input Automaton Output Automaatin käsite

Lisätiedot

ongelma A voidaan ratkaista ongelman B avulla, joten jossain mielessä

ongelma A voidaan ratkaista ongelman B avulla, joten jossain mielessä Edellä esitetyt kielten A TM ja HALT TM ratkeamattomuustodistukset ovat esimerkkejä palautuksesta (reduction). Intuitiivisesti ongelman A palauttaminen ongelmaan B tarkoittaa, että Oletetaan, että meillä

Lisätiedot

9.5. Turingin kone. Turingin koneen ohjeet. Turingin kone on järjestetty seitsikko

9.5. Turingin kone. Turingin koneen ohjeet. Turingin kone on järjestetty seitsikko 9.5. Turingin kone Turingin kone on järjestetty seitsikko TM = (S, I, Γ, O, B, s 0, H), missä S on tilojen joukko, I on syöttöaakkosto, Γ on nauha-aakkosto, I Γ, O on äärellinen ohjeiden joukko, O S Γ

Lisätiedot

Muita vaativuusluokkia

Muita vaativuusluokkia Muita vaativuusluokkia Käydään lyhyesti läpi tärkeimpiä vaativuusluokkiin liittyviä tuloksia. Monet tunnetuista tuloksista ovat vaikeita todistaa, ja monet kysymykset ovat vielä auki. Lause (Ladner 1975):

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria

ICS-C2000 Tietojenkäsittelyteoria ICS-C2000 Tietojenkäsittelyteoria Luento 5: Säännöllisten kielten pumppauslemma; yhteydettömät kieliopit Aalto-yliopisto Perustieteiden korkeakoulu Tietotekniikan laitos Kevät 2016 Alue ja aiheet: Orposen

Lisätiedot

Rajoittamattomat kieliopit (Unrestricted Grammars)

Rajoittamattomat kieliopit (Unrestricted Grammars) Rajoittamattomat kieliopit (Unrestricted Grammars) Laura Pesola Laskennanteorian opintopiiri 13.2.2013 Formaalit kieliopit Sisältävät aina Säännöt (esim. A -> B C abc) Muuttujat (A, B, C, S) Aloitussymboli

Lisätiedot

815338A Ohjelmointikielten periaatteet Harjoitus 6 Vastaukset

815338A Ohjelmointikielten periaatteet Harjoitus 6 Vastaukset 815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 6 Vastaukset Harjoituksen aiheena on funktionaalinen ohjelmointi Scheme- ja Haskell-kielillä. Voit suorittaa ohjelmat osoitteessa https://ideone.com/

Lisätiedot