Linkkikerros, osa 2: layer-2 verkot
|
|
- Annika Palo
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Linkkikerros, osa 2: layer-2 verkot CSE-C2400 Tietokoneverkot Matti Siekkinen Osa sisällöstä adaptoitu seuraavista lähteistä: J.F. Kurose and K.W. Ross: Computer Networking: A Top-Down Approach 6th ed. -kirjan lisämateriaali
2 Viime luennolla Periaatteet datalinkki kerroksen palveluissa: virheiden havainnointi, korjaus usein epäluotettava palvelu (Ethernet), joskus luotettava (Wi-Fi) Monipääsyprotokollia tarvitaan jaetuissa kanavissa Kanavan osittaminen (matkapuh.verkot), satunnaispääsy (Ethernet ja Wi-Fi), vuorottelu MAC osoitteet Uniikkeja, ei vaihdu kuten IP osoitteet ARP: IP à MAC osoitteenhaku Ethernet Yleisin langallinen lähiverkkoteknologia IEEE standardi, erilaisia versioita (siirtonopeus, fyysinen siirtotie) 2
3 Sisältö Bridging Kytkin ja keskitin Linkkikerroksen verkot Spanning Tree Protocol (STP) Virtual LAN (VLAN) MPLS 3
4 Tämän luennon jälkeen Ymmärrätte: Linkkikerroksen laitteet ja niiden toiminnan Kytkin vs. reititin Mikä on STP ja miten se toimii VLAN: miksi tarvitaan ja perustoiminta MPLS: toimintaperiaate ja hyödyt Tiedostatte: Mitä ovat RSTP, SPB, TRILL 4
5 Bridging: layer-2 verkottaminen Bridging: lähiverkkosegmenttien yhdistäminen linkkikerroksen laitteilla Käytetään tietynlaisia laitteita Yleisimmin kytkin (switch) ja keskitin (hub) Tällaisissa verkoissa käytetään muutamia erityisiä protokollia ja mekanismeja Verkon tehokkaan toiminnan takaaminen Virtuaalilähiverkot (VLAN) Spanning Tree Protocol Linkki IP:n näkökulmasta voikin nyt olla kokonainen verkko 5
6 Keskitin (Hub) fyysisen-kerroksen ( tyhmä ) toistin bitit sisään yhdestä linkistä à ulos kaikkiin muihin linkkeihin samalla nopeudella Paketit kaikista linkeistä, jotka kytketyt hub:iin voivat törmätä keskenään Ei kehysten puskurointia Ei CSMA/CD hubissa à päätelaitteiden verkkokortit havaitsevat törmäykset Keskitin voidaan myös ajatella toimivan kerroksella 1 hub kierretty pari 6
7 Kytkin (Switch) Kytkin on fiksumpi kuin hub Varastoi ja välittää Ethernet kehyksiä Välittää kehyksen eteenpäin yhteen tai useampaan linkkiin MAC osoitteen perusteella Läpinäkyvä Päätelaitteet eivät tiedä kytkinten olemassaoloa (samoin kuin hub) Plug-and-play, itseoppiva Kytkimen välitystaulua ei tarvitse manuaalisesti konfiguroida 7
8 Kytkin: useita samanaikaisia lähetyksiä Tietokoneilla on omat suorat liitäntänsä kytkimeen Kytkimet puskuroivat paketteja Entä törmäykset ja CSMA/CD? Jokainen linkki on oma törmäysalueensa Full duplex linkit à ei törmäyksiä à ei tarvita CSMA/CD Myös voi olla pidempi kaapeli half duplex à tarvitaan CSMA/ CD Max kaapelin pituus lyhyempi Kytkeminen: A-A ja B-B yhtä aikaa, ilman törmäyksiä ei mahdollista hubilla C 6 5 A A 1 2 B C 4 3 kytkin jossa kuusi porttia (1,2,3,4,5,6) B 8
9 Kytkintaulu Miten kytkin tietää että A saavutettavissa liitännän 4, ja B saavutettavissa liitännän 5 kautta? Jokaisella kytkimellä on kytkintaulu (Switch Table), jokainen rivi: <laitteen MAC osoite, liitäntä jonka kautta saavutetaan tietokone, aikaleima> näyttää reititystaululta Kuinka kytkintaulun rivit luodaan ja ylläpidetään kytkintaulussa? C 6 5 A A 1 2 B C 4 3 kytkin jossa kuusi porttia (1,2,3,4,5,6) B 9
10 Kytkin on itse-oppiva lähettäjä: A kohde: A Kytkin oppii Kun kehys vastaanotetaan, opitaan lähettäjän sijainti Kytkin lisää lähettäjä/sijainti parin kytkintauluun MAC osoite liitäntä TTL A 1 60 kytkintaulu (Switch Table) A A A C B C A B Link Layer 5-10
11 Kytkin: kehyksen prosessointi kun kytkin vastaanottaa kehyksen: 1. tallenna sisääntuloportti (linkki) ja lähettäjän MAC-osoite 2. etsi kytkintaulusta merkintää vastaanottajan MAC-osoitteella 3. if löytyi taulusta merkintä then { if kohde portissa josta kehys saapui then hylkää kehys else lähetä kehys merkinnän osoittamasta portista } else flood /* lähetä kaikkiin portteihin paitsi tuloporttiin */ 11
12 Kytkin on itse-oppiva: esimerkki lähettäjä: A kohde: A kehyksen kohdeosoite, A, ei löydy taulusta: floodaa C A A A B v kohdeosoite A löytyy taulusta: lähetä vain taulun osoittamaan porttiin MAC osoite liitäntä TTL A 1 60 A 4 60 kytkintaulu (switch table) 6 A A B C A 4 A A 3 Link Layer 5-12
13 Kytkinten verkottaminen Kytkinten avulla voidaan luoda verkko S 4 A B S 1 C S 2 D E F G S 3 H I A à G: Kuinka S1 tietää että G:lle osoitettu kehys pitää lähettää S4:n ja S3:n kautta? Itseoppivat kytkimet toimivat samoin kuin yhden kytkimen tapauksessa
14 Kytketty ja reititetty verkko ulkopuolinen verkko (Internet) reititin sähköpostipalvelin Web-palvelin IP aliverkko
15 Kytkin vs. reititin Molemmat varastoi-ja-välitä (store-and-foward) laitteita reitittimet: verkkokerros laitteita (tutkivat verkkokerroksen otsakkeen/osoitteen) Kytkimet ovat linkkikerros laitteita Reitittimet ylläpitää reititystaulua, toteuttaa reititysalgoritmit lyhimmän reitin valinta (hitaampi paketin prosessointi kuin kytkimessä) Kytkimet ylläpitää kytkintaulua oppivat algoritmit yleislähetysprotokollat (esim. ARP) rajoittaa verkon topologiaa ja kokoa Myös flatit MAC-osoitteet (ei aggregointia) Spanning Tree protokolla Pyritään estämään looppeja koska L2 protokollissa ei ole TTL-kenttiä! datagrammi kehys sovellus kuljetus verkko linkki fyysinen kytkin reititin sovellus kuljetus verkko linkki fyysinen päätelaite linkki fyysinen verkko linkki fyysinen päätelaite kehys datagrammi kehys 15
16 Sisältö Bridging Kytkin ja keskitin Linkkikerroksen verkot Spanning Tree Protocol (STP) Virtual LAN (VLAN) MPLS 16
17 Silmukat kytketyissä verkoissa CC DD Jos ei kohdeosoite tiedossa à lähetetään kaikkiin portteihin Floodaus voi johtaa silmukoihin (forwarding loops) Kytkimet yhteydessä toisiinsa rinkimäisesti Silmukat voivat aiheuttaa hallitsemattoman yleislähetysten määrän (broadcast storm) Spanning tree protocol (STP) käytetään kytkimissä silmukoiden välttämiseksi Muodostaa silmukattoman verkkotopologian AA Hub Port 2 Port 2 AA 21 AA 21 Port 1 Port 1 Hub BB <Src=AA, Dest=DD> And so on No TTL in L2 headers! 17
18 Tuntematon unicast MAC-osoite Kytkin1 oppii host1:n MAC osoitteen SAT (Source Address Table) Port 4: Kytkin host1 A A Kytkin D-FE host2 18
19 Tuntematon unicast MAC-osoite Kohde MAC-osoite tuntematon joten kytkin1 floodaa kehyksen SAT (Source Address Table) Port 4: Kytkin host1 A A Kytkin D-FE host2 19
20 Tuntematon unicast MAC-osoite Kytkin2 vastaanottaa kehyksen kahdesti, tallentaa toisen portin tauluunsa SAT (Source Address Table) Port 4: Kytkin host1 A A Kytkin D-FE host2 SAT (Source Address Table) Port 1: Port A:
21 Tuntematon unicast MAC-osoite Kytkin2 floodaa tuntemattoman kohdeosoitteen kehyksen kaikkiin paitsi sisääntuloporttiin. SAT (Source Address Table) Port 4: Kytkin host1 A A Kytkin2 host2 SAT (Source Address Table) Port A: D-FE 21
22 Tuntematon unicast MAC-osoite Kytkin1 vastaanottaa kehyksen, päivittää kytkintaulunsa uudemmalla tiedolla ja floodaa taas kehyksen. SAT (Source Address Table) Port 4: Port 1: Kytkin host1 A A Kytkin2 host2 SAT (Source Address Table) Port A: D-FE 22
23 Tuntematon unicast MAC-osoite Sykli jatkuu! SAT (Source Address Table) Port 4: Port 1: Kytkin host1 A A Kytkin2 host2 SAT (Source Address Table) Port A: D-FE 23
24 Spanning Tree Protocol (STP) Kehitetty 80-luvun lopulla Standardoitu IEEE-802.1D vuonna 1990 STP estää silmukat blokkaamalla osan porteista Kytkimet muokkaavat verkosta virityspuun (Spanning Tree) Virityspuussa ei ole silmukoita Kytkimien portit luokitellaan käytössä oleviin ja blokattaviin Hajautettu protokolla Jokainen kytkin päättelee itse mitkä portit voi olla käytössä Protokolla määrittelee viestityypin jonka avulla kytkimet vaihtavat tietoja (BPDU) 24
25 Virityspuu Virityspuu on puun kaltainen rakenne Juuri (Root) à Juurikytkin Oksat à muut kytkimet Lehdet à lähiverkkosegmenttien päätelaitteet (kiinni kytkimissä) Puun ominaisuudet Kaikki verkon elementit kytkettynä verkkoon Ei silmukoita Vain yksi polku lehdestä toiseen Puu rakennetaan määrittelemällä tietyt roolit Kytkimille ja Kytkinten porteille Näiden perusteella valitaan blokattavat portit 25
26 Kytkinten roolit Ensin määritellään juurikytkin Vain yksi Virityspuun juuri josta oksat lähtee Ei vaadita mitään erityisominaisuuksia Juuri valitaan kytkimien ID:n perusteella Jokaisella ID (prioriteetti plus MAC-osoite) Pienin ID on juuri Nimitetty kytkin (designated switch) Liikenne juuresta muihin linkkeihin näiden kautta Vain yksi nimitetty kytkin per linkki
27 Porttien roolit Kolmenlaisia portteja Juuriportti (Root port) Portti jonka kautta kytkin välittää kehykset juurikytkimelle pienimmällä kustannuksella (path cost) Path cost on määritelty standardissa Nimitetty portti (Designated port) Portti jonka kautta lähiverkkosegmentistä juureen pienimmällä kustannuksella Blokattu portti Ei käytetä datakehysten välittämiseen Estää silmukat
28 Linkkikustannus Miten määritellään polun kustannus? Linkkityypeille (nopeus) oma kustannus Oletusarvot IEEE:n standardista Konfiguroitavissa Linkin nopeus Kustannus 10 Gbps 2 1 Gbps Mbps Mbps 100
29 STP: esimerkki lopputuloksesta
30 Virityspuun rakentaminen Miten päästään äskeisen kuvan lopputulokseen? Helppoa järkeillä kuvan perusteella Mutta verkossa jokainen kytkin tietää vain naapurinsa, ei koko topologiaa! STP:ssa kytkimet lähettää toisilleen viestejä ja oppivat näin tarpeellisen tiedon BPDU-viestit Kuin reititysprotokolla, mutta eri tarkoitus (silmukoiden poisto) 30
31 BPDU Bridge Protocol Data Unit (BPDU) viestien avulla kytkimet oppivat ja vaihtavat tietoja Konfigurointi BPDU: lähetetään Hello-ajastimen mukaisesti Yleensä 2s välein Topologian muutos (Topology Change, TCN) BPDU Kytkin lähettää jos huomaa topologiamuutoksen Asetetaan Topology Change (TC) lippu BPDU viestiin Kun kytkin vastaanottaa BPDU:n jossa TC lippu à vaihtaa vanhenemisajan lyhyeksi unohdetaan pikaisesti vanhat entryt
32 Virityspuun rakentaminen Ensin pitää sopia siitä mikä on juurikytkin BPDU-viestissä Bridge ID (oma ID) ja Root ID (oletetun juuren ID) Aluksi jokainen arvelee itse olevansa juuri Vaihdettujen viestien avulla kaikki kytkimet lopulta oppivat sen jolla pienin ID à juuri Seuraavaksi määritellään juuriportit ja nimitetyt portit Etsitään portteja joiden kautta päästään minimikustannuksella juurikytkimeen Jäljelle jäävät portit blokataan 32
33 Juuriporttien valinta RPC(Fa0/2) = 19, RPC(Fa0/1) = 38 à RP = Fa0/2 Kytkimet lähettää BPDU:a joissa kolme attribuuttia Lähettäjän ID Juurikytkimen ID Kustannus juureen lähettäjältä Vastaanotetun BPDU:n juuripolun kustannukseen lisätään kyseisen linkin kustannus Lähetetään BPDU portista vain jos sieltä vastaanotetun BPDU:n RPC suurempi kuin oma RPC Valitaan juuriportiksi (RP) se jonka kautta pienin kustannus juureen Root Path Cost = 0 à SW2,SW3 Root Path Cost = 0+19 à SW2,SW4 RPC(Fa0/1) = 19, RPC(Fa0/2) = 38 à RP = Fa0/1 RP Root Path Cost = 0+19 à SW3 RP 33
34 Juuriporttien valinta Joskus juuripolun kustannus sama Kolme sääntöä tiebreak tilanteisiin: 1. valitaan pienin kytkin ID 2. valitaan pienin lähettäjän portin prioriteetti Tämä on myös BPDU attribuutti Root Path Cost = 0+19 à SW2,SW4 RP RP Oletusarvo = 128, voidaan konffata 3. valitaan pienin vastaanottajan portti ID RPC(Fa0/1) = 38, RPC(Fa0/2) = Fa0/1 < Fa0/2 à RP = Fa0/1 RP 34
35 Nimitettyjen porttien valinta Tavoite: valitaan yksi portti per lähiverkkosegmentti Nimitetään portit (DP) jonka kautta kytkin mainostaa pienintä kustannusta juureen Verrataan portista tulleen BPDU:n RPC:a omaan Samat tiebreak säännöt kuin juuriporttien valinnassa: 1. valitaan pienin kytkin ID 2. valitaan pienin lähettäjän portin prioriteetti 3. valitaan pienin vastaanottajan portti ID RPC(SW2) = 19, oma RPC = SW2 < SW3 à block Fa0/2 RPC(SW3) = 19, oma RPC = 38 à block Fa0/2 RPC(SW3) = 19, oma RPC = SW2 < SW3 à Fa0/2 = DP 35
36 Porttien tilat Ei käytössä: ei vastaanota/lähetä mitään Blocking: käytössä, vastaanottaa vain BPDU viestejä Listening: ei välitä datakehyksiä, mutta kuuntelee ja lähettää BPDU viestejä Virityspuun rakentaminen käynnissä Learning: valmistautuu välittämään à rakentaa välitystaulua Tiedetään jo STP tila (RP tai DP) Pyritään ehkäisemään liiallista floodausta Forwarding: vastaanottaa ja lähettää datakehyksiä Kuuntelu- ja oppimistilojen oletusarvoiset kestot 15s Kestää 30s ennenkuin uusi topologia opittu
37 Juurikytkimen kuolema STP:ssa nimitetyt kytkimet eivät luo uusia BPDUviestejä Paitsi jos huomataan topologiamuutos Juurikytkin vain tekee niin Vastaanotetaan BPDU juuriportista ja välitetään nimitetyistä porteista Jos edellisestä BPDU:sta kulunut > max age time (oletus 20s) à juurikytkin julistetaan kuolleeksi Juuren menehdyttyä aloitetaan virityspuun rakentaminen alusta Kaikki kytkimet olettavat itsensä juureksi
38 Rapid Spanning Tree Protocol (RSTP) STP estää syklit kytketyssä verkossa Mutta STP on liian hidas Häiriön sattuessa voi kestää 30-50s toipua Rapid Spanning Tree Protocol (RSTP) avuksi Nopeampi konvergoituminen topologia muutoksen jälkeen Peruskonsepti sama kuin STP:ssa Standardoitu aluksi IEEE-802.1W lisäosana vuonna 2001 IEEE-802.1D (IEEE MAC Bridges standard) revisio vuonna 2004 Sisältää 802.1W lisäosan Alkup. STP jätetty kokonaan pois 38
39 RSTP: Portien tilat ja roolit Vain kolme tilaa porteilla Forwarding ja Learning kuin ennenkin Discarding: ei välitä dataa eikä opi MAC-osoitteita Yhdistää tilat ei käytössä, blokattu, kuuntelee Porttien rooleissa myös muutoksia Blokattu à alternate tai backup, auttavat tietyissä vikatilanteissa Alternate: vaihtoehtoinen polku juurikytkimeen (eri kuin juuriportti) Backup: Redundantti polku verkkosegmenttiin johon jo nimitetty portti Juuri- ja nimitetyt portit ennallaan
40 RSTP vs. STP: toiminta Suurin ero STP:aan on BPDU viestien lähetyksessä RSTP:ssa jokainen kytkin generoi ja lähettää Hello BPDUviestejä autonomisesti (ei vain välitä juuren lähettämiä) Huomataan linkkien muutokset nopeammin à reagoidaan heti Kytkimet synkronoi naapurien kanssa Proposal ja agreement viestien vaihtoa porttiroolien määrittämiseksi Protokollan yksityiskohdat menee yli tämän kurssin aihealueen 40
41 Muita protokollia Shortest Path Bridging IEEE 802.1aq, standardoitu vuonna 2012 Tulee korvaamaan STP:n ja sen kehittyneemmät versiot (RSTP, MSTP) Mahdollistaa lyhyimmän polun välittämisen Ethernetissä Shortest Path Trees STP ei aina johda lyhimpään polkuun Sisältää mekanismeja silmukoiden välttämiseen ja poistamiseen TRILL: Transparent Interconnection of Lots of Links IETF standardi (RFC 6325) vuodelta 2011 Kapseloi Ethernet kehyksen TRILL-otsakkeen sisään Sisältää hop countin Käyttää IS-IS reititysprotokollaa Tavallaan L2 ja L3 välissä 41
42 Sisältö Bridging Kytkin ja keskitin Linkkikerroksen verkot Spanning Tree Protocol (STP) Virtual LAN (VLAN) MPLS 42
43 VLAN: miksi tarvitaan Tietotekniikka (CS) Sähkötekniikka (EE) Tietojenkäsittely (ICS) CS käyttäjä siirtyy EE laitokselle mutta tahtoo ottaa yhteyden CS kytkimeen? yksi yleislähetysalue (broadcast domain): kaikki linkkikerroksen yleislähetysliikenne (ARP, DHCP, tuntematon kohde MAC-osoite) lähetetään koko lähiverkkoon
44 VLAN: miksi tarvitaan Yleisliikenne kulkee koko verkkoon Tehokkuusnäkökulmasta huono juttu Tietoturva/yksityisyysnäkökulmasta samoin Verkon osat voidaan eristää reitittimen avulla Tehoton kytkinten käyttö Jokainen laitos (esimerkissä) tarvitsee oman kytkimen Kytkinportit ei välttämättä kaikki käytössä Verkonhallinta hankalaa Käyttäjän siirtyessä eri taloon joudutaan kaapelointia muuttamaan VLAN mahdollistaa eristämisen ilman erillistä reititintä 44
45 VLAN Virtual Local Area Network VLAN:a tukevat kytkimet voidaan konffata niin että yksi fyysinen lähiverkko jaetaan useaan virtuaaliseen lähiverkkoon. porttiperusteinen VLAN: kytkinportit ryhmitelty (kytkimen hallintaohjelmiston avulla) niin että yksi fyysinen kytkin 1 2 Sähkötekniikka (VLAN portit 1-8) Tietotekniikka (VLAN portit 9-15) toimii aivan kuin monta virtuaalista kytkintä Sähkötekniikka (VLAN portit 1-8) Tietotekniikka (VLAN portit 9-16)
46 Porttiperusteinen VLAN liikenteen eristys: kehykset porteista 1-8 vain portteihin 1-8 mahdollista määritellä VLAN myös esim. päätelaitteiden MACosoitteiden perusteella dynaaminen jäsenyys: portti voidaan koska tahansa määritellä kuuluvaksi mihin tahansa VLAN:iin reititin kehysten välitys VLAN:ien välillä: reitityksen avulla (just as with separate switches) kuten erillisten kytkinten tapauksessa käytännössä reititin integroitu samaan laitteeseen Sähkötekniikka (VLAN portit 1-8) Tietotekniikka (VLAN portit 9-15)
47 VLAN:t usean kytkimen yli EE (VLAN portit 1-8) CS (VLAN portit 9-15) Portit 2,3,5 kuluu EE VLANiin Portit 4,6,7,8 kuuluu CS VLANiin trunk portti: kuljettaa usean VLAN:in kehykset kytkinten välillä käytetään VLAN tägejä kertomaan mihin VLAN:iin kyseinen kehys kuuluu 802.1q protokolla lisää/poistaa tarpeelliset otsakkeet kehyksistä jotka välitetään trunk-portin kautta Näin vältetään tarve yhdistää portti per kytkin per VLAN
48 802.1Q VLAN kehysformaatti tyyppi preamble dest. address source address data (payload) CRC kehys tyyppi preamble dest. source data (payload) address address CRC 802.1Q kehys 2-tavun Tag Protocol Identifier (arvo: 81-00) Uudelleenlaskettu CRC Tag Control Information (12-bitin VLAN ID kenttä, 3-bitin priority kenttä kuten IP TOS) 5-48
49 Sisältö Bridging Kytkin ja keskitin Linkkikerroksen verkot Spanning Tree Protocol (STP) Virtual LAN (VLAN) MPLS 49
50 Multiprotocol label switching (MPLS) Sanotaan 2.5 kerroksen protokollaksi Toimii linkki- ja IP-kerrosten välissä IP:n näkökulmasta linkki onkin oikeasti kokonainen MPLS-polku Samoin kuin kytketyt verkot IP:lle näkymätöntä PPP tai Ethernet otsake MPLS otsake IP otsake loppu linkkikerroksen kehys label Exp S TTL
51 Multiprotocol label switching (MPLS) Alkuperäinen tavoite: nopea IP pakettien välitys vakiokokoisten etikettien (label) avulla (IP-osoitteiden sijasta) Nopea lookup vakiokokoisilla ID:lla (prefix-haun sijaan) Virtuaalipiirien (Virtual Circuit (VC)) tyylisesti mutta IP-yhteensopivasti (käytetään edelleen IP osoitteita) Nykyään käytetään lähinnä muista syistä Esim. liikenteen dynaaminen ohjaus (traffic engineering) Myös VPN 51
52 MPLS ja reitittimet MPLS:a tukeva reititin on label-switched reititin Välittää paketit ulosmenoportteihin vain etiketin arvon perusteella Etiketti vaihdetaan uuteen joka reitittimessä Etiketin arvo on linkkispesifinen Ei katso IP osoitteita ollenkaan MPLS välitystaulu eri kuin IP reititystaulu
53 MPLS ja reitittimet Joustavuus: MPLS forwardointi voi poiketa IP forwardoinnista voidaan reitittää paketit joilla samat IP-osoitteet (lähde, kohde) eri polkuja pitkin samaan päätepisteeseen liikenteen ohjaus eli traffic engineering uudelleen reititys linkin vioittuessa: etukäteen lasketut varareitit Erityisen hyödyllistä interaktiivisille sovelluksille, esim. VoIP
54 MPLS vs. IP polut R6 R5 R4 R3 D R2 v IP reititys: polku määräytyy ainoastaan kohdeosoitteen perusteella A IP router
55 MPLS vs. IP polut R6 R5 R4 ensimmäinen reititin (R4) voi valita eri MPLS reitin A-noodiin esim. lähettäjän osoitteen perusteella R3 D R2 v IP reititys: polku määräytyy ainoastaan kohdeosoitteen perusteella v MPLS reititys: polku voi määräytyä sekä lähde- että kohdeosoitteiden perustella fast reroute: etukäteen lasketut varareitit linkin pettämisen varalta A pelkkä IPreititin MPLS- ja IP-reititin
56 MPLS signalointi OSPF ja IS-IS reititysprotokollista on MPLS:a tukevat versiot välittävät MPLS:n tarvitsemaa tietoa esim. linkin kaista, jo varattu kaista ensimmäinen MPLS-reititin käyttää RSVP-TE signalointiprotokollaa alustaakseen MPLS polun R6 R5 R4 modifioitu link state flooding RSVP-TE D A
57 in out out label label dest interface 10 A 0 12 D 0 8 A 1 MPLS välitystaulut in out out label label dest interface 10 6 A D 0 R6 R5 R4 0 R2 in out out label label dest interface A 0 R D 0 A in out R1 out label label dest interface 6 - A 0 etiketti vaihdetaan joka reitittimessä
58 Yhteenveto Bridging on linkkikerroksen lähiverkkosegmenttien verkottamista Pääasiassa käytetään kytkimiä ja keskittimiä Kytketyissä verkoissa voi esiintyä välityssilmukoita Kehykset kiertävät loputtomasti verkossa Tarvitaan Spanning Tree Protocol (STP) tms. Muodostaa silmukattoman topologian Uudempia korvaavia protokollia jo olemassa Virtual LAN (VLAN) Verkon osittaminen yhdellä laitteella Helpottaa verkonhallintaa ja tehostaa laitteiden käyttöä MPLS mahdollistaa joustavan pakettien reitityksen Liikenteenohjaus ja varareitit 58
59 Seuraavalla luennolla Langattoman tiedonsiirron perusteita Langattomat lähiverkot IEEE eli Wi-Fi Mobiiliverkot Matkapuhelinverkkojen perusteita 59
60 Lyhenteitä ja terminologiaa Tulee tänne myöhemmin 60
Sisältö. Linkkikerros ja sen laitteet Linkkikerroksen osoitteet (MAC-osoite) ARP (eli IP-MAC-mäppäys) ja kytkintaulu
Sisältö Linkkikerros ja sen laitteet Linkkikerroksen osoitteet (MC-osoite) RP (eli IP-MC-mäppäys) ja kytkintaulu Jaetut linkit: monipääsyprotokollat (multiple access) Lähiverkko (LN) Virheiden havaitseminen
Linkkikerros 1: perusteet
Linkkikerros 1: perusteet CSE-C2400 Tietokoneverkot 10.3.2014 Sanna Suoranta Osa sisällöstä adaptoitu seuraavista lähteistä: J.F. Kurose and K.W. Ross: Computer Networking: A Top-Down Approach 6th ed.
3/10/15. Linkkikerros 1: perusteet. Internet-protokollapino. Tämän luennon jälkeen. Sisältö. Linkkikerroksen palvelut. Linkkikerros: terminologiaa
Internet-protokollapino Linkkikerros : perusteet CSE-C2400 Tietokoneverkot 0.3.204 Sanna Suoranta Ohjelmistot (software) Sähköposti Facebook Web-selain Käyttöjärjestelmä (operating system, OS) Laiteajurit
Linkkikerros 1: perusteet
Linkkikerros 1: perusteet CSE-C2400 Tietokoneverkot 8.3.2016 Sanna Suoranta ja Matti Siekkinen Osa sisällöstä adaptoitu seuraavista lähteistä: J.F. Kurose and K.W. Ross: Computer Networking: A Top-Down
Ongelmallinen Ethernet
Ongelmallinen Ethernet Kari Seppänen Kari.Seppanen@vtt.fi Johdanto Sisältö Mikä Ethernet oikeastaan on? Toimisto-Ethernet Skaalautuvuus, vikasietoisuus ja tietoturva Spanning tree protocol -parannukset
Siltojen haitat. Yleisesti edut selvästi suuremmat kuin haitat 2/19/2003 79. Kytkin (switch) Erittäin suorituskykyisiä, moniporttisia siltoja
Siltojen haitat sillat puskuroivat ja aiheuttavat viivettä ei vuonsäätelyä => sillan kapasiteetti voi ylittyä kehysrakenteen muuttaminen => virheitä jää havaitsematta Yleisesti edut selvästi suuremmat
Eetteriverkon rakenne
väylä Eetteriverkon rakenne Kaapeli 10Base2 tähti - hub toimii toistimen tavoin HUB Kaksi parijohtoa 10BaseT, 100BaseT Kaapelit 10Base2 ohut kaapeli» 10 => 10 Mbps» Base => kantataajuus» 2 => 200 m 10Base-T
CSMA/CD. Eetteriverkon rakenne. Signaalin koodaus. Törmäyksen jälkeinen uudelleenlähetys. Lyhyet etäisyydet, pieni määrä laitteita. Manchester-koodaus
väylä Eetteriverkon rakenne Kaapeli 10Base2 tähti - hub toimii toistimen tavoin HUB Kaksi parijohtoa 10BaseT, 100BaseT Kaapelit 10Base2 ohut kaapeli» 10 => 10 Mbps» Base => kantataajuus» 2 => 200 m 10Base-T
Kuva 1. Satunnaisesti valitun kytkimen ominaisuuksia.
Spanning Tree -protokollalla on jo pitkät perinteet. Sen ensimmäinen versio julkaistiin jo vuonna 1990 ja se tunnettiin tarkemmin standardina 802.1D. Protokolla on määritelty alla olevassa englannin kielisessä
Eetteriverkon rakenne
Eetteriverkon rakenne väylä Kaapeli 10Base2 tähti - hub toimii toistimen tavoin HUB Kaksi parijohtoa 10BaseT, 100BaseT Kaapelit 10Base2 ohut kaapeli» 10 => 10 Mbps» Base => kantataajuus» 2 => 200 m 10Base-T
Kuva maailmasta Pakettiverkot (Luento 1)
M.Sc.(Tech.) Marko Luoma (1/20) M.Sc.(Tech.) Marko Luoma (2/20) Kuva maailmasta Pakettiverkot (Luento 1) WAN Marko Luoma TKK Teletekniikan laboratorio LAN M.Sc.(Tech.) Marko Luoma (3/20) M.Sc.(Tech.) Marko
Jos A:lla ei ole tietoa ARP-taulussaan, niin A lähettää ARP-kysely yleislähetyksenä
..128.214.4.29.. A B:n verkkoosoite..128.214.4.29.. B IP-paketissa on vain vastaanottajan IPosoite 128.214.4.29 66-55-44-33- 22-11 Pitää saada selville IP-osoitetta vastaava verkko-osoite. Yleislähetyksenä
..128.214.4.29.. itää saada selville P-osoitetta vastaava erkko-osoite. leislähetyksenä ysely: Kenen IPsoite. IP-paketissa on vain vastaanottajan
..128.214.4.29.. IP-paketissa on vain vastaanottajan IPosoite A B:n verkkoosoite..128.214.4.29.. B 128.214.4.29 66-55-44-33 22-11 itää saada selville P-osoitetta vastaava erkko-osoite. leislähetyksenä
Siltojen haitat Yleisesti edut selvästi suuremmat kuin haitat
Siltojen haitat sillat puskuroivat ja aiheuttavat viivettä ei vuonsäätelyä => sillan kapasiteetti voi ylittyä kehysrakenteen muuttaminen => virheitä jää havaitsematta Yleisesti edut selvästi suuremmat
OSI ja Protokollapino
TCP/IP OSI ja Protokollapino OSI: Open Systems Interconnection OSI Malli TCP/IP hierarkia Protokollat 7 Sovelluskerros 6 Esitystapakerros Sovellus 5 Istuntokerros 4 Kuljetuskerros 3 Verkkokerros Linkkikerros
ELEC-C7241 Tietokoneverkot Linkkikerros
ELEC-C7241 Tietokoneverkot Linkkikerros Pasi Sarolahti (monet kalvot: Sanna Suoranta) 20.2.2018 Seuraavat askeleet kurssilla 5-kierroksen määräaika vasta viikon kuluttua (ke 28.2.) Tällä viikolla ei siis
Chapter 5 Link Layer and LANs
Chapter 5 Link Layer and LANs A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and
ELEC-C7241 Tietokoneverkot Linkkikerros
ELEC-C7241 Tietokoneverkot Linkkikerros Pasi Sarolahti (useimmat kalvot: Sanna Suoranta) 7.3.2017 Linkkikerros -- Agenda Perusteita Monipääsyprotokollat (Multi Access Protocols) Osoitteet linkkikerroksella
Yhteenveto. CSE-C2400 Tietokoneverkot Matti Siekkinen
Yhteenveto CSE-C2400 Tietokoneverkot 01.04.2014 Matti Siekkinen Tällä luennolla Lyhyet kertaukset aiemmista luennoista Kokonaiskuva Miten kaikki palat toimivat yhteen? 2 Internet-protokollapino Sähköposti
Tietoliikenteen perusteet. Langaton linkki
Tietoliikenteen perusteet Langaton linkki Kurose, Ross: Ch 6.1, 6.2, 6.3 (ei:6.2.1, 6.3.4 ja 6.3.5) Tietoliikenteen perusteet /2007/ Liisa Marttinen 1 Sisältö Langattoman linkin ominaisuudet Lnagattoman
Tietoliikenteen perusteet. Langaton linkki
Tietoliikenteen perusteet Langaton linkki Kurose, Ross: Ch 6.1, 6.2, 6.3 (ei:6.2.1, 6.3.4 ja 6.3.5) Tietoliikenteen perusteet /2007/ Liisa Marttinen 1 Sisältö Langattoman linkin ominaisuudet Lnagattoman
Multicast perusteet. Ins (YAMK) Karo Saharinen Karo Saharinen
Multicast perusteet Ins (YAMK) Karo Saharinen 20.04.2016 Lyhenteitä Multicastissä Lyhenne PIM PIM-SM PIM-DM MC ASM SSM RP BSR IGMP UC (S,G) Selite Protocol Independent Multicast PIM Sparse Mode PIM Dense
ITKP104 Tietoverkot - Teoria 3
ITKP104 Tietoverkot - Teoria 3 Ari Viinikainen Jyväskylän yliopisto 5.6.2014 Teoria 3 osuuden tärkeimmät asiat kuljetuskerroksella TCP yhteyden muodostus ja lopetus ymmärtää tilakaavion suhde protokollan
5.5 Ethernet-lähiverkko. Eetteriverkon rakenne. Kaapelit. Törmäyksen jälkeinen uudelleenlähetys. Signaalin koodaus Manchester-koodaus CSMA/CD
5.5 Ethernet-lähiverkko Yleisin lähiverkkoteknologia IEEE:n standardoima LAN-verkko CSMA/CD (kuulosteluväylä) Muita lähiverkkostandardeja esim. Token ring (vuororengas) FDDI WLAN (langaton lähiverkko)
Monilähetysreititys. Paketti lähetetään usealle vastaanottajalle Miksi? Monet sovellukset hyötyvät
Monilähetysreititys Paketti lähetetään usealle vastaanottajalle Miksi? Monet sovellukset hyötyvät ohjelmistopäivitykset WWW-välimuistien päivitykset etäopetus, virtuaalikoulu videoiden, äänitteiden lähetys
MAC-protokolla. » 7 tavua tahdistusta varten» kehyksen alku
MAC-protokolla tahdistuskuvio (preamble)» 7 tavua 1010101010 tahdistusta varten» kehyksen alku 10101011 kohde- ja lähdeosoitteet» osoitteessa 6 tavua (tai 2 tavua)» 0xxxxx yksilöosoite» 1xxxxx ryhmäosoite»
S 38.1105 Tietoliikennetekniikan perusteet. Pakettikytkentäiset verkot. Helsinki University of Technology Networking Laboratory
S 38.1105 Tietoliikennetekniikan perusteet Pakettikytkentäiset verkot Kertausta: Verkkojen OSI kerrosmalli Sovelluskerros Esitystapakerros Istuntokerros Kuljetuskerros Verkkokerros Linkkikerros Fyysinen
Väylää kuunneltava. kehyksen pituus. Ethernetin hyvät puolet. MAC-protokolla
MAC-protokolla tahdistuskuvio (preamble)» 7 tavua 1010101010 tahdistusta varten» kehyksen alku 10101011 kohde- ja lähdeosoitteet» osoitteessa 6 tavua (tai 2 tavua )» 0xxxxx yksilö» 1xxxxx ryhmä» 11111.
Yhteenveto. CSE-C2400 Tietokoneverkot 29.03.2016
Yhteenveto CSE-C2400 Tietokoneverkot 29.03.2016 Tällä luennolla Lyhyet kertaukset aiemmista luennoista Kokonaiskuva Miten kaikki palat toimivat yhteen? 2 Internet-protokollapino Sähköposti Facebook Ohjelmistot
Reititys. Tämä ja OSI 7LHWROLLNHQQHWHNQLLNDQSHUXVWHHW $(/&7 0DUNXV3HXKNXUL. Yhteyden jakaminen Reititys Kytkentä Internet-protokolla TCP, UDP
Reititys 7LHWROLLNHQQHWHNQLLNDQSHUXVWHHW $(/&7 DUNXVHXKNXUL Tämä ja OSI Yhteyden jakaminen Reititys Kytkentä Internet-protokolla TCP, UDP 7 sovellus 6 esitystapa 5 yhteysjakso 4 siirto verkko linkki fyysinen
Kymenlaakson Ammattikorkeakoulu Elektroniikan koulutusohjelma / tietoliikennetekniikka Opinnäytetyö 2011 Tuomo Korja
Kymenlaakson Ammattikorkeakoulu Elektroniikan koulutusohjelma / tietoliikennetekniikka Opinnäytetyö 2011 Tuomo Korja Tiedot KORJA, TUOMO Opinnäytetyö Työn ohjaaja Toimeksiantaja Huhtikuu 2011 Avainsanat
Kattava katsaus reititykseen
M.Sc.(Tech.) Marko Luoma (1/29) S 38.188 Tietoliikenneverkot S 2000 Luento 4: Reititys Kattava katsaus reititykseen M.Sc.(Tech.) Marko Luoma (2/29) S 38.122 Telecommunication Switching Technology II (2
100 % Kaisu Keskinen Diat
100 % Kaisu Keskinen Diat 98-103 4-1 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram 4.3 what s inside a router 4.4 IP: Internet Protocol datagram format IPv4 addressing ICMP IPv6
Internet Protocol version 6. IPv6
Internet Protocol version 6 IPv6 IPv6 Osoiteavaruus 32-bittisestä 128-bittiseksi Otsikkokentässä vähemmän kenttiä Lisäominaisuuksien määritteleminen mahdollista Pakettien salaus ja autentikointi mahdollista
Reititys. Tietokoneverkot 2009 (4 op) Syksy Futurice Oy. Reititys. Jaakko Kangasharju.
algoritmit Tietokoneverkot 2009 (4 op) jaakko.kangasharju@futurice.com Futurice Oy Syksy 2009 (Futurice Oy) Syksy 2009 1 / 45 Sisältö 1 algoritmit 2 3 4 algoritmit 5 6 (Futurice Oy) Syksy 2009 2 / 45 Sisältö
Multicast. Johdanto Ryhmien hallinta Reititys Reaaliaikaiset siirto- ja hallintaprotokollat Resurssien varaus Sessioiden hallinta
Multicast Johdanto Ryhmien hallinta Reititys Reaaliaikaiset siirto- ja hallintaprotokollat Resurssien varaus Sessioiden hallinta 1 Johdanto Tietoverkoissa voidaan lähettää kolmella eri tavalla Unicast
OSI malli. S 38.188 Tietoliikenneverkot S 2000. Luento 2: L1, L2 ja L3 toiminteet
M.Sc.(Tech.) Marko Luoma (1/38) S 38.188 Tietoliikenneverkot S 2000 Luento 2: L1, L2 ja L3 toiminteet OSI malli M.Sc.(Tech.) Marko Luoma (2/38) OSI malli kuvaa kommunikaatiota erilaisten protokollien mukaisissa
3/3/15. Verkkokerros 2: Reititys CSE-C2400 Tietokoneverkot Kirjasta 4.2-4.3, 4.5-4.8. Verkkokerros. Internet-protokollapino ja verkkokerroksen tehtävä
do what I mean // : Reititys CSE-C400 Tietokoneverkot Kirjasta 4.-4., 4.-4.8 Tällä luennolla Reititys Internet-verkossa ja internet-verkoissa Internetin rakenne Reititysprotokollat ja algoritmit Reitittimen
OSI-malli. S Tietoliikenneverkot. Miksi kytketään. Välitys ja kytkeminen OSI-mallissa. /XHQWR.\WNHQWlMDUHLWLW\V
Teknillinen korkeakoulu Teletekniikan laboratorio OSImalli S8.88 Tietoliikenneverkot 7 sovelluskerros 7 sovelluskerros /XHQWR.\WNHQWlMUHLWLW\V esitystapakerros yhteysjakso esitystapakerros yhteysjakso
Verkkokerros 2: Reititys
Verkkokerros 2: Reititys CSE-C2400 Tietokoneverkot Kirjasta 4.2-4.3, 4.5-4.8 Sanna Suoranta Osa sisällöstä adaptoitu seuraavista lähteistä: J.F. Kurose and K.W. Ross: Computer Networking: A Top-Down Approach
Langaton linkki. Langaton verkko. Tietoliikenteen perusteet. Sisältö. Linkkikerros. Langattoman verkon komponentit. Langattoman linkin ominaisuuksia
Tietoliikenteen perusteet Langaton linkki Kurose, Ross: Ch 6.1, 6.2, 6.3 (ei: 6.2.1, 6.3.4 ja 6.3.5) Tietoliikenteen perusteet /2009/ Liisa Marttinen 1 Langattoman verkon komponentit Tukiasema LAN-yhteys
S Tietoliikenneverkot
Teknillinen korkeakoulu Teletekniikan laboratorio S-8.88 Tietoliikenneverkot Luento : Kytkentä ja reititys tietoliikenneverkoissa 5.9.999 S-8.88 Tietoliikenneverkot / Marko Luoma Miksi kytketään Suoraan
Netemul -ohjelma Tietojenkäsittelyn koulutusohjelma 31.10.2011
Tietojenkäsittelyn koulutusohjelma ICT1TN002 1/6 Tietokone ja tietoverkot 1 ICT1TN002 Harjoitus lähiverkon toiminnasta Tässä harjoituksessa tutustutaan lähiverkon toimintaan Netemul ohjelman avulla. Ohjelmassa
Lisää reititystä. Tietokoneverkot 2009 (4 op) Syksy Futurice Oy. Lisää reititystä. Jaakko Kangasharju
Tietokoneverkot 2009 (4 op) jaakko.kangasharju@futurice.com Futurice Oy Syksy 2009 (Futurice Oy) Syksy 2009 1 / 39 Sisältö 1 2 (Futurice Oy) Syksy 2009 2 / 39 Sisältö 1 2 (Futurice Oy) Syksy 2009 3 / 39
Lisää reititystä. Tietokoneverkot 2008 (4 op) Syksy Teknillinen korkeakoulu. Lisää reititystä. Jaakko Kangasharju
Tietokoneverkot 2008 (4 op) jkangash@cc.hut.fi Teknillinen korkeakoulu Syksy 2008 (TKK) Syksy 2008 1 / 39 Sisältö 1 2 (TKK) Syksy 2008 2 / 39 Sisältö 1 2 (TKK) Syksy 2008 3 / 39 iksi monilähetys? : saman
Linkkikerros: Ethernet ja WLAN
Linkkikerros: Ethernet ja WLAN Matti Siekkinen T-110.2100 Johdatus tietoliikenteeseen kevät 2012 Viime luennolla Verkkokerros on Internetissä käytännössä IP Tällä hetkellä versio 4, versio 6 tulossa IP
Tietoliikenteen perusteet. Langaton linkki. Kurose, Ross: Ch 6.1, 6.2, 6.3. (ei: 6.2.1, 6.3.4 ja 6.3.5)
Tietoliikenteen perusteet Langaton linkki Kurose, Ross: Ch 6.1, 6.2, 6.3 (ei: 6.2.1, 6.3.4 ja 6.3.5) Tietoliikenteen perusteet /2008/ Liisa Marttinen 1 Sisältö Langattoman linkin ominaisuudet Langattoman
Linkkikerros, Ethernet ja WLAN. Jouko Kurki T-110.2100 Johdatus tietoliikenteeseen kevät 2010
Linkkikerros, Ethernet ja WLAN Jouko Kurki T-110.2100 Johdatus tietoliikenteeseen kevät 2010 Viime luennolla Verkkokerros on nykyään Internetarkkitehtuurissa käytännössä IP Tällä hetkellä versio 4, versio
reititystietojen vaihto linkkitilaviestejä säännöllisin väliajoin ja topologian muuttuessa
OSPF:n toiminta reititystietojen vaihto linkkitilaviestejä säännöllisin väliajoin ja topologian muuttuessa viestit tulvitetaan, viestit numeroidaan, viestit kuitataan viestit ohjataan valitulle (designed)
reititystietojen vaihto linkkitilaviestejä säännöllisin väliajoin ja topologian muuttuessa
OSPF:n toiminta reititystietojen vaihto linkkitilaviestejä säännöllisin väliajoin ja topologian muuttuessa viestit tulvitetaan, viestit numeroidaan, viestit kuitataan viestit ohjataan valitulle (designed)
OSPF:n toiminta. Välittäjäreititin. Hello-paketti. Hello-paketin kentät. Hello-paketin kentät jatkuvat. OSPF-sanomat hello naapurien selvillesaaminen
OSPF:n toiminta reititystietojen vaihto linkkitilaviestejä säännöllisin väliajoin ja topologian muuttuessa viestit tulvitetaan, viestit numeroidaan, viestit kuitataan viestit ohjataan valitulle (designed)
Liikkuvien isäntäkoneiden reititys
Mobile IP IP-reititys IP-osoitteen perusteella koneen osoite riippuu verkosta, jossa kone sijaitsee kun kone siirtyy toiseen verkkoon tilapäisesti, osoite ei ole enää voimassa koneelle uusi osoite tässä
IP-reititys IP-osoitteen perusteella. koneelle uusi osoite tässä verkossa?
Mobile IP IP-reititys IP-osoitteen perusteella koneen osoite riippuu verkosta, jossa kone sijaitsee kun kone siirtyy toiseen verkkoon tilapäisesti, osoite ei ole enää voimassa koneelle uusi osoite tässä
Linkkikerros: Ethernet ja WLAN
Linkkikerros: Ethernet ja WLAN Matti Siekkinen T-110.2100 Johdatus tietoliikenteeseen kevät 2013 Viime luennolla Verkkokerros on Internetissä käytännössä IP Tällä hetkellä v4 vielä dominoi, v6 käyttöönotto
Linkkikerros: Ethernet ja WLAN
Linkkikerros: Ethernet ja WLAN Matti Siekkinen T-110.2100 Johdatus tietoliikenteeseen kevät 2011 Viime luennolla Verkkokerros on Internetissä käytännössä IP Tällä hetkellä versio 4, versio 6 tulossa IP
ICMP-sanomia. 3. IP-kerroksen muita protokollia ja mekanismeja ICMP (Internet Control Message Protocol)
3. IP-kerroksen muita protokollia ja mekanismeja ICMP (Internet Control Message Protocol) ARP (Address Resolution Protocol) DHCP (Dynamic Host Configuration Protocol) CIDR (Classless InterDomain Routing)
Reititys. 4. Reititys (Routing) Verkkokerroksen tehtävänä on toimittaa data (paketit) lähettäjän koneelta vastaanottajan koneelle. Reititysalgoritmit
4. Reititys (Routing) Verkkokerroksen tehtävänä on toimittaa data (paketit) lähettäjän koneelta vastaanottajan koneelle Välissä voi olla hyvin monimutkainen monista erilaisista aliverkoista koostuva verkko.
3. IP-kerroksen muita protokollia ja
3. IP-kerroksen muita protokollia ja mekanismeja ICMP (Internet Control Message Protocol) ARP (Address Resolution Protocol) DHCP (Dynamic Host Configuration Protocol) CIDR (Classless InterDomain Routing)
5.5 Ethernet-lähiverkko
5.5 Ethernet-lähiverkko Yleisin lähiverkkoteknologia IEEE:n standardoima LAN-verkko CSMA/CD (kuulosteluväylä) Muita lähiverkkostandardeja esim. Token ring (vuororengas) FDDI WLAN (langaton lähiverkko)
Tietokone. Tietokone ja ylläpito. Tietokone. Tietokone. Tietokone. Tietokone
ja ylläpito computer = laskija koostuu osista tulostuslaite näyttö, tulostin syöttölaite hiiri, näppäimistö tallennuslaite levy (keskusyksikössä) Keskusyksikkö suoritin prosessori emolevy muisti levy Suoritin
Diplomityöseminaari 21.5.2002
Diplomityöseminaari.5. Nimi: Aihe: Valvoja: Ohjaaja: Teettäjä: Leimakytkentää hyödyntävien virtuaaliverkkojen vertailu Prof. Raimo Kantola DI Jarno Salmela Sonera Oyj.5. Diplomityöseminaari Esityksen rakenne
3/31/15. Yhteenveto. Tällä luennolla. Sovellukset. Internet-protokollapino. Sovellukset. Sovellusarkkitehtuurit
Tällä luennolla Yhteenveto Lyhyet kertaukset aiemmista luennoista Kokonaiskuva Miten kaikki palat toimivat yhteen? CSE-C2400 Tietokoneverkot 31.03.2015 2 Internet-protokollapino Sovellukset Ohjelmistot
Johdanto. Multicast. Unicast. Broadcast. Protokollat. Multicast
Multicast Johdanto Ryhmien hallinta Reititys Reaaliaikaiset siirto- ja hallintaprotokollat Resurssien varaus Sessioiden hallinta MBone Johdanto Tietoverkoissa voidaan lähettää kolmella eri tavalla + Unicast
TCP/IP-protokollapino. Verkkokerros ja Internetprotokolla. Sisältö. Viime luennolla. Matti Siekkinen
TCP/IP-protokollapino Matti Siekkinen T-110.2100 Johdatus tietoliikenteeseen kevät 2010 Sovelluskerros Middleware: HTTP, SSL, XML... Kuljetuskerros: TCP, UDP,... Verkkokerros: IPv4, IPv6 Linkkikerros:
Multicast. Johdanto Ryhmien hallinta Reititys Reaaliaikaiset siirto- ja hallintaprotokollat Resurssien varaus Sessioiden hallinta MBone
Multicast Johdanto Ryhmien hallinta Reititys Reaaliaikaiset siirto- ja hallintaprotokollat Resurssien varaus Sessioiden hallinta MBone Petri Vuorimaa 1 Johdanto Tietoverkoissa voidaan lähettää kolmella
Chapter 5 Link Layer and LANs
Chapter 5 Link Layer and LANs A te on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and
Multicast. Johdanto Ryhmien hallinta Reititys Reaaliaikaiset siirto- ja hallintaprotokollat Resurssien varaus Sessioiden hallinta
Multicast Johdanto Ryhmien hallinta Reititys Reaaliaikaiset siirto- ja hallintaprotokollat Resurssien varaus Sessioiden hallinta 1 Johdanto Tietoverkoissa voidaan lähettää kolmella eri tavalla Unicast
reitittimissä => tehokkaampi 2005 Markku Kojo IPv6
4. IPv6-protokolla (RFC 2460) Enemmän osoitteita 16 tavua osoitteelle => osoitteita paljon! Virtaviivaistettu nopeampi käsittely k reitittimissä => tehokkaampi Uusia piirteitä Erilaisten sovellusten tarpeet
Kuljetuskerros. Tietokoneverkot. Matti Siekkinen Pasi Sarolahti
Kuljetuskerros Tietokoneverkot Matti Siekkinen Pasi Sarolahti Osa sisällöstä adaptoitu seuraavista lähteistä: J.F. Kurose and K.W. Ross: Computer Networking: A Top-Down Approach 6th ed. -kirjan lisämateriaali
Verkkokerros ja Internetprotokolla
Verkkokerros ja Internetprotokolla Matti Siekkinen T-110.2100 Johdatus tietoliikenteeseen kevät 2013 TCP/IP-protokollapino Sovelluskerros Middleware: HTTP, SSL, XML... Kuljetuskerros: TCP, UDP,... Verkkokerros:
4. Verkkokerros. sovelluskerros. kuljetuskerros. verkkokerros. siirtoyhteyskerros peruskerros. asiakas. end-to-end
4. Verkkokerros sovelluskerros asiakas kuljetuskerros end-to-end verkkokerros deliver packets given to it by its customers siirtoyhteyskerros peruskerros 11.2.2002 1 Verkkokerroksen palvelut tavoitteet
Verkkokerroksen palvelut. 4. Verkkokerros. Virtuaalipiiri (virtual circuit) connection-oriented ~ connectionless. tavoitteet.
. Verkkokerros sovelluskerros asiakas kuljetuskerros end-to-end verkkokerros Verkkokerroksen palvelut tavoitteet palvelut riippumattomia aliverkkojen tekniikasta kuljetuskerros eristettävä aliverkkojen
Verkkokerros ja Internetprotokolla
Verkkokerros ja Internetprotokolla Matti Siekkinen T-110.2100 Johdatus tietoliikenteeseen kevät 2012 TCP/IP-protokollapino Sovelluskerros Middleware: HTTP, SSL, XML... Kuljetuskerros: TCP, UDP,... Verkkokerros:
Reititys. 4. Reititys (Routing) Verkkokerroksen tehtävänä on toimittaa data (paketit) lähettäjän koneelta vastaanottajan koneelle. Reititysalgoritmit
4. Reititys (Routing) Verkkokerroksen tehtävänä on toimittaa data (paketit) lähettäjän koneelta vastaanottajan koneelle Välissä voi olla hyvin monimutkainen monista erilaisista aliverkoista koostuva verkko.
T-110.4100 Tietokoneverkot : Reititys sisäverkossa
T-110.4100 Tietokoneverkot : Reititys sisäverkossa Teemu Kiviniemi Funet-verkko CSC Tieteen tietotekniikan keskus Oy Luento pohjautuu Sanna Suorannan aiempaan materiaaliin. 7.2.2012 Luennon sisältö Reititys
Liikkuvuudenhallinta Mobile IP versio 6 - protokollalla
Liikkuvuudenhallinta Mobile IP versio 6 - protokollalla Mikko Merger Valvoja: Professori Jorma Jormakka Ohjaaja: TkL Markus Peuhkuri TKK/Tietoverkkolaboratorio 1 Sisällysluettelo Tavoitteet IEEE 802.11
SPANNING TREE -PROTOKOLLAN TOIMINTA TIETOVERKOSSA
OPINNÄYTETYÖ - AMMATTIKORKEAKOULUTUTKINTO TEKNIIKAN JA LIIKENTEEN ALA SPANNING TREE -PROTOKOLLAN TOIMINTA TIETOVERKOSSA T E K I J Ä / T : Jussi Äikäs SAVONIA-AMMATTIKORKEAKOULU OPINNÄYTETYÖ Tiivistelmä
Tietoliikenne I (muuntokoulutettaville) 2 ov Syksy 2002 Luennot Liisa Marttinen 11/6/2002 1
Tietoliikenne I (muuntokoulutettaville) 2 ov Syksy 2002 Luennot Liisa Marttinen 11/6/2002 1 581333-1 Tietoliikenne I (2 ov) Kohderyhmät: eri alojen tulevat asiantuntijat mm. mm. ohjelmistojen suunnittelijat,
INTERNET-yhteydet E L E C T R O N I C C O N T R O L S & S E N S O R S
INTERNET-yhteydet IP-osoite IP-osoitteen tarkoituksena on yksilöidä laite verkossa. Ip-osoite atk-verkoissa on sama kuin puhelinverkossa puhelinnumero Osoite on muotoa xxx.xxx.xxx.xxx(esim. 192.168.0.1)
TLT-2600 Verkkotekniikan jatkokurssi Multicast
TLT-2600 Verkkotekniikan jatkokurssi Multicast Prof. Jarmo Harju, TTY Verkkotekniikan jatkokurssi 1 Multicast-sovellukset Resurssien haku esim. naapurireitittimet, DHCP -palvelin käytetään yleensä vain
Andreas Nikiforou VIKASIETOISEN LÄHIVERKON SUUNNITTELU JA TOTEUTUS
Andreas Nikiforou VIKASIETOISEN LÄHIVERKON SUUNNITTELU JA TOTEUTUS Liiketalous ja matkailu 2015 VAASAN AMMATTIKORKEAKOULU Tietojenkäsittely TIIVISTELMÄ Tekijä Andreas Nikiforou Opinnäytetyön nimi Vikasietoisen
Tietoliikenne II. Syksy 2005 Markku Kojo. Tietoliikenne II (2 ov,, 4 op) Page1. Markku Kojo Helsingin yliopisto Tietojenkäsittelytieteen laitos
Tietoliikenne II Syksy 2005 Markku Kojo 1 Syksy 2005 Tietoliikenne II (2 ov,, 4 op) Markku Kojo Helsingin yliopisto Tietojenkäsittelytieteen laitos 2 Page1 1 Kirjallisuus ja muuta materiaalia Kurssikirja:
4. Reititys (Routing)
4. Reititys (Routing) Verkkokerroksen tehtävänä on toimittaa data (paketit) lähettäjän koneelta vastaanottajan koneelle Välissä voi olla hyvin monimutkainen monista erilaisista aliverkoista koostuva verkko.
Tietoliikenteen perusteet. Linkkikerros
Tietoliikenteen perusteet Linkkikerros Kurose, Ross: Ch 5.1-5.6 Tietoliikenteen perusteet /2009/ Liisa Marttinen 1 TCP/UDP IP/reititys Sovellusprotokolla Sovelluskerros Kuljetuskerros Verkkokerros Linkkikerros
TeleWell TW-EA711 ADSL modeemi & reititin ja palomuuri. Pikaohje
TeleWell TW-EA711 ADSL modeemi & reititin ja palomuuri Pikaohje Pikaohje Myyntipaketin sisältö 1. TeleWell TW-EA711 ADSL modeemi & palomuuri 2. AC-DC sähköverkkomuuntaja 3. RJ-11 puhelinjohto ja suomalainen
Luento 9: Linkkikerros. Syksy 2014, Tiina Niklander
Tietoliikenteen perusteet Luento 9: Linkkikerros Syksy 2014, Tiina Niklander Kurose&Ross: Ch5.1-5.4 ja 5.7 Pääasiallisesti kuvien J.F Kurose and K.W. Ross, All Rights Reserved Tietoliikenteen perusteet,
» multiaccess channel» random access channel LAN (Ethernet) langaton. ongelma: käyttövuoron jakelu Yhteiskäyttöisen kanavan käyttö
4. MAC-alikerros yleislähetys (broadcast)» multiaccess channel» random access channel LAN (Ethernet) langaton ongelma: käyttövuoron jakelu 4.10.2000 1 Mitä käsitellään? Yhteiskäyttöisen kanavan käyttö
Tietoliikenteen perusteet. Linkkikerros
Tietoliikenteen perusteet Linkkikerros Kurose, Ross: Ch 5.1-5.6 Tietoliikenteen perusteet /2007/ Liisa Marttinen 1 TCP/UDP IP/reititys Sovellusprotokolla Sovelluskerros Kuljetuskerros Verkkokerros Linkkikerros
Luennon aiheet. S Tietoliikenneverkot. Mihin IP-kytkentää tarvitaan? Miltä verkko näyttää? Vuon määrittely. Vuon määrittely
Luennon aiheet S-38.188 Tietoliikenneverkot,3N\WNHQWl -XNND1XUPL Ongelmakenttä teoriaa mittaustuloksia Ratkaisumallit IP switching Tag switching MPOA muut ratkaisut MPLS 5.11.1997 Jukka Nurmi/ TKK Teletekniikka
4 reititintyyppiä. AS:ien alueet. sisäinen reititin alueen sisäisiä. alueen reunareititin sekä alueessa että runkolinjassa
Yhden AS:n sisällä reitittimet käyttävät samaa reititysprotokollaa (intra-as protocol) OSPF, RIP, kukin reititin tuntee kaikki muut tämän AS:n reitittimet ja saa niiltä reititystietoja tietää mikä reititin
reitittimet käyttävät samaa reititysprotokollaa (intra-as protocol)
Yhden AS:n sisällä reitittimet käyttävät samaa reititysprotokollaa (intra-as protocol) OSPF, RIP, kukin reititin tuntee kaikki muut tämän AS:n reitittimet ja saa niiltä reititystietoja tietää mikä reititin
Hello-paketin kentät jatkuvat
Hello-paketin kentät jatkuvat Designated router Backup desigated router reititin ilmoittaa haluavansa toimia välittäjäreitittimenä tai varavälittäjäreitittimenä valintaa suoritetaan jatkuvasti ja joka
Hello-paketin kentät jatkuvat
Hello-paketin kentät jatkuvat Designated router Backup desigated router reititin ilmoittaa haluavansa toimia välittäjäreitittimenä tai varavälittäjäreitittimenä valintaa suoritetaan jatkuvasti ja joka
Tietoliikenteen perusteet. Langaton linkki. Kurose, Ross: Ch 6.1, 6.2, 6.3. (ei: 6.2.1, ja 6.3.5)
Tietoliikenteen perusteet Langaton linkki Kurose, Ross: Ch 6.1, 6.2, 6.3 (ei: 6.2.1, 6.3.4 ja 6.3.5) Tietoliikenteen perusteet /2009/ Liisa Marttinen 1 Sisältö Langattoman linkin ominaisuudet Langattoman
Tietoliikenteen perusteet
Tietoliikenteen perusteet Luento 9: Linkkikerros Syksy 2014, Timo Karvi Kurose&Ross: Ch5.1-5.4 ja 5.7 Pääasiallisesti kuvien J.F Kurose and K.W. Ross, All Rights Reserved Tietoliikenteen perusteet, syksy
Tietoliikenteen perusteet
582202 Tietoliikenteen perusteet (4 op /2 ov) Kevät 2007. Liisa Marttinen Helsingin yliopisto Tietojenkäsittelytieteen laitos Tietoliikenteen perusteet Asema opetuksessa (v 2006 tutkintovaatimukset) Pakollinen
Linkkikerros 1: perusteet
Linkkikerros 1: perusteet CSE-C2400 Tietokoneverkot 04.03.2014 Matti Siekkinen Osa sisällöstä adaptoitu seuraavista lähteistä: J.F. Kurose and K.W. Ross: Computer Networking: A Top-Down Approach 6th ed.
Verkkokerroksen palvelut. 4. Verkkokerros. Virtuaalipiiri (virtual circuit) connection-oriented ~ connectionless. tavoitteet.
4. Verkkokerros sovelluskerros asiakas kuljetuskerros end-to-end verkkokerros Verkkokerroksen palvelut tavoitteet palvelut riippumattomia aliverkkojen tekniikasta kuljetuskerros eristettävä aliverkkojen
Luento 9: Linkkikerros
HUOM: Kurssikoe siirretty: Uusi aika ke 11.12.2013 klo 9.00 Luento 9: Linkkikerros Ma 25.11.2013 Tiina Niklander Kurose&Ross Ch5.1-5.4 ja 5.7 Pääasiallisesti kuvien J.F Kurose and K.W. Ross, All Rights
Yleinen ohjeistus Linux tehtävään
Yleinen ohjeistus Linux tehtävään Sinulle on toimitettu valmiiksi asennettu HYPER V ympäristö. Tehtäväsi on asentaa tarvittavat virtuaalikoneet, sekä konfiguroida ne ja verkkolaitteet, tehtävän mukaisesti.