11/20/ Siirron optimointi

Samankaltaiset tiedostot
kynnysarvo (threshold)

kynnysarvo (threshold)

kynnysarvo (threshold) varoitusarvo = tästä lähtien syytä varoa ruuhkaa aluksi 64 K RTT

Siirron optimointi. Optimointi on usein tarpeen: Silly window syndrome

Siirron optimointi. Optimointi on usein tarpeen: Silly window syndrome. Esimerkki jatkuu

Esimerkki jatkuu. <seq = 6, data = m6> <ack = 4, buf = 0> <ack = 4, buf = 1> <ack = 4, buf = 2> <ack = 6, buf = 0> <ack = 6, buf = 4> 1/31/

Esimerkki jatkuu. ajastin laukeaa, uudelleen sanoma 2. <seq = 6, data = m6>

Miksi? Miksi? Kaksisuuntainen liikenne TCP-protokolla. Ikkunankoko. Valikoiva toisto: ikkuna 5, numeroavaruus 8

Ikkunankoko. Kun käytetty numeroavaruus on 0, 1,.. n ja eri numeroita siis käytettävissä n+1

Ikkunankoko. Kun käytetty numeroavaruus on 0, 1,.. n ja eri numeroita siis käytettävissä n+1

Kuittaukset ACK. NAK-kuittaus. kumulatiivinen ACK. yksittäinen ACK. sanoma virheellinen tai puuttuu. tähän saakka kaikki ok!

Kuittaukset. Miksi? Miksi? Negatiiviset kuittaukset NAK-kuittauksilla voidaan nopeuttaa uudelleenlähettämistä. Ikkunankoko ACK

Kuittaukset. tähän saakka kaikki ok! Go-Back N. sanoma virheellinen tai puuttuu

6. Kuljetuskerros 6.1. Kuljetuspalvelu

6. Kuljetuskerros 6.1. Kuljetuspalvelu End- to- end

6. Kuljetuskerros 6.1. Kuljetuspalvelu End- to- end. kuljetuspalvelut parantavat verkkopalveluja Kuljetuskerroksen toiminta

3. Kuljetuskerros 3.1.

3. Kuljetuskerros 3.1. Kuljetuspalvelu End- to- end

3. Kuljetuskerros 3.1. Kuljetuspalvelu

3. Kuljetuskerros 3.1. Kuljetuspalvelu. Internetin kuljetuskerros. kuljetuspalvelut parantavat verkkopalveluja

3. Kuljetuskerros 3.1. Kuljetuspalvelu

peittää verkkokerroksen puutteet

3. Kuljetuskerros 3.1. Kuljetuspalvelu

Monimutkaisempi stop and wait -protokolla

Kuljetuskerros. Tietokoneverkot. Matti Siekkinen Pasi Sarolahti

3. Kuljetuskerros 3.1. Kuljetuspalvelu

Monimutkaisempi stop and wait -protokolla

Monimutkaisempi stop and wait -protokolla

TCP. TCP-optiot. Erilaisia suorituskykyongelmia. Aikaleima (timestamp) TCP:n peruspiirteiden toiminta tarkemmin. TCP:n uusia piirteitä.

TCP. TCP:n peruspiirteiden toiminta tarkemmin. TCP:n uusia piirteitä. osin vain harjoitustehtävissä

TCP:n peruspiirteiden toiminta tarkemmin. osin vain harjoitustehtävissä. TCP:n uusia piirteitä

Miten selain muodostaa TCP- tai UDP-yhteyden? TCP-osoite = IP-osoite + porttinumero ( tässä 80) SOCKET BIND (80) LISTEN ACCEPT. Connection Request

3. Kuljetuskerros 3.1. Kuljetuspalvelu End- to- end

Tietoliikenne II. Syksy 2005 Markku Kojo. Tietoliikenne II (2 ov,, 4 op) Page1. Markku Kojo Helsingin yliopisto Tietojenkäsittelytieteen laitos

on yksi keskeisimpiä toimintoja Internetin toiminnan varmistamiseksi Internetin ruuhkanhallinta pitkälti

3. Kuljetuskerros 3.1.

Asiakkaan toimenpiteet

Tietoliikenne II (2 ov)

Tietoliikenne II (2 ov)

Miten selain muodostaa TCP- tai UDP-yhteyden? TCP-osoite = IP-osoite + porttinumero ( tässä 80) SOCKET BIND (80) LISTEN ACCEPT. Connection Request

ELEC-C7241 Tietokoneverkot Kuljetuskerros

TCP:n vuonohjaus (flow control)

Tietoliikenne II Kurssikoe

OSI ja Protokollapino

3. Kuljetuskerros 3.1. Kuljetuspalvelu

Tietoliikenne II (2 ov) Tietoliikenne II. Sisällysluettelo jatkuu. Alustava sisällysluettelo. Suoritus. Täydennystä Tietoliikenne I -kurssin asioihin

Kuljetuskerros. Kirja sivut: ,

Tietoliikenne II (2 ov)

Ongelma 1: Ei saada kolmea toistokuittausta

Nopea uudelleenlähetys (Fast retransmit)

Nopea uudelleenlähetys (Fast retransmit)

Ruuhkanvalvonta on hankalaa!

Ruuhkanvalvonta on hankalaa!

Ruuhkanvalvonta on hankalaa!

Tietoliikenteen perusteet

Tietoliikenne II (2 ov) Sisällysluettelo jatkuu. Tietoliikenne II. Alustava sisällysluettelo. Suoritus

Selektiiviset kuittaukset (RFC 2018, RFC 3517)

Kuljetuskerroksen protokollat. Luotettava vai epäluotettava? Kuljetuskerroksen tarkoitus. Tietosähkeen kapselointi. Portit ja (de)multipleksaus

TCP/IP-protokollapino. Kuljetuskerros. Tämän luennon jälkeen. Sisältö. Matti Siekkinen. Ymmärrätte:

Kuljetuskerroksen tehtävä. Kuljetuskerros UDP. UDP-kaappaus (DNS) DNS-haku, Ethernet-kehys <#>

Kuljetuskerros. Matti Siekkinen. T Johdatus tietoliikenteeseen kevät 2011

TCP. TCP-optiot. Erilaisia suorituskykyongelmia. Aikaleima (timestamp) TCP:n peruspiirteiden toiminta tarkemmin. TCP:n uusia piirteitä.

Kuljetuskerroksen protokollat

Kuljetuskerroksen protokollat. Kuljetuskerroksen tarkoitus. Luotettava vai epäluotettava?

Kuljetuskerroksen protokollat

Kuljetuskerros. CSE-C2400 Tietokoneverkot (osa 1) (osa 2) Matti Siekkinen. Tietokoneverkot 2014

Kuljetuskerros. Matti Siekkinen. T Johdatus tietoliikenteeseen kevät 2013

Luento 6: Kuljetuskerros UDP & TCP TCP:n ruuhkanhallinta. Syksy 2014, Tiina Niklander Kurose&Ross: Ch3

Luento 6: Kuljetuskerros UDP & TCP TCP:n ruuhkanhallinta

Luento 6: Kuljetuskerros UDP & TCP TCP:n ruuhkanhallinta

Tietoliikenteen perusteet

Tietoliikenteen perusteet

Ratkaisu: Miksi lähetetään uusi paketti? SACK (Selective Acknowledgement) Nopea toipuminen ei onnistu! Limited Transmit

M. Allman, H. Balakrishnan, S. Floyd. January (Status: PROPOSED STANDARD) Lähettäjä ei saa kolmea toistokuittausta =>

M. Allman, H. Balakrishnan, S. Floyd. January Lähettäjä ei saa kolmea toistokuittausta =>

Kuljetuspalvelu. Tietoliikenteen perusteet. Sisältöä. Kuljetuskerros. Kuljetuskerros. Kuljetuskerros. Internetin kuljetusprotokollat

Kuljetuskerroksen protokollat

Tietoliikenteen perusteet. Kuljetuskerros

Tehtävä 2: Tietoliikenneprotokolla

Tietoliikenteen perusteet. Kuljetuskerros

Tietoliikenteen perusteet. Kuljetuskerros

ICMP-sanomia. 3. IP-kerroksen muita protokollia ja mekanismeja ICMP (Internet Control Message Protocol)

Tietoliikenteen perusteet. Kuljetuskerros

Kuljetuskerros. CSE-C2400 Tietokoneverkot (osa 1) (osa 2) Matti Siekkinen. Tietokoneverkot 2014

3. IP-kerroksen muita protokollia ja

S Teletekniikan perusteet

Tietoliikenteen perusteet. Kuljetuskerros

Kuljetuspalvelu. Tietoliikenteen perusteet. Sisältöä. Kuljetuskerros. Kuljetuskerros. Kuljetuskerros. Internetin kuljetusprotokollat

Tietoliikenteen perusteet. Kuljetuskerros

S Tietoliikennetekniikan perusteet. Pakettikytkentäiset verkot. Helsinki University of Technology Networking Laboratory

Tietoliikenne II (2 ov) Syksy 2004 Liisa Marttinen

Salausmenetelmät (ei käsitellä tällä kurssilla)

Luento 5: Kuljetuskerros

S Tietoliikenneverkot S Luento 6: Liikenteenhallinta

Internet Protocol version 6. IPv6

Tietoliikenne II (2 ov)

ITKP104 Tietoverkot - Teoria 3

Chapter 3 Transport Layer. Kuljetuskerros

Luento 5: Kuljetuskerros luotettavan tiedonsiirron periaatteet. Syksy 2014, Tiina Niklander

Tietoliikenne II (2 ov)

Transkriptio:

jos ilmoitus lisäpuskureista katoaa, lähettäjä lukkiutuu odotustilaan vastaanottaja voi luulla, ettei ole lähetettävää lukkiutumisen estämiseksi kun ikkunankoko = 0 lähettäjä ei saa lähettää, paitsi erityistä pikadataa (URG) yhden tavun kyselyn, jonka vastaanottaja kuittaa ja samalla ilmoittaa ikkunan koon => estää turhat lukkiutumiset 11/20/2002 61 Siirron optimointi TCP saa optimoida lähettämisiään ei tarvitse lähettää heti kun data on tullut dataa kerätään puskuriin ja lähetetään sopivassa tilanteessa PUSH-lipun avulla sovellus ilmoittaa, että data on lähetettävä heti 11/20/2002 62

Optimointi on usein tarpeen: Interaktiivinen editori => merkki lähetetään heti 21 tavun TCP-segmentti => 41 tavun IP-paketti joka kuitataan 40 tavun IP-paketilla ilmoitus uudesta ikkunan koosta 40 tavun IPpaketilla kaiutetaan merkki vielä 41 tavun IP-paketilla yhden merkin käsittely => 162 tavun siirtäminen ja neljän segmentin lähettäminen 11/20/2002 63 Ratkaisu: Naglen algoritmi jos data tulee tavuttain lähetä 1. tavu kerää sitä seuraavat tavut puskuriin ja lähetä vasta kun edellinen lähetys on kuitattu paitsi jos lähetettävää on suurimman segmentin verran tai puolet ikkunan koosta hankala, jos hiirtä liikutellaan Internetin kautta! 11/20/2002 64

Silly window syndrome Tilanteessa, jossa lähettäjältä dataa TCP:lle suurina lohkoina vastaanottajalle mahtuu vain tavu kerrallaan voi tuhota TCP:n suorituskyvyn koko data lähetetään tavu kerrallaan joka tavun välissä ilmoitus ikkunan koon kasvattamisesta yhdellä Siis: ei ilmoitusta yhdestä tavusta, lähettäjä ei lähetä yhtä tavua koko segmentti puolet puskurin koosta 11/20/2002 65 Silly winwow syndrome vastaanottaja puskuri täynnä sovellus lukee yhden tavun puskuriin mahtuu 1 tavu otsake ilmoitetaan uusi ikkunan koko otsake 1 tavu uusi tavu saapuu vastaanottaja puskuri täynnä 11/20/2002 66

segmentti TCP-segmentti 20 tavun otsake + optionaalinen osa dataosa voi puuttua segmentin kokoa rajoittaa MTU (Maximum transfer unit) verkon rajoitus maksimikoolle (muutama tuhat tavua) IP-paketin dataosa korkeintaan 65535 tavua liian isot segmentit paloitellaan joka palalle IP-otsake => yleisrasite kasvaa 11/20/2002 67 TCP-otsakkeen kentät Source port Destination port TCP head. length Checksum Checksum Sequence number Acknowledgement number U A P R S F R C S S Y I G K H T N N Window size Urgent pointer Options (0 or more 32 bit words) Data (optional) 11/20/2002 68

TPC-segmentin otsakekentät Lähde- ja kohdeportit (Source port, Destination port) yhteyden päätepisteet portti + koneen IP-osoite => 48 bittinen TSAP Järjestysnumero (Sequence number) tavut numeroidaan => 32 bittiä segmentin ensimmäisen tavun numero Kuittausnumero (Acknowledgement number) seuraavaksi odotettu tavu TCP-otsakkeen pituus (TCP header length) mahdollisten optiokenttien takia 6 bitin käyttämätön kenttä 11/20/2002 69 6 lippubittiä URG onko pikadataa pikadatan sijainnin ilmoittaa pikadatakenttä (Urgent pointer) ACK onko kuittauskenttä käytössä PSH onko hetilähetettävää (pushed) dataa RST yhteyden uudelleenalustuspyyntö (reset), yleensä ongelmatilanne SYN käytetään yhteyttä muodostettaessa SYN =1, ACK = 0 connection request SYN =1, ACK = 1 connection accepted FIN käytetään yhteyden purkuun FIN =1 ei enää lähetettävää 11/20/2002 70

Ikkunan koko (window size) vaihteleva ikkunankoko kuittaus irroitettu lähetysluvasta Tarkistussumma (Checksum) lasketaan otsakkeelle, datalle ja ns. pseudo-otsakkeelle 11/20/2002 71 pseudo-otsake Source IP address Destination IP address 00000000 Protocol = 6 TCP/UDP segmentin pituus Auttaa havaitsemaan väärään osoitteeseen toimitetut paketit. Sisältää IP-otsakkeen tietoja! 11/20/2002 72

Optiokenttä (options) voidaan lisätä piirteitä, joita ei ole varsinaisessa otsakkeessa suurin hyväksyttävä datakenttä ikkunan koon moninkertaistaminen (window scale) nopeille ja pitkän viipeen linjoille 64 ktavun ikkunan koko on liian pieni valikoivan toiston käyttö go back N :n tilalla vähentää turhia uudelleenlähetyksiä 11/20/2002 73 3.6. TCP:n ruuhkan valvonta Liikaa kuormitusta => verkko ruuhkautuu => hidastetaan lähettämistä Ruuhkan havaitseminen nykyisin siirtovirheet harvinaisia poikkeuksena langattomat verkot => uudelleenlähetykset johtuvat ruuhkasta uudelleenlähetysajastimen laukeaminen on merkki ruuhkasta 11/20/2002 74

ruuhkaikkuna paljonko tavuja (segmenttejä) lähettäjällä saa korkeintaan olla verkossa liikkeellä paljonko lähettäjä saa kuormittaa verkkoa kuittaus => ko. tavut jo poistuneet verkosta tavuja kuittaukset 11/20/2002 75 Ruuhkaikkunan koko? Lähettäjän on itse pääteltävä ja arvioitava sopiva ruuhkaikkunan koko kukaan muu ei sitä kerro! uudelleenlähetysajastin laukeaa => on ruuhkaa kuittaukset tulevat tasaisesti => ei ole ruuhkaa Internet-verkon kuormitus voi vaíhdella paljon Dynaaminen ruuhkaikkunan koko: ruuhkaikkunaa kasvatetaan, kunnes törmätään ruuhkaan ensin kasvatetaan melko nopeasti, sitten varovaisemmin sen jälkeen ruuhkaikkunaa pienennetään reilusti ja aletaan uudestaan kasvattaa ruuhkaikkunaa 11/20/2002 76

Hitaan aloituksen algoritmi (slow start) Algoritmi pyrkii löytämään sopivan ikkunan koon yhteyden alussa tai ruuhkatilanteen jälkeen mahdollisimman nopeasti ei ole niin kovin hidas, vaan alussa eksponentiaalinen! alussa ruuhkaikkuna = yksi segmentti kuitattu ruuhkaikkunallinen kasvattaa ruuhkaikkunan kaksinkertaiseksi 11/20/2002 77 lähettäjä datasegmentti vastaanottaja ACK 11/20/2002 78

kynnysarvo (threshold) aluksi 64 K varoitusarvo = tästä lähtien syytä varoa ruuhkaa kynnysarvoon saakka voidaan kasvattaa ruuhkaikkunaa eksponentiaalisesti kynnysarvon saavuttamisen jälkeen kasvatetaan ruuhkaikkunaa vain lineaarisesti = kasvatetaan kuittausten jälkeen vain yhdellä edetään hyvin varovaisesti! 11/20/2002 79 jos ajastin ehtii laueta => ruuhkatilanne kynnysarvoksi puolet nykyisestä ruuhkaikkunan arvosta hitaalla aloituksella etsitään taas uusi sopiva ruuhkaikkunan arvo ruuhkaikkunan arvoksi 1 segmentti ruuhkaikkunaa kasvatetaan aluksi eksponentiaalisesti eli kaksinkertaistetaan kun ikkunallinen on kuitattu kynnysarvon saavuttamisen jälkeen kasvatetaan vain segmentti kerrallaan kunnes taas havaitaan ruuhka ja aloitetaan ruuhkaikkunan uuden arvon etsiminen 11/20/2002 80

Uudelleenlähetysjastimen hallinta uudelleenlähetysajastin (retransmission timer) asetetaan aina kun segmentti lähetetään ruuhkaa, jos kuittaus ei saavu ajoissa mikä on sopiva ajastimen aika? kuittaus aika vaihtelee suuresti vaihtelu on myös nopeaa dynaaminen arvo saadaan jatkuvien verkon suorituskykymittauksien perusteella 11/20/2002 81 RTT arvio kiertoviiveelle (round-trip time) mitataan jokaisen lähetetyn segmentin kiertoviive M RTT = αrtt + (1-α)Μ, tyypillisesti α = 7/8 uudelleenlähetysajastimen arvo βrtt aluksi β oli aina 2 parannus: otetaan huomioon myös poikkeama D (deviation) oletetun ja saadun kiertoviiveen välillä RTT-M D = α D + (1- α) RTT-M ajastimen arvo = RTT +4*D 11/20/2002 82

uudelleenlähetysten vaikutus ajastimeen kumpaan segmenttiin kuittaus kohdistuu? Karnin algoritmi ei oteta huomioon uudelleenlähettyjen segmenttien kuittauksia RTT:n laskemisessa 11/20/2002 83 Hidas aloitus: Lähetysmäärä kasvaa eksponentiaalisesti

Ikkuna täyttyy ja lähettäjän täytyy odottaa kunnes kadonneen sanoman ajastin laukeaa Hidas aloitus: segmentti katoaa ja kuittausta ei tule => kadonneen segmentin ajastin laukeaa aikanaan Tahoe-versio Sitten aloitetaan taas hitaalla aloituksella Parannuksia ruuhkanvalvontaan Nopea uudelleenlähetys (Fast Retransmit) ei odoteta ajastimen laukeamista ennen uudelleenlähetystä vastaanottaja kuittaa jokaisen paketin kun vastaanottaja huomaa puuttuvan paketin, se lähettää uudelleen edellisen paketin kuittauksen Duplicate ACK (~ NAK) kun lähettäjä saa useita (3) peräkkäisiä saman paketin toistokuittauksta=> se havaitsee tästä paketin puuttuvan ja lähettää sen heti uudelleen => nopeampi uudelleenlähetys 11/20/2002 86

Nopea toipuminen (Fast Recovery) kun kadonnut paketti huomataan nopealla toipumisella, ei aloiteta alusta hitaalla aloituksella vaan pudotetaan ruuhkaikkuna puoleen ja jatketaan normaalilla lineaarisella kasvattamisella Mitä hyötyä tästä on? Miksi voidaan huoletta tehdä näin? 11/20/2002 87 ack1 0-7 8 Virhetilanteessa tavallista hidasta aloitusta käytettäessä lähetetään, kunnes ikkuna täyttyy ja sitten jäädään odottamaan ajastimen laukeamista Väärässä järjestyksessä tulleita sanomia ei hyväksytä => toistokuittauksia Ajastin laukeaa 1 2ja3 Aloitetaan hidas aloitus: ensin 1 segmentti ja vasta sen kuittauksen saavuttua 2 segmenttiä, sitten 4. Ja tämän jälkeen kasvatetaan lineaarisesti 5, 6, 7, 8,9, jne.

ack1 ajastin ack 9 0-7 8 1 9ja10 Hidas aloitus: kun ikkuna täyttyy jäädään odottamaan kuittauksia tai ajastimen laukeamista TCP-protokolla usein tallettaa väärässä järjestyksessä tulleet segmentit eli ei toimi täysin go back -protokollan tavoin. ack 9 0-7 8 1 9-12 13-17 Nopea uudelleenlähetys ja nopea toipuminen: kolmen toistokuittauksen jälkeen lähetetään pyydetty segmentti uudestaan TCP-protokolla usein tallettaa väärässä järjestyksessä tulleet segmentit ruuhkaikkuna puolitetaan ( 8 => 4) ja lähetystä jatketaan kasvattamalla lähetysmäärää lineaarisesti Reno-versio

hidas aloitus ja ruuhkan valvonta ongelmallisia langattomassa yhteydessä Miksi? Lisäparannuksia ruuhkanhallintaan esim. Vegas ruuhkan ennustaminen ennen ajastimen laukeamista ruuhkaikkunaa ei kasvateta aina ruuhkaan asti RED (random early detection) entä UDP? 11/20/2002 91 TCP langattomassa verkossa monet TCP-toteutukset optimoitu luotettaville lankaverkoille => suorituskyky langattomissa verkoissa erittäin huono ruuhkanvalvonta-algoritmi olettaa ajastimen laukeamisen johtuvan ruuhkasta lähettämistä hidastetaan, jotta verkon kuormitus pienenisi ja ruuhkaa ei syntyisi langattomat yhteydet ovat epäluotettavia ja paketteja katoaa kadonneet paketit syytä lähettää nopeasti uudelleen lähetystä pitäisi päinvastoin nopeuttaa! 11/20/2002 92

TCP-yhteyden hallinta yhteys muodostetaan kolminkertaisella kättelyllä passiivinen osapuoli kuuntelee SOCKET BIND LISTEN ACCEPT aktiivinen osapuoli aloittaa yhteydenmuodostuksen CONNECT 11/20/2002 93 CONNECT-primitiivi parametreina IP-osoite ja porttinumero suurin hyväksyttävä segmentin koko muuta tietoa, esim. salasana TCP-segmentti, jossasyn-segmentti SYN = 1 ACK = 0 11/20/2002 94

TCP client proc server proc SOCKET CONNECT SOCKET LISTEN ACCEPT Asiakkaan pistoke Kolminkertainen kättely = TCP-yhteyden muodostus Yhteyspistoke Yhteydenotto pistoke Datan siirto TCP-yhteyden muodostaminen 11/20/2002 95 TCP client proc server proc SEND RECEIVE SEND RECEIVE Tavuvirta putkessa Asiakkaan pistoke tavuja tavuja Yhteyspistoke Pistoke + TCP = tavuputki prosessien välissä 11/20/2002 96

TCP-yhteys on tavuvirtaa, ei sanomavirtaa lähetettäessä neljä 512 tavun pätkää vastaanottaja saa joko neljä 512 tavun pätkää kaksi 1024 tavun pätkää yhden 2048 tavun pätkän Segmentit lähetetään neljänä eri IP-pakettina Ne luovutetaan vastaanottajalle yhdellä READ-kutsulla A B C D A B C D neljä 512 tavun segmenttiä yksi 2048 tavun data 11/20/2002 97 yhteyden purkaminen server client SEND(DATA) CLOSE discon. data discon. CLOSE asiakas jää odottamaan mahdollista dataa palvelimelta symmetrinen yhteyden purku asiakas vapautetaan 11/20/2002 98

C-rutiineina int socket(int domain, int type, int protocol) palvelin: int bind (int socket, struct sockaddr *address, int addr_len) int listen(int socket, int backlog) int accept(int socket, struct sockaddr *address, int *addr_len asiakas: int connect (intsocket, struct sockaddr *address, int addr_len) 11/20/2002 99 int send(int socket, char *message, int msg_len, int flags) sanoman lähetys annetun pistokkeen kautta int recv(int socket, char *buffer, int buf_len, int flags) sanoma vastaanotto annetusta pistokkeesta ilmoitettuun puskuriin 11/20/2002 100

Pistokeohjelmointia Javalla Socket clientsocket = new Socket( hostname, 6789); clientsocket.close(); ServerSocket welcomesocket = new Server Socket (6789); Socket connectionsocket = welcomesocket; accept() (esimerkki kirjassa Kurose, Ross, Computer Networking, A Top-Down Approach Featuring the Interbet) 11/20/2002 101 Pistokeohjelmointi Pistokeohjelmointia ja yleensä hajautettujen verkkosovellusten tekemistä opetellaan erillisellä kurssilla Verkkosovellusten toteuttaminen (järjestetään keväällä 2003) 11/20/2002 102

Yhteenveto Kuljetuskerroksen palvelut UDP TCP luotettava tavuvirta yhteyden muodostus ja purku numerointi, tarkistussumma, kuittaus, uudelleenlähetys, Go-back N vuonvalvonta: vastaanottoikkuna (liukuva ikkuna) ruuhkanhallinta: hidas aloitus pistokeohjelmointi 11/20/2002 103 Sovellus (HTTP, SMTP) TCP puskurit Reply Request.. SYN =1.. Sovellus (HTTP, SMTP) TCP puskurit..fin = 1.. TCP-otsake data TCP-otsake data???? Internet