Täydentäviä muistiinpanoja jäsennysalgoritmeista
|
|
- Kirsi-Kaisa Heikkinen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 äydentäviä muistiinpanoja jäsennysalgoritmeista Antti-Juhani Kaijanaho 7. helmikuuta simerkki arleyn algoritmin soveltamisesta arkastellaan kielioppia G : + () c ja sovelletaan arleyn algoritmia siihen sekä merkkijonoon c + c c. euraavassa esityksessä on yksi taulukko per i -joukko. aulukon otsikkorivillä kerrotaan, mistä joukosta on kyse, sekä mitä kohtaa merkkijonosta se tarkastelee (jolloin selaus tarkastelee pisteen jälkeistä merkkiä). Kukin taulukko luetteloi (ja numeroi) joukossa olevat asetelmat siinä järjestyksessä, jossa ne on siihen lisätty. Kunkin asetelman kohdalla on kerrottu, miksi se on joukkoon lisätty (sulkeissa olevat numerot viittaavat aiempiin riveihin). Jos sama asetelma tulee lisättäväksi samaan taulukkoon useampaan kertaan, käytetään ensimmäisen lisäyksen riviä merkitsemään myös myöhempien lisäysten syyt. 0 c + c c 1, 0 alustus 2 +, 0 ennustus (1, 2, 3) 3, 0 ennustus (1, 2, 3) 4 (), 0 ennustus (1, 2, 3) 5 c, 0 ennustus (1, 2, 3) IA241 Automaatit ja kieliopit, kevät
2 1 c +c c 1 c, 0 selaus 0 (5) 2, 0 täydennys (1), 0 (1) 3 +, 0 täydennys (1, 2), 0 (2) 4, 0 täydennys (1, 2), 0 (3) 2 c + c c 1 +, 0 selaus 1 (3) 2 +, 2 ennustus (1, 2, 3) 3, 2 ennustus (1, 2, 3) 4 (), 2 ennustus (1, 2, 3) 5 c, 2 ennustus (1, 2, 3) 3 c + c c 1 c, 2 selaus 2 (5) 2 +, 0 täydennys (1), 2 (1) 3 +, 2 täydennys (1), 2 (2) 4, 2 täydennys (1), 2 (3) 5, 0 täydennys (2), 0 (1) 6 +, 0 täydennys (2, 5), 0 (2) 7, 0 täydennys (2, 5), 0 (3) 4 c + c c 1, 2 selaus 3 (4) 2, 0 selaus 3 (7) 3 +, 4 ennustus (1, 2) 4, 4 ennustus (1, 2) 5 (), 4 ennustus (1, 2) 6 c, 4 ennustus (1, 2) 5 c + c c 1 c, 4 selaus 4 (6) 2, 2 täydennys (1), 4 (1) 3, 0 täydennys (1), 4 (2) 4 +, 4 täydennys (1), 4 (3) 5, 4 täydennys (1), 4 (4) 6 +, 0 täydennys (2), 2 (1) 7 +, 2 täydennys (2), 2 (2) 8, 2 täydennys (2), 2 (3) 9, 0 täydennys (3, 6), 0 (1) 10 +, 0 täydennys (3, 6), 0 (2) 11, 0 täydennys (3, 6), 0 (3) 2
3 Koska (, 0) 5 pätee, julistetaan että c + c c L(G) myös pätee. dellä olevista taulukoista voidaan myös lukea jäsennyspuut. Piirretään ensiksi sellaiset puut, joissa solmuina ovat algoritmin taulukoista löytyvät asetelmat. Asetelmojen väliset suhteet luetaan taulukoista seuraavasti: Asetelma (, 0) on puun juuri. Asetelma A on jonkin toisen asetelman B oikeanpuolimmainen lapsi, jos asetelma B on merkitty johdetuksi täydennyksellä samassa taulukossa olevasta asetelmasta A. Jos asetelmalla on useita oikeanpuolimmaisia lapsia, on kyse tilanteesta, jossa on useita jäsennyspuita. Valitsemalla oikeanpuolimmaisista lapsista jonkin saadaan aikaan jokin jäsennyspuista. Asetelma, joka on johdettu toisesta selauksella taikka täydennyksellä jostakin edellisen taulukon asetelmasta, on sen oikeanpuoleinen sisarus. isarussuhdeketjussa tulee olla kaikilla asetelmilla sama produktio. Jos näin ei ole, algoritmia on sovellettu väärin. isarussuhdeketjun yhteisen produktion oikean puolen kutakin symbolia kohden pitää olla ketjussa asetelma, jossa piste on ko. symbolin kohdalla. Jos näin ei ole, puu on hylättävä epäonnistuneena jäsennysyrityksenä. euraavat ei-hylättävät puut saadaan aikaan. Merkitsen asetelman siten lyhentäen, että laitan varsinaiseksi merkiksi sen merkin, joka tulee asetelmassa ennen pistettä, ja varustan sen ylä- ja alaindekseillä i, j, joissa i kertoo sen taulukon ja j sen rivin, josta asetealma löydettiin puuhun. Yläindeksi viittaa oikeanpuolimmaisella (tai ainoalla) sisaruksella ylenevään polveen ja muilla sisaruuteen oikealle päin. Alaindeksi viittaa suhteeseen oikeanpuolimmaiseen (tai ainoaan) lapseen. iis esimerkiksi 5,6 3,2 kertoo, että kyseisessä asetelmassa pistettä edeltää, että sen vanhempi selviää tarkastelemalla taulukon 5 rivin 6 suhteita ja että sen lapsi selviää tarkastelemalla taulukon 3 rivin 2 suhteita. 3
4 1,3 1,3 5,9 3,7 5,14 4,2 + 2,1 5,6 3,2 5,3 5,3 c 5,1 3,5 1,3 1,3 + 2,1 3,2 5,6 c 1,1 3,4 3,4 4,1 5,2 5,2 c 1,1 c 3,1 c 3,1 c 5,1 2 nnustava jäsennys Olkoon G = (V, Σ, P, ) CFG. Olkoon lisäksi Σ. Määritelmä 1. Määritellään ominaisuus NULLABL (V Σ) seuraavasti: NULLABL = { ω (V Σ) ω G ε } Merkintä NULLABL(ω) tarkoittaa samaa kuin ω NULLABL. Määritelmä 2. Määritellään kuvaus FIR : (V Σ) Σ, FIR : ω { c Σ ω (V Σ) : ω G cω } Algoritmi 3. FIR ja NULLABL voidaan laskea jokaiselle välikesymbolille seuraavalla algoritmilla: 1. Alusta NULLABL =. 2. Alusta FIR(X) = kaikilla X V. 3. Kunnes NULLABL ja FIR eivät enää muutu, tee: (a) Jos kieliopissa on produktio X ε jollakin X V, tee NULLABL := NULLABL {X}. (b) Jos kieliopissa on produktio X α 1 α n joillakin X V, n Z + ja α 1,..., α n V Σ, tee: i. Aseta i := 1. ii. Jos α i Σ, tee FIR(X) := FIR(X) {α i }. iii. Jos α i V, tee FIR(X) := FIR(X) FIR(α i ). iv. Jos α i V ja α i NULLABL, tee: 4
5 A. i := i + 1 B. Jos i n, hyppää kohtaan 3(b)ii. C. NULLABL := NULLABL {X}. Algoritmin yleistys välike- ja päätemerkkien jonoille jää harjoitustehtäväksi. Määritelmä 4. Määritellään kuvaus FOLLOW : V (Σ { }), FOLLOW : X { c Σ ω, ω : G ωxcω } { ω : G ωx } Näin c FOLLOW(X) tarkoittaa, että X:n jälkeen voi tulla c. Vastaavasti FOLLOW(X) tarkoittaa sitä, että X voi esiintyä kieleen kuuluvan merkkijonon lopussa. Algoritmi 5. FOLLOW voidaan laskea seuraavalla algoritmilla: 1. Alusta FOLLOW(X) = kaikilla X V {}. 2. Alusta FOLLOW() = { }. 3. Kunnes FOLLOW ei enää muutu, tee: (a) Jos kieliopissa on produktio Y ωxω joillekin X, Y V ja ω, ω (V Σ), tee: i. FOLLOW(X) := FOLLOW(X) FIR(ω ). ii. Jos NULLABL(ω ), tee FOLLOW(X) := FOLLOW(X) FOLLOW(Y ). Algoritmi 6. Rekursiivisesti etenevän jäsennyksen jäsennystaulukko voidaan konstruoida muuttujaan M : V (Σ { }) P(P ) seuraavasti: 1. Alusta M(X, c) = kaikilla X V ja c Σ { }. 2. Kullekin kieliopin produktiolle A ω tee: (a) Kaikille c FIR(ω) tee M(A, c) := M(A, c) {A ω}. (b) Jos NULLABL(ω), niin jokaiselle c FOLLOW(ω) tee M(A, c) := M(A, c) {A ω}. Määritelmä 7. Jos rekursiivisesti etenevän jäsennyksen jäsennystaulukossa M pätee M(X, c) 1 kaikilla X V ja c Σ { }, kielioppi on LL(1) ja jäsennystaulukko on ennustava. arkastellaan nyt esimerkinomaisesti BNF-muotoista kielioppia 5
6 <statement> ::= if ( <expression> ) <statement> else <statement> return <expression> ; <expression> ::= <term> <expressionprime> <expressionprime ::= + <term> <expressionprime> - <term> <expressionprime> <term> ::= <constant> ( <expression> ) Kyse on lähes samasta kieliopista, johon luentoesimerkki Rdex.java perustuu. Kirjoitetaan se vielä varmuuden vuoksi tutummilla merkintätavoilla: if () else return ; + ε c () Lasketaan ensiksi NULLABL ja FIR algoritmia noudattaen. Alustus jättää taulukon tyhjäksi. NULLABL FIR Produktio if () else : NULLABL FIR if 6
7 Produktio return ; Produktio + : Produktio : Produktio c: Produktio (): Produktio ε: NULLABL FIR NULLABL FIR + NULLABL NULLABL FIR + FIR + c NULLABL FIR + NULLABL FIR + 7
8 Produktio : NULLABL FIR c ( + Mikään produktio ei tämän jälkeen aiheuta muutoksia taulukkoon, joten algoritmin suoritus päättyy. Lasketaan vielä FOLLOW. Alustus: NULLABL FIR FOLLOW c ( + Produktiot if () else välikesymbolin suhteen: NULLABL FIR FOLLOW c ( ) + Produktio return ; välikesymbolin suhteen: NULLABL FIR FOLLOW c ( ) ; + Produktio välikesymbolin suhteen: NULLABL FIR FOLLOW c ( ) ; + ) ; 8
9 Produktio välikesymbolin suhteen: NULLABL FIR FOLLOW c ( ) ; + ) ; + ) ; Produktio if () else välikesymbolin suhteen: NULLABL FIR FOLLOW else c ( ) ; + ) ; + ) ; Jäsennystaulukko on nyt yksinkertainen rakennettava: c + ( ) ; if else return if () else return ; + ε ε c () ämän pohjalta laadittu ennustava jäsennin (tai oikeammin tunnistin) on kurssin luentosivuilla saatavilla tiedostossa LL.java. 9
Jäsennysaiheesta lisää Täydentäviä muistiinpanoja TIEA241 Automaatit ja kieliopit, syksy 2016
Jäsennysaiheesta lisää Täydentäviä muistiinpanoja TIA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho 4. lokakuuta 2016 1 simerkki arleyn algoritmin soveltamisesta Tämä esimerkki on laadittu
LisätiedotTäydentäviä muistiinpanoja kontekstittomien kielioppien jäsentämisestä
Täydentäviä muistiinpanoja kontekstittomien kielioppien jäsentämisestä Antti-Juhani Kaijanaho 30. marraskuuta 2015 1 Yksiselitteiset operaattorikieliopit 1.1 Aritmeettiset lausekkeet Tällä kurssilla on
Lisätiedotjäsentäminen TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho 26. marraskuuta 2015 TIETOTEKNIIKAN LAITOS
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 26. marraskuuta 2015 Sisällys Tunnistamis- ja jäsennysongelma Olkoon G = (N, Σ, P, S) kontekstiton kielioppi ja
LisätiedotTIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 29. huhtikuuta 2011
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 29. huhtikuuta 2011 Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti
Lisätiedotjäsennyksestä TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho 29. syyskuuta 2016 TIETOTEKNIIKAN LAITOS Kontekstittomien kielioppien
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 29. syyskuuta 2016 Sisällys Harjoitustehtävätilastoa Tilanne 29.9.2016 klo 8:41 (lähes kaikki kommentoitu) passed
Lisätiedotjäsentämisestä TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho 27. marraskuuta 2015 TIETOTEKNIIKAN LAITOS
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 27. marraskuuta 2015 Sisällys Rekursiivisesti etenevä engl. recursive descent parsing Tehdään kustakin välikesymbolista
LisätiedotTIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 10. kesäkuuta 2013
TIEA241 Automaatit ja kieliopit, kesä 2013 etenevä Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 10. kesäkuuta 2013 Sisällys etenevä etenevä Chomskyn hierarkia (ja muutakin) kieli säännöllinen LL(k) LR(1)
LisätiedotKontekstittomien kielten jäsentäminen Täydentäviä muistiinpanoja TIEA241 Automaatit ja kieliopit, syksy 2016
Kontekstittomien kielten jäsentäminen äydentäviä muistiinpanoja IA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho 19. lokakuuta 2016 1 Yksiselitteiset operaattorikieliopit 1.1 Aritmeettiset
LisätiedotTIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 3. lokakuuta 2016
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 3. lokakuuta 2016 Sisällys n tunnistin Jay : An Efficient Context-Free Parsing Algorithm. Communications of the
LisätiedotTIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 2. helmikuuta 2012
TIEA241 Automaatit ja, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 2. helmikuuta 2012 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti lueteltava
LisätiedotPinoautomaatit. TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 6. kesäkuuta 2013 TIETOTEKNIIKAN LAITOS. Pinoautomaatit.
TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 6. kesäkuuta 2013 Sisällys Aikataulumuutos Tämänpäiväinen demotilaisuus on siirretty maanantaille klo 14:15 (Ag Delta).
LisätiedotTIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 12. kesäkuuta 2013
TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. kesäkuuta 2013 Sisällys t Chomskyn hierarkia (ja vähän muutakin) kieli säännöllinen LL(k) LR(1) kontekstiton
LisätiedotTIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 9. lokakuuta 2016
TIEA241 Automaatit ja, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 9. lokakuuta 2016 Sisällys Kontekstiton kielioppi Kontekstiton kielioppi koostuu joukosta päätemerkkejä (engl. terminal symbols),
LisätiedotAttribuuttikieliopit
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 3. toukokuuta 2011 Sisällys t Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti
LisätiedotTIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 16. helmikuuta 2012
TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 16. helmikuuta 2012 Sisällys t Sisällys t Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti
LisätiedotTIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 30. marraskuuta 2015
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 30. marraskuuta 2015 Sisällys t Väitöstilaisuus 4.12.2015 kello 12 vanhassa juhlasalissa S212 saa tulla 2 demoruksia
LisätiedotJäsennysalgoritmeja. TIE448 Kääntäjätekniikka, syksy Antti-Juhani Kaijanaho. 29. syyskuuta 2009 TIETOTEKNIIKAN LAITOS. Jäsennysalgoritmeja
TIE448 Kääntäjätekniikka, syksy 2009 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 29. syyskuuta 2009 Sisällys Sisällys Seuraava deadline Vaihe B tiistai 6.10. klo 10 selaaja ja jäsentäjä toimivat Kääntäjän
LisätiedotYhteydettömät kieliopit [Sipser luku 2.1]
Yhteydettömät kieliopit [ipser luku 2.1] Johdantoesimerkkinä tarkastelemme kieltä L = { a n b m a n n > 0, m > 0 }, joka on yhteydetön (mutta ei säännöllinen). Vastaavan kieliopin ytimenä on säännöt eli
LisätiedotTIEA241 Automaatit ja kieliopit, syksy 2015. Antti-Juhani Kaijanaho. 3. joulukuuta 2015
TIEA241 Automaatit ja, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 3. joulukuuta 2015 Sisällys Formaalisti Määritelmä Nelikko G = (V, Σ, P, S) on kontekstiton kielioppi (engl. context-free
LisätiedotLR-jäsennys. Antti-Juhani Kaijanaho. 3. lokakuuta 2016
LR-jäsennys Antti-Juhani Kaijanaho 3. lokakuuta 2016 Tämä lisämoniste esittelee Yaccin, CUPin ja muiden vastaavien ohjelmien käyttämän LR-jäsennysmenetelmäperheen. Se ei kuulu kurssin koealueeseen. Tehtävänä
LisätiedotPinoautomaatit. Pois kontekstittomuudesta
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 3. joulukuuta 2015 Sisällys Pinoautomaatti NFA:n yleistys automaatilla on käytössään LIFO-muisti 1 eli pino Pino
LisätiedotTIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 29. toukokuuta 2013
TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 29. toukokuuta 2013 Sisällys Chomskyn hierarkia (ja muutakin) kieli LL(k) LR(1) kontekstiton kontekstinen rekursiivisesti
LisätiedotT Syksy 2006 Tietojenkäsittelyteorian perusteet T Harjoitus 7 Demonstraatiotehtävien ratkaisut
T-79.1001 Syksy 2006 Tietojenkäsittelyteorian perusteet T Harjoitus 7 Demonstraatiotehtävien ratkaisut Lemma (Säännöllisten kielten pumppauslemma). Olkoon A säännöllinen kieli. Tällöin on olemassa n 1
LisätiedotTIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 16. marraskuuta 2015
ja ja TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho NFA:ksi TIETOTEKNIIKAN LAITOS 16. marraskuuta 2015 Sisällys ja NFA:ksi NFA:ksi Kohti säännöllisiä lausekkeita ja Nämä tiedetään:
LisätiedotS BAB ABA A aas bba B bbs c
T-79.148 Kevät 2003 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut 4. Tehtävä: Laadi algoritmi, joka testaa onko annetun yhteydettömän kieliopin G = V, Σ, P, S) tuottama
LisätiedotTIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. lokakuuta 2016
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. lokakuuta 2016 Sisällys Harjoitustehtävät loppukurssilla luentojen 14 18 harjoitustehtävistä on tehtävä yksi
LisätiedotTäydentäviä muistiinpanoja Turingin koneiden vaihtoehdoista
Täydentäviä muistiinpanoja Turingin koneiden vaihtoehdoista Antti-Juhani Kaijanaho 15. maaliskuuta 2012 1 Apumääritelmä Määritelmä 1. Olkoon Σ merkistö, jolla on olemassa täydellinen järjestys ( ) Σ 2.
LisätiedotLaskennan mallit (syksy 2010) Harjoitus 8, ratkaisuja
582206 Laskennan mallit (syksy 2010) Harjoitus 8, ratkaisuja 1. Tarkastellaan yhteydetöntä kielioppia S SAB ε A aa a B bb ε Esitä merkkijonolle aa kaksi erilaista jäsennyspuuta ja kummallekin siitä vastaava
LisätiedotEi-yhteydettömät kielet [Sipser luku 2.3]
Ei-yhteydettömät kielet [Sipser luku 2.3] Yhteydettömille kielille pätee samantapainen pumppauslemma kuin säännöllisille kielille. Siinä kuitenkin pumpataan kahta osamerkkijonoa samaan tahtiin. Lause 2.25
LisätiedotVasen johto S AB ab ab esittää jäsennyspuun kasvattamista vasemmalta alkaen:
Vasen johto S AB ab ab esittää jäsennyspuun kasvattamista vasemmalta alkaen: S A S B Samaan jäsennyspuuhun päästään myös johdolla S AB Ab ab: S A S B Yhteen jäsennyspuuhun liittyy aina tasan yksi vasen
LisätiedotRajoittamattomat kieliopit
Rajoittamattomat kieliopit Ohjelmoinnin ja laskennan perusmalleista muistetaan, että kieli voidaan kuvata (esim.) kieliopilla joka tuottaa sen, tai automaatilla joka tunnistaa sen. säännölliset lausekkeet
LisätiedotChomskyn hierarkia ja yhteysherkät kieliopit
Chomskyn hierarkia ja yhteysherkät kieliopit Laskennan teorian opintopiiri Tuomas Hakoniemi 21. helmikuuta 2014 Käsittelen tässä laskennan teorian opintopiirin harjoitustyössäni muodollisten kielioppien
Lisätiedotuv n, v 1, ja uv i w A kaikilla
2.8 Säännöllisten kielten rajoituksista Kardinaliteettisyistä on oltava olemassa (paljon) ei-säännöllisiä kieliä: kieliä on ylinumeroituva määrä, säännöllisiä lausekkeita vain numeroituvasti. Voidaanko
LisätiedotT Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut
T-79.148 Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut 4. Tehtävä: Laadi algoritmi, joka testaa onko annetun yhteydettömän kieliopin G = V, Σ, P, S tuottama
Lisätiedot815338A Ohjelmointikielten periaatteet Harjoitus 2 vastaukset
815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 2 vastaukset Harjoituksen aiheena on BNF-merkinnän käyttö ja yhteys rekursiivisesti etenevään jäsentäjään. Tehtävä 1. Mitkä ilmaukset seuraava
LisätiedotICS-C2000 Tietojenkäsittelyteoria
ICS-C2000 Tietojenkäsittelyteoria Luento 5: Säännöllisten kielten pumppauslemma; yhteydettömät kieliopit Aalto-yliopisto Perustieteiden korkeakoulu Tietotekniikan laitos Kevät 2016 Alue ja aiheet: Orposen
LisätiedotYhteydettömän kieliopin jäsennysongelma
Yhteydettömän kieliopin jäsennysongelma Yhteydettömän kieliopin jäsennysongelmalla tarkoitetaan laskentaongelmaa Annettu: yhteydetön kielioppi G, merkkijono w Kysymys: päteekö w L(G). Ongelma voidaan periaatteessa
LisätiedotPinoautomaatit. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 6. lokakuuta 2016 TIETOTEKNIIKAN LAITOS
.. TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 6. lokakuuta 2016 Sisällys. Harjoitustehtävätilastoja Tilanne 6.10.2016 klo 8:28 passed potential redo submitters
LisätiedotTIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 26. tammikuuta 2012
TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 26. tammikuuta 2012 Sisällys Luennon pähkinä Millä tavalla voidaan rakentaa tietokoneohjelma (tai kirjasto), joka
LisätiedotTIE448 Kääntäjätekniikka, syksy Antti-Juhani Kaijanaho. 9. marraskuuta 2009
TIE448 Kääntäjätekniikka, syksy 2009 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 9. marraskuuta 2009 Sisällys Sisällys Seuraava deadline Vaihe D tiistai 10.11. klo 10 välikielen generointi Vaihe E tiistai
LisätiedotSäännölliset kielet. Sisällys. Säännölliset kielet. Säännölliset operaattorit. Säännölliset kielet
TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 24. toukokuuta 2013 Sisällys Formaalit kielet On tapana sanoa, että merkkijonojen joukko on (formaali) kieli. Hieman
LisätiedotTIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 31. maaliskuuta 2011 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti
LisätiedotICS-C2000 Tietojenkäsittelyteoria. Tähän mennessä: säännölliset kielet. Säännöllisten kielten pumppauslemma M :=
ICS-C2000 Tietojenkäsittelyteoria Luento 5: Säännöllisten kielten pumppauslemma; yhteydettömät kieliopit Aalto-yliopisto Perustieteiden korkeakoulu Tietotekniikan laitos Alue ja aiheet: Orposen prujun
LisätiedotJäsennys. TIEA341 Funktio ohjelmointi 1 Syksy 2005
Jäsennys TIEA341 Funktio ohjelmointi 1 Syksy 2005 Muistutus: Laskutehtävä ja tulos data Laskutehtava = Luku Double Yhteen Laskutehtava Laskutehtava Vahennys Laskutehtava Laskutehtava Tulo Laskutehtava
LisätiedotTIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. toukokuuta 2011
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 16. toukokuuta 2011 Sisällys engl. random-access machines, RAM yksinkertaistettu nykyaikaisen (ei-rinnakkaisen)
LisätiedotTIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 31. maaliskuuta 2011 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti
Lisätiedotvaihtoehtoja TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho 13. lokakuuta 2016 TIETOTEKNIIKAN LAITOS
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 13. lokakuuta 2016 Sisällys Harjoitustehtävätilastoa Tilanne 13.10.2016 klo 9:42 passed waiting redo submitters
Lisätiedotfollow(a) first(α j ) x
Tästä ensimmäisestä LL(1)-ehdosta (14) seuraa erityisesti, että korkeintaan yksi välikkeen A säännöistä voi tuottaa tyhjän merkkijonon ε eli tehdä välikkeestä A tyhjentyvän (eli nollautuvan). Toinen osa
LisätiedotTIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 19. tammikuuta 2012
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. tammikuuta 2012 Sisällys Sisällys Muistathan A B -konstruktion 0 k 1 i 2 s 3 s 4 a 5 0 k 1 o 2 i 3 r 4
LisätiedotTIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 5. marraskuuta 2015
TIEA24 Automaatit ja kieliopit, syksy 205 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 5. marraskuuta 205 Sisällys Käsiteanalyysiä Tarkastellaan koodilukkoa äärellisenä automaattina. Deterministinen äärellinen
LisätiedotTIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 19. syyskuuta 2016
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. syyskuuta 2016 Sisällys Neuvoja opintoihin tee joka päivä ainakin vähän uskalla mennä epämukavuusalueelle en
LisätiedotTIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. marraskuuta 2015
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. marraskuuta 2015 Sisällys Muistathan A B -konstruktion 0 k 1 i 2 s 3 s 4 a 5 0 k 1 o 2 i 3 r 4 a 5 00 k 11 i
LisätiedotTestaa: Vertaa pinon merkkijono syötteeseen merkki kerrallaan. Jos löytyy ero, hylkää. Jos pino tyhjenee samaan aikaan, kun syöte loppuu, niin
Yhteydettömien kielioppien ja pinoautomaattien yhteys [Sipser s. 117 124] Todistamme, että yhteydettömien kielioppien tuottamat kielet ovat tasan samat kuin ne, jotka voidaan tunnistaa pinoautomaatilla.
LisätiedotICS-C2000 Tietojenkäsittelyteoria
ICS-C2000 Tietojenkäsittelyteoria Luento 6: Jäsennyspuut, LL(1)-kielioppien jäsennys Aalto-yliopisto Perustieteiden korkeakoulu Tietotekniikan laitos Alue ja aiheet: Orposen prujun luvut 3.3 3.5 Kielioppien
LisätiedotLaskennan rajoja. TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 20. kesäkuuta 2013 TIETOTEKNIIKAN LAITOS.
TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 20. kesäkuuta 2013 Sisällys Päätösongelmat Ongelma on päätösongelma (engl. decision problem), jos se on muotoa Onko
LisätiedotM =(K, Σ, Γ,, s, F ) Σ ={a, b} Γ ={c, d} = {( (s, a, e), (s, cd) ), ( (s, e, e), (f, e) ), (f, e, d), (f, e)
Tik-79.148 Kevät 2001 Tietojenkäsittelyteorian perusteet Laskuharjoitus 7 Demonstraatiotehtävien ratkaisut 1. Pinoautomaatti M = K Σ Γ s F missä K Σ s ja F on määritelty samalla tavalla kuin tilakoneellekin.
Lisätiedot3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko
3.3 KILIOPPIN JÄSNNYSONGLMA Rtkistv tehtävä: Annettu yhteydetön kielioppi G j merkkijono x. Onko x L(G)? Rtkisumenetelmä = jäsennyslgoritmi. Useit vihtoehtoisi menetelmiä, erityisesti kun G on jotin rjoitettu
LisätiedotTIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 12. tammikuuta 2012
TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. tammikuuta 2012 Sisällys Sisällys Äärellisiä automaatteja PUSH ON PUSH OFF Q T Q J C C H S C,Q C,Q 0 50s 1e
Lisätiedot2. Yhteydettömät kielet
2. Yhteydettömät kielet Yhteydettömät eli kontekstittomat kielet (context-free language, CFL) ovat säännöllisiä kieliä laajempi luokka formaaleja kieliä. Ne voidaan esittää yhteydettömillä kieliopeilla
LisätiedotTIE448 Kääntäjätekniikka, syksy Antti-Juhani Kaijanaho. 29. syyskuuta 2009
TIE448 Kääntäjätekniikka, syksy 2009 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 29. syyskuuta 2009 Sisällys Sisällys Seuraava deadline Vaihe B tiistai 6.10. klo 10 selaaja ja jäsentäjä toimivat Sisällys
LisätiedotTIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 20. lokakuuta 2016
.. TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 20. lokakuuta 2016 Sisällys. Turingin koneiden pysähtymisongelma. Lause Päätösongelma Pysähtyykö standardimallinen
LisätiedotVaihtoehtoinen tapa määritellä funktioita f : N R on
Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot
LisätiedotRekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on
Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: Rekursio Funktio f : N R määritellään yleensä
LisätiedotLaskennan rajoja. Sisällys. Meta. Palataan torstaihin. Ratkeavuus. Meta. Universaalikoneet. Palataan torstaihin. Ratkeavuus.
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 17. lokakuuta 2016 Sisällys Harjoitustehtävätilastoa Tilanne 17.10.2016 klo 15:07 passed waiting redo submitters
LisätiedotRekursiolause. Laskennan teorian opintopiiri. Sebastian Björkqvist. 23. helmikuuta Tiivistelmä
Rekursiolause Laskennan teorian opintopiiri Sebastian Björkqvist 23. helmikuuta 2014 Tiivistelmä Työssä käydään läpi itsereplikoituvien ohjelmien toimintaa sekä esitetään ja todistetaan rekursiolause,
Lisätiedot4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi:
T-79.148 Kevät 2004 Tietojenkäsittelyteorian perusteet Harjoitus 12 Demonstraatiotehtävien ratkaisut 4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi: Hyväksyykö annettu Turingin kone
Lisätiedot1. Universaaleja laskennan malleja
1. Universaaleja laskennan malleja Laskenta datan käsittely annettuja sääntöjä täsmällisesti seuraamalla kahden kokonaisluvun kertolasku tietokoneella, tai kynällä ja paperilla: selvästi laskentaa entä
LisätiedotJOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS LUONNOLLISEN KIELEN KÄSITTELY (NATURAL LANGUAGE PROCESSING, NLP) TEKOÄLYSOVELLUKSET, JOTKA LIITTYVÄT IHMISTEN KANSSA (TAI IHMISTEN VÄLISEEN) KOMMUNIKAATIOON, OVAT TEKEMISISSÄ
Lisätiedot2. Seuraavassa kuvassa on verkon solmujen topologinen järjestys: x t v q z u s y w r. Kuva 1: Tehtävän 2 solmut järjestettynä topologisesti.
Tietorakenteet, laskuharjoitus 11, ratkaisuja 1. Leveyssuuntaisen läpikäynnin voi toteuttaa rekursiivisesti käsittelemällä jokaisella rekursiivisella kutsulla kaikki tietyllä tasolla olevat solmut. Rekursiivinen
LisätiedotTIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 8. syyskuuta 2016
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 8. syyskuuta 2016 Sisällys a https://tim.jyu.fi/view/kurssit/tie/ tiea241/2016/videoiden%20hakemisto Matemaattisen
LisätiedotAlgoritmit 2. Luento 9 Ti Timo Männikkö
Algoritmit 2 Luento 9 Ti 17.4.2018 Timo Männikkö Luento 9 Merkkitiedon tiivistäminen Huffmanin koodi LZW-menetelmä Taulukointi Editointietäisyys Algoritmit 2 Kevät 2018 Luento 9 Ti 17.4.2018 2/29 Merkkitiedon
LisätiedotOhjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 25.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 25.2.2009 1 / 34 Syötteessä useita lukuja samalla rivillä Seuraavassa esimerkissä käyttäjä antaa useita lukuja samalla
LisätiedotSyntaksi. TIE448 Kääntäjätekniikka, syksy Antti-Juhani Kaijanaho. 22. syyskuuta 2009 TIETOTEKNIIKAN LAITOS. Syntaksi. Aluksi.
TIE448 Kääntäjätekniikka, syksy 2009 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 22. syyskuuta 2009 Sisällys Sisällys Seuraava deadline Vaihe B tiistai 6.10. klo 10 selaaja ja jäsentäjä toimivat Kääntäjän
LisätiedotYdin-Haskell Tiivismoniste
Ydin-Haskell Tiivismoniste Antti-Juhani Kaijanaho 8. joulukuuta 2005 1 Abstrakti syntaksi Päätesymbolit: Muuttujat a, b, c,..., x, y, z,... Tyyppimuuttujat α, β, γ,... Koostimet (data- ja tyyppi-) C, D,...,
LisätiedotLaskennan rajoja. TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 6. maaliskuuta 2012 TIETOTEKNIIKAN LAITOS.
TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 6. maaliskuuta 2012 Sisällys Sisällys Päätösongelmat Ongelma on päätösongelma (engl. decision problem), jos se on
Lisätiedot811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 ari.vesanen (at) oulu.fi 5. Rekursio ja induktio Rekursio tarkoittaa jonkin asian määrittelyä itseensä viittaamalla Tietojenkäsittelyssä algoritmin määrittely niin,
LisätiedotRajoittamattomat kieliopit (Unrestricted Grammars)
Rajoittamattomat kieliopit (Unrestricted Grammars) Laura Pesola Laskennanteorian opintopiiri 13.2.2013 Formaalit kieliopit Sisältävät aina Säännöt (esim. A -> B C abc) Muuttujat (A, B, C, S) Aloitussymboli
LisätiedotOhjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 2.3.2011 T-106.1208 Ohjelmoinnin perusteet Y 2.3.2011 1 / 39 Kertausta: tiedoston avaaminen Kun ohjelma haluaa lukea tai kirjoittaa tekstitiedostoon, on ohjelmalle
LisätiedotLaskennan rajoja. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 10. joulukuuta 2015 TIETOTEKNIIKAN LAITOS.
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 10. joulukuuta 2015 Sisällys TM vs yleiset kieliopit Lause Jokaiselle kielelle A seuraavat ovat yhtäpitävät: 1.
Lisätiedot11.4. Context-free kielet 1 / 17
11.4. Context-free kielet 1 / 17 Määritelmä Tyypin 2 kielioppi (lauseyhteysvapaa, context free): jos jokainenp :n sääntö on muotoa A w, missäa V \V T jaw V. Context-free kielet ja kieliopit ovat tärkeitä
Lisätiedot(0 1) 010(0 1) Koska kieli on yksinkertainen, muodostetaan sen tunnistava epädeterministinen q 0 q 1 q 2 q3
T-79.48 Tietojenkäsittelyteorian perusteet Tentti 25..23 mallivastaukset. Tehtävä: Kuvaa seuraavat kielet sekä säännölisten lausekkeiden että determinististen äärellisten automaattien avulla: (a) L = {w
LisätiedotICS-C2000 Tietojenkäsittelyteoria Kevät 2016
ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 Kierros 7, 29. helmikuuta 4. maaliskuuta Demonstraatiotehtävien ratkaisut D1: Osoita, yhteydettömien kielten pumppauslemmaa käyttäen, että kieli {ww w {a,b}
Lisätiedot58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut
58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 1. Palautetaan vielä mieleen O-notaation määritelmä. Olkoon f ja g funktioita luonnollisilta luvuilta positiivisille
LisätiedotTIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 22. toukokuuta 2013
TIEA24 Automaatit ja kieliopit, kesä 3 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 22. toukokuuta 3 Sisällys Äärellisiä automaatteja ON PUSH PUSH OFF Q T J Q C C H S C,Q C,Q 0 40 60 80 00, 70 90 Deterministinen
LisätiedotITKP102 Ohjelmointi 1 (6 op)
ITKP102 Ohjelmointi 1 (6 op) Tentaattori: Antti-Jussi Lakanen 20. huhtikuuta 2018 Vastaa kaikkiin tehtäviin. Tee kukin tehtävä omalle konseptiarkille. Noudata ohjelmointitehtävissä kurssin koodauskäytänteitä.
LisätiedotPinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia
Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Kukin alkio (viite) talletettuna solmuun (node) vastaa paikan käsitettä
LisätiedotHakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina
Hakupuut tässä luvussa tarkastelemme puita tiedon tallennusrakenteina hakupuun avulla voidaan toteuttaa kaikki joukko-tietotyypin operaatiot (myös succ ja pred) pahimman tapauksen aikavaativuus on tavallisella
LisätiedotOlkoon G = (V,Σ,P,S) yhteydetön kielioppi. Välike A V Σ on tyhjentyvä, jos A. NULL := {A V Σ A ε on G:n produktio};
3.6 Cocke-Younger-Kasami -jäsennysalgoritmi Osittava jäsentäminen on selkeä ja tehokas jäsennysmenetelmä LL(1)-kieliopeille: n merkin mittaisen syötemerkkijonon käsittely sujuu ajassa O(n). LL(1)-kieliopit
LisätiedotTIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 8. maaliskuuta 2012
TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 8. maaliskuuta 2012 Sisällys Ongelma-analyysiä Sisällys Ongelma-analyysiä Hypoteettinen ongelma The Elite Bugbusters
LisätiedotEsimerkki 2.28: Tarkastellaan edellisen sivun ehdot (1) (3) toteuttavaa pinoautomaattia, jossa päätemerkit ovat a, b ja c ja pinoaakkoset d, e ja $:
Esimerkki 2.28: Tarkastellaan edellisen sivun ehdot (1) (3) toteuttavaa pinoautomaattia, jossa päätemerkit ovat a, b ja c ja pinoaakkoset d, e ja $: a, ε d b, d ε ε, ε $ b, d ε 1 2 3 6 c, ε e c, ε e c,
LisätiedotRatkeavuus ja efektiivinen numeroituvuus
Luku 6 Ratkeavuus ja efektiivinen numeroituvuus Proseduurit Olkoon A aakkosto. Proseduuri aakkoston A sanoille on mikä hyvänsä prosessi (algoritmi) P, jolle annetaan syötteeksi sana w A, ja joka etenee
LisätiedotAlgoritmit 1. Luento 7 Ti Timo Männikkö
Algoritmit 1 Luento 7 Ti 31.1.2017 Timo Männikkö Luento 7 Järjestetty binääripuu Binääripuiden termejä Binääripuiden operaatiot Solmun haku, lisäys, poisto Algoritmit 1 Kevät 2017 Luento 7 Ti 31.1.2017
Lisätiedot6.5 Turingin koneiden pysähtymisongelma Lause 6.9 Kieli. H = {c M w M pysähtyy syötteellä w}
6.5 Turingin koneiden pysähtymisongelma Lause 6.9 Kieli H = {c w pysähtyy syötteellä w} on rekursiivisesti numeroituva, mutta ei rekursiivinen. Todistus. Todetaan ensin, että kieli H on rekursiivisesti
LisätiedotTIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 26. kesäkuuta 2013
ja ja TIEA241 Automaatit ja kieliopit, kesä 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 26. kesäkuuta 2013 Sisällys ja ja on yksi vanhimmista tavoista yrittää mallittaa mekaanista laskentaa. Kurt
LisätiedotTäydentäviä muistiinpanoja laskennan rajoista
Täydentäviä muistiinpanoja laskennan rajoista Antti-Juhani Kaijanaho 10. joulukuuta 2015 1 Diagonaalikieli Diagonaalikieli on D = { k {0, 1} k L(M k ) }. Lause 1. Päätösongelma Onko k {0, 1} sellaisen
LisätiedotTietorakenteet, laskuharjoitus 7, ratkaisuja
Tietorakenteet, laskuharjoitus, ratkaisuja. Seuraava kuvasarja näyttää B + -puun muutokset lisäysten jälkeen. Avaimet ja 5 mahtuvat lehtisolmuihin, joten niiden lisäys ei muuta puun rakennetta. Avain 9
Lisätiedot(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = =
JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 7, MALLIRATKAISUT Tehtävä Etsi seuraavien rationaalilukujen ketjumurtokehitelmät: (i) 7 6 (ii) 4 7 (iii) 65 74 (iv) 63 74 Ratkaisu Sovelletaan Eukleideen algoritmia
LisätiedotDFA:n käyttäytyminen ja säännölliset kielet
säännölliset kielet TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 9. marraskuuta 2015 Sisällys toiminta formaalisti Olkoon M = (Q, Σ, δ, q 0, F) deterministinen
LisätiedotAlgoritmit 2. Luento 10 To Timo Männikkö
Algoritmit 2 Luento 10 To 19.4.2018 Timo Männikkö Luento 10 Peruutusmenetelmä Osajoukon summa Verkon 3-väritys Pelipuut Pelipuun läpikäynti Algoritmit 2 Kevät 2018 Luento 10 To 19.4.2018 2/34 Algoritmien
Lisätiedot811312A Tietorakenteet ja algoritmit, , Harjoitus 5, Ratkaisu
1312A Tietorakenteet ja algoritmit, 2018-2019, Harjoitus 5, Ratkaisu Harjoituksen aihe ovat hash-taulukot ja binääriset etsintäpuut Tehtävä 5.1 Tallenna avaimet 10,22,31,4,15,28,17 ja 59 hash-taulukkoon,
Lisätiedot