LÄMPÖSÄTEILY. 1. Työn tarkoitus. Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 2

Koko: px
Aloita esitys sivulta:

Download "LÄMPÖSÄTEILY. 1. Työn tarkoitus. Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 2"

Transkriptio

1 Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 LÄMPÖSÄTEILY 1. Työn tarkoitus Kun panet kätesi lämpöpatterille, käteen tulee lämpöä johtumalla patterin seinämän läpi. Mikäli pidät kättäsi patterin yläpuolella niin, että se ei ole suorassa kosketuksessa patteriin, lämpö saavuttaa käden ilman ylöspäin suuntautuvien konvektiovirtausten avulla. Jos taas pidät kättäsi patterin vieressä, pienen välimatkan päässä niin ettei käsi nytkään kosketa patteria, käteen tuntuu kuitenkin siirtyvän lämpöä. Tässä tilanteessa lämmön siirtyminen tapahtuu lämpösäteilyn avulla, sillä lämmön johtuminen ilman kautta on mitättömän vähäistä, eikä käsi ole ilman konvektiovirtausten reitillä. Lämpösäteily on valon nopeudella etenevää sähkömagneettista säteilyä, jota jokainen kappale, jonka lämpötila on absoluuttista nollapistettä korkeampi, lähettää koko ajan ympäristöönsä. Lämpösäteily syntyy kuuman kappaleen atomien tai molekyylien siirtyessä virittyneestä energiatilasta alempaan, jolloin ne lähettävät säteilyä, jonka aallonpituus vastaa virittyneen ja alemman tilan välistä energiaeroa. Energiatasot voivat olla atomien ja molekyylien värähdys-, pyörimis- tai elektronisia energiatasoja, jolloin syntyvällä säteilyllä on hyvin laaja aallonpituuskaista. Nimi lämpösäteily tulee siitä, että ihminen aistii osan tästä säteilystä iholla lämpönä. Lämpösäteilyä kutsutaan usein myös infrapunasäteilyksi, koska kappaleet säteilevät infrapuna-alueella sitä voimakkaammin, mitä lämpimämpiä ne ovat. Infrapunasäteilyn aallonpituusalue on melko laaja ulottuen noin 0,75 mm:stä aina 1 mm:iin. Kuvassa 1 on esitetty sähkömagneettisen säteilyn jako eri spektrialueisiin. Alueiden rajat määräytyvät pääasiassa siitä, miten säteily syntyy ja miten sitä havaitaan, siksi rajat ovatkin hieman mielivaltaisia ja voivat vaihdella esimerkiksi eri kirjoissa. Lämpösäteilyn varsinainen alue osuu aallonpituusvälille 0,1-100 mm. n Taajuus 10 n Hz Näkyvä valo Gammasäteily Röntgensäteily Ultraviolettisäteily Infrapunasäteily Mikroaallot Radioaallot m Aallonpituus 10 m mm Lämpösäteily Kuva 1. Sähkömagneettisen säteilyn spektrialueet. Alueiden taajuus- ja aallonpituusrajat voivat vaihdella, koska ne riippuvat siitä, miten säteilyä synnytetään ja havaitaan.

2 LÄMPÖSÄTEILY Kuten edellä todettiin lämpimät kappaleet voivat lähettää ympäristöönsä säteilyä hyvin laajalla aallonpituusalueella. Lämpösäteilyn intensiteetti eli teho pinta-alayksikköä kohti ja se mille, aallonpituudelle säteilyn maksimi-intensiteetti osuu riippuvat siitä, kuinka paljon korkeampi kappaleen lämpötila on ympäristön lämpötilaan verrattuna ja siitä, missä lämpötilassa kappale on. Lähettääkseen pitkäaaltoisinta punaista näkyvää valoa kappaleen lämpötilan on oltava noin 800 o C (punahehku) ja koko näkyvän alueen spektrin lähettämiseen tarvittava lämpötila on noin 3000 o C (valkohehku). Vielä näinkin korkeassa lämpötilassa suurin osa kappaleen lähettämästä säteilystä on kuitenkin infrapunasäteilyä. Esimerkkejä lämpösäteilystä ovat esimerkiksi hehkulampun lähettämä näkyvä valo ja infrapunasäteily, eläinten ja ihmisten ympäristöönsä lähettämä, lämpökameralla havaittavissa oleva infrapunasäteily sekä kosminen mikroaaltoalueen taustasäteily. Tässä työssä tutkit lämpösäteilyä, jota lähettää kuumalla vedellä täytetty, harmaana kappaleena toimiva kuutionmuotoinen astia. Kuution neljän sivutahkon pinnat ovat väriltään ja karkeudeltaan erilaisia ja siksi niiden emissiivisyydetkin ovat erilaiset. Mittaat ilmaisimena toimivan termopatsaan synnyttämää virtaa veden ja huoneen lämpötilojen neljänsien potenssien erotuksen funktiona. Virta on suoraan verrannollinen pinnan lähettämän säteilyn intensiteettiin. Vertaamalla virtoja, jotka havaitaan kahta erilaista pintaa käyttäen, saat selville pinnan emissiiisyyksien suhteen ja voit päätellä, kumpi pinnoista on lähempänä mustaa kappaletta.. Teoria.1 Musta kappale Kun lämpösäteilyä saapuu kappaleen pinnalle, osa siitä heijastuu ja osa absorboituu pintaan hyvin lyhyellä matkalla. Se, kuinka suuri osa säteilystä heijastuu ja kuinka suuri osa absorboituu kullakin aallonpituudella, riippuu pinnan laadusta. Ideaalista kappaletta, joka absorboi kaiken siihen osuvan säteilyn riippumatta aallonpituudesta ja tulosuunnasta, kutsutaan mustaksi kappaleeksi. Todellisuudessa mustaa kappaletta ei ole olemassa, vaan parhaatkin absorboijat ovat osittain heijastavia, esimerkiksi noki heijastaa noin 5 % ja viilattu grafiitti noin % saapuvasta säteilystä. Musta kappale on siten idealisoitu malli, jolla kuitenkin on hyvin keskeinen sija lämpösäteilyn teoreettisissa tarkasteluissa. Pysyäkseen termisessä tasapainossa mustan kappaleen on oltava myös täydellinen emittoija. Se siis lähettää jatkuvasti ympäristöönsä absorboimansa energiamäärän säteilyä, jota kutsutaan mustan kappaleen säteilyksi. Mustan kappaleen säteily on diffuusia, suunnasta riippumatonta säteilyä. Mustaa kappaletta läheisesti muistuttavan todellisen kappaleen ei tarvitse olla väriltään musta. Tietyn pinnan absorptio-ominaisuudet riippuvat aallonpituudesta ja lämpösätei-

3 Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 3 lyn ja näkyvän valon aallonpituudet ovat pääosin erilaiset. Hyvä esimerkki tästä on huurre. Sitä voidaan tarkastella mustana kappaleena, sillä se on erinomainen absorboija heijastaen vain 1,5 % pitkäaaltoisesta säteilystä, joka sisältää pääosan lämpösäteilyn energiasta. Lyhytaaltoisempaa säteilyä huurre sen sijaan heijastaa hyvin, mistä johtuen se nähdään valkoisena auringon valossa. Sama ilmiö koskee valkoista paperia ja lasia, jotka ovat mustia lämpösäteilylle tavallisissa lämpötiloissa. Myös Aurinkoa ja muita tähtiä voidaan hyvällä tarkkuudella käsitellä mustina kappaleina. Kaikkein parhaiten mustaa kappaletta muistuttaa ontelossa oleva aukko, sillä siitä sisään mennyt säteily heijastuu ontelon sisäpinnasta useita kertoja heiketen joka kerta absorption vaikutuksesta. Aukosta takaisin ulos löytävä osa saadaan mielivaltaisen pieneksi tekemällä aukko pieneksi kappaleen muihin mittoihin verrattuna. Koska musta kappale on täydellinen emittoija, aukko säteilee ympäristöönsä mustalle kappaleelle tyypillistä säteilyä.. Mustan kappaleen säteilyä koskevat lait Mustan kappaleen säteily noudattaa Stefanin ja Boltzmannin lakia, jonka mukaan mustan kappaleen pintansa rajoittamaan puoliavaruuteen lähettämä säteilyteho pintaalayksikköä kohti P A eli säteilemisvoimakkuus M m on suoraan verrannollinen kappaleen absoluuttisen lämpötilan T neljänteen potenssiin, ts. P A = M = st, (1) m missä s = 5,67000(0) 10-8 Wm - K - on Stefanin ja Boltzmannin vakio. Mustan kappaleen säteilyn maksimitehoa vastaava aallonpituus verrannollinen kappaleen lämpötilaan, ts. -3 lmax taas on kääntäen l T =, mk. () max Yhtälö () on nimeltään Wienin siirtymälaki ja siitä huomataan, että mitä kuumempi kappale on, sitä lyhemmälle aallonpituudelle säteilyn maksimiteho osuu. Varsinainen mustan kappaleen säteilyspektrin muoto eli säteilemisvoimakkuus aallonpituuden (tai taajuuden) funktiona saadaan Planckin laista, jota kutustaan myös mustan kappaleen säteilylaiksi. Planckin lain mukaan mustan kappaleen säteilemisvoimakkuus eli spektraalinen teho pinta-ala- ja aallonpituusyksikköä kohti M l lämpötilassa T on M l ( l, T) = hc 1 p 5 l, (3) æ hc ö expç - 1 èlkt ø

4 LÄMPÖSÄTEILY missä l on säteilyn aallonpituus, h on Planckin vakio, c on valon nopeus ja k on Boltzmannin vakio. Suureen M l yksikkö on W/m 3, joka on usein tapana ilmoittaa muodossa W/(m m). Kuva esittää mustan kappaleen säteilyn spektraalisia tehoja kolmessa eri lämpötilassa aallonpituuden funktiona. Kuvasta nähdään, että lämpötilan kasvaessa mustan kappaleen säteilyn maksimitehoja vastaavat käyrän huippukohdat kasvavat ja siirtyvät lyhemmille aallonpituuksille. Sinisin katkoviivoin merkittyjä huppukohtia vastaavat sinisin nuolin merkityt aallonpituudet osoittautuvat samoiksi kuin Wienin siirtymälaista lasketut aallonpituudet l kyseisissä lämpötiloissa. max M l (10 11 W/m 3 ) Kuva. Mustan kappaleen spektraalinen teho kolmessa eri lämpötilassa..3 Harmaa kappale Mustan kappaleen säteily riippuu siis vain kappaleen lämpötilasta, eikä esimerkiksi pinnan laadusta. Mikäli kappale ei ole täysin musta, siitä käytetään nimitystä harmaa kappale. Harmaan kappaleen säteily on aina vähäisempää kuin samassa lämpötilassa olevan mustan kappaleen. Tähän liittyy suure emissiivisyys, joka on kullekin pinnalle ominainen. Mustan kappaleen emissiivisyys on yksi, ja muille kappaleille sen arvot vaihtelevat nollasta yhteen. Mikäli pinnan kokonaisemissiivisyys tunnetaan, saadaan sen säteilemä teho pinta-alayksikköä kohti kertomalla samassa lämpötilassa olevan mustan kappaleen säteilemisvoimakkuus kokonaisemissiivisyydellä. Harmaan kappaleen ympäristöönsä lähettämä nettosäteilyteho M pinta-alayksikköä kohti eli ulossäteilyn säteilemisvoimakkuuden ja vastaanotetun säteilytysvoimakkuuden erotus saadaan kaavasta ( T 1 T ) M = es -, () jossa e on pinnan kokonaisemissiivisyys, s on Stefanin ja Boltzmannin vakio ja T 1 ja T ovat kappaleen ja ympäristön termodynaamiset lämpötilat.

5 Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 5 3. Koejärjestely Kaavio käytettävästä koejärjestelystä on kuvassa 3 ja valokuva työn välineistä on kuvassa. Lämpösäteilyn lähteenä käytetään kuumalla vedellä täytettävää kuution muotoista astiaa, jossa on neljä erilaista pystysuoraa tahkoa (I-IV). Säteilyn ilmaisimena käytetään termopatsasta T, joka koostuu joukosta sarjaan kytkettyjä termoelementtejä. Jokaisen termoelementin toisena napana on ohut noettu platinaliuska, joka lämpenee säteilyn osuessa siihen. Lämpösähköisen ilmiön eli Seebeckin ilmiön vaikutuksesta termoelementin napojen välinen lämpötilaero synnyttää myös potentiaalieron. Syntyvä jännite on suoraan verrannollinen termopatsaaseen osuvan säteilyn intensiteettiin. Termopatsaaseen on kytketty virtamittari G, jonka osoittama virta I on suoraan verrannollinen jännitteeseen ja siten säteilyn intensiteettiin. Yhtälön () perusteella tiedetään, että havaittava virta on muotoa I = k( T 1 - T ), (5) missä T 1 ja T ovat astiassa olevan veden ja huoneen absoluuttiset lämpötilat ja k on laitteistolle tyypillinen, kullekin pinnalle ominainen verrannollisuuskerroin. I II III T G IV Kuva 3. Lämpösäteilyn tutkimisessa käytettävä koejärjestely.. Ennakkotehtävät Tee seuraavat ennakkotehtävät ennen saapumista työvuorolle. Tehtävien vastauksia varten on tilaa työohjeen lopussa liitteenä olevalla lomakkeella. Palauta lomake vastauksineen ohjaajalle työvuorolla. 1. Mille aallonpituudelle osuu työssä käytettävän astian lähettämän lämpösäteilyn maksimi-intensiteetti mittausten alussa, kun astiassa olevan veden lämpötila on 90 o C? Tarkastele astiaa mustana kappaleena. Mille sähkömagneettisen spektrin alueelle laskettu aallonpituus kuuluu?. Kokeellisesti voidaan havaita karkean pinnan absorboivan lämpösäteilyä paremmin kuin sileän pinnan. Selitä tämä havainto. 3. Osoita, että yhtälöiden () ja (5) perusteella tutkittavien pintojen I ja II kokonaisemissiivisyyksien suhteen e = e I eii absoluuttisen virheen yläraja saadaan lausekkeesta

6 6 LÄMPÖSÄTEILY D( Dk k Dk I I II e I e II ) D( ki ) +, missä k I, k II, D ki ja D ovat pintoja 1 ja käyttäen saatuihin ( T1 - T, I ) - pisteisiin sovitettujen suorien kulmakertoimet ja niiden virherajat. Lämpömittarin mittapää Sekoittaja Virtamittari Vedenkeitin Tutkittavia tahkoja Termopatsas Lämpömittari Kuva. Mittauslaitteisto. 5. Mittaukset Havaitse aluksi lämpömittarista huoneen lämpötila T. Täytä sitten kuutiomainen astia vedenkeittimessä keittämälläsi vedellä ja aseta kuutio paikalleen ilmaisimen eteen. Pane astian päälle kansi, jonka läpi lämpömittarin mittapää ja sekoittaja viedään astiaan. Varmista, että sekoittaja lähtee pyörimään, kun kytket sen päälle. Valitse sitten ohjaajan opastuksella kaksi vierekkäistä tahkoa, joiden säteilyä tutkit. Yritä päätellä pintoja tutkimalla, kummalla niistä voisi olla parempi kokonaisemissiivisyys. Käännä ensimmäinen mitattava tahko ilmaisinta kohti. Aloita mittaukset, kun veden lämpötilalla on sopiva arvo, esimerkiksi 90 o C ja havaitse samanaikaisesti virtamittarin lukema ja veden lämpötila T 1. Käännä sitten toinen mitattava tahko ilmaisinta kohti. Veden jäädyttyä asteen verran kirjaa ylös uudet virta- ja lämpötilalukemat. Käännä seuraavaksi taas ensimmäinen tahko kohti ilmaisinta, odota, kunnes vesi jäähtyy jälleen asteen verran ja havaitse lämpötilan ja

7 Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 7 virran arvot. Jatka, kunnes sinulla on riittävä määrä havaintoja (13-15 kpl/tahko), jolloin veden lämpötila on noin 60 o C. Tällä tavoin saat toiselle tahkolle havaituksi parillisia lämpötilan arvoja vastaavat virran arvot ja toiselle parittomia. 6. Mittaustulosten käsittely ja lopputulokset Esitä mitatut virran arvot lämpötilan neljänsien potenssien erotuksen funktiona ( T 1 I - T, ) - koordinaatistossa kummallekin tutkitulle pinnalle. Yhtälön (5) mukaan pisteiden tulisi asettua suoralle. Jos jokin havaintopisteistä on selvästi virheellinen, jätä se pois lopullisesta analyysistä. Sovita pisteisiin origon kautta kulkeva pienimmän neliösumman suora sopivaa tietokoneohjelmaa käyttäen, jolloin saat selville suorien kulmakertoimet k I ja k II virherajoineen. Laske sitten näiden kulmakertoimien avulla pintojen kokonaisemissiivisyyksien suhde e = e I e II virherajoineen ennakkotehtävässä johtamastasi yhtälöstä ja ilmoita se lopputuloksena. 1 I Lämpösäteily-työn selostuksena palautat mittauspöytäkirjan, jossa näkyvät havaitut lämpötilojen ja virtojen arvot sekä se, mitä tahkoja olet käyttänyt, ennakkotehtävien ratkaisut sekä kokonaisemissiivisyyksien suhdetta ja sen virheen arviointia varten tekemäsi laskut (vrt. liitteenä oleva lomake). Muista liittää mukaan myös taulukot ja kuvaajat, joissa näkyvät ( T - T, ) - pisteet ja niihin sovitetut suorat sekä kaikki tarvittavat tiedot pienimmän neliösumman sovituksista.

8 8 LÄMPÖSÄTEILY OULUN YLIOPISTO Työn suorittaja: FYSIIKAN OPETUSLABORATORIO Mittauspäivä: / 0 klo - Fysiikan laboratoriotyöt Työn ohjaaja: MITTAUSPÖYTÄKIRJA JA SELOSTUS LÄMPÖSÄTEILY Tutkittava pinta I: Tutkittava pinta II: Huoneen lämpötila T = C = K Pinta I Pinta II T 1 ( C) I (ma) T 1 ( C) I (ma) Ohjaajan allekirjoitus

9 Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 9 Ennakkotehtävät 1. Mille aallonpituudelle osuu työssä käytettävän astian lähettämän lämpösäteilyn maksimi-intensiteetti mittausten alussa, kun astiassa olevan veden lämpötila on 90 o C? Tarkastele astiaa mustana kappaleena. Mille sähkömagneettisen spektrin alueelle laskettu aallonpituus kuuluu?. Kokeellisesti voidaan havaita karkean pinnan absorboivan lämpösäteilyä paremmin kuin sileän pinnan. Selitä tämä havainto. 3. Osoita, että yhtälöiden () ja (5) perusteella tutkittavien pintojen I ja II kokonaisemissiivisyyksien suhteen e = e I e II absoluuttisen virheen yläraja saadaan lausekkeesta Dk k Dk I I II De D( ki ) +, missä k I, k II, D ki ja D ovat pintoja 1 ja käyttäen havaittuihin ( T1 - T, I ) - pisteisiin sovitettujen suorien kulmakertoimet ja niiden virherajat?

10 10 LÄMPÖSÄTEILY Mittaustulosten käsittely Tutkituilla tahkoilla havaitut virrat I lämpötilojen neljänsien potenssien erotuksien ( T - ) 1 T funktioina on esitetty liitteellä. Suorien kulmakertoimiksi ja niiden virherajoiksi saadaan: Tahko I: k I = ja Dk I = Tahko II: k II = ja Dk II = Näiden perusteella tahkojen I ja II kokonaisemissiivisyyksien suhteeksi e saadaan e I e = ε II k = k I II =. = Ennakkotehtävässä 3 johdetusta yhtälöstä (5) saadaan kokonaisemissiivisyyksien suhteen virheeksi De Dk k II I + k Dk I II + +. Lopputulokset: Astian tahkon ja tahkon kokonaisemissiivisyyksien suhde on. e = ±. Huom.! Merkitse näkyviin yhtälöihin sijoitetut arvot sekä niiden yksiköt. Muista oikea lopputulosten ilmoitustapa.

LÄMPÖSÄTEILY. 1 Johdanto. Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 2. Perustietoa työstä

LÄMPÖSÄTEILY. 1 Johdanto. Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 2. Perustietoa työstä Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 2 1 Perustietoa työstä Mihin fysiikan osa-alueeseen työ liittyy? Termofysiikkaan ja aaltoliikeoppiin. Mistä löytyy työssä tarvittava

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

Fysiikka 8. Aine ja säteily

Fysiikka 8. Aine ja säteily Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian

Lisätiedot

Kuva 1. Ohmin lain kytkentäkaavio. DC; 0 6 V.

Kuva 1. Ohmin lain kytkentäkaavio. DC; 0 6 V. TYÖ 37. OHMIN LAKI Tehtävä Tutkitaan metallijohtimen päiden välille kytketyn jännitteen ja johtimessa kulkevan sähkövirran välistä riippuvuutta. Todennetaan kokeellisesti Ohmin laki. Välineet Tasajännitelähde

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 9: Fotonit ja relativistiset kaasut Ke 30.3.2016 1 AIHEET 1. Fotonikaasun termodynamiikkaa.

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA FYSIIKAN LABORATORIOTYÖT HILA JA PRISMA MIKKO LAINE 9. toukokuuta 05. Johdanto Tässä työssä muodostamme lasiprisman dispersiokäyrän ja määritämme työn tekijän silmän herkkyysrajan punaiselle valolle. Lisäksi

Lisätiedot

LÄMMÖNJOHTUMINEN. 1. Työn tavoitteet

LÄMMÖNJOHTUMINEN. 1. Työn tavoitteet Oulun yliopisto Fysiikan opetuslaboratorio Fysikaalisen kemian laboratorioharjoitukset 1 LÄMMÖNJOHTUMINEN 1. Työn tavoitteet Jos asetat metallisauvan toisen pään liekkiin ja pidät toista päätä kädessäsi,

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1 LIITE 1 VIRHEEN RVIOINNIST Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi

Lisätiedot

VASTUSMITTAUKSIA. 1 Työn tavoitteet

VASTUSMITTAUKSIA. 1 Työn tavoitteet Oulun yliopisto Fysiikan opetuslaboratorio Sähkö ja magnetismiopin laboratoriotyöt VASTUSMTTAUKSA Työn tavoitteet Tässä työssä tutustut Ohmin lakiin ja joihinkin menetelmiin, joiden avulla vastusten resistansseja

Lisätiedot

Mikroskooppisten kohteiden

Mikroskooppisten kohteiden Mikroskooppisten kohteiden lämpötilamittaukset itt t Maksim Shpak Planckin laki I BB ( λ T ) = 2hc λ, 5 2 1 hc λ e λkt 11 I ( λ, T ) = ε ( λ, T ) I ( λ T ) m BB, 0 < ε

Lisätiedot

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)

Lisätiedot

Työ 15B, Lämpösäteily

Työ 15B, Lämpösäteily Työ 15B, Läpösäteily urssi: Tfy-3.15, Fysiikan laoratoriotyöt Ryhä: 18 Pari: 1 Jonas Ala Antti Tenhiälä Selostuksen laati: Jonas Ala Mittaukset tehty:.3.000 Selostus jätetty:..000 1. Johdanto Läpösäteily

Lisätiedot

Fysiikan laboratoriotyöt 3 Sähkömotorinen voima

Fysiikan laboratoriotyöt 3 Sähkömotorinen voima Fysiikan laboratoriotyöt 3 Sähkömotorinen voima Työn suorittaja: Antti Pekkala (1988723) Mittaukset suoritettu 8.10.2014 Selostus palautettu 16.10.2014 Valvonut assistentti Martti Kiviharju 1 Annettu tehtävä

Lisätiedot

Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi

Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi Sivu 1/10 Fysiikan laboratoriotyöt 1 Työ numero 3 Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi Työn suorittaja: Antero Lehto 1724356 Työ tehty: 24.2.2005 Uudet mittaus tulokset: 11.4.2011

Lisätiedot

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2 766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.

Lisätiedot

OHJEITA TYÖSELOSTUKSEN LAATIMISEEN

OHJEITA TYÖSELOSTUKSEN LAATIMISEEN OHJEITA TYÖSELOSTUKSEN LAATIMISEEN Raportointi kuuluu tärkeänä osana jokaisen fyysikon työhön riippumatta siitä työskenteleekö hän tutkijana yliopistossa, opettajana koulussa vai teollisuuden palveluksessa.

Lisätiedot

Aineopintojen laboratoriotyöt 1. Veden ominaislämpökapasiteetti

Aineopintojen laboratoriotyöt 1. Veden ominaislämpökapasiteetti Aineopintojen laboratoriotyöt 1 Veden ominaislämpökapasiteetti Aki Kutvonen Op.nmr 013185860 assistentti: Marko Peura työ tehty 19.9.008 palautettu 6.10.008 Sisällysluettelo Tiivistelmä...3 Johdanto...3

Lisätiedot

Hydrologia. Säteilyn jako aallonpituuden avulla

Hydrologia. Säteilyn jako aallonpituuden avulla Hydrologia L3 Hydrometeorologia Säteilyn jako aallonpituuden avulla Ultravioletti 0.004 0.39 m Näkyvä 0.30 0.70 m Infrapuna 0.70 m. 1000 m Auringon lyhytaaltoinen säteily = ultavioletti+näkyvä+infrapuna

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 LIITE 1 VIRHEEN ARVIOINNISTA Mihin tarvitset virheen arviointia? Mittaustulokset ovat aina todellisten luonnonvakioiden ja tutkimuskohdetta kuvaavien suureiden likiarvoja, vaikka mittauslaite olisi miten

Lisätiedot

7. Resistanssi ja Ohmin laki

7. Resistanssi ja Ohmin laki Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi

Lisätiedot

Työn tavoitteita. 1 Teoriaa

Työn tavoitteita. 1 Teoriaa FYSP103 / K3 BRAGGIN DIFFRAKTIO Työn tavoitteita havainnollistaa röntgendiffraktion periaatetta konkreettisen laitteiston avulla ja kerrata luennoilla läpikäytyä teoriatietoa Röntgendiffraktio on tärkeä

Lisätiedot

Infrapunaspektroskopia

Infrapunaspektroskopia ultravioletti näkyvä valo Infrapunaspektroskopia IHMISEN JA ELINYMPÄ- RISTÖN KEMIAA, KE2 Kertausta sähkömagneettisesta säteilystä Sekä IR-spektroskopia että NMR-spektroskopia käyttävät sähkömagneettista

Lisätiedot

MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET

MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET KAIKKI HAVAITTAVA ON AINETTA TAI SÄTEILYÄ 1. Jokainen rakenne rakentuu pienemmistä rakenneosista. Luonnon rakenneosat suurimmasta pienimpään galaksijoukko

Lisätiedot

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33: 1.2 T=12000 K 10 2 T=12000 K 1.0 Wien R-J 10 0 Wien R-J B λ (10 15 W/m 3 /sterad) 0.8 0.6 0.4 B λ (10 15 W/m 3 /sterad) 10-2 10-4 10-6 10-8 0.2 10-10 0.0 0 200 400 600 800 1000 nm 10-12 10 0 10 1 10 2

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty.

Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty. Fysiikan laboratorio Työohje 1 / 5 Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty. 1. Työn tavoite Työn tavoitteena on tutustua ionisoivaan sähkömagneettiseen säteilyyn ja tutkia sen absorboitumista

Lisätiedot

VALAISTUSTA VALOSTA. Fysiikan ja kemian perusteet ja pedagogiikka. Kari Sormunen Kevät 2014

VALAISTUSTA VALOSTA. Fysiikan ja kemian perusteet ja pedagogiikka. Kari Sormunen Kevät 2014 VALAISTUSTA VALOSTA Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2014 OPPILAIDEN KÄSITYKSIÄ VALOSTA Oppilaat kuvittelevat, että valo etenee katsojan silmästä katsottavaan kohteeseen.

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

H 2 O. Kuva 1. Kalorimetri. missä on kalorimetriin tuotu lämpömäärä. Lämpökapasiteetti taas määräytyy yhtälöstä

H 2 O. Kuva 1. Kalorimetri. missä on kalorimetriin tuotu lämpömäärä. Lämpökapasiteetti taas määräytyy yhtälöstä KALORIMETRI 1 TEORIAA Kalorimetri on laite, jolla voidaan mitata lämpömääriä. Mittaus voidaan suorittaa tarkastelemalla lämpömuutoksia, faasimuutoksia, kemiallisia reaktioita jne. Kun mittaus perustuu

Lisätiedot

1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla

1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla PERMITTIIVISYYS Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä. Siirretään varausta levystä toiseen, jolloin levyissä on varaukset +Q ja Q ja levyjen

Lisätiedot

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1 Työ 21 Valon käyttäytyminen rajapinnoilla Työvuoro 40 pari 1 Tero Marttila Joel Pirttimaa TLT 78949E EST 78997S Selostuksen laati Tero Marttila Mittaukset suoritettu 12.11.2012 Selostus palautettu 19.11.2012

Lisätiedot

PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys

PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys PERMITTIIVISYYS 1 Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä Siirretään varausta levystä toiseen, jolloin levyissä on varaukset ja ja levyjen välillä

Lisätiedot

13 KALORIMETRI. 13.1 Johdanto. 13.2 Kalorimetrin lämmönvaihto

13 KALORIMETRI. 13.1 Johdanto. 13.2 Kalorimetrin lämmönvaihto 13 KALORIMETRI 13.1 Johdanto Kalorimetri on ympäristöstään mahdollisimman täydellisesti lämpöeristetty astia. Lämpöeristyksestä huolimatta kalorimetrin ja ympäristön välinen lämpötilaero aiheuttaa lämmönvaihtoa

Lisätiedot

Muuntajan toiminnasta löytyy tietoja tämän työohjeen teoriaselostuksen lisäksi esimerkiksi viitteistä [1] - [4].

Muuntajan toiminnasta löytyy tietoja tämän työohjeen teoriaselostuksen lisäksi esimerkiksi viitteistä [1] - [4]. FYS 102 / K6. MUUNTAJA 1. Johdanto Muuntajassa on kaksi eristetystä sähköjohdosta kierrettyä kelaa yhdistetty rautasydämellä ensiöpiiriksi ja toisiopiiriksi. Muuntajan toiminta perustuu sähkömagneettiseen

Lisätiedot

LEGO EV3 Datalogging mittauksia

LEGO EV3 Datalogging mittauksia LEGO EV3 Datalogging mittauksia Tehtäväkortit 19.2017 Energiamittari/ Tehtäväkortti / 2017Innokas 1 Ledin palamisajan määrittäminen Generaattorin kytkeminen Kytke generaattori energiamittarin sisääntuloon

Lisätiedot

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien

Lisätiedot

Nimi: Muiden ryhmäläisten nimet:

Nimi: Muiden ryhmäläisten nimet: Nimi: Muiden ryhmäläisten nimet: PALKKIANTURI Työssä tutustutaan palkkianturin toimintaan ja havainnollistetaan sen avulla pienten ainepitoisuuksien havainnointia. Työn mittaukset on jaettu kolmeen osaan,

Lisätiedot

15. Sulan metallin lämpötilan mittaus

15. Sulan metallin lämpötilan mittaus 15. Sulan metallin lämpötilan mittaus Raimo Keskinen Peka Niemi - Tampereen ammattiopisto Sulan lämpötila joudutan mittaamaan usean otteeseen valmistusprosessin aikana. Sula mitataan uunissa, sekä mm.

Lisätiedot

Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät

Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät Tekijä: Mikko Laine Tekijän sähköpostiosoite: miklaine@student.oulu.fi Koulutusohjelma: Fysiikka Mittausten suorituspäivä:

Lisätiedot

MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI

MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI sivu 1/5 MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI Kohderyhmä: Kesto: Tavoitteet: Toteutus: Peruskoulu / lukio 15 min. Työn tavoitteena on havainnollistaa

Lisätiedot

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa

Lisätiedot

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on 766328A ermofysiikka Harjoitus no. 3, ratkaisut (syyslukukausi 201) 1. (a) ilavuus V (, P ) riippuu lämpötilasta ja paineesta P. Sen differentiaali on ( ) ( ) V V dv (, P ) dp + d. P Käyttämällä annettua

Lisätiedot

KAASULÄMPÖMITTARI. 1. Työn tavoitteet. 2. Työn taustaa

KAASULÄMPÖMITTARI. 1. Työn tavoitteet. 2. Työn taustaa Oulun ylioisto Fysiikan oetuslaboratorio Fysiikan laboratoriotyöt 3 1 AASULÄMPÖMIARI 1. yön tavoitteet ässä työssä tutustutaan kaasulämömittariin, jonka avulla lämötiloja voidaan määrittää tarkasti. aasulämömittarin

Lisätiedot

Muita tyyppejä. Bender Rengas Fokusoitu Pino (Stack) Mittaustekniikka

Muita tyyppejä. Bender Rengas Fokusoitu Pino (Stack) Mittaustekniikka Muita tyyppejä Bender Rengas Fokusoitu Pino (Stack) 132 Eri piezomateriaalien käyttökohteita www.ferroperm.com 133 Lämpötilan mittaaminen Termopari Halpa, laaja lämpötila-alue Resistanssin muutos Vastusanturit

Lisätiedot

MAIDON PROTEIININ MÄÄRÄN SELVITTÄMINEN (OSA 1)

MAIDON PROTEIININ MÄÄRÄN SELVITTÄMINEN (OSA 1) MAIDON PROTEIININ MÄÄRÄN SELVITTÄMINEN (OSA 1) Johdanto Maito on tärkeä eläinproteiinin lähde monille ihmisille. Maidon laatu ja sen sisältämät proteiinit riippuvat useista tekijöistä ja esimerkiksi meijereiden

Lisätiedot

ROMUMETALLIA OSTAMASSA (OSA 1)

ROMUMETALLIA OSTAMASSA (OSA 1) ROMUMETALLIA OSTAMASSA (OSA 1) Johdanto Kupari on metalli, jota käytetään esimerkiksi sähköjohtojen, tietokoneiden ja putkiston valmistamisessa. Korkean kysynnän vuoksi kupari on melko kallista. Kuparipitoisen

Lisätiedot

PALAMISPROSESSIN LÄMPÖSÄTEILYN TEHOKKUUDEN MUUTOS

PALAMISPROSESSIN LÄMPÖSÄTEILYN TEHOKKUUDEN MUUTOS TURUN PARI OY PALAMISPROSESSIN LÄMPÖSÄTEILYN TEHOKKUUDEN MUUTOS MUISTIO PARI POLTTOÖLJYJEN LISÄAINEEN KÄYTTÄJILLE Ville Valkama 4.8.2010 Sisältö Alkusanat... 3 Aistinvaraisesti havaittavia muutoksia...

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 014 Insinöörivalinnan fysiikan koe 8.5.014, malliratkaisut Kalle ja Anne tekivät fysikaalisia kokeita liukkaalla vaakasuoralla jäällä.

Lisätiedot

FYS206/5 Vaihtovirtakomponentit

FYS206/5 Vaihtovirtakomponentit FYS206/5 Vaihtovirtakomponentit Tässä työssä pyritään syventämään vaihtovirtakomponentteihin liittyviä käsitteitä. Tunnetusti esimerkiksi käsitteet impedanssi, reaktanssi ja vaihesiirto ovat aina hyvin

Lisätiedot

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1. Työn tavoitteet Tämän työn ensimmäisessä osassa tutkit kuulan, sylinterin ja sylinterirenkaan vierimistä pitkin kaltevaa tasoa.

Lisätiedot

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7 Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput

Lisätiedot

= vaimenevan värähdysliikkeen taajuus)

= vaimenevan värähdysliikkeen taajuus) Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 7: MEKAANINEN VÄRÄHTELIJÄ Teoriaa Vaimeneva värähdysliike y ŷ ŷ ŷ t T Kuva. Vaimeneva värähdysliike ajan funktiona.

Lisätiedot

Eksimeerin muodostuminen

Eksimeerin muodostuminen Fysikaalisen kemian Syventävät-laboratoriotyöt Eksimeerin muodostuminen 02-2010 Työn suoritus Valmista pyreenistä C 16 H 10 (molekyylimassa M = 202,25 g/mol) 1*10-2 M liuos metyylisykloheksaaniin.

Lisätiedot

Luento 6. Mustan kappaleen säteily

Luento 6. Mustan kappaleen säteily Mustan kappaleen säteily Luento 6 Pintaa, joka absorboi kaiken siihen osuvan sähkömagneettisen säteilyn, kutsutaan mustaksi kappaleeksi. Tällainen pinta myös säteilee kaikilla aallonpituuksilla. Sen sanotaan

Lisätiedot

Valosähköinen ilmiö. Kirkas valkoinen valo. Himmeä valkoinen valo. Kirkas uv-valo. Himmeä uv-valo

Valosähköinen ilmiö. Kirkas valkoinen valo. Himmeä valkoinen valo. Kirkas uv-valo. Himmeä uv-valo Valosähköinen ilmiö Vuonna 1887 saksalainen fyysikko Heinrich Hertz havaitsi sähkövarauksen purkautuvan metallikappaleen pinnalta, kun siihen kohdistui valoa. Tarkemmissa tutkimuksissa todettiin, että

Lisätiedot

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi. Lämpöoppi Termodynaaminen systeemi Tilanmuuttujat (suureet) Lämpötila T (K) Absoluuttinen asteikko eli Kelvinasteikko! Paine p (Pa, bar) Tilavuus V (l, m 3, ) Ainemäärä n (mol) Eristetty systeemi Ei ole

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Täydennä kuhunkin kohtaan yhtälöstä puuttuva suure tai vakio alla olevasta taulukosta. Anna vastauksena kuhunkin kohtaan ainoastaan

Lisätiedot

PERUSMITTAUKSIA. 1 Työn tavoitteet

PERUSMITTAUKSIA. 1 Työn tavoitteet Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1 PERUSMITTAUKSIA 1 Työn tavoitteet Tässä työssä määrität tutkittavaksesi annetun metallikappaleen tiheyden laskemalla sen suoraan

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat

Lisätiedot

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV = S-47 ysiikka III (ST) Tentti 88 Maksimiaallonpituus joka irroittaa elektroneja metallista on 4 nm ja vastaava aallonpituus metallille on 8 nm Mikä on näiden metallien välinen jännite-ero? Metallin työfunktio

Lisätiedot

Kaksi yleismittaria, tehomittari, mittausalusta 5, muistiinpanot ja oppikirjat. P = U x I

Kaksi yleismittaria, tehomittari, mittausalusta 5, muistiinpanot ja oppikirjat. P = U x I Pynnönen 1/3 SÄHKÖTEKNIIKKA Kurssi: Harjoitustyö : Tehon mittaaminen Pvm : Opiskelija: Tark. Arvio: Tavoite: Välineet: Harjoitustyön tehtyäsi osaat mitata ja arvioida vastukseen jäävän tehohäviön sähköisessä

Lisätiedot

Pynnönen SIVU 1 KURSSI: Opiskelija Tark. Arvio

Pynnönen SIVU 1 KURSSI: Opiskelija Tark. Arvio Pynnönen SIVU 1 ELEKTRONIIKKA & SÄHKÖOPPI SÄHKÖTEHO JA LÄMPÖ KURSSI: pvm Opiskelija Tark. Arvio Työ tavoite Opiskelija osaa arvioida sähkötehon tai oikeammin sähköenergian lämmittävän vaikutuksen komponenttiin/komponentteihin

Lisätiedot

VAIHTOVIRTAPIIRI. 1 Työn tavoitteet

VAIHTOVIRTAPIIRI. 1 Työn tavoitteet Oulun yliopisto Fysiikan opetuslaboratorio Sähkö- ja magnetismiopin laboratoriotyöt AHTOTAP Työn tavoitteet aihtovirran ja jännitteen suunta vaihtelee ajan funktiona. Esimerkiksi Suomessa käytettävä verkkovirta

Lisätiedot

SÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 6. Tehtävä 1.

SÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 6. Tehtävä 1. SÄHKÖENERGIATEKNIIIKKA Harjoitus - luento 6 Tehtävä 1. Aurinkokennon virta I s 1,1 A ja sen mallissa olevan diodin estosuuntainen kyllästysvirta I o 1 na. Laske aurinkokennon maksimiteho suhteessa termiseen

Lisätiedot

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Optisessa hilassa on hyvin suuri määrä yhdensuuntaisia, toisistaan yhtä kaukana olevia

Lisätiedot

VALAISTUSTA VALOSTA. Fysiikan ja kemian pedagogiikan perusteet. Kari Sormunen Syksy 2014

VALAISTUSTA VALOSTA. Fysiikan ja kemian pedagogiikan perusteet. Kari Sormunen Syksy 2014 VALAISTUSTA VALOSTA Fysiikan ja kemian pedagogiikan perusteet Kari Sormunen Syksy 2014 OPPILAIDEN KÄSITYKSIÄ VALOSTA Oppilaat kuvittelevat, että valo etenee katsojan silmästä katsottavaan kohteeseen. Todellisuudessa

Lisätiedot

TTY FYS-1010 Fysiikan työt I Asser Lähdemäki, S, 3. vsk. AA 3.3 Lämpösäteily Antti Vainionpää, S, 3. vsk.

TTY FYS-1010 Fysiikan työt I Asser Lähdemäki, S, 3. vsk. AA 3.3 Lämpösäteily Antti Vainionpää, S, 3. vsk. TTY FYS-1010 Fysiikan työt I 25.1.2010 205348 Asser Lähdemäki, S, 3. vsk. AA 3.3 Lämpösäteily 205826 Antti Vainionpää, S, 3. vsk. Sisältö 1 Johdanto 1 2 Työn taustalla oleva teoria 1 3 Työn suoritus 4

Lisätiedot

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus värähtelytiheyden. 1 Funktiot ja aallot Aiemmin käsiteltiin funktioita ja miten niiden avulla voidaan kuvata fysiikan

Lisätiedot

Opetusmateriaali. Tutkimustehtävien tekeminen

Opetusmateriaali. Tutkimustehtävien tekeminen Opetusmateriaali Tämän opetusmateriaalin tarkoituksena on opettaa kiihtyvyyttä mallintamisen avulla. Toisena tarkoituksena on hyödyntää pikkuautoa ja lego-ukkoa fysiikkaan liittyvän ahdistuksen vähentämiseksi.

Lisätiedot

FYSIIKAN LABORAATIOTYÖ 4 LÄMMÖNJOHTAVUUDEN, LÄMMÖNLÄPÄISYKERTOI- MEN JA LÄMMÖNSIIRTYMISKERTOIMEN MÄÄRITYS

FYSIIKAN LABORAATIOTYÖ 4 LÄMMÖNJOHTAVUUDEN, LÄMMÖNLÄPÄISYKERTOI- MEN JA LÄMMÖNSIIRTYMISKERTOIMEN MÄÄRITYS FYSIIKAN LABORAATIOTYÖ 4 LÄMMÖNJOHTAVUUDEN, LÄMMÖNLÄPÄISYKERTOI- MEN JA LÄMMÖNSIIRTYMISKERTOIMEN MÄÄRITYS Työselostuksen laatija: Tommi Tauriainen Luokka: TTE7SNC Ohjaaja: Ari Korhonen Työn tekopvm: 28.03.2008

Lisätiedot

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta 766328A Termofysiikka Harjoitus no. 5, ratkaisut syyslukukausi 204). Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta E n n + ) ω, n 0,, 2,... 2 a) Oskillaattorin partitiofunktio

Lisätiedot

Valomylly. (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta.

Valomylly. (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta. Valomylly (tunnetaan myös Crookesin radiometrinä) Mikko Marsch Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta Valomylly (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin

Lisätiedot

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA 1 ALLIN ILMIÖ MOTIVOINTI allin ilmiötyössä tarkastellaan johteen varauksenkuljettajiin liittyviä suureita Työssä nähdään kuinka all-kiteeseen generoituu all-jännite allin ilmiön tutkimiseen soveltuvalla

Lisätiedot

RESISTANSSIMITTAUKSIA

RESISTANSSIMITTAUKSIA Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1 ESSTNSSMTTUKS 1 Työn tavoitteet Tässä työssä tutustut sähköisiin perusmittauksiin. Harjoittelet digitaalisen yleismittarin käyttöä

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI

MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI sivu 1/5 MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI TEORIA Spektroskopia on erittäin yleisesti käytetty analyysimenetelmä laboratorioissa, koska se soveltuu

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa 8. NESTEEN VIRTAUS 8.1 Bernoullin laki Tässä laboratoriotyössä tutkitaan nesteen virtausta ja virtauksiin liittyviä energiahäviöitä. Yleisessä tapauksessa nesteiden virtauksen käsittely on matemaattisesti

Lisätiedot

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä Työ 3A VAIHTOVIRTAPIIRI Pari Jonas Alam Antti Tenhiälä Selostuksen laati: Jonas Alam Mittaukset tehty: 0.3.000 Selostus jätetty: 7.3.000 . Johdanto Tasavirtapiirissä sähkövirta ja jännite käyttäytyvät

Lisätiedot

FYSP1082 / K4 HELMHOLTZIN KELAT

FYSP1082 / K4 HELMHOLTZIN KELAT FYSP1082 / K4 HELMHOLTZIN KELAT Johdanto Työssä mitataan ympyränmuotoisten johdinkelojen tuottamaa magneettikenttää kelojen läheisyydessä sekä sähkövirran että etäisyyden funktiona. Sähkömagnetismia ja

Lisätiedot

Työ 2324B 4h. VALON KULKU AINEESSA

Työ 2324B 4h. VALON KULKU AINEESSA TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/5 Työ 2324B 4h. VALON KULKU AINEESSA TYÖN TAVOITE Työssä perehdytään optisiin ilmiöihin tutkimalla valon kulkua linssisysteemeissä ja prismassa. Tavoitteena on saada

Lisätiedot

Kuva 1. Fotodiodi (vasemmalla) ja tässä työssä käytetty mittauskytkentä (oikealla).

Kuva 1. Fotodiodi (vasemmalla) ja tässä työssä käytetty mittauskytkentä (oikealla). VALOSÄHKÖINEN ILMIÖ 1 Johdanto Valosähköisessä ilmiössä valo, jonka taajuus on f, irrottaa metallilta elektroneja. Koska valo koostuu kvanteista (fotoneista), joiden energia on hf (missä h on Planckin

Lisätiedot

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t,

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, v)-koordinaatistossa ruutumenetelmällä. Tehtävä 4 (~YO-K97-1). Tekniikan

Lisätiedot

1.1 ATOMIN DISKREETIT ENERGIATILAT

1.1 ATOMIN DISKREETIT ENERGIATILAT 1.1 ATOMIN DISKREETIT ENERGIATILAT 1. MITTAUKSET Franckin ja Hertzin kokeen ja ionisaatiopotentiaalin mittauslaitteisto: jännitelähde digitaalinen yleismittari suojatut banaanijohdot neonputki telineineen

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta

Lisätiedot

Tfy Fysiikka IIB Mallivastaukset

Tfy Fysiikka IIB Mallivastaukset Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama

Lisätiedot

ELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ

ELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ FYSP105 /1 ELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ 1 Johdanto Työssä tutkitaan elektronin liikettä homogeenisessa magneettikentässä ja määritetään elektronin ominaisvaraus e/m. Tulosten analyysissa tulee kiinnittää

Lisätiedot

2. Sähköisiä perusmittauksia. Yleismittari.

2. Sähköisiä perusmittauksia. Yleismittari. TURUN AMMATTKORKEAKOULU TYÖOHJE 1 TEKNKKA FYSKAN LABORATORO 2.0 2. Sähköisiä perusmittauksia. Yleismittari. 1. Työn tavoite Tutustutaan tärkeimpään sähköiseen perusmittavälineeseen, yleismittariin, suorittamalla

Lisätiedot

2 Pistejoukko koordinaatistossa

2 Pistejoukko koordinaatistossa Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia

Lisätiedot

, voidaan myös käyttää likimäärälauseketta

, voidaan myös käyttää likimäärälauseketta ILMAN KOSTEUS Ilma sisältää aina jonkin verran vesihöyryä. Ilman vesihöyrypitoisuudella eli kosteudella on huomattava merkitys ihmisten viihtyvyydelle ja terveydelle, erilaisten materiaalien ja esineiden

Lisätiedot

Ohjeita fysiikan ylioppilaskirjoituksiin

Ohjeita fysiikan ylioppilaskirjoituksiin Ohjeita fysiikan ylioppilaskirjoituksiin Kari Eloranta 2016 Jyväskylän Lyseon lukio 11. tammikuuta 2016 Kokeen rakenne Fysiikan kokeessa on 13 tehtävää, joista vastataan kahdeksaan. Tehtävät 12 ja 13 ovat

Lisätiedot

H7 Malliratkaisut - Tehtävä 1

H7 Malliratkaisut - Tehtävä 1 H7 Malliratkaisut - Tehtävä Eelis Mielonen 7. lokakuuta 07 a) Palautellaan muistiin Maclaurin sarjan määritelmä (Taylorin sarja origon ympäristössä): f n (0) f(x) = (x) n Nyt jos f(x) = ln( + x) saadaan

Lisätiedot

The acquisition of science competencies using ICT real time experiments COMBLAB. Kasvihuoneongelma. Valon ja aineen vuorovaikutus. Liian tavallinen!

The acquisition of science competencies using ICT real time experiments COMBLAB. Kasvihuoneongelma. Valon ja aineen vuorovaikutus. Liian tavallinen! Kasvihuoneongelma Valon ja aineen vuorovaikutus Herra Brown päätti rakentaa puutarhaansa uuden kasvihuoneen. Liian tavallinen! Hänen vaimonsa oli innostunut ideasta. Hän halusi uuden kasvihuoneen olevan

Lisätiedot

Keski-Suomen fysiikkakilpailu

Keski-Suomen fysiikkakilpailu Keski-Suomen fysiikkakilpailu 28.1.2016 Kilpailussa on kolme kirjallista tehtävää ja yksi kokeellinen tehtävä. Kokeellisen tehtävän ohjeistus on laatikossa mittausvälineiden kanssa. Jokainen tehtävä tulee

Lisätiedot

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 SÄHKÖSTATIIKKA JA MAGNETISMI NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 1. RESISTANSSI Resistanssi kuvaa komponentin tms. kykyä vastustaa sähkövirran kulkua Johtimen tai komponentin jännite on verrannollinen

Lisätiedot

Suoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on

Suoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on Suoran htälöt Suoran ratkaistu ja leinen muoto: Suoran htälö ratkaistussa, eli eksplisiittisessä muodossa, on ANALYYTTINEN GEOMETRIA MAA5 = k + b, tai = a missä vakiotermi b ilmoittaa suoran ja -akselin

Lisätiedot

IR-LÄMPÖMITTARIT. Infra-punasäteily. Kollimoitu ja fokusoitu säde. Sähkömagneettinen säteily

IR-LÄMPÖMITTARIT. Infra-punasäteily. Kollimoitu ja fokusoitu säde. Sähkömagneettinen säteily R-LÄMPÖMTTART Jokainen kappale, jonka lämpötila on suurempi kuin 0 K, lähettää sähkömagneettista säteilyä. Aallonpituusaluetta 0.7 - n. 000 µm kutsutaan Ralueeksi. Säteilyyn perustuva lämpötilan mittaus

Lisätiedot