REAALIAIKAISEN PMU-MITTAUSTIEDON HYÖDYNTÄMINEN VOIMAJÄRJESTELMÄN VALVONNASSA

Koko: px
Aloita esitys sivulta:

Download "REAALIAIKAISEN PMU-MITTAUSTIEDON HYÖDYNTÄMINEN VOIMAJÄRJESTELMÄN VALVONNASSA"

Transkriptio

1 LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta Energiatekniikan koulutusohjelma Diplomityö Henri Nevalainen REAALIAIKAISEN PMU-MITTAUSTIEDON HYÖDYNTÄMINEN VOIMAJÄRJESTELMÄN VALVONNASSA Työn tarkastajat: Työn ohjaaja: Professori Jarmo Partanen Professori Esa Vakkilainen DI Katariina Saarinen DI Jari Siltala

2 TIIVISTELMÄ Lappeenrannan teknillinen yliopisto Teknillinen tiedekunta Energiatekniikan koulutusohjelma Henri Nevalainen Reaaliaikaisen PMU-mittaustiedon hyödyntäminen voimajärjestelmän valvonnassa Diplomityö sivua, 38 kuvaa, 1 taulukko, 4 liitettä Tarkastajat: Professori Jarmo Partanen Professori Esa Vakkilainen Hakusanat: Reaaliaikainen PMU-mittaus, WAMS, vaihekulmaero, tehoheilahtelujen vaimentuminen, stabiilius, voimajärjestelmän valvonta. Keywords: Phasor Measurement Unit, Wide Area Measurement System, Phasor angle monitoring, Power oscillations monitoring, Power system control. Tämä työ on tehty Fingrid Oyj:lle. Työn tavoitteena oli tutkia, miten reaaliaikaista PMUmittaustietoa voidaan hyödyntää voimajärjestelmän valvonnassa. Voimajärjestelmän dynaamisia ilmiöitä ovat jännite- ja kulmastabiilius. Työssä tutkittiin voimajärjestelmän kulmastabiiliutta PSS/E-ohjelmalla simuloitujen mittaustulosten perusteella. Fouriermuunnoksen tulokset osoittavat, että huonoiten vaimeneva taajuuskomponentti on 0,3 Hz taajuus. Lisäksi tiedetään, että huonosti vaimeneva taajuuskomponentti rajoittaa siirtokapasiteettia. Voimajärjestelmän stabiiliutta voidaan esittää Wide Area Monitoring -järjestelmien (WAMS) avulla. WAMS perustuu Phasor Measurement -laitteen (PMU) reaaliaikaiseen mittaustekniikkaan. Jännitteen vaihekulman mittaaminen mahdollistaa voimajärjestelmän tilan määrittämisen reaaliajassa. Työssä on esitelty Fingridin käytössä oleva WAMS ja lisäksi esitelty kolmen eri laitetoimittajan WAMS:n rakennetta ja operaattorin käyttöön tarkoitettuja käyttöliittymiä. WAMS:n rakenteet ovat pääpiirteittäin samanlaisia, mutta stabiiliuden visuaalisessa esittämisessä on eroja. PMU -mittaustietoja on mahdollista tuoda käytönvalvontajärjestelmään erillisellä tiedonsiirtoprotokollalla. PMU-mittaustiedon hyödyntäminen käytönvalvontajärjestelmän toimintaaluenäytöllä mahdollistaa verkon tilan esittämisen reaaliajassa. Roottorin kulmastabiilius esitetään Fingridin käytönvalvontajärjestelmässä vaihekulmaerojen avulla ja työssä on esitetty, kuinka vaihekulmaeron arvolla on vaikutus tehonsiirtoon. Vaihekulmaeron arvo kuvaa vian jälkeisen tehoheilahtelun voimakkuutta. PMU-mittaustiedon esittäminen antaa operaattorille selkeämmän kuvan ylläpitää tehonsiirto turvallisella tasolla ja epästabiilin heilahtelun havainnoiminen vähentää suurhäiriön riskiä. Tulevaisuudessa siirtoverkon kehittyessä tarvitaan operaattorin käyttöön myös nopeita stabiilisuutta esittäviä työkaluja.

3 ABSTRACT Lappeenranta University of Technology Faculty of Technology Energy Technology Degree Programme Henri Nevalainen Real-time PMU measurement data utilization the power system control. Master's thesis pages, 38 figures, 1 table and 4 appendices Examiners: Professor Jarmo Partanen Professor Esa Vakkilainen Keywords: Phasor Measurement Unit, Wide Area Measurement System, Phasor angle monitoring, Power oscillations monitoring, Power system control This Master's thesis was made to Fingrid Oyj. The aim was to study how real-time PMU measurement data could be more useful in power system control. One of the power system dynamic phenomena is rotor angle stability which was studied by simulated data measurements of PSS/E software. Fourier transform results indicate that the worst frequency component of the velocity decay is 0.3 Hz. It is also known that the poor frequency component of the velocity decay limited transmission capacity. The power system dynamics can be presented trough Wide Area Monitoring Systems (WAMS). The WAMS is based on real-time measurement technique using Phasor Measurement Unit (PMU). Further voltage phase angle measurement allows the determination of power system status in real time. The study described also the use of WAMS in Fingrid. In addition three alternative structures of WAMS and user interfaces for operator, from different suppliers, were presented. The WAMS structures are mainly similar, slightly differing in the dynamics of visual presentation. At the moment PMU measurement data can be brought to the EMS with separate data transfer protocol. In the thesis presenting PMU measurement information in EMS of operation area display was studied. Also rotor angle stability is showed in Fingrid's EMS. It shows that there is link between power transmission and phase angle measurement. Phasor angle monitoring gives clearer picture to the operator volume of power oscillations in power system. In addition when PMU measurement information is presented, it gives more accurate picture to maintain power transmission at a safe level and detect of oscillation, which reduces the risk of a major disturbance. In the future operator of the developing transmission system needs also high-speed real-time tools presenting stability.

4 ALKUSANAT Tämä diplomityö on tehty Fingrid Oyj:lle. Haluan kiittää Kehityspäällikkö Katariina Saarista ja Valvomopäällikkö Jari Siltalaa työnohjauksesta ja kärsivällisyydestä kolmivuorotyön ja diplomityön yhdistämisen aiheuttamista viivästymisestä. Lisäksi kiitän Voimajärjestelmäkeskuksen asiantuntijoita ja käyttöinsinööriä kannustuksesta diplomityötä tehdessä. Lappeenrannan teknillisen yliopiston puolelta haluan kiittää työn tarkastajina toimineita Professori Jarmo Partasta ja Professori Esa Vakkilaista. Sydämellinen kiitos ystävilleni ja mummolle opiskeluvuosien kannustuksesta ja tuesta. Uudet haasteet kutsuvat. Helsingissä Henri

5 5 SISÄLLYS SYMBOLILUETTELO... 7 LYHENTEET JOHDANTO POHJOISMAINEN VOIMAJÄRJESTELMÄ Siirtokapasiteetin määrittäminen Siirtokapasiteetin määrittämisen kriteerit ja rajoittavat tekijät VOIMAJÄRJESTELMÄN STABIILIUS Jännitestabiilius Taajuusstabiilius Kulmastabiilius ja tehoheilahtelut Tehokulmayhtälö Heilahteluyhtälö Tehoheilahtelujen vaimentuminen VOIMAJÄRJESTELMÄN HEILAHTELU VIAN JÄLKEEN Tehoheilahtelu Vaihekulmaero Heilahtelujen Fourier-spektri Yhteenveto stabiiliudesta LAAJAN ALUEEN MITTAUSJÄRJESTELMÄ WAMS -rakenne Fingridin voimajärjestelmän PMU-mittaus Fingridin PDC-laite Tehoheilahtelujen vaimennus PSG:ssä Vaihekulmaero PSG:ssä WAMS-SOVELLUKSET Vietnamin WAMS Reaaliaikainen mittauksen valvonnan toteutus Synkroniosoittimien valvonnan rakenne WAMS-järjestelmän käyttö Kroatiassa Siemensin WAMS... 57

6 Voimajärjestelmän stabiiliutta esittävät sovellukset SIGUARD käyttöliittymä PMU-MITTAUSDATAN HYÖDYNTÄMINEN FINGRIDIN VOIMAJÄRJESTELMÄN VALVONNASSA Toiminta-alue voimajärjestelmän tilan havaitsemiseen Vaihekulmaeron esittäminen valvomossa JOHTOPÄÄTÖKSET YHTEENVETO LÄHTEET LIITTEET LIITE 1: LIITE 2: LIITE 3: LIITE 4: Fingrid Oyj voimansiirtoverkko Pohjoismaiden siirtokapasiteettivolyymit PMU Suomessa Reaaliaikamittauksen yhdistäminen käytönvalvonjärjestelmään

7 7 SYMBOLILUETTELO A 1 Amplitudi 1 A 2 Amplitudi 2 E 1 E 2 Generaattorin alkupään napajännite Generaattorin loppupään napajännite G 1 Generaattori 1 G 2 Generaattori 2 I J P Virta Hitausmomentti Pätöteho P 1 Pätöteho toimintapisteessä 1 P 2 Pätöteho toimintapisteessä 2 P e P max Q U a U b T a T e T D T m T S X X g Generaattorin verkkoon syöttämä sähköteho Johdolla siirrettävä maksimi pätöteho Loisteho Verkon alkupään jännite Verkon loppupään jännite Hidastuva tai kiihtyvä momentti Turbiinin akselin sähköinen momentti Vaimentavan momentin kerroin Turbiinin akselin mekaaninen momentti Tahdistavan momentin kerroin Reaktanssi Generaattorin reaktanssi

8 8 X j X m X max X ma X rms X r X i Johdon reaktanssi Muuntajan reaktanssi Cosinikäyrän huippuarvo Jännitteen magnitudi Jännitteen tehollisarvo Jännitteen reaaliosa Jännitteen imaginaariosa Pienet kirjaimet: f f i i j p pu pps t u x Taajuus Ominaistaajuuden komponentti 1...n Imaginaariyksikkö Tehon suhteellinen arvo Per unit, suhteellinen arvo Pulse per second. PMU:n ottama näyte Aika Jännitteen suhteellinen arvo Reaktanssin suhteellinen arvo

9 9 Kreikkalaiset kirjaimet: m Tehoheilahtelun reaaliosan vaimennuskerroin Signaalin taajuus radiaaneina Mekaaninen kulmanopeus Kulmaero pisteen 1 ja 2 välillä 1 Kulma pisteessä 1 2 Kulma pisteessä 2 Vaimennuskerroin Tehoheilahtelujen ominaisarvo Aikavakio Muutos kahden pisteen välissä Jännitteen vaihekulma Summa

10 10 LYHENTEET ATC Available Transfer Capacity. Jäljellä oleva siirtokapasiteetti. EH Electronic Highway. Eurooppalainen kantaverkko-operaattoreiden yhteinen suljettu tiedonsiirtoverkko. EDDA ENTSO-E EMS EVN FFT FG FS1 FS2 GPS HEP HVDC ICCP IED ISD KVJ Event Driven Data Archiving. European Network of Transmission System Operators for Electricity. Energy Management System. Käytönvalvontajärjestelmä. Electricity of Vietnam. Vietnamin systeemioperaattori. Fast Fourier Transform. Fourier -muunnos. Fingrid. Fennoskan 1. Tasäsähköyhteys (550 MW) Suomen ja Ruotsin välillä. Fennoskan 2. Tasasähköyhteys (880 MW) Suomen ja Ruotsin välillä. Global Positioning System. Satelliittipohjainen järjestelmä. Hrvatska Elektroprivedra D.D. Kroatian systeemioperaattori. High Voltage Direct Current. Tasasähköyhteys. Inter-Control Center Communications. Protokolla, jolla Siemensin SIGUARD PDP tiedonsiirto voidaan kytkeä käytönvalvontajärjestelmään. Intelligent Electronic Devices. Elektroninen rele. Island Detection. Siemensin saarekehavaitsin sovellus. Käytönvalvontajärjestelmä ks. lyhenne EMS.

11 11 LAN Local Area Network. N-1 Sähköjärjestelmän kykyä kestää mikä tahansa yksittäinen vika, eikä se saa johtaa vian vaikutusalueen laajenemiseen tai pahimmassa tapauksessa suurhäiriöön. NERC NTC OPC P1 PDC PDP PI PMU PSG PSR PSS PSS/E RAC RDC RMS the North American Electric Reliability Council. Net Transfer Capacity. Object Linking and Embedding for Process Control. Serveri, joka kerää tiedon ala-asemilta ja vie sen eteenpäin oikealla formaatilla tietoliikenneverkossa. Pohjois-Suomen ja Etelä-Suomen välinen tehonsiirto. Phasor Data Collector. PMU-mittauksen tiedonkeruuyksikkö. Phasor Data Processor. Siemensin SIGUARD -järjestelmän rakenne. Process Interface -tietokanta, jonne kerätään käytönvalvonnan mittauksia Phasor Measurement Unit. PSGuard. PMU-mittaustiedon kerääjä ja tallennin. Power Swing Recognision. Siemensin tehonheilahtelun havainnointisovellus. Power System Status. Power System Simulator for Engineering. Ruotsin ja Suomen välinen vaihtosähköyhteys. Rauman sähköasemalta lähtevä tasasähköyhteys Ruotsiin. The Root Mean Square. Neliöllinen keskiarvo.

12 12 RTU SCADA SEL SVC TRM TSO TTC WAMS WAMC WAN Remote Terminal Unit. Kaukokäytön ala-asema. Supervisory Control and Data Acquisition. Valvonta-, ohjaus- ja tiedonkeruu-ohjelmisto Schweitzer Engineering Laboratories. WAMS toimittaja. Stator Var Compensator. Staattinen loistehon konpensointilaite. Transmission Reliability Margin. Käyttövarmuusmarginaali. Transmission System Operation. Systeemioperaattori. Total Transfer Capacity. Wide Area Monitoring System. Wide Area Monitor and Control. Wide Area Network.

13 13 1 JOHDANTO Fingrid Oyj on perustettu vuonna 1996 ja sen operatiivinen toiminta aloitettiin syyskuussa Fingridin omistuksessa on Suomen kantaverkko ja merkittävät ulkomaanyhteydet. Kantaverkkoyhtiönä Fingridin tehtävänä on vastata sähkön siirrosta kantaverkossa, kehittää kantaverkkoa, ylläpitää kulutuksen ja tuotannon tasapaino, huolehtia taseselvityksestä valtakunnan tasolla ja lisäksi edistää sähkömarkkinoiden toimivuutta. (Fingrid 2011). Sähkömarkkinalain (386/1995) mukaan yhtiö on velvollinen vastaamaan sähköjärjestelmän toimivuudesta valtakunnan tasolla. Fingrid turvaa sähköjärjestelmän teknisen toimivuuden ylläpitämällä käyttövarmuutta, taajuutta ja jännitettä. Suomen sähköjärjestelmän käytössä noudatetaan pohjoismaisten kantaverkko-operaattoreiden kesken yhteisesti sovittuja periaatteita. Sähköjärjestelmän pitää joka hetki kestää mikä tahansa yksittäinen vika (N-1-kriteeri) ilman vian leviämistä suuremmalle alueelle. Suomen voimansiirtojärjestelmän perustana on kantaverkko, jonka muodostavat 400 kv, 220 kv ja tärkeimmät 110 kv voimajohdot sekä niihin liittyvät sähköasemat (ks. Liite 1). Suomen sähköjärjestelmä koostuu voimalaitoksista, kantaverkosta, alueverkosta ja jakeluverkosta. Sähköjärjestelmä on osa yhteispohjoismaista synkronista siirtoverkkoa yhdessä Ruotsin, Norjan ja Itä-Tanskan kanssa. (Fingrid 2011) Ruotsissa toimii kantaverkkoyhtiö Svenska Kraftnät, Norjassa Statnett, Tanskassa Energinet.dk. Yhteispohjoismainen järjestelmä on kytketty Keski-Euroopan sähköjärjestelmään tasavirtayhteyksin. Lisäksi Venäjältä ja Virosta on Suomeen tasasähköyhteys. Fingrid antaa sähkömarkkinoiden käyttöön kaiken mahdollisen siirtokapasiteetin vaarantamatta sähköjärjestelmän käyttövarmuutta. Pohjoismaiden kantaverkkoyhtiöt ovat yhdessä julkaisseet ohjeistuksen, kuinka siirtokapasiteetti määritellään. Siirtokapasiteetin määrittämisen kriteereinä ovat jännite, vaimennus, kuormitettavuus ja taajuus. (Fingrid 2009) Voimajärjestelmän valvonnassa käytettävät Wide Area Monitoring -järjestelmät (WAMS) yleistyivät 2000-luvun puolella sattuneiden suurhäiriöiden takia. Havaittiin, etteivät nykyisen voimajärjestelmän tilan havaitsemiseen tarvittavat valvontatyökalut ole riittäviä vaan tarvitaan entistä tarkempia ja nopeammin havaittavissa olevia

14 14 valvontatyökaluja. Suomen voimajärjestelmässä WAMS:n hyöty on se, että mittausten avulla voidaan seurata stabiiliuden vaikutusta voimajärjestelmässä. Pohjoismainen voimajärjestelmä on pitkistä siirtoyhteyksistä johtuen altis huonosti vaimentuville tehoheilahteluille. Varsinkin silloin, kun sähköä siirretään "heikommasta" verkosta "vahvempaan" niin sanottuun jäykempään verkkoon. Käytännössä tilanne on sellainen, että sähköä siirretään Suomesta ruotsiin, jolloin Etelä-Suomen voimalaitoksen generaattorien vaihekulmat heiluvat eri tahtiin Etelä-Ruotsin vastaavien koneiden kanssa. Tehoheilahtelujen riittävä vaimentuminen on tärkein vientikapasiteettiä rajoittava tekijä. Näin ollen, mitä tarkemmin tehoheilahtelujen vaimennusta voidaan seurata, sitä tehokkaammin käytettävissä oleva siirtokapasiteetti voidaan hyödyntää. WAMS:n avulla saadaan sähköasemilta mittaustietoja reaaliajassa PMU:n (Phasor Measurement Unit) avulla. PMU kerää mittaustietoja muun muassa jännitteestä, virrasta ja taajuudesta. PMU -mittausten perusteella on kehitetty jo erilaisia menetelmiä, varsinkin verkon suunnittelun käyttöön, mutta voimajärjestelmää käyttävälle operaattorille järjestelmän stabiiliutta on kuitenkin perinteisillä käytön työkaluilla vaikeaa havainnollistaa, koska käytönvalvontajärjestelmän mittausten aikaresoluutio ei ole riittävä. WAMS:ia ja sen saatuja mittaustietoja hyödynnetään jo muualla kantaverkkoyhtiöissä. Työn keskeisenä tavoitteena on tutkia, kuinka reaaliaikaisia PMU -mittauksia voidaan hyödyntää voimajärjestelmän valvonnassa paremmin, mitä lisäarvoa PMU-mittaustieto mahdollisesti antaa ja mitä valvontatyökaluja olisi käytettävissä helpottaakseen operaattorin työtä. Lisäksi olisiko lisäkapasiteettia tarjolla PMU-mittaustietoja hyödyntämällä.

15 15 2 POHJOISMAINEN VOIMAJÄRJESTELMÄ Sähkövoimajärjestelmän tehtävänä on siirtää voimalaitoksella tuotettu sähkö kuluttajalle. Etäisyydet tuotantolaitoksen ja kuluttajan välillä voivat olla pitkiä. Siitä huolimatta sähkö on siirrettävä tehokkaasti, luotettavasti ja taloudellisesti etäisyyksistä riippumatta. Hyvin suunnitellussa ja valvotussa voimajärjestelmässä on huomioitava seuraavat tekniset ja taloudelliset näkökohdat: 1. Kulutuksen vaihtelujen takia on joka hetki ylläpidettävä riittävä pätö- ja loistehon taso verkossa "pyörivien" voimakoneiden avulla. 2. Järjestelmän on toimittava mahdollisimman kustannustehokkaasti ja 3. Siirrettävän sähkön laatu on pidettävä standardoitujen kriteerien sisäpuolella. riittävän hyvän sähkön laadun takaa lähes vakiona pidettävä taajuus ja jännite sekä riittävä järjestelmän luotettavuus. (Kundur 1994, s. 8) Pohjoismaiden (Nordel 2007) mitoitussuositusten mukaan verkko on suunniteltava siten, etteivät pahimmatkaan viat yksin keskeytä sähköntoimitusta tai heikennä huomattavasti sähkön laatua. Pohjoismaiden voimajärjestelmän tärkeimmäksi käyttökriteeriksi on sovittu N-1 kriteeri. Tämä tarkoittaa, että voimajärjestelmän mitoittavaksi viaksi muodostuvat sähköasemien viat, suurimman voimalaitosyksikön verkosta irtoaminen tai maiden välisten siirtoyhteyksien viat. (Nordel 2007) 2.1 Siirtokapasiteetin määrittäminen Siirtokapasiteetin määrittämisessä ja sen laskennassa käytetään pohjoismaista siirtoverkkomallia. Verkkomalli sisältää yksityiskohtaiset kuvaukset siirtoverkosta ja voimalaitoksista sekä tuotannosta ja kulutuksesta. Käytännössä verkko "ylimitoitetaan" kestämään minkä tahansa yksittäisen verkon osan (esim. johto tai voimalaitos) irtoaminen. (Fingrid 2009) Tekninen siirtokapasiteetti TTC (Total Transfer Capacity) määräytyy N-1-kriteerin tai termisen kuormitettavuuden perusteella. Osa teknisestä siirtokapasiteetistä varataan varmuusmarginaaliksi TRM (Transmission Reliability Margin), jolla otetaan huomioon vaikeasti ennustettavia epävarmuustekijöitä:

16 16 Sähkön kulutuksen ja tuotannon tasapainon ylläpito automaattisesti aktivoituvilla reserveillä (pääasiassa vesivoimakoneet) Sähkön kulutuksen ja tuotannon ennakoimattomista vaihteluista johtuvat siirtojen muutokset Tehojen mittaamiseen ja tietojen siirtoon liittyvät epätarkkuudet. (Nordel 2007; Fingrid 2009) Sähkömarkkinoiden käyttöön annettava kaupallinen siirtokapasiteetti NTC (Net Transfer Capacity) on tekninen siirtokapasiteetti vähennettynä varmuusmarginaalilla yhtälön 2.1 mukaisesti NTC = TTC - TRM (2.1) Liitteessä 2 (Nord Pool Spot 2011) on pohjoismaiden suurimmat kaupalliset siirtokapasiteetit. Liitteeseen on merkattu myös uudet Ruotsin hinta-aluerajat SE1-SE4 (voimassa alkaen). Suomen ja Ruotsin välisen kaupallisen siirtokapasiteetin laskennassa käytettävä varmuusmarginaali (TRM) on tällä hetkellä 100 MW. Varmuusmarginaalin määrittämiseen vaikuttavat sähkön kulutuksen ja tuotannon vaihtelut eri vuoden ja vuorokaudenaikoina. Generaattoreiden sekä varsinkaan kuormien dynamiikkaa ei tunneta tarkasti. Lisäksi käytännössä esiintyvät tehonjakotilanteet vaihtelevat jatkuvasti, eivätkä täysin vastaa laskennassa käytettäviä malleja. On siten oletettava, että simulointimallien antamissa tuloksissa on epätarkkuutta. Tämän takia onkin tarpeellista käyttää riittäviä marginaaleja laskennallisten siirtokykyjen ja käyttötuntien aikana sovellettavien siirtokapasiteettien välillä. Teknisen siirtokapasiteetin (TTC) määrittämiseen vaikuttavat myös verkossa tapahtuvat keskeytykset, joita pyritään ennakoimaan hyvissä ajoin. 2.2 Siirtokapasiteetin määrittämisen kriteerit ja rajoittavat tekijät Siirtokapasiteettia määrittäessä otetaan huomioon tekniset kriteerit joiden on täytyttävä. Niitä ovat jännite, vaimennus, kuormitettavuus ja taajuus. Kriteerit huomioidaan siirtokapasiteettilaskennassa Suomen kantaverkossa ja sen yhteyksissä naapurimaihin.

17 17 Suomen kantaverkossa on kaksi keskeistä pullonkaulaa: Pohjois-Suomen ja Etelä- Suomen (P1-siirto) välillä sekä Pohjois-Suomen ja Pohjois-Ruotsin välillä (RAC-siirto). Kuvassa 2.1 on Suomen voimajärjestelmän toiminta-alueen määrittämisen kriteerit. Kriteereihin kuuluvat myös johtojen terminen kuormitettavuus, mutta sitä ei tässä työssä käsitellä. (Fingrid 2009) P1 pohjoisesta etelään Jännitestabiilius Käytännön siirtotilanteiden raja Johtojen terminen kuormitettavuus RAC Suomesta Ruotsiin Johtojen terminen kuormitettavuus ja tehoheilahtelujen vaimentuminen Käytännön siirtotilanteiden raja Tehoheilahtelujen vaimentuminen, kulmastabiilius Kuva 2.1. Voimajärjestelmän toiminta-alueen määrittämisen kriteerit. (mukaillen: Fingrid 2009). Siirrettäessä tehoa vaihtosähköyhteyksiä pitkin Etelä-Suomesta Pohjois-Suomeen ja edelleen Pohjois-Ruotsiin, siirtokapasiteettia (vientikapasiteetti) rajoittavat tehoheilahtelujen vaimentuminen (kulmastabiilius). Siirrettäessä tehoa Pohjois-Ruotsista P1-siirron kautta Etelä-Suomeen siirtokapasiteettia (tuontikapasiteetti) rajoittaa jännitestabiilius. Kuvan 2.1 toiminta-alueen rajat määräytyvät siirtokapasiteettilaskennan tuloksena, RAC-siirtokapasiteetin ja P1-siirtokapasiteetin perusteella. Toiminta-alueen rajojen pienentyessä RAC- ja P1-siirtorajat pienenevät näin ollen myös stabiiliusrajat pienenevät. Tällöin stabiiliusrajat voivat vaihdella verkon rakenteesta ja vuoden ajasta riippuen. Järjestelmävastaavana TSO:n tehtävänä on palauttaa voimajärjestelmä

18 18 toiminta-alueen sisäpuolelle 15 minuutin kuluessa, jolloin kestettäisiin jälleen uusi N-1 vika. Toimintoja esimerkiksi viennin pienentämiseksi ovat esimerkiksi Etelä-Suomessa olevan tuotannon säätäminen alas ja mahdollisesti Estlink tasasähköyhteyden käyttö. Pohjoismaisen voimajärjestelmää yhdistää yhteinen taajuus. Ruotsin ja Norjan kantaverkkoyhtiöillä on päävastuu taajuudensäädöstä. Taajuuden säilyminen hyväksyttävänä ei normaalisti ole Suomen ja Ruotsin välistä siirtoa suoraan rajoittava tekijä. Verkon stabiilius vaikuttaa välillisesti myös taajuuteen. Pohjoismaisten järjestelmävastaavien (TSO) yhdessä sopimien sääntöjen mukaan (Nordel 2007) kunkin yksittäisen vian jälkeen (N-1 vika) siirto on saatava 15 minuutin sisällä toiminta-alueen sisäpuolelle, jolla järjestelmä kestää ilman vakavia seurauksia seuraavankin vian. Tuotannon on aina pystyttävä seuraamaan sähkön kulutuksen muutoksia, jotta taajuus saadaan pidettyä mahdollisimman hyvin nimellisarvossaan (50 Hz). Taajuuden normaalialueeksi on määritelty 49,9-50,1 Hz (Nordel 2007).

19 19 3 VOIMAJÄRJESTELMÄN STABIILIUS Verkon kytkentätilanteen, tuotannon tai kuormituksen muuttuessa verkon tehotasapaino muuttuu ja voimajärjestelmä alkaa hakeutua uuteen tasapainotilaansa. Sähköjärjestelmän stabiiliutta kuvaa kansainvälisen sähköalan järjestöjen IEEE:n ja CIGRE:n asettaman työryhmän määritelmä: voimajärjestelmän stabiilius tarkoittaa sitä, että järjestelmä tietyssä käyttötilanteessa pystyy saavuttamaan siihen kohdistuneen häiriön jälkeen tasapainotilan ja järjestelmä pysyy suurimmaksi osaksi ehjänä (IEEE/CIGRE 2004, s. 1388). Käytännössä stabiilius on sähköjärjestelmän kykyä ylläpitää generaattorien välinen tahtikäyttö, riittävä taajuus ja jännitetaso. Työryhmä painottaa myös, että näiden järjestelmän muuttujien on pysyttävä ennalta määrättyjen rajojen sisäpuolella, jotta koko järjestelmä säilyisi ehjänä (IEEE/CIGRE 2004). Voimajärjestelmän stabiilius voidaan jakaa kuvan 3.1 mukaisesti kolmeen osaalueeseen: roottorin kulma-, jännite- ja taajuusstabiiliuteen. Kuva 3.1. Sähkövoimajärjestelmän stabiiliuden luokittelu. (mukaillen: IEEE/CIGRE 2004; Kundur 1994). Stabiilius voidaan jakaa eri osiin myös voimajärjestelmässä tapahtuvien muutosten suuruuden (pienet ja suuret häiriöt) ja tarkasteltavan aika-asteikon perusteella (lyhyt ja pitkä ajanjakso). Transienttistabiilius tarkoittaa voimajärjestelmässä tapahtuvaa isoa

20 20 muutosta. Roottorin kulmastabiiliuden lyhyellä aika välillä (kuva 3.1) tarkoitetaan tarkasteltavan ilmiön ajallista tarkastelualuetta, mikä on muutamista sekunneista noin 20 sekuntiin. (IEEE/CIGRE 2004, s. 1390; Elovaara ym. 2011). 3.1 Jännitestabiilius Jännitestabiilius tarkoittaa voimajärjestelmän kykyä ylläpitää riittävä jännitetaso myös häiriön jälkeen. Jännitestabiilius riippuu kuorman tarvitsemasta tehosta, voimakoneen antamasta tehosta ja niiden välisestä tasapainosta. (IEEE/CIGRE 2004, s ; Kundur 1994, s. 27). Kundurin mukaan jännitestabiilius liittyy kuormaan ja kuorman käyttäytymiseen. (Kundur 1994). Usein jännite- ja kulmastabiiliusilmiöt esiintyvät yhdessä, eikä voi helposti sanoa aiheuttiko jännitteen romahdus tahtikäynnin menetyksen vai aiheuttiko tahtikäynnin menetys jänniteromahduksen. Jännitestabiilius on siirtokapasiteettia rajoittava tekijä voimajärjestelmässä, jossa on kuormaa sellaisilla alueilla, ettei oma tuotanto riitä kattamaan sitä. Mitä vähemmän kuormitusalueella on tahtigeneraattoreita, sitä kriittisempää voi stabiiliuden säilyminen olla. Suomessa, siirrettäessä tehoa Ruotsista Suomeen pohjoisen yhteyksien kautta, jännitestabiilius määrää siirtokapasiteetin. Jännitestabiilius suurten häiriöiden suhteen tarkoittaa järjestelmän kykyä pitää yllä vakaita jännitteitä suurten häiriöiden jälkeen, kuten tuotannon tai kulutuksen menetys. Pienten häiriöiden jännitestabiilius on esimerkiksi järjestelmässä tapahtuvat kuorman muutokset. (IEEE/CIGRE 2004, s. 1391; Kundur 1994, s. 976). Jännitestabiilius riippuu sähköverkon rakenteen, tehonsiirron ja suojausjärjestelmien ominaisuuksista. Jänniteromahduksella tarkoitetaan, ettei järjestelmän jännitetaso ole häiriön jälkeen normaalilla tasolla. Jännitteet häiriön jälkeen ovat liian pienet tai suuret tai jännitteet heiluvat suurella amplitudilla. Jänniteromahduksen aikaskaala vaihtelee muutamista sekunneista kymmeniin minuutteihin (Kundur 1994 s ; Elovaara ym. 2011). Tilannetta havainnollistetaan kuvan 3.2 avulla, jossa tarkastellaan jännitestabiiliutta. Johdon alkupäässä on generaattori, joka pitää alkupään jännitteen vakiona (eli verkko on jäykkä). Johdon loppupäässä on pelkkää kulutusta ja johdon päässä olevan kuorman pätöteho P ja loisteho Q tiedetään.

21 21 Kuva 3.2. Kuormaa syöttävän johdon jännitestabiiliustilanne. Johdon reaktanssi on X ja jännite U a pidetään halutussa arvossa. (mukaillen : Partanen 2010). Loppupään jännitteelle U b, johdon alkupään jännitteen U a, johdon reaktanssin X, kuorman pätötehon P ja loistehon Q avulla voidaan (Elovaara ym. 2011; Partanen 2010) mukaan, kirjoittaa toisen asteen yhtälö 3.1: = ±. (3.1) Tiedetään, että loistehon Q suhde pätötehoon P määritellään tehokertoimen tan avulla. Tehokerroin tan on tan =. (3.2) Yhtälö voidaan johtaa myös suhteellisarvoina. Tällöin vakiona pidettävä alkupäänjännite U a on suhteellisarvona yksi (u a = 1). Sijoitetaan yhtälö 3.2 yhtälöön 3.1 ja kirjoitetaan arvot suhteellisarvoina, jolloin saadaan jännitestabiiliuden tehojänniteyhtälö 3.3: = ( )±. (3.3) Yhtälön 3.3 voidaan piirtää kuvan 3.3 jännitestabiiliutta havainnollistava tehojännitekäyrät (PU-käyrä myös "nenäkäyrä"). Tehokertoimen tan arvoon vaikuttavat kuormitustilanne ja kuinka hyvin loistehon kompensointi on hoidettu kuormitettavan johdon päässä.

22 22 1,2 Johdon loppupään jännite u/pu 1 0,8 0,6 0,4 0,2 0 tan = 0,4 tan = 0,2 tan = 0 tan = -0,2 tan = -0,4 0 0,5 1 1,5 2 2,5 3 3,5 Teho p/pu Kuva 3.3. Jännitestabiiliuden tehojännitekäyrät. (mukaillen: Elovaara ym. 2011). 3.2 Taajuusstabiilius Taajuusstabiilius on voimajärjestelmän kyky säilyttää vakiotaajuus häiriön jälkeen, kun tuotanto- tai kuormamuutos on aiheuttanut epätasapainon keskenään (IEEE/CIGRE 2004, s. 1392). Voimajärjestelmäkeskuksessa se käytännössä nähdään silloin, kun esimerkiksi generaattori irtoaa verkosta ja järjestelmän taajuus laskee. Tarpeeksi matalalle laskenut taajuus voi aiheuttaa lisää generaattorien irtoamisia verkosta ja loppujen lopuksi verkon taajuus voi romahtaa kokonaan. Romahdus voi johtaa järjestelmän pirstoutumiseen pienemmiksi alueiksi, saarekkeiden muodostumiseen. Taajuusstabiilius ei tule ongelmaksi silloin, kun taajuus nousee yli nimellistaajuuden (50 Hz). Ylitaajuustilanteessa voidaan verkosta vähentää tuotantoa. Alitaajuustilanne voi olla kriittisempi, koska voimajärjestelmässä ei välttämättä ole mahdollisuutta lisätä tuotantoa tai toisaalta ei ole mahdollisuutta irrottaa kuormaa. Taajuusstabiiliuden ylläpitämiseksi voidaan pohjoismaisessa verkossa käyttää myös tasasähköyhteyksiä. Niiden tehon säätö on nopeaa. Jos verkon taajuus laskee tarpeeksi alas, generaattorit on irrotettava verkosta. Pohjoismaisessa verkossa isot lämpövoimalaitokset irrotetaan verkosta, kun taajuus laskee alle 47,5 Hz:n. (Nordel 2007).

23 Kulmastabiilius ja tehoheilahtelut Kulmastabiiliudella tarkoitetaan järjestelmän kykyä säilyttää tahtigeneraattorin tahtikäyttö osana voimajärjestelmää. Kulmastabiilius voi tulla ongelmaksi verkon vian jälkeen tai suuren tehonsiirron ja verkon heikon vaimennuksen takia (Elovaara ym. 2011). Johdannossa sivuutettiin jo aihetta, missä suuressa vientitilanteessa Etelä- Suomen generaattorit heiluvat Etelä-Ruotsin generaattoreita vastaan. Kulmastabiiliuden säilyminen riippuu siitä, pystyvätkö generaattorit palauttamaan tasapainon mekaanisen (turbiinin akselin) ja sähköisen tehon (generaattorin) välille verkossa tapahtuneen muutoksen jälkeen. Mekaanisen ja sähköisen tehon eroavaisuus johtuu verkon kuormituksen luonnollisesta vaihtelusta ja näin ollen todellisuudessa tuotanto ja kulutus eivät täysin pysy tasapainossa keskenään. Ilmiötä voidaan havainnollistaa tehoheilahteluna mekaanisen ja sähköisen tehon välillä. Riittämätön vaimennus on tehonsiirtoa rajoittava tekijä, kun voimajärjestelmässä siirretään suuri määrä tehoa pienestä järjestelmästä isoon järjestelmään. Jos tällaisessa tilanteessa eri alueiden generaattorit alkavat heilahdella toisiaan vasten, tehonsiirtoa on pienennettävä. Pohjoismaisessa voimajärjestelmässä vaimennus on siirtoa rajoittava tekijä, kun Suomesta siirretään tehoa vaihtosähköyhteyksien kautta Ruotsiin Tehokulmayhtälö Kuvassa 3.4 on kaksi tahtigeneraattoria ja sitä kuvaava yksinkertaistettu sijaiskytkentä ja osoitindiagrammi. Tehdään oletus, että generaattorien sisäiset jännitteet pidetään vakiona toisin sanoen jännitteiden itseisarvot pysyvät samana. Kuvan perusteella generaattorin verkkoon syöttämä sähköteho P e on riippuvainen generaattorien sisäisten jännitteiden E 1 ja E 2, reaktanssin X ja jännitteiden välisen kulmaeron suuruudesta (yhtälö 3.4). Kuvan 3.4 reaktanssi sisältää generaattorin sisäisen reaktanssin X g, johdon reaktanssin X j ja muuntajien reaktanssin X m.

24 24 verkko E 1 G 1 G 2 a) X I XI b) E 2 c) Kuva 3.4. Tahtigeneraattorien välinen tehonsiirto (a), sitä vastaava sijaiskytkentä (b) ja osoitindiagrammi (c). (mukaillen: Karlström ym. 2006; Kundur 1994, s. 21; Elovaara ym. 2011, s ). Tehokulmayhtälö kahden generaattorin välillä voidaan kirjoittaa = sin, (3.4) missä X = X g + X j + X m (3.5) ja =, (Kundur 1994, s. 20). (3.6) Edellä oletettiin, että generaattorien jännitteet pidetään vakiona, jolloin tehon suuruus johdolla, yhtälön 3.4 mukaan, määräytyy kulmaeron avulla. Teoreettisesti suurin kulmastabiiliuden sallima teho saadaan, kun johdon päiden jännitteiden välinen kulmaero on 90 (sin 90 = 1). Kuitenkin tällöin loistehon kulutus 90 kulmalla olisi noin kaksi kertaa suurempi kuin johdolla siirretty teho. Käytännön raja johdon päiden väliselle kulmaerolle on noin 30, jolloin loisteho on noin puolet siirretystä pätötehosta. (Elovaara ym. 2011, s. 221).

25 25 Kuvan 3.5 kulmastabiiliuden tehokulmakäyrä osoittaa, että stabiili alue on välillä 0-90 astetta. Alue, jossa kulma on yli 90 astetta, on jatkuvassa käytössä epästabiili, mutta verkon muutostiloissa ja lyhyissä häiriöissä kulma voi käydä epästabiililla alueella, ilman että stabiilius menetetään. P( ) P max P 2 P Stabiili alue Epästabiili alue Kuva 3.5. Kulmastabiiliuden tehokulmakäyrä tehon P -funktiona. Vaaka-akselilla on kulmaero, joka teoriassa voi olla enintään 90, jotta stabiilius säilytetään. (mukaillen Elovaara ym. 2011, s 221; IEEE/CIGRE 2004). Kuvan 3.5 mukaan teho on P 1 kulmaerolla ja teho halutaan nostaa arvoon P 2. Tällöin voimakoneen tehoa on lisättävä. Tämän seurauksena voimakoneen kanssa samalla akselilla oleva generaattorin pyörimisnopeus pyrkii kasvamaan, mutta nimellistaajuudella (50 Hz) käyvän generaattorin pyörimisnopeus ei tällöin kasva vaan generaattorin akseli pyörii edelleen tahtinopeudella muun verkonosan kanssa. Kuitenkin voimakoneessa tapahtunut tehonlisäys aiheuttaa kulmaeron generaattorin sisäisen jännitteen ja verkon välillä. Kulman muutos tapahtuu arvosta arvoon. Näin uusi toimintapiste (P 2 ) saavutetaan tehokulmakäyrällä. Kulmaeron ollessa alle 90 astetta, generaattorin sähkötehon kasvu aiheuttaa kulmaeron kasvamisen ja uuden toimintapisteen löytymisen. Jos kulma olisi yli 90 astetta, kulmaero edelleen kasvaisi ja koneen nopeus kiihtyisi jatkuvasti. Liian suuri turbiinin tehon muutos johtaisi suojausasettelujen toimimiseen ja generaattorin tahdista putoamiseen eli verkosta irtoamiseen. (Elovaara ym. 2011, s ).

26 26 Käytännössä tilanne ei ole aivan näin vaan tehon muuttuessa generaattorin magnetointia, jännitettä, säädetään erillisellä automatiikalla. Tällöin tehon muuttuessa kulmamuutos ei ole niin suuri, mitä teoreettisesti osoitetaan Heilahteluyhtälö Kuten aikaisemmin mainittiin, tehoheilahtelut voimajärjestelmässä aiheutuvat tuotannon ja kulutuksen vaihteluista sekä häiriötilanteista. Tehoheilahtelut voidaan esittää myös momenttien avulla, mekaanisena momenttina ja sähköisenä momenttina. Generaattorin akseli pyörii tahtinopeudella, kun generaattorin roottoria pyörittävä mekaaninen momentti T m ja sähköinen momentti T e ovat yhtä suuria. Kuvassa 3.6 on esitetty mekaaninen ja sähköinen momentti sekä akselin kulmanopeus. Mekaaninen momentti on akselin pyörimissuuntainen ja sähköinen momentti vastaavasti vastakkaissuuntainen. (Basler ym. 2005; Elovaara ym. 2011; Kundur 1994). T m T G T e Kuva 3.6. Turbiinin kanssa samalla akselilla käyvä tahtigeneraattori. Mekaaninen momentti vaikuttaa akselin pyörimissuuntaan ja sähköinen momentti vastakkaissuuntaisesti. (mukaillen Basler ym. 2005, s. 46). Jos momentit ovat erisuuruiset, roottori kiihtyy tai hidastuu toisin sanoen momentit muuttuvat ja samalla akselin kulmanopeus muuttuu. Tilannetta havainnollistaa heilahteluyhtälö (yhtälö 3.7). Yhtälön avulla voidaan tutkia voimajärjestelmän heilahtelujen vaimennusta verkossa tapahtuvien pienten muutosten ja häiriöiden jälkeen. Yhtälö kirjoitetaan = =, (3.7)

27 27 missä ajasta riippuvainen = 2 on akselin mekaaninen kulmanopeus, f on verkon taajuus, T m mekaaninen momentti, T e sähköinen momentti ja T a on hidastuva tai kiihtyvä momentti. Termi J on turbiini-generaattorikoneikon hitausmomentti. Hitausmomenttiin vaikuttaa pyörivän voimakoneen säde ja sen massa. (Kundur 1994, s.128). Yhtälöstä 3.7 voidaan havaita, että hitausmomentin J (kiihtyvä momentti = 0) ollessa nolla, mekaaninen ja sähköinen momentti ovat yhtä suuria (T m = T e ), stabiilitilanne. Pyörivän massan liike määräytyy vääntömomenttien perusteella ja (Kundur 1994, s ) esittää, että staattisen (t = vakio) tilan voimajärjestelmässä tahdissa käyvien generaattoreiden sähköisten momenttien muutokset häiriön jälkeen voidaan jakaa kahteen komponenttiin: tahdistavaan momenttiin, joka on samassa vaiheessa kuin roottorin kulman muutos, sekä vaimentavaan momenttiin, joka on samassa vaiheessa kuin roottorin nopeusmuutos. Momentin muutos kulman ja nopeuden muutosten suhteen voidaan kirjoittaa (Kundur 1994, s. 23) mukaan = +, (3.8) missä T S on tahdistavan momentin kerroin ja T D on vaimentavan momentin kerroin. 3.4 Tehoheilahtelujen vaimentuminen Kirjallisuudessa esiintyy erilaisia tapoja määrittää tehoheilahtelujen vaimentuminen. Yksi tapa osoittaa voimajärjestelmän stabiiliutta ja riittävää vaimennusta on ominaisarvojen avulla laskettava ominaisvektori. Korban (Korba 2003) mukaan tehoheilahtelut voimajärjestelmässä ovat riippuvaisia voimajärjestelmän sen hetkisestä tilasta, ei niinkään voimajärjestelmään tulleen häiriön sijainnin tai suuruuden takia. Tehoheilahtelun ja vaimennuksen kuvaaminen ominaisvektorien ja ominaisarvojen avulla on tarkka voimajärjestelmän stabiiliuden havaitsemiseen sekä sen vaimentumiseen. (Korba 2003) Tehoheilahteluja ja sen vaimentumista voidaan havainnollistaa vaimennussuhteen avulla. Tehoheilahtelut kuvataan ensin kompleksisten ominaisarvojen i avulla. = ±, (3.9)

28 28 missä reaaliosa i kuvaa vaimennuskerrointa ja imaginaariosa i kuvaa ominaistaajuuden f i heilahtelun muotoa. Stabiilissa ehjässä verkossa vaimennuskerroin i kaikilla i...n arvoilla on pienempi kuin nolla ( i < 0). (Kundur 1994, s ). Vaimennussuhde voidaan kirjoittaa = 100 %. (3.10) Vaimennussuhde kuvaa, miten hyvin tietyn taajuuskomponentin heilahtelun amplitudi vaimenee yhden heilahdusjakson aikana. (Kundur 1994, s ; CIGRE 1996, s.21). Jos vaimennussuhde on alle nolla, voimajärjestelmä on epästabiili. Mitä suurempi vaimennussuhteen arvo on, sitä parempi on voimajärjestelmän ominaistaajuuden vaimentuminen. Mikä on hyvä vaimennussuhde? Toisin sanoen, mikä vaimennusprosentti takaa vielä voimajärjestelmän ominaistaajuuden riittävän vaimentumisen? Esimerkiksi Pohjois- Amerikan Ontarion voimajärjestelmässä, kuuluu osana Pohjois-Amerikan NERC:n (North American Electric Reliability Council), ei ole kovin tarkkaan kyetty määrittämään oikeaa vaimennussuhdetta. Käytännössä on havaittu, että Ontarion vesivoimalaitosten alueella jo 3 % ( =3 %) on hyväksyttävä raja riittävälle vaimennukselle. Australian voimajärjestelmässä vuorostaan pidetään riittävänä vaimennussuhteen arvona 5 % (CIGRE 1996). Uhlen (Uhlen ym. 2008) on taas määrittänyt vaimennussuhteen Pohjoismaisella tasolla. Esimerkiksi noin 0,3 Hz:n heilahtelun vaimentuminen on 4,34 %. Suomen voimajärjestelmässä oletetaan, että siirtokykyä rajoittaa yleensä vain yksi huonosti vaimeneva ominaistaajuutta vastaava heilahtelu, jolloin simulointitulosten analyysissä voidaan keskittyä sen vaimentumiseen. Siirrettäessä sähköä Etelä-Suomesta pohjoisen kautta Ruotsiin, vikojen jälkeen esiintyvän heilahtelun huonoimmin vaimeneva ja dominoiva komponentti on 0,3 Hz:n heilahtelu. Kuvassa 3.7 on nuolella merkitty tehonsiirtyminen Etelä-Ruotsiin. Tehon siirtoa rajoittavana tekijänä on juuri 0,3 Hz:n heilahtelu Suomen generaattorien napakulmien ja Etelä-Ruotsin sekä -Norjan generaattorien napakulmien välillä. (Rauhala ym. 2011)

29 29 Kuva 3.7. Tehoa siirrettäessä Suomesta Ruotsiin siirtokykyä rajoittaa 0,3 Hz:n tehoheilahtelu generaattorien välillä. Generaattorit heiluvat niin sanotusti toisiaan vasten (generaattorien kulmaero Etelä-Suomen ja Etelä-Ruotsin sekä -Norjan välillä). Kuvaan on myös merkitty Kangasalan SVC (Stator Var Compensator) eli staattinen loistehokompensaattori. (Rauhala ym. 2011). Pienillä heilahteluilla järjestelmä käyttäytyy likimain lineaarisesti ja tehoheilahtelun suuruus eli amplitudi A 2 vaimenee eksponentiaalisesti seuraavan kaavan mukaisesti: t / A2 A1e sin( 2 ft ) (3.11) missä A 1 on alkuamplitudi, f on heilahtelun taajuus, t on aika ja on vaimennusaikavakio. Seuraavan sivun kuvassa 3.8 on kahden pisteen välinen tehoheilahtelu.

30 30 A 1 A 2 A 2 < 0.9*A 1 Kuva 3.8. Generaattorien napakulmien tai keskenään heilahtelevien verkonosien välisen siirtotehon periaatteellinen vaihtelu ajan funktiona vian jälkeen. Kuvan tapauksessa heilahtelu vaimenee vähintään 10 %. Siirtokykylaskennan kriteerinä vaimennus määritellään siten että RAC-tehoheilahtelun amplitudin tulee pienentyä vähintään 10 % 20 sekunnin aikana. Esimerkiksi RAC-tehon heilahtelujen huipusta huippuun amplitudi A 1 on aluksi 100 MW ja 20 sekunnin kuluttua huipusta huippuun amplitudi A 2 on oltava 90 MW (ks. kuva 3.8). Mikäli amplitudi A 2 > 1.0*A 1, jolloin heilahtelu ei vaimene, kyseessä on tällöin epästabiilitilanne. (Nikkilä 2011)

31 31 4 VOIMAJÄRJESTELMÄN HEILAHTELU VIAN JÄLKEEN Luvussa käsitellään roottorin kulmastabiiliutta ja verkossa tapahtuvaa äkillistä pysyvää muutostilaa. PSS/E -simulointiohjelmalla on mallinnettu Fennoskan 2 tasasähköyhteyden (DC-linkin) laukeaminen verkosta vian seurauksena. Saatujen simulointitulosten avulla havainnollistetaan äkillistä muutosta voimajärjestelmässä. Mallinnuksessa on haettu verkon käytön kannalta kaksi siirtotilannetta. Ensimmäisessä siirtotilanteessa säilytetään stabiilius ja tehoheilahtelu vaimenee riittävästi. Toisessa siirtotilanteessa stabiilius on vaarassa menettää, sillä heilahtelu ei enää vaimene riittävästi (epästabiili). Tehoheilahtelun signaali puretaan Fourier-spektrin avulla, jolloin nähdään tehoheilahtelun dominoivin taajuuskomponentti. Simuloinnissa vika tapahtuu ajanhetkellä t = 0,0 s. Näytetaajuus on 5 ms ja simulointiaikana on käytetty 20 sekuntia. Vika tapahtuu Rauman sähköasemalla (kolmivaiheinen oikosulku). Vian kesto on 100 ms. Siirtotilanteet ennen vikaa on esitetty taulukossa 4.1. Epästabiilissa tilanteessa P1-siirtoa on kasvatettu, Etelä-Suomen tuotantoa lisäämällä. DC-linkkejä ovat Fennoskan 1 (FS1) ja Fennoskan 2 (FS2) yhteisteholtaan 1350 MW. Taulukko 4.1. Siirtotilanne ennen Fennoskan 2 laukeamista. DC-linkkien (RDC) teho ennen vikaa on 1350 MW. P1-siirtoa on kasvatettu tuotantoa lisäämällä. Siirtotilanne Stabiili Epästabiili RAC (MW) P1 (MW) RDC siirtoteho (MW) Kuvassa 4.1 on tahtikäyttöalueen taajuuden käyttäytyminen vian jälkeen. Vian jälkeen on säilytetty stabiili verkon tilanne. Vaikka tahtikäyttöalueella onkin sama taajuus, niin eri puolella järjestelmää sijaitsevien generaattoreiden napakulmaheilahtelut havaitaan niin sanottuna paikallisina taajuusmittauksina. Kuvan 4.1 tarkoituksena on havain nollistaa, kuinka paikallisesti mitattuna Etelä-Norjan Haslen taajuus heiluu noin 90 astetta edellä Petäjäskosken ja Olkiluodon taajuutta. Hasle on Norjassa oleva

32 32 siirtoyhteys ja yksi pohjoismaisista pullonkauloista. Taajuusmittaus liittyy generaattorien napakulmaheilahteluun toisin sanoen suoraan generaattorien pyörimisnopeuteen. Karkeasti ilmaistuna Etelä-Norjan generaattorit pyörivät vastakkaisvaiheisesti Suomen generaattorien kanssa, kuvassa 4.1 juuri sen 90 astetta. Vuorostaan Suomen generaattorit pyörivät likimain yhtenä massana Haslen ja yleisesti koko Etelä-Ruotsin ja -Norjan generaattoreita vastaan. Taajuus (Hz) Synkronialueen taajuudet Petäjäskoski Olkiluoto Hasle (NO) 50,30 50,20 50,10 50,00 49,90 49,80 49,70-0,5 1,5 3,5 5,5 7,5 9,5 11,5 13,5 15,5 17,5 19,5 Aika (s) Kuva 4.1. Vian jälkeinen taajuusheilahtelu kolmelta eri sähköasemalta. Taajuutta mitattaessa paikallisesti, Haslen taajuus (vihreä) heiluu noin 90 astetta edellä Petäjäskosken ja Olkiluodon paikallista taajuutta. 4.1 Tehoheilahtelu Vian jälkeen tahtikäyttöalueella teho siirtyy lyhintä mahdollista reittiä pitkin ja tässä tapauksessa FS2 teho siirtyy nyt Pohjois-Suomeen ja siitä edelleen RAC-siirtoa pitkin Ruotsiin. Kuvassa 4.2 on tehoheilahtelu vian jälkeen. FS1 käy myös hetkellisesti 0 MW, mutta katkaisija havaitsee, ettei vikaa enää ole (vika ohi 100 ms jälkeen), joten FS1 jää verkkoon 550 MW teholle. Sen sijaan P1-siirto ja edelleen RAC-siirto kasvavat FS2 tippumisen takia. Huomattavinta tässä on se, että vian jälkeen tehoheilahtelu vaimenee jakso jaksolta.

33 33 RAC-siirron tehoheilahtelun amplitudi A1 = 1634 MW. Luvussa 3.4 kerrotaan stabiiliusrajoista, että kuvan 3.8 mukaisesti heilahtelu vaimenee 20 sekunnin aikana vähintään sen 10 %. Silloin stabiilius vielä säilytetään Suomen voimajärjestelmässä. Kuvan 4.2 tehoheilahtelujen amplitudi vaimenee viiden jakson aikana jo 30 % verran ja näin ollen edellisen periaatteen mukaisesti stabiilius säilytetään. Tehoheilahtelu Stabiili RAC-siirto RDC P1-siirto A2=1154 MW < 0,7*A Teho P (MW) A1 A2 800 A1=1634 MW T = 3,3 s 400 FS1 jää verkkoon. 0-0,5 1,5 3,5 5,5 7,5 9,5 11,5 13,5 15,5 17,5 19,5 Aika t (s) Kuva 4.2. Stabiili tehonheilahtelu RAC- ja P1-siirtoyhteyksillä.. Tehoheilahtelu vaimenee vian jälkeen, sillä amplitudi A2< 0,7*A1. Jaksonaika T = 3,3 s. Epästabiilissa tilanteessa tehoheilahtelujen amplitudi ei pienene toisin sanoen heilahtelu ei vaimene riittävästi. Kuvan 4.3 mukaan RAC-siirron alkuamplitudi A1 = 1758 MW ja viiden jaksonajan jälkeen amplitudi A2 = 2084 MW. Amplitudi kasvaa entisestään, voimajärjestelmä on epästabiili.

34 34 Tehoheilahtelu Epästabiili RAC-siirto RADC P1-siirto Teho P (MW) A1 A A1= 1758 MW T = 3,4s A2 = 2084 MW -0,5 1,5 3,5 5,5 7,5 9,5 11,5 13,5 15,5 17,5 19,5 Aika t (s) Kuva 4.3. Tehoheilahtelu epästabiilitilanteessa. Tehoheilahtelu ei vaimene enää vaan heilahtelujen amplitudi kasvaa jaksojen aikana. Kyseessä on epästabiilitilanne (A2>1,18*A1). Jaksonaika T = 3,4 s. Kuvassa 4.4 verrataan RAC-siirron tehoheilahtelua vian jälkeen sekä stabiilissa että epästabiilissa tilanteessa. RAC-siirron tehoheilahtelujen amplitudi vaimenee verrattaessa epästabiilin tehoheilahteluun.

35 35 Tehoheilahtelu RAC stabiili RAC epästabiili RDC Teho P (MW) ,5 1,5 3,5 5,5 7,5 9,5 11,5 13,5 15,5 17,5 19,5 Aika t (s) Kuva 4.4. Vertailussa RDC vikaantumisen jälkeinen RAC-siirto stabiilissa ja epästabiilissa tilanteessa. Jos siirtotilanne on tarpeeksi suuri, verkon stabiilius on vaarassa menettää. Jotta tehoheilahtelut epästabiilissa tilanteessa saataisiin vaimenevaan riittävästi, vaatii se toimenpiteitä verkon kannalta. Tässä tapauksessa tuotannon vähentäminen Etelä- Suomessa pienentää RAC- ja P1-siirtoa. 4.2 Vaihekulmaero Kahden pisteen välisen jännitteiden kulmaeron avulla voidaan myös havainnollistaa, miten voimajärjestelmän stabiilius nähdään eri verkon osissa. PSS/E:n simulointituloksista on saatu selville kuvan 4.5 jännitteiden kulmaerot. Kirjallisuudessa puhutaan myös generaattorien napakulmaerosta. Kuvassa 4.5 referenssipisteenä on käytetty Olkiluodon jännitteen kulmaa, jota on verrattu muihin voimajärjestelmän pisteisiin. Kuvasta nähdään, että Haslen ja Olkiluodon välinen kulmaeron amplitudi käy hetkellisesti yli 90 asteen (stabiiliuden raja), menettämättä stabiiliutta, sillä kuvan perusteella kulmaeron heilahtelu kuitenkin vaimenee riittävästi. Lineaarisesti katsottuna kulmaero 20 sekunnin aikana vaihtelee asteen välillä. Ennen häiriötä Haslen kulmaero on 68 astetta. Kuvan perusteella on myös helppo havaita, kuinka etäisyys vaikuttaa kulmaeron suuruuteen (tehokulmayhtälön reaktanssi vaikuttaa). Olkiluodon ja

36 36 Yllikkälän sekä Petäjäskosken väliset kulmaerot ovat paljon pienempiä. Yllikkälässä jopa olematon. Jännitteiden napakulmaerot. Referenssipisteenä Olkiluodon jännitteen kulma. Hasle Petäjäskoski Yllikkälä Lin. (Hasle) Kulmaero ( ) 135,00 125,00 115,00 105,00 95,00 85,00 75,00 65,00 55,00 45,00 35,00 25,00 15,00 5,00-5,00-0,5 1,5 3,5 5,5 7,5 9,5 11,5 13,5 15,5 17,5 19,5 Aika (s) Kuva 4.5. Jännitteiden väliset napakulmaerot. Referenssipisteenä on käytetty Olkiluodon jännitteen napakulmaa. Haslen kulma ennen häiriötä 68 astetta. Etäisyyden kasvaessa (Hasle) kulmaeron amplitudi on korkeampi verrattuna Olkiluotoa lähempänä oleviin pisteisiin. Lisäksi voidaan jo havaita, että kulmaerolla ja tehoheilahtelulla on yhteys. Haslen ja Olkiluodon generaattorien heiluminen toisiaan vasten (vastakkaisvaiheisesti) nähtiin jo kuvasta 4.1, kun Haslen generaattorit heiluvat noin 90 astetta Suomen generaattoreita edellä. Tämän sama on nähtävissä myös kuvassa 4.5 napakulmaerojen avulla. Seuraavan sivun kuvaan 4.6 on yhdistetty vian jälkeinen napakulmaerojen heilahtelu stabiilissa ja epästabiilissa tilanteessa. Huomataan, että Haslen ja myös Petäjäskosken jännitteiden napakulmaeron amplitudit kasvavat epästabiilissa tilanteessa (ei tapahdu vaimentumista).

37 37 Napakulmaero Stab. Hasle (NO) Stab. Petäjäskoski Epästab. Hasle (NO) Epästab. Petäjäskoski Kulmaero ( ) ,5 1,5 3,5 5,5 7,5 9,5 11,5 13,5 15,5 17,5 19,5 Aika t (s) Kuva 4.6. Napakulmaerot eri pisteissä. Referenssipisteenä on Olkiluodon jännitteen napakulma. Epästabiilissa tilanteessa napakulmaero pisteiden välillä ei pienene verrattuna stabiilin tilanteeseen. Kuvan 4.6 mukaan Haslen ja Petäjäskosken generaattorit pyörivät vastakkaisvaiheisesti napakulmaeron verran Olkiluodon generaattoria vastaan. Epästabiilissa tilanteessa napakulmaero ei lähde pienenemään. Näin ollen vaarana on menettää stabiilius kokonaan. 4.3 Heilahtelujen Fourier-spektri Edellisissä kohdissa on havainnollistettu teho-, taajuus-, kulmaeroheilahteluja aikatasossa. Siirtyminen aikatasosta taajuustasoon tehdään FFT -muunnoksella. FFT (Fast Fourier Transform) purkaa aikatason sinimuotoisen signaalin taajuuskomponentteihin. Ominaistaajuudella voidaan osoittaa, mikä taajuusalue on voimakkain milläkin sinimuotoisella signaalilla. (Phadke ym. 2008) Otetaan esimerkkinä kuvan 4.4 RAC-siirron tehoheilahtelut sekä stabiilissa että epästabiilissa tilanteessa. Tehdään kuvan tehoheilahteluista FFT -muunnos ja saadaan kuvan 4.7 ominaistaajuudet ja niiden amplitudit. Nähdään, että juuri voimajärjestelmän huonoiten vaimeneva ja dominoiva ominaistaajuus on 0,3 Hz:n taajuus (ks. kuva 4.7).

38 38 Uhlenin työryhmä (Uhlen ym. 2008) on tehnyt laskentoja huonoiten vaimenevista taajuuskomponenteista pohjoismaisella tasolla. Lähteessä mainitaan, että huonoiten vaimeneva taajuuskomponentti Suomen ja Etelä-Norjan välillä on 0,33 Hz. Generaattorit heiluvat niin sanotusti toisiaan vasten (generaattorien kulmaero Etelä- Suomen ja Etelä-Ruotsin sekä -Norjan välillä). Voimajärjestelmän vaimentumaton tehoheilahtelu nähdään nyt FFT -muunnoksena 0,3 Hz:n ominaistaajuudella noin 1900 MW amplitudina. Amplitudi kuvaa, mikä on vian jälkeinen huippuarvo kyseisellä ominaistaajuudella.. Kuvassa 4.7 nähdään myös 0,6 Hz:n taajuuskomponenttia. Tämä johtunee siitä, että paikallisesti, toisiaan lähempänä olevat generaattorit vian jälkeen heiluvat myös toisiaan vasten. Esimerkiksi Etelä-Ruotsin ja Etelä-Norjan välillä huonoiten vaimeneva taajuuskomponentti on 0,5 Hz:ä, johtuen juuri pisteiden etäisyydestä toisiinsa nähden. RAC-siirron Fourier-spektri Epätabiili RAC Stabiili RAC Amplitudi (MW) ,3 0,6 0,9 1,2 1,5 1,8 Ominaistaajuus f (Hz) Kuva 4.7. RAC-siirron Fourier-spektri. Voimakkain amplitudi on 0,3 Hz:n alueella. Epästabiilissa tehoheilahtelussa on korkeampi amplitudi kuin stabiilissa heilahtelussa. FFT -muunnoksen avulla voidaan nähdä myös, miten suuri amplitudi napakulmaerolla kyseisellä 0,3 Hz:n taajuuskomponentilla on. Kuvan 4.8 Olkiluodon ja Haslen välisen jännitteen kulmaeron amplitudi eroaa selvästi, jos kyseessä on vaimentuva (stabiili) tai vaimentumaton (epästabiili) tilanne.

Siirtokapasiteetin määrittäminen

Siirtokapasiteetin määrittäminen 1 (5) Siirtokapasiteetin määrittäminen 1 Suomen sähköjärjestelmän siirtokapasiteetit Fingrid antaa sähkömarkkinoiden käyttöön kaiken sen siirtokapasiteetin, joka on mahdollinen sähköjärjestelmän käyttövarmuuden

Lisätiedot

Jännitestabiiliushäiriö Suomessa 1992. Liisa Haarla

Jännitestabiiliushäiriö Suomessa 1992. Liisa Haarla Jännitestabiiliushäiriö Suomessa 1992 Liisa Haarla Pohjoismainen voimajärjestelmä 1992 Siirtoverkko: Siirtoyhteydet pitkiä, kulutus enimmäkseen etelässä, vesivoimaa pohjoisessa (Suomessa ja Ruotsissa),

Lisätiedot

SÄHKÖN TOIMITUSVARMUUS

SÄHKÖN TOIMITUSVARMUUS SUOMEN ATOMITEKNILLISEN SEURAN VUOSIKOKOUS 21.2.2007 Eero Kokkonen Johtava asiantuntija Fingrid Oyj 1 14.2.2007/EKN Tavallisen kuluttajan kannalta: sähkön toimitusvarmuus = sähköä saa pistorasiasta aina

Lisätiedot

Pohjoismaisen sähköjärjestelmän käyttövarmuus

Pohjoismaisen sähköjärjestelmän käyttövarmuus Pohjoismaisen sähköjärjestelmän käyttövarmuus 26.11.2003 Professori Jarmo Partanen Lappeenrannan teknillinen yliopisto 1 Skandinaavinen sähkömarkkina-alue Pohjoismaat on yksi yhteiskäyttöalue: energian

Lisätiedot

Voimajärjestelmän tehotasapainon ylläpito. Vaelluskalafoorumi Kotkassa Erikoisasiantuntija Anders Lundberg Fingrid Oyj

Voimajärjestelmän tehotasapainon ylläpito. Vaelluskalafoorumi Kotkassa Erikoisasiantuntija Anders Lundberg Fingrid Oyj Voimajärjestelmän tehotasapainon ylläpito Vaelluskalafoorumi Kotkassa 4-5.10.2012 Erikoisasiantuntija Anders Lundberg Fingrid Oyj Sähköntuotannon ja kulutuksen välinen tasapaino Fingrid huolehtii Suomen

Lisätiedot

Liisa Haarla Fingrid Oyj. Muuttuva voimajärjestelmä taajuus ja likeenergia

Liisa Haarla Fingrid Oyj. Muuttuva voimajärjestelmä taajuus ja likeenergia Liisa Haarla Fingrid Oyj Muuttuva voimajärjestelmä taajuus ja likeenergia Mikä muuttuu? Ilmastopolitiikka, teknologian muutos ja yhteiskäyttöjärjestelmien välinen integraatio aiheuttavat muutoksia: Lämpövoimalaitoksia

Lisätiedot

Sähköjärjestelmän toiminta viikon 5/2012 huippukulutustilanteessa

Sähköjärjestelmän toiminta viikon 5/2012 huippukulutustilanteessa Raportti 1 (5) Sähköjärjestelmän toiminta viikon 5/2012 huippukulutustilanteessa 1 Yhteenveto Talven 2011-2012 kulutushuippu saavutettiin 3.2.2012 tunnilla 18-19 jolloin sähkön kulutus oli 14 304 (talven

Lisätiedot

Käyttötoimikunta Sähköjärjestelmän matalan inertian hallinta

Käyttötoimikunta Sähköjärjestelmän matalan inertian hallinta Käyttötoimikunta Sähköjärjestelmän matalan inertian hallinta Miksi voimajärjestelmän inertialla on merkitystä? taajuus häiriö, esim. tuotantolaitoksen irtoaminen sähköverkosta tavanomainen inertia pieni

Lisätiedot

Siirtojen hallinta 2014

Siirtojen hallinta 2014 Raportti 1 (9) Siirtojen hallinta 2014 1 Yleistä siirto- ja markkinatilanteesta Siirtojen hallinta -raportti on yhteenveto Suomen kantaverkon ja rajajohtoyhteyksien tapahtumista ja toteumista vuodelta

Lisätiedot

Sähköjärjestelmän toiminta talven 2012-2013 huippukulutustilanteessa

Sähköjärjestelmän toiminta talven 2012-2013 huippukulutustilanteessa Raportti 1 (5) Sähköjärjestelmän toiminta talven 2012-2013 huippukulutustilanteessa 1 Yhteenveto Talven 2012-2013 kulutushuippu saavutettiin 18.1.2013 tunnilla 9-10, jolloin sähkön kulutus oli 14 043 MWh/h

Lisätiedot

Sähköjärjestelmä antaa raamit voimalaitoksen koolle

Sähköjärjestelmä antaa raamit voimalaitoksen koolle Sähköjärjestelmä antaa raamit voimalaitoksen koolle Käyttövarmuuspäivä 2.12.2013 Johtava asiantuntija Liisa Haarla, Fingrid Oy Adjunct professor, Aalto-yliopisto Sisältö 1. Tehon ja taajuuden tasapaino

Lisätiedot

Liittymissäännöt tuulivoimaloiden liittämiseksi Suomen voimansiirtoverkkoon

Liittymissäännöt tuulivoimaloiden liittämiseksi Suomen voimansiirtoverkkoon FINGRID OYJ Liittymissäännöt tuulivoimaloiden liittämiseksi Suomen voimansiirtoverkkoon 31.3.29 Liittymissäännöt tuulivoimaloiden ja maakohtaiset lisätäsmennykset tuulivoimaloiden liittämiseksi Suomen

Lisätiedot

215.3 MW 0.0 MVR pu MW 0.0 MVR

215.3 MW 0.0 MVR pu MW 0.0 MVR Sami Repo, TTKK/Sähkövoimatekniikka 1 ESIMERKKI KÄYTTÖVARMUUDEN MÄÄRITTÄMISESTÄ Testijärjestelmässä on kaksi solmupistettä, joiden välillä on kaksi rinnakkaista identtistä johtoa, joidenka yhdistetty impedanssi

Lisätiedot

Fingridin varavoimalaitosten käyttö alue- tai jakeluverkkojen tukemiseen. Käyttötoimikunta Kimmo Kuusinen

Fingridin varavoimalaitosten käyttö alue- tai jakeluverkkojen tukemiseen. Käyttötoimikunta Kimmo Kuusinen Fingridin varavoimalaitosten käyttö alue- tai jakeluverkkojen tukemiseen Käyttötoimikunta Kimmo Kuusinen Yleistä Suomen sähköjärjestelmä on mitoitettu yhteispohjoismaisesti sovittujen periaatteiden mukaisesti.

Lisätiedot

Siirtokeskeytyksiä markkinoiden ehdoilla. Jyrki Uusitalo, kehityspäällikkö Sähkömarkkinapäivä 8.4.2013

Siirtokeskeytyksiä markkinoiden ehdoilla. Jyrki Uusitalo, kehityspäällikkö Sähkömarkkinapäivä 8.4.2013 Siirtokeskeytyksiä markkinoiden ehdoilla, kehityspäällikkö Sähkömarkkinapäivä 2 Keskeytykset pienensivät käytettävissä olevaa siirtokapasiteettia 2012 3 000 2 500 Elspot kapasiteettien keskiarvot, MW Fenno-Skan

Lisätiedot

Voimalaitoksen lisästabiloinnin virittämisohje. Voimalaitospäivä Scandic Park Antti Harjula

Voimalaitoksen lisästabiloinnin virittämisohje. Voimalaitospäivä Scandic Park Antti Harjula Voimalaitoksen lisästabiloinnin virittämisohje Voimalaitospäivä Scandic Park 24.2.2016 Antti Harjula Sisältö Pohjoismainen voimajärjestelmä ja lisästabiloinnit VJV 2013, vaatimukset lisästabiloinnille

Lisätiedot

15 minuutin tuotantosuunnitelmat. Tasevastaavapäivä Hartwall Areena Jyrki Uusitalo

15 minuutin tuotantosuunnitelmat. Tasevastaavapäivä Hartwall Areena Jyrki Uusitalo 15 minuutin tuotantosuunnitelmat Tasevastaavapäivä 10.11.2009 Hartwall Areena Jyrki Uusitalo aug-95 dec-95 apr-96 aug-96 dec-96 apr-97 aug-97 dec-97 apr-98 aug-98 dec-98 apr-99 aug-99 dec-99 apr-00 aug-00

Lisätiedot

Sähköjärjestelmän toiminta talven 2014-2015 kulutushuipputilanteessa

Sähköjärjestelmän toiminta talven 2014-2015 kulutushuipputilanteessa Raportti 1 (6) Sähköjärjestelmän toiminta talven 2014-2015 kulutushuipputilanteessa 1 Yhteenveto Talvi 2014-2015 oli keskimääräistä leudompi. Talven kylmimmät lämpötilat mitattiin tammikuussa, mutta silloinkin

Lisätiedot

ELEC-E8419 syksy 2016 Jännitteensäätö

ELEC-E8419 syksy 2016 Jännitteensäätö ELEC-E849 syksy 06 Jännitteensäätö. Tarkastellaan viittä rinnakkaista siirtojohtoa. Jännite johdon loppupäässä on 400, pituus on 00 km, reaktanssi on 0,3 ohm/km (3 ohmia/johto). Kunkin johdon virta on

Lisätiedot

Käyttörintamalta paljon uutta

Käyttörintamalta paljon uutta Käyttörintamalta paljon uutta Johtaja Reima Päivinen Käyttövarmuuspäivä 24.11.2011 24.11.2011 Käyttövarmuuspäivä 24.11.2011 Kylmän talven kulutushuippu 18.2.2011 Kulutushuippu 18.2.2011 klo 9 10 Suomen

Lisätiedot

Sähköjärjestelmän toiminta talven 2013-2014 kulutushuipputilanteessa

Sähköjärjestelmän toiminta talven 2013-2014 kulutushuipputilanteessa Raportti 1 (5) Sähköjärjestelmän toiminta talven 2013-2014 kulutushuipputilanteessa 1 Yhteenveto Talvi 2013-2014 oli keskimääräistä lämpimämpi. Talven kylmin ajanjakso ajoittui tammikuun puolivälin jälkeen.

Lisätiedot

Fingrid Oyj. Käyttötoiminnan tiedonvaihdon laajuus

Fingrid Oyj. Käyttötoiminnan tiedonvaihdon laajuus Fingrid Oyj Käyttötoiminnan tiedonvaihdon laajuus 1 (6) Sisällysluettelo 1 Yleistä... 2 2 Tarkkailualue... 2 2.1 Soveltaminen... 2 2.2 Tarkkailualue Fingridin Vastuualueella... 3 3 Sähköverkoista Fingridille

Lisätiedot

15 minuutin tuotantosuunnitelmat. Käyttötoimikunta Jyrki Uusitalo

15 minuutin tuotantosuunnitelmat. Käyttötoimikunta Jyrki Uusitalo 15 minuutin tuotantosuunnitelmat Käyttötoimikunta 24.9.2009 Jyrki Uusitalo aug-95 dec-95 apr-96 aug-96 dec-96 apr-97 aug-97 dec-97 apr-98 aug-98 dec-98 apr-99 aug-99 dec-99 apr-00 aug-00 dec-00 01-apr

Lisätiedot

Neuvottelukunnan kokous Reima Päivinen. Kantaverkon käyttötoiminnan haasteet

Neuvottelukunnan kokous Reima Päivinen. Kantaverkon käyttötoiminnan haasteet 6.6.2018 Neuvottelukunnan kokous Reima Päivinen Kantaverkon käyttötoiminnan haasteet Häiriökeskeytykset liittymispisteissä 1,20 9 1,00 8 7 0,80 6 kpl 0,60 0,40 5 4 3 min 0,20 2 1 0,00 2008 2009 2010 2011

Lisätiedot

Fingrid Oyj. Käyttötoiminnan tiedonvaihdon laajuus

Fingrid Oyj. Käyttötoiminnan tiedonvaihdon laajuus Fingrid Oyj Käyttötoiminnan tiedonvaihdon laajuus 22.10.2018 1 (6) Sisällysluettelo 1 Yleistä... 2 2 Tarkkailualue... 2 2.1 Soveltaminen... 2 2.2 Tarkkailualue Fingridin Vastuualueella... 3 3 Sähköverkoista

Lisätiedot

Tuotantorakenteen muutos haaste sähköjärjestelmälle. johtaja Reima Päivinen Käyttövarmuuspäivä

Tuotantorakenteen muutos haaste sähköjärjestelmälle. johtaja Reima Päivinen Käyttövarmuuspäivä Tuotantorakenteen muutos haaste sähköjärjestelmälle johtaja Reima Päivinen Käyttövarmuuspäivä Tuulivoiman ja aurinkovoiman vaikutukset sähköjärjestelmään sähköä tuotetaan silloin kun tuulee tai paistaa

Lisätiedot

Pohjoismaiset markkinat pullonkaulojen puristuksessa. Juha Kekkonen, johtaja Sähkömarkkinapäivä 12.4.2012

Pohjoismaiset markkinat pullonkaulojen puristuksessa. Juha Kekkonen, johtaja Sähkömarkkinapäivä 12.4.2012 Pohjoismaiset markkinat pullonkaulojen puristuksessa Juha Kekkonen, johtaja Sähkömarkkinapäivä 12.4.2012 Teemat Pullonkaulatilanne yleensä Pohjoismaissa Ruotsi-Suomi raja erityisesti Fenno-Skan 2:n vaikutus

Lisätiedot

Ajankohtaiskatsaus. Toimitusjohtaja Jukka Ruusunen. Neuvottelukunnan kokous, Suomalainen klubi 9.9.2008

Ajankohtaiskatsaus. Toimitusjohtaja Jukka Ruusunen. Neuvottelukunnan kokous, Suomalainen klubi 9.9.2008 1 Ajankohtaiskatsaus Toimitusjohtaja Jukka Ruusunen Neuvottelukunnan kokous, Suomalainen klubi 9.9.2008 Taloudellinen näkökulma 2 Asiakas- ja sidosryhmänäkökulma Visio ja strategia Fingridin arvot Sisäisten

Lisätiedot

Kohti eurooppalaista verkkoa

Kohti eurooppalaista verkkoa 1 Kohti eurooppalaista verkkoa Pertti Kuronen Verkkopalvelu 2 Tulevaisuus: eurooppalaiset järjestelmävastaavat ovat yhdistämässä voimiaan ENTSO-E Markkina Käyttö Käyttö Järjestelmän kehittäminen Eurooppalainen

Lisätiedot

Markkinakehityksen ajankohtauskatsaus. Tasevastaavapäivä 3.11.2011 Petri Vihavainen

Markkinakehityksen ajankohtauskatsaus. Tasevastaavapäivä 3.11.2011 Petri Vihavainen Markkinakehityksen ajankohtauskatsaus Tasevastaavapäivä 3.11.2011 Petri Vihavainen Esityksen sisältö Fingridin strategia sähkömarkkinoiden kehittämisestä Ruotsi Venäjä ENTSO-E Markkinatieto Tehoreservit

Lisätiedot

Säätösähkömarkkinat uusien haasteiden edessä

Säätösähkömarkkinat uusien haasteiden edessä 1 Säätösähkömarkkinat uusien haasteiden edessä Johtaja Reima Päivinen, Fingrid Oyj Sähkömarkkinapäivä 21.4.2009 2 Mitä on säätösähkö? Vuorokauden sisäiset kulutuksen muutokset Vastuu: Markkinatoimijat

Lisätiedot

BL20A0400 Sähkömarkkinat. Valtakunnallinen sähkötaseiden hallinta ja selvitys Jarmo Partanen

BL20A0400 Sähkömarkkinat. Valtakunnallinen sähkötaseiden hallinta ja selvitys Jarmo Partanen BL20A0400 Sähkömarkkinat Valtakunnallinen sähkötaseiden hallinta ja selvitys Jarmo Partanen Valtakunnalliset sähkötaseet Kaikille sähkökaupan osapuolille on tärkeää sähköjärjestelmän varma ja taloudellisesti

Lisätiedot

Tuulivoiman vaikutukset voimajärjestelmään

Tuulivoiman vaikutukset voimajärjestelmään 1 Tuulivoiman vaikutukset voimajärjestelmään case 2000 MW Jussi Matilainen Verkkopäivä 9.9.2008 2 Esityksen sisältö Tuulivoima maailmalla ja Suomessa Käsitteitä Tuulivoima ja voimajärjestelmän käyttövarmuus

Lisätiedot

Käyttötoimikunta Antti-Juhani Nikkilä Loistehon merkitys kantaverkon jännitteiden hallinnassa

Käyttötoimikunta Antti-Juhani Nikkilä Loistehon merkitys kantaverkon jännitteiden hallinnassa Käyttötoimikunta Loistehon merkitys kantaverkon jännitteiden hallinnassa Sisältö Kantaverkon kompensoinnin ja jännitteensäädön periaatteet Fingridin uudet loissähköperiaatteet Miten lisääntynyt loisteho

Lisätiedot

Sinin muotoinen signaali

Sinin muotoinen signaali Sinin muotoinen signaali Pekka Rantala.. Sini syntyy tasaisesta pyörimisestä Sini-signaali syntyy vakio-nopeudella pyörivän osoittimen y-suuntaisesta projektiosta. y u û α positiivinen pyörimissuunta x

Lisätiedot

Markkinatoimikunta. Pohjoismainen Inertia 2 projekti valmistunut, yhteenveto tuloksista

Markkinatoimikunta. Pohjoismainen Inertia 2 projekti valmistunut, yhteenveto tuloksista Markkinatoimikunta Pohjoismainen Inertia 2 projekti valmistunut, yhteenveto tuloksista NAGin Inertia 2 projektin tavoitteet Mitigation: Measures to handle future low kinetic energy situations Future kinetic

Lisätiedot

Ajankohtaiskatsaus. Käyttötoimikunta Reima Päivinen

Ajankohtaiskatsaus. Käyttötoimikunta Reima Päivinen Ajankohtaiskatsaus Käyttötoimikunta 25.11.2014 Reima Päivinen Suomi on rakenteellisesti tuonnin varassa haaste voimajärjestelmän käyttötoiminnalle 1180 MW 1050 MW 280 MW 390 MW Keskimääräinen kaupallinen

Lisätiedot

Käyttövarmuuden haasteet tuotannon muuttuessa ja markkinoiden laajetessa Käyttövarmuuspäivä Johtaja Reima Päivinen Fingrid Oyj

Käyttövarmuuden haasteet tuotannon muuttuessa ja markkinoiden laajetessa Käyttövarmuuspäivä Johtaja Reima Päivinen Fingrid Oyj Käyttövarmuuden haasteet tuotannon muuttuessa ja markkinoiden laajetessa Käyttövarmuuspäivä Johtaja Fingrid Oyj 2 Käyttövarmuuden haasteet Sähkön riittävyys talvipakkasilla Sähkömarkkinoiden laajeneminen

Lisätiedot

ELEC-E8419 Sähkönsiirtojärjestelmät 1 Verkon siirtokapasiteetti. Kurssi syksyllä 2015 Periodit I-II, 5 opintopistettä Liisa Haarla

ELEC-E8419 Sähkönsiirtojärjestelmät 1 Verkon siirtokapasiteetti. Kurssi syksyllä 2015 Periodit I-II, 5 opintopistettä Liisa Haarla ELEC-E8419 Sähkönsiirtojärjestelmät 1 Verkon siirtokapasiteetti Kurssi syksyllä 2015 Periodit I-II, 5 opintopistettä Liisa Haarla 1 Ydinasiat Siirtokapasiteettiin vaikuttavat asiat (terminen kapasiteetti,

Lisätiedot

Ajankohtaista Suomen kantaverkkoyhtiöstä

Ajankohtaista Suomen kantaverkkoyhtiöstä Ajankohtaista Suomen kantaverkkoyhtiöstä Juha Hiekkala Markkinakehitys Voimaseniorit, Tekniska Salarna, Helsinki 11.2.204 2 Asiakkaiden ja yhteiskunnan hyväksi Varma sähkö Kantaverkon häiriöistä aiheutuneet

Lisätiedot

Fingrid Oyj. NC ER:n tarkoittamien merkittävien osapuolien nimeäminen ja osapuolilta vaadittavat toimenpiteet

Fingrid Oyj. NC ER:n tarkoittamien merkittävien osapuolien nimeäminen ja osapuolilta vaadittavat toimenpiteet Fingrid Oyj NC ER:n tarkoittamien merkittävien osapuolien nimeäminen ja osapuolilta vaadittavat toimenpiteet Siltala Jari 1 (8) Sisällysluettelo 1 Johdanto... 2 2 Järjestelmän varautumissuunnitelman kannalta

Lisätiedot

Valot päällä pakkasilla tai vesisateilla - tulevan talven tehotilanne -

Valot päällä pakkasilla tai vesisateilla - tulevan talven tehotilanne - 1 Valot päällä pakkasilla tai vesisateilla - tulevan talven tehotilanne - Johtaja Reima Päivinen, Fingrid Oyj Käyttövarmuuspäivä 2 Fingridin tehtävät Siirtää sähköä kantaverkossa Ylläpitää sähkön kulutuksen

Lisätiedot

REAALIAIKAINEN TIEDONVAIHTO

REAALIAIKAINEN TIEDONVAIHTO REAALIAIKAINEN TIEDONVAIHTO Sovellusohje 1 (4) Sisällysluettelo 1 Johdanto... 2 2 Asiakkaalta tarvittavat kantaverkon käyttövarmuuden ylläpitoa koskevat tiedot... 2 3 Fingridin toimittamat tiedot Asiakkaalle...

Lisätiedot

Webinaari Jari Siltala. Ehdotus merkittävien verkonkäyttäjien nimeämiseksi

Webinaari Jari Siltala. Ehdotus merkittävien verkonkäyttäjien nimeämiseksi Webinaari 23.10.2018 Jari Siltala Ehdotus merkittävien verkonkäyttäjien nimeämiseksi 2 Merkittävien verkonkäyttäjien nimeäminen Jari Siltala Koodi velvoittaa: Jakeluverkkoyhtiöitä Merkittäviä verkonkäyttäjiä:

Lisätiedot

Kysyntäjousto Fingridin näkökulmasta. Tasevastaavailtapäivä 20.11.2014 Helsinki Jonne Jäppinen

Kysyntäjousto Fingridin näkökulmasta. Tasevastaavailtapäivä 20.11.2014 Helsinki Jonne Jäppinen Kysyntäjousto Fingridin näkökulmasta Tasevastaavailtapäivä 20.11.2014 Helsinki Jonne Jäppinen 2 Sähköä ei voi varastoida: Tuotannon ja kulutuksen välinen tasapaino on pidettävä yllä joka hetki! Vuorokauden

Lisätiedot

Kapasiteetin riittävyys ja tuonti/vienti näkökulma

Kapasiteetin riittävyys ja tuonti/vienti näkökulma 1 Kapasiteetin riittävyys ja tuonti/vienti näkökulma Kapasiteettiseminaari/Diana-auditorio 14.2.2008 2 TEHOTASE 2007/2008 Kylmä talvipäivä kerran kymmenessä vuodessa Kuluvan talven suurin tuntiteho: 13

Lisätiedot

Tasasähköyhteyden suuntaaj-asema. Ue j0ƒ. p,q

Tasasähköyhteyden suuntaaj-asema. Ue j0ƒ. p,q EEC-E89 syksy 06 Ttkitaan alla olevan kvan mkaista heikkoon verkkoon kytkettyä srjännitteistä tasasähköyhteyttä. Tässä tapaksessa syöttävän verkon impedanssi (Theveninin impedanssi, kvassa j on j0,65,

Lisätiedot

VAIHTOVIRTAPIIRI. 1 Työn tavoitteet

VAIHTOVIRTAPIIRI. 1 Työn tavoitteet Oulun yliopisto Fysiikan opetuslaboratorio Sähkö- ja magnetismiopin laboratoriotyöt AHTOTAP Työn tavoitteet aihtovirran ja jännitteen suunta vaihtelee ajan funktiona. Esimerkiksi Suomessa käytettävä verkkovirta

Lisätiedot

Reaaliaikainen tiedonvaihto

Reaaliaikainen tiedonvaihto Fingrid Oyj Reaaliaikainen tiedonvaihto sovellusohje 22.10.2018 Sovellusohje 1 (4) Sisällysluettelo 1 Johdanto... 2 2 Liittyjältä tarvittavat kantaverkon käyttövarmuuden ylläpitoa koskevat tiedot... 2

Lisätiedot

MIKAEL WESTERBERG JÄNNITESTABIILIUTEEN VAIKUTTAVAT TEKIJÄT SUOMEN VOIMAJÄRJESTELMÄSSÄ

MIKAEL WESTERBERG JÄNNITESTABIILIUTEEN VAIKUTTAVAT TEKIJÄT SUOMEN VOIMAJÄRJESTELMÄSSÄ MIKAEL WESTERBERG JÄNNITESTABIILIUTEEN VAIKUTTAVAT TEKIJÄT SUOMEN VOIMAJÄRJESTELMÄSSÄ Diplomityö Tarkastaja: professori Sami Repo Tarkastaja ja aihe hyväksytty Tieto- ja sähkötekniikan tiedekuntaneuvoston

Lisätiedot

Julkinen. 1 Jukka Ruusunen. Fingridin neuvottelukunta Ajankohtaista

Julkinen. 1 Jukka Ruusunen. Fingridin neuvottelukunta Ajankohtaista Julkinen Fingridin neuvottelukunta 24.- Ajankohtaista 1 Sähköjärjestelmä ja -markkinat kokevat suuria muutoksia Puhtaan, säätämättömän ja hajautetun tuotannon lisääntyminen yhä enemmän markkinaehtoisesti

Lisätiedot

Käyttörintaman kuulumiset vuoden varrelta. kehityspäällikkö Jyrki Uusitalo Käyttövarmuuspäivä 3.12.2012

Käyttörintaman kuulumiset vuoden varrelta. kehityspäällikkö Jyrki Uusitalo Käyttövarmuuspäivä 3.12.2012 Käyttörintaman kuulumiset vuoden varrelta kehityspäällikkö Jyrki Uusitalo Käyttövarmuuspäivä 3.12.2012 Uudenlainen siirtotilanne Runsaasti vesivoimaa tarjolla Pohjoismaista Venäjän tuonti vähentynyt merkittävästi

Lisätiedot

Ajankohtaista markkinakehityksestä. Markkinatoimikunta 4.3.2009 Juha Kekkonen

Ajankohtaista markkinakehityksestä. Markkinatoimikunta 4.3.2009 Juha Kekkonen Ajankohtaista markkinakehityksestä Markkinatoimikunta 4.3.2009 Juha Kekkonen 2 Pullonkaulat ongelmana 2008 Yhtenäisen hinta-alueen laajuus tuntitasolla mittattuna 1.1.-31.12.2008 98 % 52 % 14 % 9 % 31.12.2008

Lisätiedot

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Johdatus vaihtosähköön, sinimuotoiset suureet 1 Vaihtovirta vs tasavirta Sähkömagneettinen induktio tuottaa kaikissa pyörivissä generaattoreissa vaihtojännitettä. Vaihtosähköä on

Lisätiedot

Flowbased Capacity Calculation and Allocation. Petri Vihavainen Markkinatoimikunta 20.5.2014

Flowbased Capacity Calculation and Allocation. Petri Vihavainen Markkinatoimikunta 20.5.2014 Flowbased apacity alculation and Allocation Petri Vihavainen Markkinatoimikunta 20.5.2014 Miksi flowbased? Nykyinen siirtokapasiteetin määrittely AT/NT (Net Transfer apacity) on yksinkertainen ja toimiva.

Lisätiedot

Suomen sähköjärjestelmän sähköpulatilanteiden hallinta - ohje sidosryhmille

Suomen sähköjärjestelmän sähköpulatilanteiden hallinta - ohje sidosryhmille Suomen sähköjärjestelmän sähköpulatilanteiden hallinta - ohje sidosryhmille 1 Yleistä 2 Määritelmät 2 Periaatteet 3 Vastuut sähköpulatilanteissa 4 Toimenpiteet ja valmiustilan nostaminen sähkön tuotanto-

Lisätiedot

Sinimuotoinen vaihtosähkö ja siihen liittyviä käsitteitä ja suureita. Sinimuotoisten suureiden esittäminen osoittimilla

Sinimuotoinen vaihtosähkö ja siihen liittyviä käsitteitä ja suureita. Sinimuotoisten suureiden esittäminen osoittimilla LIITE I Vaihtosähkön perusteet Vaihtojännitteeksi kutsutaan jännitettä, jonka suunta vaihtelee. Vaihtojännite on valittuun suuntaan nähden vuorotellen positiivinen ja negatiivinen. Samalla tavalla määritellään

Lisätiedot

Fingridin verkkoskenaariot x 4. Kantaverkkopäivä 2.9.2013 Jussi Jyrinsalo Johtaja

Fingridin verkkoskenaariot x 4. Kantaverkkopäivä 2.9.2013 Jussi Jyrinsalo Johtaja Fingridin verkkoskenaariot x 4 Kantaverkkopäivä 2.9.2013 Jussi Jyrinsalo Johtaja 2 Sisällysluettelo Kantaverkon kymmenvuotinen kehittämissuunnitelma Esimerkki siitä, miksi suunnitelma on vain suunnitelma:

Lisätiedot

Vesivoiman rooli sähköjärjestelmän tuotannon ja kulutuksen tasapainottamisessa

Vesivoiman rooli sähköjärjestelmän tuotannon ja kulutuksen tasapainottamisessa Muistio 1 (5) Vesivoiman rooli sähköjärjestelmän tuotannon ja kulutuksen tasapainottamisessa 1 Johdanto Sähköjärjestelmässä on jatkuvasti säilytettävä tuotannon ja kulutuksen tasapaino. Sähköjärjestelmän

Lisätiedot

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa

Lisätiedot

S Sähkön jakelu ja markkinat S Electricity Distribution and Markets

S Sähkön jakelu ja markkinat S Electricity Distribution and Markets S-18.3153 Sähkön jakelu ja markkinat S-18.3154 Electricity Distribution and Markets Voltage Sag 1) Kolmivaiheinen vastukseton oikosulku tapahtuu 20 kv lähdöllä etäisyydellä 1 km, 3 km, 5 km, 8 km, 10 km

Lisätiedot

Automaattisen taajuudenhallintareservin sovellusohje

Automaattisen taajuudenhallintareservin sovellusohje LIITE 1 1 (6) Automaattisen taajuudenhallintareservin sovellusohje 1 Yleistä Tässä liitteessä on määritetty automaattisen taajuudenhallintareservin (FRR-A) vaatimukset reservinhaltijalle sekä tarvittava

Lisätiedot

Fingrid välittää. Varmasti.

Fingrid välittää. Varmasti. Fingrid välittää. Varmasti. Fingrid Oyj:n voimansiirtoverkko 1.1.2015 400 kv kantaverkko 220 kv kantaverkko 110 kv kantaverkko tasavirtayhteys muiden verkko Fingrid lyhyesti Sähkö on välttämätön osa kaikkien

Lisätiedot

Diplomityö: Kaapeliverkkoon varastoituneen energian vaikutukset kytkentäylijännitteisiin

Diplomityö: Kaapeliverkkoon varastoituneen energian vaikutukset kytkentäylijännitteisiin Diplomityö: Kaapeliverkkoon varastoituneen energian vaikutukset kytkentäylijännitteisiin Aleks Tukiainen, Tampere, 23.11.2018 Työn taustatiedot ja tavoite Työ tehtiin sähköverkkoyhtiö Elenia Oy:lle Verkko-omaisuus

Lisätiedot

Markkinatoimikunta Taajuusohjattujen reservien uudet tekniset vaatimukset

Markkinatoimikunta Taajuusohjattujen reservien uudet tekniset vaatimukset Markkinatoimikunta 12.9.2017 Taajuusohjattujen reservien uudet tekniset vaatimukset 1. Miksi tarvitaan uudet vaatimukset? 2. Millaiset uudet vaatimukset ovat 3. Miten asia etenee jatkossa? Taajuusohjatut

Lisätiedot

Offshore puistojen sähkönsiirto

Offshore puistojen sähkönsiirto Offshore puistojen sähkönsiirto Johdanto Puistojen rakentamiseen merelle useita syitä: Parempi tuotannon odotus Poissa näkyvistä Rannikolla hyviä sijoituspaikkoja ei välttämättä saatavilla Tästä seuraa

Lisätiedot

Katsaus käyttötoimintaan. Käyttötoimikunta 21.5.2014 Reima Päivinen Fingrid Oyj

Katsaus käyttötoimintaan. Käyttötoimikunta 21.5.2014 Reima Päivinen Fingrid Oyj Katsaus käyttötoimintaan Käyttötoimikunta Reima Päivinen Fingrid Oyj Esityksen sisältö 1. Käyttötilanne ja häiriöt 2. Tehon riittävyys 3. Järjestelmäreservit 4. Kansainvälinen käyttöyhteistyö 5. Eurooppalaiset

Lisätiedot

ELEC-E8419 syksyllä 2016 Sähkönsiirtojärjestelmät 1

ELEC-E8419 syksyllä 2016 Sähkönsiirtojärjestelmät 1 ELEC-E8419 syksyllä 016 Sähkönsiirtojärjestelmät 1 Jännitteensäätö Periodit I II, 5 opintopistettä Liisa Haarla 10.10.016 1 Luennon ydinasiat Jännitteensäädön ja loistehon välinen yhteys Jännitteensäädössä

Lisätiedot

Antti Kuusela. Tuotannon ja kulutuksen liittämisen verkkosäännöt

Antti Kuusela. Tuotannon ja kulutuksen liittämisen verkkosäännöt Tuotannon ja kulutuksen liittämisen verkkosäännöt Tuotannon ja kulutuksen liittämisen verkkosäännöt Liittämisen verkkosäännöt Yleiset liittymisehdot ja verkkosäännöt NC RfG implementointisuunnitelma NC

Lisätiedot

Sähkönjakelutekniikka osa 1. Pekka Rantala

Sähkönjakelutekniikka osa 1. Pekka Rantala Sähkönjakelutekniikka osa 1 Pekka Rantala 27.8.2015 Opintojakson sisältö 1. Johdanto Suomen sähkönjakelun rakenne Kantaverkko, suurjännite Jakeluverkot, keskijännite Pienjänniteverkot Suurjänniteverkon

Lisätiedot

Arto Pahkin Käyttötoimikunta Käyttötoiminnan tietojenvaihto asiakkaan ja Fingridin välillä

Arto Pahkin Käyttötoimikunta Käyttötoiminnan tietojenvaihto asiakkaan ja Fingridin välillä Arto Pahkin Käyttötoimikunta 21.6.2016 Käyttötoiminnan tietojenvaihto asiakkaan ja Fingridin välillä Esityksen sisältö 1. Kantaverkkosopimus ja kantaverkkopalveluehdot 2. Siirtokeskeytykset 3. Järjestelmien

Lisätiedot

Käyttötoimikunta Jyrki Uusitalo. Talven tehotilanne

Käyttötoimikunta Jyrki Uusitalo. Talven tehotilanne Käyttötoimikunta 27.11. 2018 Jyrki Uusitalo Talven 2018-2019 tehotilanne Talven 2018-2019 tehotilanne Suomi, kylmä talvipäivä kerran kymmenessä vuodessa 2018/2019 1500 MW Tuotantokyky (sisältää tehoreservin)

Lisätiedot

Siirtojen hallinta 2015

Siirtojen hallinta 2015 Raportti 1 (6) Siirtojen hallinta 2015 1 Yleistä siirto- ja markkinatilanteesta Siirtojen hallinta -raportti on yhteenveto Suomen kantaverkon ja rajajohtoyhteyksien tapahtumista ja toteumista vuodelta

Lisätiedot

Mitä on pätö-, näennäis-, lois-, keskimääräinen ja suora teho sekä tehokerroin? Alla hieman perustietoa koskien 3-vaihe tehomittauksia.

Mitä on pätö-, näennäis-, lois-, keskimääräinen ja suora teho sekä tehokerroin? Alla hieman perustietoa koskien 3-vaihe tehomittauksia. Mitä on sähköinen teho? Tehojen mittaus Mitä on pätö-, näennäis-, lois-, keskimääräinen ja suora teho sekä tehokerroin? Alla hieman perustietoa koskien 3-vaihe tehomittauksia. Tiettynä ajankohtana, jolloin

Lisätiedot

Markkinoiden toimintaa edesauttavat siirtojohtoinvestoinnit. Markkinatoimikunta Maarit Uusitalo

Markkinoiden toimintaa edesauttavat siirtojohtoinvestoinnit. Markkinatoimikunta Maarit Uusitalo Markkinoiden toimintaa edesauttavat siirtojohtoinvestoinnit Markkinatoimikunta 4.2.2014 Maarit Uusitalo 2 Verkon kehittämissuunnitelmat eri tasoilla 1. Eurooppalainen taso ENTSO-E julkaisee joka toinen

Lisätiedot

Sähköjärjestelmän varautuminen vakaviin normaaliajan häiriöihin ja poikkeusoloihin ja sen nykytila Juha Kekkonen Fingrid Oyj

Sähköjärjestelmän varautuminen vakaviin normaaliajan häiriöihin ja poikkeusoloihin ja sen nykytila Juha Kekkonen Fingrid Oyj Sähköjärjestelmän varautuminen vakaviin normaaliajan häiriöihin ja poikkeusoloihin ja sen nykytila Juha Kekkonen Fingrid Oyj Häiriöt verkkojärjestelmän arkipäivää Sää on tyypillisin syy sähkönjakelun häiriöihin

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Teho vaihtosähköpiireissä ja symmetriset kolmivaihejärjestelmät Luennon keskeinen termistö ja tavoitteet Kompleksinen teho S ja näennästeho S Loisteho

Lisätiedot

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella

Lisätiedot

Joustavuuden lisääminen sähkömarkkinoilla. Sähkömarkkinapäivä 7.4.2014 Jonne Jäppinen, kehityspäällikkö, Fingrid Oyj

Joustavuuden lisääminen sähkömarkkinoilla. Sähkömarkkinapäivä 7.4.2014 Jonne Jäppinen, kehityspäällikkö, Fingrid Oyj Joustavuuden lisääminen sähkömarkkinoilla Sähkömarkkinapäivä 7.4.2014 Jonne Jäppinen, kehityspäällikkö, Fingrid Oyj 74 Tuotannon ja kulutuksen välinen tasapaino on pidettävä yllä joka hetki! Vuorokauden

Lisätiedot

Antti-Juhani Nikkilä Verkkosääntöfoorumi, Tiedonvaihdon vaatimukset, roolit ja vastuut (KORRR)

Antti-Juhani Nikkilä Verkkosääntöfoorumi, Tiedonvaihdon vaatimukset, roolit ja vastuut (KORRR) Antti-Juhani Nikkilä Verkkosääntöfoorumi, Tiedonvaihdon vaatimukset, roolit ja vastuut (KORRR) Eurooppalainen lainsäädäntö vaikuttaa tiedonvaihtovaatimuksiin Siirtoverkon käytön suuntaviivat tullut voimaan

Lisätiedot

Wind Power in Power Systems. 16. Practical Experience with Power Quality and Wind Power (Käytännön kokemuksia sähkön laadusta ja tuulivoimasta)

Wind Power in Power Systems. 16. Practical Experience with Power Quality and Wind Power (Käytännön kokemuksia sähkön laadusta ja tuulivoimasta) Wind Power in Power Systems 16. Practical Experience with Power Quality and Wind Power (Käytännön kokemuksia sähkön laadusta ja tuulivoimasta) 16.1 Johdanto Täydellinen sähkön laatu tarkoittaisi, että

Lisätiedot

Energiantuotannon ja käytön muutosten vaikutukset voimajärjestelmän hallintaan ja kantaverkon kehitystarpeisiin

Energiantuotannon ja käytön muutosten vaikutukset voimajärjestelmän hallintaan ja kantaverkon kehitystarpeisiin Energiantuotannon ja käytön muutosten vaikutukset voimajärjestelmän hallintaan ja kantaverkon kehitystarpeisiin Jussi Jyrinsalo Sähkötutkimuspoolin tutkimusseminaari 18.10.2012 Johdanto Toimitusvarmuuden

Lisätiedot

Neuvottelukunnan kokous Ajankohtaiskatsaus

Neuvottelukunnan kokous Ajankohtaiskatsaus Neuvottelukunnan kokous Ajankohtaiskatsaus Energia- ja ilmastostrategian linjaukset ovat samansuuntaisia Fingridin näkemysten kanssa Nykyisenkaltaisesta tuulivoiman syöttötariffijärjestelmästä luovutaan

Lisätiedot

Verkkosäännöt tulevat mikä muuttuu käyttötoiminnassa? suunnittelupäällikkö Timo Kaukonen Käyttövarmuuspäivä 3.12.2012

Verkkosäännöt tulevat mikä muuttuu käyttötoiminnassa? suunnittelupäällikkö Timo Kaukonen Käyttövarmuuspäivä 3.12.2012 Verkkosäännöt tulevat mikä muuttuu käyttötoiminnassa? suunnittelupäällikkö Timo Kaukonen Käyttövarmuuspäivä 3.12.2012 2 Eurooppalaisten sääntöjen valmisteluprosessi Puiteohje: Framework Guideline ACER

Lisätiedot

Flowbased Capacity Calculation and Allocation. Petri Vihavainen Markkinatoimikunta

Flowbased Capacity Calculation and Allocation. Petri Vihavainen Markkinatoimikunta Flowbased apacity alculation and Allocation Petri Vihavainen Markkinatoimikunta Miksi flowbased? Nykyinen AT/NT- malli on yksinkertainen ja toimiva Tilanne voi muuttua tulevaisuudessa: A- verkko silmukoituu

Lisätiedot

Automaattisten ali- ja ylitaajuussuojausjärjestelmien

Automaattisten ali- ja ylitaajuussuojausjärjestelmien Fingrid Oyj Automaattisten ali- ja ylitaajuussuojausjärjestelmien toteutus Suomessa Järjestelmän varautumissuunnitelma 2 (5) Sisällysluettelo 1 Johdanto... 3 2 Määritelmät... 3 3 Alitaajuudesta tapahtuva

Lisätiedot

Reservien ylläpito tulevaisuudessa

Reservien ylläpito tulevaisuudessa 1 Reservien ylläpito tulevaisuudessa Käyttötoimikunnan kokous 19.9.2008 2 Reservien ylläpito Suomessa - sopimukset Voimalaitosreservit 2005-2010 Irtikytkettävät kuormat 2005-2015 Molemmat sopimukset ovat

Lisätiedot

EstLink 2 käyttöönotto

EstLink 2 käyttöönotto EstLink 2 käyttöönotto Käyttötoimikunta The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained

Lisätiedot

Nimi: Muiden ryhmäläisten nimet:

Nimi: Muiden ryhmäläisten nimet: Nimi: Muiden ryhmäläisten nimet: PALKKIANTURI Työssä tutustutaan palkkianturin toimintaan ja havainnollistetaan sen avulla pienten ainepitoisuuksien havainnointia. Työn mittaukset on jaettu kolmeen osaan,

Lisätiedot

ELEC-E8419 Sähkönsiirtojärjestelmät 1 Luento: Jännitteen säätö. Kurssi syksyllä 2015 Periodit I-II, 5 opintopistettä Liisa Haarla

ELEC-E8419 Sähkönsiirtojärjestelmät 1 Luento: Jännitteen säätö. Kurssi syksyllä 2015 Periodit I-II, 5 opintopistettä Liisa Haarla ELEC-E8419 Sähkönsiirtojärjestelmät 1 Luento: Jännitteen säätö Kurssi syksyllä 015 Periodit I-II, 5 opintopistettä Liisa Haarla 1 Luennon ydinasiat Jännitteensäädön ja loistehon välinen yhteys Jännitteensäädössä

Lisätiedot

Verkkosääntöfoorumi Timo Kaukonen. Käytön verkkosäännöt mitä tietoja tarvitaan ja mihin niitä käytetään

Verkkosääntöfoorumi Timo Kaukonen. Käytön verkkosäännöt mitä tietoja tarvitaan ja mihin niitä käytetään Verkkosääntöfoorumi Käytön verkkosäännöt mitä tietoja tarvitaan ja mihin niitä käytetään Agenda Käytön verkkosääntöjen voimaantulo Tiedonvaihdon osapuolet Vaatimukset, roolit ja vastuut Tiedonvaihdon yleisiä

Lisätiedot

Siirtojen hallintapolitiikkaluonnos keskeiset asiat markkinanäkökulmasta. Markkinatoimikunta Jyrki Uusitalo

Siirtojen hallintapolitiikkaluonnos keskeiset asiat markkinanäkökulmasta. Markkinatoimikunta Jyrki Uusitalo Siirtojen hallintapolitiikkaluonnos keskeiset asiat markkinanäkökulmasta Markkinatoimikunta 2.2.2012 Jyrki Uusitalo 2 Yleiset periaatteet Markkinoilla Suomi yhtenä tarjousalueena Asiakkaille ja markkinoille

Lisätiedot

Voimalaitosten jännitteensäädön asetteluperiaatteet

Voimalaitosten jännitteensäädön asetteluperiaatteet Tekninen ohje 1 (9) Voimalaitosten jännitteensäädön asetteluperiaatteet Sisällysluettelo 1 Johdanto... 2 2 Jännitteensäätö... 2 2.1 Jännitteensäädön säätötapa... 2 2.2 Jännitteensäädön asetusarvo... 2

Lisätiedot

LOISSÄHKÖN TOIMITUKSEN JA LOISTEHORESERVIN YLLÄPITO

LOISSÄHKÖN TOIMITUKSEN JA LOISTEHORESERVIN YLLÄPITO SOVELLUSOHJE 1 (5) LOISSÄHKÖN TOIMITUKSEN JA LOISTEHORESERVIN YLLÄPITO 1 Johdanto Tätä ohjetta sovelletaan kantaverkosta Asiakkaalle luovutettavan loissähkön toimituksissa, toimitusten seurannassa ja loissähkön

Lisätiedot

LOISSÄHKÖN TOIMITUS JA LOISTEHORESERVIN YLLÄPITO

LOISSÄHKÖN TOIMITUS JA LOISTEHORESERVIN YLLÄPITO LOISSÄHKÖN TOIMITUS JA LOISTEHORESERVIN YLLÄPITO Sovellusohje 1 (9) Sisällys 1 JOHDANTO... 2 2 LOISSÄHKÖN TOIMITUKSEN PERUSTEET... 2 2.1 Loissähkön toimituspiste... 2 2.2 Liittymispisteen loissähkön otto-

Lisätiedot

Tunninvaihdeongelmien hoitaminen tuotantosuunnitelmien porrastuksella. Tasevastaavapäivä Anders Lundberg

Tunninvaihdeongelmien hoitaminen tuotantosuunnitelmien porrastuksella. Tasevastaavapäivä Anders Lundberg Tunninvaihdeongelmien hoitaminen tuotantosuunnitelmien porrastuksella Tasevastaavapäivä Anders Lundberg Taajuuden heikentyminen Taajuuden laatu on heikentynyt merkittävästi viime vuosina, syinä mm. markkinoiden

Lisätiedot

Fingrid Oyj. Käytönpalautussuunnitelma

Fingrid Oyj. Käytönpalautussuunnitelma Fingrid Oyj Käytönpalautussuunnitelma Siltala Jari SUUNNITELMA 1 (13) Sisällysluettelo 1 Johdanto... 3 2 Määritelmät... 3 3 Periaatteet... 3 4 Käytönpalautussuunnitelman rakenne... 3 4.1 Yleistä... 3 4.2

Lisätiedot

Markkinatoimikunnan kokous Pohjoismaisen tasehallinnan ajankohtaistilanne

Markkinatoimikunnan kokous Pohjoismaisen tasehallinnan ajankohtaistilanne Markkinatoimikunnan kokous Pohjoismaisen tasehallinnan ajankohtaistilanne Irtiotto pohjoismaisessa tasehallinnassa Svenska kraftnät (Svk) ja Statnett (SN) julkistivat 20.6. kahdenkeskisesti valmistelemansa

Lisätiedot

Professori Jarmo Partanen

Professori Jarmo Partanen LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta Sähkötekniikan koulutusohjelma Laura Laitinen TUNNINSISÄINEN TEHOTASAPAINO SUOMESSA 2020 JA 2030 Työn tarkastajat: Professori Satu Viljainen Professori

Lisätiedot

Pullonkaulojen hallinta Pohjoismaissa - nykytila - ehdotus 11 tarjous-/hinta-alueesta. Markkinatoimikunnan kokous 22.10 Juha Hiekkala, Jyrki Uusitalo

Pullonkaulojen hallinta Pohjoismaissa - nykytila - ehdotus 11 tarjous-/hinta-alueesta. Markkinatoimikunnan kokous 22.10 Juha Hiekkala, Jyrki Uusitalo Pullonkaulojen hallinta Pohjoismaissa - nykytila - ehdotus 11 tarjous-/hinta-alueesta Markkinatoimikunnan kokous 22.10 Juha Hiekkala, Jyrki Uusitalo 2 Poikkeuksellisen suuret pullonkaulatulot 2008! 90

Lisätiedot