Kurssikuvausten väljyyttä voidaan käyttää resurssien salliessa keskeisten sisältöjen syventämiseen ja eheyttävien kokonaisuuksien muodostamiseen.

Koko: px
Aloita esitys sivulta:

Download "Kurssikuvausten väljyyttä voidaan käyttää resurssien salliessa keskeisten sisältöjen syventämiseen ja eheyttävien kokonaisuuksien muodostamiseen."

Transkriptio

1 Luku 1 Matematiikka Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa. Matematiikan opetuksen tehtävänä on tutustuttaa opiskelija matemaattisen ajattelun malleihin sekä matematiikan perusideoihin ja rakenteisiin, opettaa käyttämään puhuttua ja kirjoitettua matematiikan kieltä sekä kehittää laskemisen ja ongelmien ratkaisemisen taitoja. Matematiikan opetustilanteet järjestetään siten, että ne herättävät opiskelijan tekemään havaintojensa pohjalta kysymyksiä, oletuksia ja päätelmiä sekä perustelemaan niitä. Erityisesti opiskelijaa ohjataan hahmottamaan matemaattisten käsitteiden merkityksiä ja tunnistamaan, kuinka ne liittyvät laajempiin kokonaisuuksiin. Opiskelijaa myös kannustetaan kehittämään luovia ratkaisuja matemaattisiin ongelmiin. Opetuksessa tutkitaan matematiikan ja arkielämän välisiä yhteyksiä sekä tietoisesti käytetään eteen tulevia mahdollisuuksia opiskelijan persoonallisuuden kehittämiseen, mikä tarkoittaa muun muassa hänen kiinnostuksensa ohjaamista, kokeiluihin kannustamista sekä tiedonhankintaprosessien kehittämistä. Kurssikuvausten väljyyttä voidaan käyttää resurssien salliessa keskeisten sisältöjen syventämiseen ja eheyttävien kokonaisuuksien muodostamiseen. Työtapoina käytetään opettajajohtoista, itsenäistä ja ryhmätyöskentelyä. Tieto-

2 LUKU 1. MATEMATIIKKA 2 tekniikkaa ja laskimia hyödynnetään soveltuvin osin. Kansainvälisiä yhteistyöprojekteja voidaan hyödyntää matematiikan opetuksessa. Yhteistyöstä sovitaan yksityiskohtaisemmin koulukohtaisissa suunnitelmissa vuosittain. Yhteistyöprojektien tavoitteena on myös muiden oppiaineiden integrointi. 1.1 Arviointi Matematiikan opetuksessa arvioinnin tulee kehittää opiskelijan kykyä esittää ratkaisuja, tukea opiskelijaa matemaattisten käsitteiden muodostamisprosessissa ja arvioida kirjallista esitystä sekä opettaa opiskelijalle oman työnsä arvioimista. Osaamisen arvioinnissa kiinnitetään huomio laskutaitoon, menetelmien valintaan ja päätelmien täsmälliseen ja johdonmukaiseen perustelemiseen. Arviointiin vaikuttavat pääsääntöisesti tuntiaktiivisuus, harrastuneisuus ja kurssikoe. Kurssikokeen lisäksi tai asemasta arviointi voi perustua myös muuhun kurssin aikana esitettyyn näyttöön. Kurssin itsenäisestä suorituksesta neuvotellaan erikseen kurssikohtaisesti. 1.2 Oppimäärän vaihtaminen Matematiikan oppimäärää vaihdettaessa pitkästä lyhyeen suositellaan hyväksi lukemisessa seuraavia vastaavuuksia: MAA1 MAB1, MAA3 MAB2, MAA6 MAB5, MAA7 MAB4 ja MAA8 MAB3. Opetussuunnitelmassa voidaan määrätä myös lisänäyttöjä etenkin kurssin arvosanaa uudelleen arvioitaessa.

3 Luku 2 Matematiikan pitkä oppimäärä Matematiikan pitkän oppimäärän opetuksen tehtävänä on antaa opiskelijalle matemaattiset valmiudet, joita tarvitaan ammatillisissa opinnoissa ja korkeakouluopinnoissa. Pitkän matematiikan opinnoissa opiskelijalla on tilaisuus omaksua matemaattisia käsitteitä ja menetelmiä sekä oppia ymmärtämään matemaattisen tiedon luonnetta. Opetus pyrkii myös antamaan opiskelijalle selkeän käsityksen matematiikan merkityksestä yhteiskunnan kehityksessä sekä sen soveltamismahdollisuuksista arkielämässä, tieteessä ja tekniikassa. 2.1 Opetuksen tavoitteet Matematiikan pitkän oppimäärän opetuksen tavoitteena on, että opiskelija tottuu pitkäjänteiseen työskentelyyn ja oppii sitä kautta luottamaan omiin matemaattisiin kykyihinsä, taitoihinsa ja ajatteluunsa, rohkaistuu kokeilevaan ja tutkivaan toimintaan, ratkaisujen keksimiseen sekä niiden kriittiseen arviointiin, ymmärtää ja osaa käyttää matematiikan kieltä, kuten seuraamaan matemaattisen tiedon esittämistä, lukemaan matemaattista tekstiä, keskustele-

4 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ 4 maan matematiikasta, ja oppii arvostamaan esityksen täsmällisyyttä ja perustelujen selkeyttä, oppii ratkaisujen ja todistusten täsmällisen esitystavan, oppii näkemään matemaattisen tiedon loogisena rakenteena ja ymmärtämään kokonaisuuksia, kehittää lausekkeiden käsittely-, päättely- ja ongelmanratkaisutaitojaan, harjaantuu käsittelemään tietoa matematiikalle ominaisella tavalla, tottuu tekemään otaksumia, tutkimaan niiden oikeellisuutta ja laatimaan perusteluja sekä arvioimaan perustelujen pätevyyttä ja tulosten yleistettävyyttä, harjaantuu mallintamaan käytännön ongelmatilanteita ja hyödyntämään erilaisia ratkaisustrategioita, osaa käyttää tarkoituksenmukaisia matemaattisia menetelmiä, teknisiä apuvälineitä ja tietolähteitä, saavuttaa jatko-opinnoissa (erityisesti teknisillä aloilla) tarvittavat valmiudet.

5 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Pakolliset kurssit Pakolliset kurssit tulee pääsääntöisesti suorittaa numerojärjestyksessä Funktiot ja yhtälöt (MAA1) vahvistaa yhtälön ratkaisemisen ja prosenttilaskennan taitojaan, syventää verrannollisuuden, neliöjuuren ja potenssin käsitteiden ymmärtämistään, tottuu käyttämään neliöjuuren ja potenssin laskusääntöjä, syventää funktiokäsitteen ymmärtämiseen tutkimalla potenssi- ja eksponenttifunktioita, oppii ratkaisemaan potenssiyhtälöitä, oppii laskimen peruskäytön. Potenssifunktio, potenssiyhtälön ratkaiseminen, juuret ja murtopotenssi, eksponenttifunktio Muita mahdollisia sisältöjä Lukujoukot, prosentti, lineaarisen yhtälön ratkaisu, verranto

6 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Polynomifunktiot (MAA2) harjaantuu käsittelemään polynomifunktioita, oppii ratkaisemaan toisen asteen polynomiyhtälöitä ja tutkimaan ratkaisujen lukumäärää, oppii ratkaisemaan korkeamman asteen polynomiyhtälöitä, jotka voidaan ratkaista ilman polynomien jakolaskua, oppii ratkaisemaan yksinkertaisia polynomiepäyhtälöitä, oppii soveltamaan käytäntöön polynomiyhtälöitä ja -epäyhtälöitä. Polynomien tulo ja binomikaavat, polynomifunktio, toisen ja korkeamman asteen polynomiyhtälöitä, toisen asteen yhtälön juurten lukumäärän tutkiminen, toisen asteen polynomin jakaminen tekijöihin, polynomiepäyhtälön ratkaiseminen

7 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Geometria (MAA3) harjaantuu hahmottamaan ja kuvaamaan tilaa sekä muotoa koskevaa tietoa sekä kaksi- että kolmiulotteisissa tilanteissa, harjaantuu muotoilemaan, perustelemaan ja käyttämään geometrista tietoa käsitteleviä lauseita, ratkaisee geometrisia ongelmia käyttäen hyväksi kuvioiden ja kappaleiden ominaisuuksia, yhdenmuotoisuutta, Pythagoraan lausetta sekä suora- ja vinokulmaisen kolmion trigonometriaa. Kuvioiden ja kappaleiden yhdenmuotoisuus, mittakaava, sini- ja kosinilause, ympyrän, sen osien ja siihen liittyvien suorien geometria, kuvioihin ja kappaleisiin liittyvien pituuksien, kulmien ja pinta-alojen ja tilavuuksien laskeminen Muita mahdollisia sisältöjä Geometrinen todistaminen

8 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Analyyttinen geometria (MAA4) ymmärtää, kuinka analyyttinen geometria luo yhteyksiä geometristen ja algebrallisten käsitteiden välille, ymmärtää pistejoukon yhtälön käsitteen ja oppii tutkimaan yhtälöiden avulla pisteitä, suoria, ympyröitä ja paraabeleja, syventää itseisarvokäsitteen ymmärtämystään ja oppii ratkaisemaan sellaisia itseisarvoyhtälöitä ja vastaavia epäyhtälöitä, jotka ovat tyyppiä f(x) = a tai f(x) = g(x), vahvistaa yhtälöryhmän ratkaisemisen taitojaan. Pistejoukon yhtälö, suoran, ympyrän, ja paraabelin yhtälö, itseisarvoyhtälön ja epäyhtälön ratkaiseminen, yhtälöpari ja sen sovelluksia, yhtälöryhmän ratkaiseminen, pisteen etäisyys suorasta Muita mahdollisia sisältöjä Kahden muuttujan epäyhtälön ja epäyhtälöryhmän ratkaisu, optimointi

9 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Vektorit (MAA5) ymmärtää vektorikäsitteen ja perehtyy vektorilaskennan perusteisiin, oppii tutkimaan kuvioiden ominaisuuksia vektoreiden avulla, tutkii kaksi- ja kolmiulotteisten koordinaatiston pisteitä, etäisyyksiä ja kulmia vektoreiden avulla. Vektorien perusominaisuudet, kantavektorit, vektorien yhteen- ja vähennyslasku ja vektorin kertominen luvulla, koordinaatiston vektoreiden, skalaaritulo, vektorien välinen kulma, suorat ja tasot avaruudessa Muita mahdollisia sisältöjä Geometriset ja fysiikan sovelluksia

10 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Todennäköisyys ja tilastot (MAA6) oppii havainnollistamaan diskreettejä ja jatkuvia tilastollisia jakaumia, arvioimaan tilastoja kriittisesti sekä määrittämään ja tulkitsemaan jakaumien tunnuslukuja, perehtyy kombinatorisiin menetelmiin, harjaantuu käyttämään laskimen tilastollisia ominaisuuksia, ymmärtää tilastojen merkityksen ilmiöiden kuvaamisessa ja sattuman vaikutuksen tapahtumiin, perehtyy todennäköisyyden käsitteeseen ja oppii määrittämään jakauman odotusarvon sekä soveltamaan sitä, ymmärtää diskreetin todennäköisyysjakauman käsitteen ja oppii määrittämään jakauman odotusarvon sekä soveltamaan sitä, perehtyy jatkuvan todennäköisyysjakauman käsitteeseen ja oppii soveltamaan normaalijakaumaa. Diskreetti ja jatkuva tilastollinen jakauma, jakauman tunnusluvut, klassinen ja tilastollinen todennäköisyys, kombinatoriikka, todennäköisyyksien laskusäännöt, diskreetti ja jatkuva todennäköisyysjakauma, diskreetin jakauman odotusarvo, normaalijakauma

11 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Derivaatta (MAA7) osaa määrittää rationaalifunktion nollakohdat ja ratkaista yksinkertaisia rationaaliepäyhtälöitä, omaksuu havainnollisen käsityksen funktion raja-arvosta, jatkuvuudesta ja derivaatasta, määrittää yksinkertaisten funktioiden derivaatat, osaa tutkia derivaatan avulla polynomifunktion kulkua ja määrittää sen ääriarvot, osaa määrittää rationaalifunktion suurimman ja pienimmän arvon sovellusongelmien yhteydessä, oppii soveltamaan derivaattaa käytäntöön. Rationaaliyhtälö ja -epäyhtälö, funktion raja-arvo, jatkuvuus ja derivaatta, polynomifunktion, funktioiden tulon ja osamäärän derivoiminen, polynomifunktion kulun tutkiminen ja ääriarvojen määrittäminen Muita mahdollisia sisältöjä Rationaalifunktioiden määrittely- ja arvojoukot, suoran kulmakertoimen ja nopeuden yhteys derivaattaan, korkeamman asteen derivaatat

12 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Juuri- ja logaritmifunktiot (MAA8) tuntee juuri-, eksponentti- ja logaritmifunktioiden ominaisuudet ja osaa ratkaista niihin liittyviä yhtälöitä, tutkii juuri-, eksponentti- ja logaritmifunktioita derivaatan avulla, oppii yhdistetyn funktion derivaatan, tutkii aidosti monotonisen funktion käänteisfunktioita. Juurifunktiot ja -yhtälöt, eksponenttifunktiot ja -yhtälöt, logaritmifunktiot ja - yhtälöt, yhdistetyn funktion derivaatta, käänteisfunktio ja sen derivaatta, juuri-, eksponentti- ja logaritmifunktioiden derivaatta

13 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Trigonometriset funktiot ja lukujonot (MAA9) oppii tutkimaan trigonometrisia funktioita yksikköympyrän symmetrioiden avulla, oppii ratkaisemaan sellaisia trigonometrisia yhtälöitä, jotka ovat tyyppiä sinf(x) = a tai sinf(x) = sing(x), osaa trigonometristen funktioiden yhteydet sin 2 x+cos 2 x = 1 ja tanx = sinx cosx, tutkii trigonometrisia funktioita derivaatan avulla, ymmärtää lukujonon käsitteen, oppii määrittelemään lukujonoja palautuskaavojen avulla, osaa ratkaista käytännön ongelmia aritmeettisen ja geometrisen jonon ja niistä muodostettujen summien avulla. Suunnattu kulma ja radiaani, trigonometriset funktiot symmetria- ja jaksollisuusominaisuuksineen, trigonometristen yhtälöiden ratkaiseminen, trigonometristen funktioiden derivaatat, lukujono, rekursiivinen lukujono, aritmeettinen jono ja summa, geometrinen jono, summa Muita mahdollisia sisältöjä Yksinkertaisia trigonometrisia laskukaavoja, matemaattinen induktio

14 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Integraalilaskenta (MAA10) ymmärtää integraalifunktion käsitteen ja oppii määrittämään alkeisfunktioiden integraalifunktioita, ymmärtää määrätyn integraalin käsitteen ja sen yhteyden pinta-alaan, oppii määrittämään pinta-aloja ja tilavuuksia määrätyn integraalin avulla, perehtyy integraalilaskennan sovelluksiin. Integraalifunktio, alkeisfunktioiden integraalifunktiot, määrätty integraali, pintaalan ja tilavuuden laskeminen Muita mahdollisia sisältöjä Tiheysfunktio ja kertymäfunktio

15 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Valtakunnalliset syventävät kurssit Lukuteoria ja logiikka (MAA11) Edellyttää kurssien MAA1 ja MAA2 sisältöjen hallintaa. oppii formalisoimaan väitelauseita ja tutkimaan niiden totuusarvoja totuustaulujen avulla, ymmärtää avoimen lauseen käsitteen ja oppii käyttämään kvanttoreita, oppii todistusperiaatteita ja harjoittelee todistamista, oppii lukuteorian peruskäsitteet ja perehtyy alkulukujen ominaisuuksiin, osaa, tutkia kokonaislukujen jaollisuutta jakoyhtälön ja kokonaislukujen kongruenssin avulla osaa määrittää kokonaislukujen suurimman yhteisen tekijän Eukleideen algoritmilla. Lauseen formalisoiminen, lauseen totuusarvot, avoin lause, kvanttorit, suora, käänteinen ja ristiriitatodistus, kokonaislukujen jaollisuus ja jakoyhtälö, Eukleideen algoritmi, alkuluvut, aritmetiikan peruslause, kokonaislukujen kongruenssi

16 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ 16 Muita mahdollisia sisältöjä Lukujärjestelmät

17 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Numeerisia ja algebrallisia menetelmiä (MAA12) Edellyttää kurssin MAA7 sisältöjen hallintaa. oppii ymmärtämään absoluuttisen ja suhteellisen virheen käsitteet ja niiden avulla likiarvolaskujen tarkkuutta koskevat säännöt peruslaskutoimitusten tapauksessa, ymmärtää iteroinnin käsitteen ja oppii ratkaisemaan yhtälöitä numeerisesti, oppii tutkimaan polynomien jaollisuutta ja määrittämään polynomin tekijät, oppii algoritmista ajattelua, harjaantuu käyttämään nykyaikaisia matemaattisia välineitä, oppii määrittämään numeerisesti muutosnopeutta ja pinta-alaa. Absoluuttinen ja suhteellinen virhe, Newtonin menetelmä ja iterointi, polynomien jakoalgoritmi, polynomien jakoyhtälö, muutosnopeus ja pinta-ala

18 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Differentiaali- ja integraalilaskennan jatkokurssi (MAA13) Edellyttää kaikkien pakollisten kurssien sisältöjen hallintaa. syventää differentiaali- ja integraalilaskennan teoreettisten perusteiden tuntemustaan, täydentää integraalilaskennan taitojaan ja soveltaa niitä muun muassa jatkuvien todennä-köisyysjakaumien tutkimiseen, tutkii lukujonon raja-arvoa, sarjoja ja niiden summia. Funktion jatkuvuuden ja derivoituvuuden tutkiminen, jatkuvien ja derivoituvien funktioiden yleisiä ominaisuuksia, funktioiden ja lukujonojen raja-arvot äärettömyydessä, epäoleelliset integraalit Muita mahdollisia sisältöjä Murtofunktioiden asymptootit, kuvaajia, yksinkertaisia differentiaaliyhtälöitä

19 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Koulukohtaiset syventävät kurssit Kohti ylioppilaskirjoituksia 1 (MAA14) kertaa pakollisten kurssien keskeiset sisällöt, saa kokonaiskuvan pakollisten kurssien tarjoamista matemaattisista menetelmistä, saavuttaa menetelmällisen varmuuden erityyppisten ongelmien ratkaisemiseksi. Pakollisten kurssien ydinkohtien kertaus, vanhojen ylioppilastehtävien ratkaiseminen

20 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Talousmatematiikka (MAA16) Kurssi on sama kuin MAB7. oppii ymmärtämään talouselämässä käytettyjä käsitteitä, saa matemaattisia valmiuksia oman taloutensa suunnitteluun, saa laskennallisen pohjan yrittäjyyden ja taloustiedon opiskeluun, soveltaa tilastollisia menetelmiä aineistojen käsittelyyn. Indeksi-, kustannus-, rahaliikenne-, laina-, verotus- ja muita laskelmia, taloudellisiin tilanteisiin soveltuvia matemaattisia malleja lukujonojen ja summien avulla Muita mahdollisia sisältöjä Prosenttikäsitteen syventäminen

21 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Kompleksiluvut ja differentiaaliyhtälöt (MAA21) omaksuu kompleksilukujen algebralliset ominaisuudet, oppii käsittelemään kompleksilukulausekkeita, osaa ratkaista erityyppisiä yhtälöitä kompleksitasossa, oppii ratkaisemaan separoituvia ja 1. kertaluvun lineaarisia differentiaaliyhtälöitä, osaa ratkaista differentiaaliyhtälöihin johtavia käytännön ongelmia, perehtyy vektorituloon ja skalaarikolmituloon, oppii käyttämään vektori- ja skalaarikolmituloa mm. pinta-alojen ja tilavuuksien määrityksissä. Kompleksiluvut tason pisteinä ja vektoreina, kompleksilukujen laskutoimitukset, liittoluku, yhtälöiden ratkaiseminen kompleksitasossa, separoituvat differentiaaliyhtälöt, 1. kertaluvun lineaariset differentiaaliyhtälöt, vektoritulo, skalaarikolmitulo

22 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Avaruusgeometria (MAA22) oppii määrittämään avaruuskulmia, tuntee tavanmukaiset kappaleet ja osaa määrittää niiden osien pituuksia, pinta-aloja ja tilavuuksia, perehtyy katkaistuun kartioon, pallosektoriin, pallosegmenttiin, kalottiin, vyöhykkeeseen ja Platonin monitahokkaisiin ja hallitsee niiden osien pituuksien, alojen ja tilavuuksien määrityksen, oppii ratkaisemaan avaruusgeometrisia ääriarvo-ongelmia. Kulma avaruudessa, katkaistu kartio, pallosektori ja -segmentti, kalotti ja vyöhyke, Platonin monitahokkaat, ääriarvotehtäviä avaruudessa

23 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Lineaarialgebra (MAA23) tuntee matriisin käytön numeerisen aineiston esitysmuotona, oppii matriisien peruslaskutoimitukset, hallitsee käänteismatriisin määrityksen, oppii ratkaisemaan yhtälöryhmiä Gaussin ja Gaussin-Jordanin menetelmillä, perehtyy vektoriavaruuden ja aliavaruuden käsitteisiin. Matriisien peruslaskutoimitukset, käänteismatriisi, Gaussin eliminointimenetelmä, Gaussin-Jordanin eliminointimenetelmä, vektoriavaruus ja aliavaruus

24 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Topologia (MAA24) Kurssi on tarkoitettu vain matemaattis-luonnontieteellisen linjan opiskelijoille. tutustuu reaalilukujen ja tason topologisiin perussuureisiin, omaksuu avoimen ja suljetun joukon sekä ympäristön käsitteet, oppii määrittämään reaaliluku- ja tason joukkojen sisä-, ulko- ja reunapisteitä sekä sulkeumia, sisäistää topologisen avaruuden yleistyksen, oppii topologisten perussuureiden määritelmät yleisissä topologisissa avaruuksissa. Topologinen avaruus, avoimet ja suljetut joukot, ympäristö, sisä-, ulko- ja reunapiste, sulkeuma, reaalilukujen topologiaa, tason topologiaa

25 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Algebra (MAA25) Kurssi on tarkoitettu vain matemaattis-luonnontieteellisen linjan opiskelijoille syventää funktio-käsitteen tuntemustaan algebrallisesta näkökulmasta relaatiokäsitteestä lähtien oppii tunnistamaan erityyppisiä funktioita (surjektio, injektio, bijektio) oppii vertaamaan äärettömien joukkojen kokoja omaksuu ryhmän ja renkaan käsitteet Relaatio, ekvivalenssirelaatio, funktio, surjektio, injektio, bijektio, mahtavuus, ryhmä, rengas

26 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Soveltavat kurssit Laskuharjoituskurssi 1 (MAA18) Pituus on puoli kurssia (kymmenen 75 minuutin oppituntia), toteutus kuukauden intensiivikurssina 1. jakson puolivälistä eteenpäin. Arvostellaan suoritusmerkinnällä. Kurssi on tarkoitettu lähinnä niille, joiden peruskoulun matematiikan arvosana on korkeintaan kahdeksan. kertaa keskeisiä peruskoulun matematiikan sisältöjä, saa paremmat valmiudet aloittaa lukion pitkän matematiikan opiskelu. Murtoluvut, potenssilaskenta, polynomit, muistikaavat, 1. asteen yhtälöt, prosenttilaskentaa

27 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Laskuharjoituskurssi 2 (MAA19) Kurssista annetaan suoritusmerkintä saa mahdollisuuden ohjattuun lisäharjoitteluun, kehittää lasku- ja ongelmanratkaisutaitoaan harjaantuu käyttämään ja soveltamaan meneillään olevalla kurssilla esitettyjä matemaattisia menetelmiä Kursseihin Todennäköisyys ja tilastot, Derivaatta, Juuri- ja logaritmifunktiot, Trigonometriset funktiot ja lukujonot ja Integraalilaskenta liittyvien tehtävien ratkaiseminen

28 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Laskuharjoituskurssi 3 (MAA20) Kurssista annetaan suoritusmerkintä kehittää lasku- ja ongelmanratkaisutaitoaan, perehtyy ylioppilastehtäviin, oppii käyttämään joustavasti erilaisia menetelmiä ongelmien ratkaisussa, kertaa ja saa kokonaiskuvan pakollisten kurssien sisältämistä menetelmistä. aikaisempien vuosien ylioppilastehtävien ratkaiseminen

29 Luku 3 Matematiikan lyhyt oppimäärä Matematiikan lyhyen oppimäärän opetuksen tehtävänä on tarjota valmiuksia hankkia, käsitellä ja ymmärtää matemaattista tietoa ja käyttää matematiikkaa elämän eri tilanteissa ja jatko-opinnoissa. 3.1 Opetuksen tavoitteet Matematiikan lyhyen oppimäärän opetuksen tavoitteena on, että opiskelija osaa käyttää matematiikkaa jokapäiväisen elämän ja yhteiskunnallisen toiminnan apuvälineenä, saa myönteisiä oppimiskokemuksia matematiikan parissa työskennellessään ja oppii luottamaan omiin kykyihinsä, taitoihinsa ja ajatteluunsa, rohkaistuu kokeilevaan, tutkivaan ja keksivään oppimiseen, oppii yhteistyöhön muiden opiskelijoiden kanssa sekä itsenäiseen työskentelyyn, hankkii sellaisia matemaattisia tietoja, taitoja ja valmiuksia, jotka antavat riittävän pohjan jatko-opinnoille,

30 LUKU 3. MATEMATIIKAN LYHYT OPPIMÄÄRÄ 30 oppii laskemisen perusrutiineja, sisäistää matematiikan merkityksen välineenä, jolla ilmiöitä voidaan kuvata, selittää ja mallintaa ja jota voidaan käyttää johtopäätösten tekemisessä, saa käsityksen matemaattisen tiedon luonteesta ja sen loogisesta rakenteesta, harjaantuu vastaanottamaan ja analysoimaan viestimien matemaattisessa muodossa tarjoamaa informaatioita ja arvioimaan sen luotettavuutta, oppii laskimen peruskäytön, tutustuu matematiikan merkitykseen kulttuurin kehityksessä, osaa hahmottaa tehtävän annosta ratkaisun kannalta olennaiset seikat, oppii käyttämään kuvioita, kaavioita ja malleja ajattelun apuna, sekä esittämään tehtävän ratkaisun.

31 LUKU 3. MATEMATIIKAN LYHYT OPPIMÄÄRÄ Pakolliset kurssit Lausekkeet ja yhtälöt (MAB1) harjaantuu käyttämään matematiikkaa jokapäiväisen elämän ongelmien ratkaisemisessa ja oppii luottamaan omiin matemaattisiin kykyihinsä, ymmärtää lineaarisen riippuvuuden, verrannollisuuden ja toisen asteen polynomifunktion käsitteet, vahvistaa yhtälöiden ratkaisemisen taitojaan ja oppii ratkaisemaan toisen asteen yhtälöitä. Suureiden välinen lineaarinen riippuvuus ja verrannollisuus, ongelmien muotoileminen yhtälöiksi, yhtälöiden graafinen ja algebrallinen ratkaiseminen, ratkaisujen tulkinta ja arvioiminen, toisen asteen polynomifunktio ja toisen asteen yhtälön ratkaiseminen Muita mahdollisia sisältöjä Prosenttilaskentaa, polynomien peruslaskutoimitukset, murtoluvut, potenssit

32 LUKU 3. MATEMATIIKAN LYHYT OPPIMÄÄRÄ Geometria (MAB2) harjaantuu tekemään havaintoja ja päätelmiä kuvioiden ja kappaleiden geometrisista ominaisuuksista, vahvistaa tasokuvioiden ja kolmiulotteisten kappaleiden kuvien piirtämisen taitojaan, osaa ratkaista käytännön ongelmia geometriaa hyväksi käyttäen. Kuvioiden yhdenmuotoisuus, mittakaava, suorakulmaisen kolmion trigonometria, Pythagoraan lause, kuvioiden ja kappaleiden pinta-alan ja tilavuuden määrittäminen, menetelmien käyttö geometrian koordinaatistossa Muita mahdollisia sisältöjä Yksikkömuunnoksia, taitojen soveltaminen käytännön ongelmissa

33 LUKU 3. MATEMATIIKAN LYHYT OPPIMÄÄRÄ Matemaattisia malleja I (MAB3) näkee reaalimaailman ilmiöissä säännönmukaisuuksia ja riippuvuuksia ja kuvaa niitä matemaattisilla malleilla, tottuu arvioimaan mallien hyvyyttä ja käyttökelpoisuutta. Lineaarisen ja eksponentiaalisen mallin soveltaminen sekä mallien kuvaajat, potenssiyhtälön ratkaiseminen, eksponenttiyhtälön ratkaiseminen logaritmin avulla Muita mahdollisia sisältöjä Suoran kulmakerroin ja yhtälö, epäyhtälö, yhtälöpari

34 LUKU 3. MATEMATIIKAN LYHYT OPPIMÄÄRÄ Matemaattinen analyysi (MAB4) tutkii funktion muutosnopeutta graafisin ja numeerisin menetelmin, ymmärtää derivaatan käsitteen muutosnopeuden mittana, osaa tutkia polynomifunktion kulkua derivaatan avulla, oppii sovellusten yhteydessä määrittämään polynomifunktion suurimman ja pienimmän arvon. Polynomifunktion derivaatta, polynomifunktion merkin ja kulun tutkiminen, paraabeli, polynomifunktion suurimman ja pienimmän arvon määrittäminen, graafisia ja numeerisia menetelmiä Muita mahdollisia sisältöjä Tangentin kulmakerroin, kuvaajien tulkintaa, soveltavia tehtäviä

35 LUKU 3. MATEMATIIKAN LYHYT OPPIMÄÄRÄ Tilastot ja todennäköisyys (MAB5) harjaantuu käsittelemään ja tulkitsemaan tilastollisia aineistoja, tutustuu laskinten ja tietokoneiden käyttöön tilastotehtävissä, perehtyy todennäköisyyslaskennan perusteisiin. Jatkuvien ja diskreettien tilastollisten jakaumien tunnuslukujen määrittäminen, diagrammit, normaalijakauma ja jakauman normittaminen, kombinatoriikkaa, todennäköisyyden käsite, todennäköisyyden laskulakien ja niitä havainnollistavien mallien käyttöä Muita mahdollisia sisältöjä Tilastollisen aineiston kokoaminen, käsitteleminen ja tulkitseminen, binomitodennäköisyys, laskimen käyttö

36 LUKU 3. MATEMATIIKAN LYHYT OPPIMÄÄRÄ Matemaattisia malleja II (MAB6) varmentaa ja täydentää yhtälöiden ratkaisutaitojaan, osaa ratkaista käytännön tilanteisiin liittyviä lineaarisia optimointitehtäviä, ymmärtää lukujonon käsitteen, ratkaisee käytännön ongelmia aritmeettisen ja geometrisen jonon ja summan avulla. Kahden muuttujan lineaariset yhtälöt, lineaarisen yhtälöparin ratkaiseminen, kahden muuttujan epäyhtälön graafinen ratkaiseminen, lineaarinen optimointi, lukujono, aritmeettinen ja geometrinen jono ja summa Muita mahdollisia sisältöjä Yhtälöryhmät, soveltavat tehtävät

37 LUKU 3. MATEMATIIKAN LYHYT OPPIMÄÄRÄ Valtakunnalliset syventävät kurssit Talousmatematiikka (MAB7) oppii ymmärtämään talouselämässä käytettyjä käsitteitä, saa matemaattisia valmiuksia oman taloutensa suunnitteluun, saa laskennallisen pohjan yrittäjyyden ja taloustiedon opiskeluun, soveltaa tilastollisia menetelmiä aineistojen käsittelyyn. Indeksi-, kustannus-, rahaliikenne-, laina-, verotus- ja muita laskelmia, taloudellisiin tilanteisiin soveltuvia matemaattisia malleja lukujonojen ja summien avulla Muita mahdollisia sisältöjä Prosenttikäsitteen syventäminen

38 LUKU 3. MATEMATIIKAN LYHYT OPPIMÄÄRÄ Matemaattisia malleja III (MAB8) laajentaa käsitystään teknologisoituvassa yhteiskunnassa tarvittavasta matematiikasta, saa apuneuvoja jaksollisten ilmiöiden matemaattiseen käsittelyyn. Trigonometristen funktioiden määrittely yksikköympyrän avulla, radiaani, tyyppiä sinf(x) = a olevien trigonometristen yhtälöiden ratkaiseminen, muotoa f(x) = Asin(bx) olevien funktioiden kuvaajat jaksollisten ilmiöiden mallintajina, vektorin käsite ja vektoreiden peruslaskutoimitusten periaatteet, koordinaatiston vektoreiden komponenttiesitys ja skalaaritulo, kaksi- ja kolmiulotteisen koordinaatiston pisteiden ja kulmien tutkiminen vektoreiden avulla Muita mahdollisia sisältöjä Sini- ja kosinilause

39 LUKU 3. MATEMATIIKAN LYHYT OPPIMÄÄRÄ Koulukohtaiset syventävät kurssit Kertauskurssi (MAB9) kertaa pakollisten kurssien keskeiset sisällöt, saa kokonaiskuvan kusseista ja matemaattisista menetelmistä, harjaantuu yo-kirjoituksiin. Prosenttilaskenta, yhtälöt ja epäyhtälöt, taso- ja avaruusgeometria, lineaarinen ja eksponentiaalinen malli, derivaatta ja sen sovellukset, lukujonot ja niiden sovellukset, tilastotieteen ja todennäköisyyslaskennan menetelmät

40 LUKU 3. MATEMATIIKAN LYHYT OPPIMÄÄRÄ Laskuharjoituskurssi (MAB10) Kurssista annetaan suoritusmerkintä saa mahdollisuuden ohjattuun lisäharjoitteluun, kehittää lasku- ja ongelmanratkaisutaitojaan. Kurssien ydinkohdat

MATEMATIIKKA MATEMATIIKAN PITKÄ OPPIMÄÄRÄ. Oppimäärän vaihtaminen

MATEMATIIKKA MATEMATIIKAN PITKÄ OPPIMÄÄRÄ. Oppimäärän vaihtaminen MATEMATIIKKA Oppimäärän vaihtaminen Opiskelijan siirtyessä matematiikan pitkästä oppimäärästä lyhyempään hänen suorittamansa pitkän oppimäärän opinnot luetaan hyväksi lyhyemmässä oppimäärässä siinä määrin

Lisätiedot

Matematiikan pitkä oppimäärä

Matematiikan pitkä oppimäärä Matematiikan pitkä oppimäärä Matematiikan pitkän oppimäärän opetuksen tehtävänä on antaa opiskelijalle matemaattiset valmiudet, joita tarvitaan ammatillisissa opinnoissa ja korkeakouluopinnoissa. Pitkän

Lisätiedot

Kurssikuvausten väljyyttä voidaan käyttää resurssien salliessa keskeisten sisältöjen syventämiseen ja eheyttävien kokonaisuuksien muodostamiseen.

Kurssikuvausten väljyyttä voidaan käyttää resurssien salliessa keskeisten sisältöjen syventämiseen ja eheyttävien kokonaisuuksien muodostamiseen. 5.6. Matematiikka Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa. Matematiikan opetuksen tehtävänä on tutustuttaa opiskelija

Lisätiedot

Matematiikan pitkä oppimäärä

Matematiikan pitkä oppimäärä Matematiikan pitkä oppimäärä Matematiikan pitkän oppimäärän opetuksen tehtävänä on antaa opiskelijalle matemaattiset valmiudet, joita tarvitaan ammatillisissa opinnoissa ja korkeakouluopinnoissa. Pitkän

Lisätiedot

MATEMATIIKKA. MAA Matematiikan pitkä oppimäärä

MATEMATIIKKA. MAA Matematiikan pitkä oppimäärä MATEMATIIKKA Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa. Matematiikan opetuksen tehtävänä on tutustuttaa opiskelija matemaattisen

Lisätiedot

PITKÄ MATEMATIIKKA. Pakolliset kurssit

PITKÄ MATEMATIIKKA. Pakolliset kurssit 13 PITKÄ MATEMATIIKKA Suoritusohje: Pakolliset kurssit suoritetaan numerojärjestyksessä, poikkeuksena kurssi MAA6, jonka voi suorittaa jo kurssin MAA2 jälkeen. Syventävien kurssien suoritusjärjestys mainitaan

Lisätiedot

Matematiikan lyhyen oppimäärän opetuksen tavoitteena on, että opiskelija

Matematiikan lyhyen oppimäärän opetuksen tavoitteena on, että opiskelija 1 7.4. Matematiikka 7.4.1. Matematiikka, lyhyt oppimäärä Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa. Matematiikan opetuksen

Lisätiedot

Kurssit MAA1 MAA14 ja MAB1- MAB9 arvostellaan numeroarvosanalla Soveltava kurssi MAA 15 arvostellaan suoritettu / hylätty.

Kurssit MAA1 MAA14 ja MAB1- MAB9 arvostellaan numeroarvosanalla Soveltava kurssi MAA 15 arvostellaan suoritettu / hylätty. MATEMATIIKKA Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa. Matematiikan opetuksen tehtävänä on tutustuttaa opiskelija matemaattisen

Lisätiedot

EHDOTUS. EHDOTUS Matematiikan opetussuunnitelmien perusteiden oppiainekohtaiset osat

EHDOTUS. EHDOTUS Matematiikan opetussuunnitelmien perusteiden oppiainekohtaiset osat EHDOTUS Matemaattisten aineiden opettajien liitto MAOL ry 12.2.2015 Asemamiehenkatu 4 00520 HELSINKI Opetushallitus Hakaniemenranta 6 00530 Helsinki EHDOTUS Matematiikan opetussuunnitelmien perusteiden

Lisätiedot

MATEMATIIKKA Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa.

MATEMATIIKKA Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa. MATEMATIIKKA Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa. Matematiikan opetuksen tehtävänä on tutustuttaa opiskelija matemaattisen

Lisätiedot

3.6 Matematiikka. Esimerkkien ja sovellustehtävien avulla kestävän kehityksen näkökulma tulee esille kursseissa MAA6 ja MAA8 sekä MAB3 ja MAB5.

3.6 Matematiikka. Esimerkkien ja sovellustehtävien avulla kestävän kehityksen näkökulma tulee esille kursseissa MAA6 ja MAA8 sekä MAB3 ja MAB5. 3.6 Matematiikka Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa. Nykyisen huipputeknologian saavuttamisessa ja kehittämisessä

Lisätiedot

3. Lausekkeet ja yhtälöt (ma3) Keskeiset sisällöt polynomin käsite, polynomien yhteen-, vähennys- ja kertolasku

3. Lausekkeet ja yhtälöt (ma3) Keskeiset sisällöt polynomin käsite, polynomien yhteen-, vähennys- ja kertolasku 5.6 Matematiikka Perusopetus Opetuksen tavoitteet Matematiikan opetuksen tavoitteena on, että aikuisopiskelija oppii ymmärtämään matemaattisten käsitteiden ja sääntöjen merkityksen sekä oppii näkemään

Lisätiedot

Lyhyt matematematiikka. Matematiikan yhteinen opintokokonaisuus

Lyhyt matematematiikka. Matematiikan yhteinen opintokokonaisuus Matematiikan yhteinen opintokokonaisuus Matematiikan yhteisen opintokokonaisuuden tehtävänä on herättää opiskelijan kiinnostus matematiikkaa kohtaan muun muassa tutustuttamalla hänet matematiikan moninaiseen

Lisätiedot

Pitkä matematiikka, Lyhyt matematiikka MATEMATIIKKA, PITKÄ, LUKIO-OPETUS

Pitkä matematiikka, Lyhyt matematiikka MATEMATIIKKA, PITKÄ, LUKIO-OPETUS Pitkä matematiikka, Lyhyt matematiikka MATEMATIIKKA, PITKÄ, LUKIO-OPETUS Matematiikka tarjoaa välineitä johdonmukaisen ja täsmällisen ajattelun edistämiseen, avaruuden hahmottamiseen sekä käytännön ja

Lisätiedot

5.6. Matematiikka. 5.6.1. Pitkä matematiikka

5.6. Matematiikka. 5.6.1. Pitkä matematiikka 5.6. Matematiikka 5.6.1. Pitkä matematiikka Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa. Matematiikan opetuksen tehtävänä

Lisätiedot

Matematiikka. Matematiikan pitkä oppimäärä. Pakolliset kurssit

Matematiikka. Matematiikan pitkä oppimäärä. Pakolliset kurssit Matematiikka Matematiikan pitkä oppimäärä Matematiikan pitkän oppimäärän opetuksen tehtävänä on antaa opiskelijalle matemaattiset valmiudet, joita tarvitaan ammatillisissa opinnoissa ja korkeakouluopinnoissa.

Lisätiedot

Matematiikka vuosiluokat 7 9

Matematiikka vuosiluokat 7 9 Matematiikka vuosiluokat 7 9 Matematiikan opetuksen ydintehtävänä on tarjota oppilaille mahdollisuus hankkia sellaiset matemaattiset taidot, jotka antavat valmiuksia selviytyä jokapäiväisissä toiminnoissa

Lisätiedot

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan.

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan. VUOSILUOKAT 6 9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on syventää matemaattisten käsitteiden ymmärtämistä ja tarjota riittävät perusvalmiudet. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten

Lisätiedot

kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen 60-järjestelmään kellonaikojen avulla

kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen 60-järjestelmään kellonaikojen avulla 7.6.1 MATEMATIIKKA VUOSILUOKAT 3 5 Vuosiluokkien 3 5 matematiikan opetuksen ydintehtävinä ovat matemaattisen ajattelun kehittäminen, matemaattisten ajattelumallien oppimisen pohjustaminen, lukukäsitteen

Lisätiedot

Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein:

Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein: 9.8. MATEMATIIKKA Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein: AK 1 = Ihmisenä kasvaminen AK 2 = Kulttuuri-identiteetti

Lisätiedot

MAS- linjan matematiikan kurssit

MAS- linjan matematiikan kurssit Muutokset Vantaankosken koulun Matemaattis-luonnontieteellisen linjan (MAS) opetussuunnitelmaan lukuvuonna 2012 2013 aloittavista 7. luokista alkaen Kurssisisällöt ja -ajoitus ovat muuttuneet matematiikan

Lisätiedot

Merkitys, arvot ja asenteet 7 Ei vaikuta arvosanan

Merkitys, arvot ja asenteet 7 Ei vaikuta arvosanan Oppiaineen nimi: MATEMATIIKKA 7-9 Vuosiluokat Opetuksen tavoite Sisältöalueet Laaja-alainen osaaminen Arvioinnin kohteet oppiaineessa Hyvä/arvosanan kahdeksan osaaminen Merkitys, arvot ja asenteet 7 Ei

Lisätiedot

MATEMATIIKKA VL LUOKKA. Laaja-alainen osaaminen. liittyvät sisältöalueet

MATEMATIIKKA VL LUOKKA. Laaja-alainen osaaminen. liittyvät sisältöalueet MATEMATIIKKA VL.7-9 7.LUOKKA Opetuksen tavoitteet Tavoitteisiin liittyvät sisältöalueet Laaja-alainen osaaminen Merkitys, arvot ja asenteet T1 vahvistaa oppilaan motivaatiota, myönteistä minäkuvaa ja itseluottamusta

Lisätiedot

Päättöarvioinnin kriteerit arvosanalle hyvä (8)

Päättöarvioinnin kriteerit arvosanalle hyvä (8) Tavoitteet Jokaisella oppilaalla on peruskoulun aikana mahdollisuus hankkia matemaattiset perustiedot ja -taidot, jotka antavat valmiuden luovaan matemaattiseen ajatteluun ja taitojen soveltamiseen eri

Lisätiedot

5. Matematiikkalukio. 5.1 Opetus. Matematiikkalukion tarkoitus

5. Matematiikkalukio. 5.1 Opetus. Matematiikkalukion tarkoitus 5. Matematiikkalukio Matematiikkalukion tarkoitus Helsingin matematiikkalukiolla on valtakunnallinen matematiikan erityistehtävä. Koulun tavoitteena on vahvistaa matemaattisten taitojen osaamista Suomessa.

Lisätiedot

Opiskelijan käsitys kielestä, teksteistä ja niiden tulkinnasta syvenee, ja hänen taitonsa lukea tekstejä

Opiskelijan käsitys kielestä, teksteistä ja niiden tulkinnasta syvenee, ja hänen taitonsa lukea tekstejä ÄIDINKIELI JA KIRJALLISUUS PAKOLLISET KURSSIT ÄI1 Kieli, tekstit ja vuorovaikutus Opiskelijan käsitys kielestä, teksteistä ja niiden tulkinnasta syvenee, ja hänen taitonsa lukea tekstejä kehittyy. Hän

Lisätiedot

Matemaattis-luonnontieteellinen linja

Matemaattis-luonnontieteellinen linja Luku 1 Matemaattis-luonnontieteellinen linja Erikoislukiolinja on tarkoitettu lähinnä niille, joiden jatkosuunnitelmat edellyttävät matemaattis-luonnontieteellistä tietoa ja osaamista. Erikoislinjalla

Lisätiedot

ÄIDINKIELI LAHDEN RUDOLF STEINER KOULUN LUKION KURSSISISÄLLÖT

ÄIDINKIELI LAHDEN RUDOLF STEINER KOULUN LUKION KURSSISISÄLLÖT LAHDEN RUDOLF STEINER KOULUN LUKION KURSSISISÄLLÖT Äidinkieli Englanti A1 kieli Ruotsi B1 kieli Saksa B2 kieli Matematiikka Fysiikka Kemia Biologia Maantieto Uskonto Evankelis-luterilainen uskonto Ortodoksinen

Lisätiedot

MATEMATIIKKA. Oppiaineen tehtävä

MATEMATIIKKA. Oppiaineen tehtävä 1 MATEMATIIKKA Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaan loogista, täsmällistä ja luovaa ajattelua. Opetus luo pohjan matemaattisten käsitteiden ja rakenteiden ymmärtämiselle

Lisätiedot

OPS OPPIMISTAVOITTEET JA OPETUKSEN KESKEISET SISÄLLÖT MATEMATIIKKA

OPS OPPIMISTAVOITTEET JA OPETUKSEN KESKEISET SISÄLLÖT MATEMATIIKKA OPS OPPIMISTAVOITTEET JA OPETUKSEN MATEMATIIKKA 2013 2014 MATEMATIIKKA Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä

Lisätiedot

Kommentteja Markku Halmetojan ops-ehdotuksesta

Kommentteja Markku Halmetojan ops-ehdotuksesta Jorma Merikoski 10.1.2015 Kommentteja Markku Halmetojan ops-ehdotuksesta Markku Halmetoja on laatinut ehdotuksen lukion pitkän matematiikan uudeksi opetussuunnitelmaksi. Hän esittelee sitä matematiikan

Lisätiedot

MATEMAATTIS- LUONNONTIETEELLINEN OSAAMINEN

MATEMAATTIS- LUONNONTIETEELLINEN OSAAMINEN MATEMAATTIS- LUONNONTIETEELLINEN OSAAMINEN Matematiikka ja matematiikan soveltaminen, 4 osp Pakollinen tutkinnon osa osaa tehdä peruslaskutoimitukset, toteuttaa mittayksiköiden muunnokset ja soveltaa talousmatematiikkaa

Lisätiedot

MATEMATIIKKA/Vuosiluokat 7-9

MATEMATIIKKA/Vuosiluokat 7-9 MATEMATIIKKA/Vuosiluokat 7-9 Oppiaineen tehtävä vuosiluokilla 7-9 Vuosiluokkien 7 9 matema ikan opetuksen tehtävänä on vahvistaa matemaa sta yleissivistystä. Opetuksessa syvennetään matemaattisten käsitteiden

Lisätiedot

MAB 9 kertaus MAB 1. Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi

MAB 9 kertaus MAB 1. Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi MAB 9 kertaus MAB 1 Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi Kertolaskussa osoittajat ja nimittäjät kerrotaan keskenään Jakolasku lasketaan kertomalla

Lisätiedot

Verkkokurssien sisältö

Verkkokurssien sisältö Verkkokurssien sisältö vai11 Kielenhuollon kurssi oppii havaitsemaan erilaisten tekstien kielioppivirheitä ja korjaamaan ne. oppii välttämään teksteissään tavallisia vieras-, puhe- ja kapulakielisyyksiä.

Lisätiedot

Luonnos pitkän matematiikan opetussuunnitelmaksi. Pitkän matematiikan pakollinen oppimäärä

Luonnos pitkän matematiikan opetussuunnitelmaksi. Pitkän matematiikan pakollinen oppimäärä Luonnos pitkän matematiikan opetussuunnitelmaksi 2016 Kaikille lukiolaisille yhteisen johdantokurssin sisältö on luonnoksessa määritelty varsin yksityiskohtaisesti. Kurssin on annettava realistinen kuva

Lisätiedot

Matematiikka 7-9. Matematiikan tehtävä. Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa

Matematiikka 7-9. Matematiikan tehtävä. Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa Matematiikka 7-9 Matematiikan tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden ja rakenteiden

Lisätiedot

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon

Lisätiedot

Opetusperiodi:I, suunnattu hakukohteille:

Opetusperiodi:I, suunnattu hakukohteille: Kurssin nimi ja koodi Muut kommentit MS-A0001 Matriisilaskenta 5 op (Matrisräkning, Kuvaus: kurssi Teknillinen fysiikka ja matematiikka käsittelee lineaarisia yhtälöryhmiä sekä vektoreita ja matriiseja

Lisätiedot

Opetusperiodi:I, suunnattu hakukohteille: Teknillinen fysiikka ja matematiikka

Opetusperiodi:I, suunnattu hakukohteille: Teknillinen fysiikka ja matematiikka Kurssin nimi ja koodi MS-A0001 Matriisilaskenta 5 op (Matrisräkning, Kuvaus: kurssi käsittelee lineaarisia yhtälöryhmiä sekä vektoreita ja matriiseja sovelluksineen. Sisältö: vektorilaskentaa, matriisit

Lisätiedot

Mika Setälä Lehtori Lempäälän lukio

Mika Setälä Lehtori Lempäälän lukio LOPS 2016 matematiikka Mika Setälä Lehtori Lempäälän lukio Millainen on input? Oppilaiden lähtötaso edellisiin lukion opetussuunnitelmiin nähden pitää huomioida kun lukion uutta opetussuunnitelmaa tehdään.

Lisätiedot

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ 1 YLIOPPILASTUTKINTO- LAUTAKUNTA 25.9.2017 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän

Lisätiedot

Ehdotus vuonna 2016 voimaan astuvaksi pitkän matematiikan opetussuunnitelmaksi

Ehdotus vuonna 2016 voimaan astuvaksi pitkän matematiikan opetussuunnitelmaksi Ehdotus vuonna 2016 voimaan astuvaksi pitkän matematiikan opetussuunnitelmaksi Yhteisen johdantokurssin on annettava realistinen kuva pitkän matematiikan sisältöjen käsitteellisyystasosta. Myös lyhyen

Lisätiedot

PORIN SUOMALAISEN YHTEISLYSEON LUKIO

PORIN SUOMALAISEN YHTEISLYSEON LUKIO 1 PORIN SUOMALAISEN YHTEISLYSEON LUKIO Lukujärjestyksen tekeminen (kurssitarjotin) Ainelyhenteet Lv. 2012 2013 kurssitarjotin tehdään netin kautta Wilmaan, osoite https://wilma.pori.fi Aloita valitsemalla

Lisätiedot

TUKIMATERIAALI: Arvosanan kahdeksan alle jäävä osaaminen

TUKIMATERIAALI: Arvosanan kahdeksan alle jäävä osaaminen 1 FYSIIKKA Fysiikan päättöarvioinnin kriteerit arvosanalle 8 ja niitä täydentävä tukimateriaali Opetuksen tavoite Merkitys, arvot ja asenteet T1 kannustaa ja innostaa oppilasta fysiikan opiskeluun T2 ohjata

Lisätiedot

KERAMIIKKA JA LIIKUNTAPAINOTTEINEN

KERAMIIKKA JA LIIKUNTAPAINOTTEINEN KERAMIIKKA JA LIIKUNTAPAINOTTEINEN KURSSIKUVAUKSET LOPS 2016 Päivitetty 19.5.2017 Sisällysluettelo ÄIDINKIELI 2 RUOTSI 7 ENGLANTI 9 SAKSA 11 MATEMATIIKKA 12 MATEMATIIKKA PITKÄ 13 LYHYT MATEMATIIKKA 19

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE - kykenee keskittymään matematiikan opiskeluun - kykenee kertomaan suullisesti matemaattisesta ajattelustaan

Lisätiedot

TUKIMATERIAALI: Arvosanan kahdeksan alle jäävä osaaminen

TUKIMATERIAALI: Arvosanan kahdeksan alle jäävä osaaminen KEMIA Kemian päättöarvioinnin kriteerit arvosanalle 8 ja niitä täydentävä tukimateriaali Opetuksen tavoite Merkitys, arvot ja asenteet T1 kannustaa ja innostaa oppilasta kemian opiskeluun T2 ohjata ja

Lisätiedot

S5-S9 L1, L2, L4, L5, L6, L7 havaintojensa pohjalta kannustaa oppilasta esittämään ratkaisujaan ja päätelmiään muille

S5-S9 L1, L2, L4, L5, L6, L7 havaintojensa pohjalta kannustaa oppilasta esittämään ratkaisujaan ja päätelmiään muille MATEMATIIKKA Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaan loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden ja rakenteiden

Lisätiedot

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE kykenee keskittymään matematiikan opiskeluun kykenee kertomaan suullisesti matemaattisesta ajattelustaan

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 28.9.2016 Pekka Alestalo,

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

5 Differentiaalilaskentaa

5 Differentiaalilaskentaa 5 Differentiaalilaskentaa 5.1 Raja-arvo Esimerkki 5.1. Rationaalifunktiota g(x) = x2 + x 2 x 1 ei ole määritelty nimittäjän nollakohdassa eli, kun x = 1. Funktio on kuitenkin määritelty kohdan x = 1 läheisyydessä.

Lisätiedot

KURSSISELOSTEET 1.8.2014 Päivitetty 7.2.2014 Päivitetty 12.6.2014 Päivitetty 11.12.2014 Päivitetty 11.6.2015

KURSSISELOSTEET 1.8.2014 Päivitetty 7.2.2014 Päivitetty 12.6.2014 Päivitetty 11.12.2014 Päivitetty 11.6.2015 KURSSISELOSTEET 1.8.2014 Päivitetty 7.2.2014 Päivitetty 12.6.2014 Päivitetty 11.12.2014 Päivitetty 11.6.2015 SISÄLLYSLUETTELO 6. Oppiainesuunnitelmat 6.1 Äidinkieli ja kirjallisuus, suomi äidinkielenä

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

TUTKINNON OSAN ARVIOINTISUUNNITELMA. Tutkinnon osa. Toteutus. 3.2 Matemaattis-luonnontieteellinen osaaminen, 9 osp

TUTKINNON OSAN ARVIOINTISUUNNITELMA. Tutkinnon osa. Toteutus. 3.2 Matemaattis-luonnontieteellinen osaaminen, 9 osp TUTKINNON OSAN ARVIOINTISUUNNITELMA Tutkinnon osa 3.2 Matemaattis-luonnontieteellinen osaaminen, 9 osp ARVIOINNIN KESKEISET ASIAT 1. Kuvaus osaamisen tunnustamisen toteuttamisesta Toteutus Ennen uuden

Lisätiedot

1. ja 2. kurssi (I-osa) Perusasiat kuntoon

1. ja 2. kurssi (I-osa) Perusasiat kuntoon 1. ja 2. kurssi (I-osa) Perusasiat kuntoon 3., 4. ja 5. kurssit (II-osa) Geometrian osuus Hippokrateen puolikuut syntyvät siten, että puoliympyrän sisään piirretään suorakulmainen kolmio ABC, jonka kateetit

Lisätiedot

Oppilas vahvistaa opittuja taitojaan, kiinnostuu oppimaan uutta ja saa tukea myönteisen minäkuvan kasvuun matematiikan oppijana.

Oppilas vahvistaa opittuja taitojaan, kiinnostuu oppimaan uutta ja saa tukea myönteisen minäkuvan kasvuun matematiikan oppijana. Tavoitteet S L 3. lk 4. lk 5. lk 6. lk Merkitys, arvot ja asenteet T1 pitää yllä oppilaan innostusta ja kiinnostusta matematiikkaa kohtaan sekä tukea myönteistä minäkuvaa ja itseluottamusta L1, L3, L5

Lisätiedot

Muista tutkia ihan aluksi määrittelyjoukot, kun törmäät seuraaviin funktioihin:

Muista tutkia ihan aluksi määrittelyjoukot, kun törmäät seuraaviin funktioihin: Määrittelyjoukot Muista tutkia ihan aluksi määrittelyjoukot, kun törmäät seuraaviin funktioihin:, 0 ; log, > 0 ;, 0 (parilliset juuret) ; tan, π + nπ Potenssisäännöt Ole tarkkana kantaluvun kanssa 3 3

Lisätiedot

LUOKKA 1 LUOKKA 2 lukumäärä, lukusana ja numerosymboli. yhteydet luonnollisilla luvuilla luonnollisilla luvuilla

LUOKKA 1 LUOKKA 2 lukumäärä, lukusana ja numerosymboli. yhteydet luonnollisilla luvuilla luonnollisilla luvuilla 7.2.3. MATEMATIIKKA 88 TAVOITTEET: : oppii keskittymään, kuuntelemaan ja kommunikoimaan sekä kehittämään ajattelemistaan; ymmärtää lukukäsitteen ja oppii siihen soveltuvia peruslaskutaitoja; oppii perustelemaan

Lisätiedot

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77 Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty.5.07 Kertaus K. a) sin 0 = 0,77 b) cos ( 0 ) = cos 0 = 0,6 c) sin 50 = sin (80 50 ) = sin 0 = 0,77 d) tan 0 = tan (0 80 ) = tan 0 =,9 e)

Lisätiedot

ÄIDINKIELI JA KIRJALLISUUS PAKOLLISET KURSSIT

ÄIDINKIELI JA KIRJALLISUUS PAKOLLISET KURSSIT ÄIDINKIELI JA KIRJALLISUUS PAKOLLISET KURSSIT ÄI1 Kieli, tekstit ja vuorovaikutus Käsitys kielestä, teksteistä ja niiden tulkinnasta syvenee, ja taito lukea tekstejä kehittyy. Opitaan jäsentämään viestintäympäristöä

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut KOMPLEKSILUVUT C Luonnolliset luvut N Kokonaisluvut Z Rationaaliluvut Q Reaaliluvut R Kompleksi luvut C Negat kokonaisluvut Murtoluvut Irrationaaliluvut Imaginaariluvut Erilaisten yhtälöiden ratkaiseminen

Lisätiedot

PII JA OPETUSSUUNNITELMAN PERUSTEET

PII JA OPETUSSUUNNITELMAN PERUSTEET PII JA OPETUSSUUNNITELMAN PERUSTEET Yläkoulun matematiikan oppimateriaali Pii noudattaa uuden opetussuunnitelman perusteita. Sarja tarjoaa kaikille oppijoille oman taitotasonsa mukaisia haasteita ja myönteisiä

Lisätiedot

Funktio 1. a) Mikä on funktion f (x) = x lähtöjoukko eli määrittelyjoukko, kun 0 x 5?

Funktio 1. a) Mikä on funktion f (x) = x lähtöjoukko eli määrittelyjoukko, kun 0 x 5? Funktio. a) Mikä on funktion f (x) = x + lähtöjoukko eli määrittelyjoukko, kun 0 x 5? b) Mikä on funktion f (x) = x + maalijoukko eli arvojoukko? c) Selitä, mikä on funktion nollakohta. Anna esimerkki.

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus: . Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona

Lisätiedot

1. ja 2. kurssi (I-osa) Perusasiat kuntoon

1. ja 2. kurssi (I-osa) Perusasiat kuntoon 1. ja 2. kurssi (I-osa) Perusasiat kuntoon., 4. ja 5. kurssit (II-osa) Geometrian osuus 6. 9. kurssit (III-osa) Analyysi: - Raja-arvo ja jatkuvuus - & derivointi - Integ.laskenta & integrointi Aloitusesimerkki

Lisätiedot

Lukion opetussuunnitelman perusteet 2015 matemaattisissa aineissa Opetusneuvos Tiina Tähkä

Lukion opetussuunnitelman perusteet 2015 matemaattisissa aineissa Opetusneuvos Tiina Tähkä Lukion opetussuunnitelman perusteet 2015 matemaattisissa aineissa 14.11.2015 Opetusneuvos Tiina Tähkä MAHDOLLINEN KOULUKOHTAINEN OPS ja sen varaan rakentuva vuosisuunnitelma PAIKALLINEN OPETUSSUUNNITELMA

Lisätiedot

Tornion yhteislyseon lukion opetussuunnitelma 2016

Tornion yhteislyseon lukion opetussuunnitelma 2016 1 (113) Opetushallituksen määräys 60/011/2015 Tornion yhteislyseon lukion opetussuunnitelma 2016 KURSSISISÄLLÖT Äidinkieli ja kirjallisuus Toinen kotimainen kieli - ruotsi, A-oppimäärä - ruotsi, B1-oppimäärä

Lisätiedot

LAHDEN RUDOLF STEINER KOULUN LUKION KURSSISISÄLLÖT

LAHDEN RUDOLF STEINER KOULUN LUKION KURSSISISÄLLÖT LAHDEN RUDOLF STEINER KOULUN LUKION KURSSISISÄLLÖT Äidinkieli Englanti A1 kieli Ruotsi B1 kieli Saksa B2 kieli Matematiikka Fysiikka Kemia Biologia Maantieto Uskonto Evankelis-luterilainen uskonto Ortodoksinen

Lisätiedot

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto:

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto: 4 Reaalifunktiot 4. Funktion monotonisuus Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x ja x on voimassa ehto: "jos x < x, niin f (x

Lisätiedot

1.1. YHDISTETTY FUNKTIO

1.1. YHDISTETTY FUNKTIO 1.1. YHDISTETTY FUNKTIO (g o f) () = g(f()) Funktio g = yhdistetyn funktion g o f ulkofunktio Funktio f = yhdistetyn funktion g o f sisäfunktio E.2. Olkoon f() = 2 + 3 ja g() = 4-5. Muodosta funktio a)

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa A

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 8906 HYVÄN VASTAUKSEN PIIRTEITÄ Tutkintoaineen sensorikokous on hyväksynyt seuraavat hyvän vastauksen piirteet Hyvästä suorituksesta näkyy, miten vastaukseen on päädytty

Lisätiedot

HYVÄ KALAJOEN LUKIOON AIKOVA

HYVÄ KALAJOEN LUKIOON AIKOVA 1 HYVÄ KALAJOEN LUKIOON AIKOVA Kalajoki on reilun 9000 asukkaan hiekkarantojen merikaupunki. Lukiossamme on noin 250 opiskelijaa Kalajoelta ja ympäristökunnista. Kalajoen lukio on turvallinen yleislukio,

Lisätiedot

Fysiikan matematiikka P

Fysiikan matematiikka P Fysiikan matematiikka 763101P Luennoija: Kari Rummukainen, Fysikaalisten tieteiden laitos Tavoite: tarjota opiskelijalle nopeasti fysikaalisten tieteiden tarvitsemia matematiikan perustietoja ja taitoja.

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

ÄIDINKIELI JA KIRJALLISUUS, SUOMI ÄIDINKIELENÄ. KLAUKKALAN AIKUISLUKIO lukuvuosi 2015-2016. Kurssien kuvaukset ja oppikirjat. Klikkaa oppiainetta

ÄIDINKIELI JA KIRJALLISUUS, SUOMI ÄIDINKIELENÄ. KLAUKKALAN AIKUISLUKIO lukuvuosi 2015-2016. Kurssien kuvaukset ja oppikirjat. Klikkaa oppiainetta KLAUKKALAN AIKUISLUKIO lukuvuosi 2015-2016 Kurssien kuvaukset ja oppikirjat. Klikkaa oppiainetta ÄIDINKIELI JA KIRJALLISUUS, SUOMI ÄIDINKIELENÄ RUOTSI, TOINEN KOTIMAINEN KIELIRUOTSI, TOINEN KOTIMAINEN

Lisätiedot

(KU) KUVATAIDE. Arviointi Numeroarviointi Erityistä Materiaalimaksu, pakollisten kurssien jälkeen. KU 4 Taiteen kuvista omiin kuviin

(KU) KUVATAIDE. Arviointi Numeroarviointi Erityistä Materiaalimaksu, pakollisten kurssien jälkeen. KU 4 Taiteen kuvista omiin kuviin (KU) KUVATAIDE KU 1 Minä, kuva ja kulttuuri pa vuositaso 1 Tavoitteet Opiskelija oppii ilmaisemaan itseään kuvataiteen keinoin ja tekemään omakohtaisia ratkaisuja työskentelyssään. Värin, tilan, muodon

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

KURSSIESITTEET LV. 2015-2016

KURSSIESITTEET LV. 2015-2016 KURSSIESITTEET LV. 2015-2016 Salpauksen lukio, Nastola KOULUTUSKESKUS SALPAUS, SALPAUKSEN LUKIO, NASTOLA Rakokiventie 2 15550 NASTOLA Puh. 03-8287 201 Fax. 03-8287 225 www.salpaus.fi Opetusalapäällikkö

Lisätiedot

LUKUVUODEN E-KURSSI MAB3

LUKUVUODEN E-KURSSI MAB3 1 TYK AIKUISLUKIO LUKUVUODEN 2016 2017 E-KURSSI MAB3 Kurssin tunnus ja nimi Kurssin opettaja MAB3 Matemaattisia malleja I Frans Hartikainen frans.hartikainen@tyk.fi (MAB3-kurssin työtila on nähtävillä

Lisätiedot

Esipuhe. Sirkka-Liisa Eriksson

Esipuhe. Sirkka-Liisa Eriksson 3 Esipuhe Matematiikka tieteiden kuningatar ja palvelija on lukioihin ja ammattikorkeakouluihin suunnattuun koulukohtaiseen valinnaiseen syventävään kurssiin perustuva kirja. Kirjan tarkoituksena on kerrata

Lisätiedot

LUKUVUODEN E-KURSSI

LUKUVUODEN E-KURSSI 1 TYK AIKUISLUKIO LUKUVUODEN 2016 2017 E-KURSSI Kurssin tunnus ja nimi Kurssin opettaja MAB6 Matemaattisia malleja II Frans Hartikainen frans.hartikainen@tyk.fi MAB6-kurssin työtila on nähtävillä myös

Lisätiedot

k-kantaisen eksponenttifunktion ominaisuuksia

k-kantaisen eksponenttifunktion ominaisuuksia 3.1.1. k-kantaisen eksponenttifunktion ominaisuuksia f() = k (k > 0, k 1) Määrittely- ja arvojoukko M f = R, A f = R + Jatkuvuus Funktio f on jatkuva Monotonisuus Funktio f aidosti kasvava, kun k > 1 Funktio

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

Funktion määrittely (1/2)

Funktion määrittely (1/2) Funktion määrittely (1/2) Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon a täsmälleen yhden B:n alkion b. Merkitään b = f (a). Tässä A = M f on f :n määrittelyjoukko, B on f :n maalijoukko.

Lisätiedot

Matematiikan peruskurssi MATY020

Matematiikan peruskurssi MATY020 Matematiikan peruskurssi MATY020 A. Yleistä tietoa tenttitilaisuudesta. Muista ilmoittautua tenttiin. Jos et ole avoimen yliopiston opiskelija, niin tämä onnistuu Korpissa. Jos olet avoimen yliopiston

Lisätiedot

Lukiolaisen opas Sallan lukio (75 kurssia = lukiotutkinto)

Lukiolaisen opas Sallan lukio (75 kurssia = lukiotutkinto) Lukiolaisen opas Sallan lukio (75 kurssia = lukiotutkinto) Kurssien nimet 2016 2017 uusi OPS ÄIDINKIELI JA KIRJALLISUUS Äidinkieli ja kirjallisuus, suomi äidinkielenä 1. Tekstit ja vuorovaikutus (ÄI01)

Lisätiedot

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0102 Differentiaali- ja integraalilaskenta 1 MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 15.11.2016 Sisältö Alkeisfunktiot 1.1 Funktio I Funktio f : A! B on sääntö, joka liittää

Lisätiedot

Oppimistavoitematriisi

Oppimistavoitematriisi Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Esitiedot Arvosanaan 1 2 riittävät Arvosanaan 3 4 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä

Lisätiedot

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei. PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja

Lisätiedot

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio. Sinin jatkuvuus Lemma Kaikilla x, y R, sin x sin y x y. Seuraus Sini on jatkuva funktio. Seuraus Kosini, tangentti ja kotangentti ovat jatkuvia funktioita. Pekka Salmi FUNK 19. syyskuuta 2016 22 / 53 Yhdistetyn

Lisätiedot

1 lk Tavoitteet. 2 lk Tavoitteet

1 lk Tavoitteet. 2 lk Tavoitteet MATEMATIIKKA Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien oppimiseen.

Lisätiedot

6. luokka 7. luokka. 6. luokka 7. luokka

6. luokka 7. luokka. 6. luokka 7. luokka VUOSILUOKAT 6-9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on matematiikan osaamisen vahvistaminen ja riittävien perusvalmiuksien tarjoaminen. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten

Lisätiedot

7 Matematiikka. 3. luokka

7 Matematiikka. 3. luokka 7 Matematiikka Matematiikka on tapa hahmottaa ja jäsentää ympäröivää maailmaa. Lapsi löytää ja omaksuu leikin, toiminnan sekä keskustelujen avulla matemaattisia käsitteitä, termejä, symboleja ja periaatteita.

Lisätiedot