Kurssikuvausten väljyyttä voidaan käyttää resurssien salliessa keskeisten sisältöjen syventämiseen ja eheyttävien kokonaisuuksien muodostamiseen.

Koko: px
Aloita esitys sivulta:

Download "Kurssikuvausten väljyyttä voidaan käyttää resurssien salliessa keskeisten sisältöjen syventämiseen ja eheyttävien kokonaisuuksien muodostamiseen."

Transkriptio

1 Luku 1 Matematiikka Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa. Matematiikan opetuksen tehtävänä on tutustuttaa opiskelija matemaattisen ajattelun malleihin sekä matematiikan perusideoihin ja rakenteisiin, opettaa käyttämään puhuttua ja kirjoitettua matematiikan kieltä sekä kehittää laskemisen ja ongelmien ratkaisemisen taitoja. Matematiikan opetustilanteet järjestetään siten, että ne herättävät opiskelijan tekemään havaintojensa pohjalta kysymyksiä, oletuksia ja päätelmiä sekä perustelemaan niitä. Erityisesti opiskelijaa ohjataan hahmottamaan matemaattisten käsitteiden merkityksiä ja tunnistamaan, kuinka ne liittyvät laajempiin kokonaisuuksiin. Opiskelijaa myös kannustetaan kehittämään luovia ratkaisuja matemaattisiin ongelmiin. Opetuksessa tutkitaan matematiikan ja arkielämän välisiä yhteyksiä sekä tietoisesti käytetään eteen tulevia mahdollisuuksia opiskelijan persoonallisuuden kehittämiseen, mikä tarkoittaa muun muassa hänen kiinnostuksensa ohjaamista, kokeiluihin kannustamista sekä tiedonhankintaprosessien kehittämistä. Kurssikuvausten väljyyttä voidaan käyttää resurssien salliessa keskeisten sisältöjen syventämiseen ja eheyttävien kokonaisuuksien muodostamiseen. Työtapoina käytetään opettajajohtoista, itsenäistä ja ryhmätyöskentelyä. Tieto-

2 LUKU 1. MATEMATIIKKA 2 tekniikkaa ja laskimia hyödynnetään soveltuvin osin. Kansainvälisiä yhteistyöprojekteja voidaan hyödyntää matematiikan opetuksessa. Yhteistyöstä sovitaan yksityiskohtaisemmin koulukohtaisissa suunnitelmissa vuosittain. Yhteistyöprojektien tavoitteena on myös muiden oppiaineiden integrointi. 1.1 Arviointi Matematiikan opetuksessa arvioinnin tulee kehittää opiskelijan kykyä esittää ratkaisuja, tukea opiskelijaa matemaattisten käsitteiden muodostamisprosessissa ja arvioida kirjallista esitystä sekä opettaa opiskelijalle oman työnsä arvioimista. Osaamisen arvioinnissa kiinnitetään huomio laskutaitoon, menetelmien valintaan ja päätelmien täsmälliseen ja johdonmukaiseen perustelemiseen. Arviointiin vaikuttavat pääsääntöisesti tuntiaktiivisuus, harrastuneisuus ja kurssikoe. Kurssikokeen lisäksi tai asemasta arviointi voi perustua myös muuhun kurssin aikana esitettyyn näyttöön. Kurssin itsenäisestä suorituksesta neuvotellaan erikseen kurssikohtaisesti. 1.2 Oppimäärän vaihtaminen Matematiikan oppimäärää vaihdettaessa pitkästä lyhyeen suositellaan hyväksi lukemisessa seuraavia vastaavuuksia: MAA1 MAB1, MAA3 MAB2, MAA6 MAB5, MAA7 MAB4 ja MAA8 MAB3. Opetussuunnitelmassa voidaan määrätä myös lisänäyttöjä etenkin kurssin arvosanaa uudelleen arvioitaessa.

3 Luku 2 Matematiikan pitkä oppimäärä Matematiikan pitkän oppimäärän opetuksen tehtävänä on antaa opiskelijalle matemaattiset valmiudet, joita tarvitaan ammatillisissa opinnoissa ja korkeakouluopinnoissa. Pitkän matematiikan opinnoissa opiskelijalla on tilaisuus omaksua matemaattisia käsitteitä ja menetelmiä sekä oppia ymmärtämään matemaattisen tiedon luonnetta. Opetus pyrkii myös antamaan opiskelijalle selkeän käsityksen matematiikan merkityksestä yhteiskunnan kehityksessä sekä sen soveltamismahdollisuuksista arkielämässä, tieteessä ja tekniikassa. 2.1 Opetuksen tavoitteet Matematiikan pitkän oppimäärän opetuksen tavoitteena on, että opiskelija tottuu pitkäjänteiseen työskentelyyn ja oppii sitä kautta luottamaan omiin matemaattisiin kykyihinsä, taitoihinsa ja ajatteluunsa, rohkaistuu kokeilevaan ja tutkivaan toimintaan, ratkaisujen keksimiseen sekä niiden kriittiseen arviointiin, ymmärtää ja osaa käyttää matematiikan kieltä, kuten seuraamaan matemaattisen tiedon esittämistä, lukemaan matemaattista tekstiä, keskustele-

4 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ 4 maan matematiikasta, ja oppii arvostamaan esityksen täsmällisyyttä ja perustelujen selkeyttä, oppii ratkaisujen ja todistusten täsmällisen esitystavan, oppii näkemään matemaattisen tiedon loogisena rakenteena ja ymmärtämään kokonaisuuksia, kehittää lausekkeiden käsittely-, päättely- ja ongelmanratkaisutaitojaan, harjaantuu käsittelemään tietoa matematiikalle ominaisella tavalla, tottuu tekemään otaksumia, tutkimaan niiden oikeellisuutta ja laatimaan perusteluja sekä arvioimaan perustelujen pätevyyttä ja tulosten yleistettävyyttä, harjaantuu mallintamaan käytännön ongelmatilanteita ja hyödyntämään erilaisia ratkaisustrategioita, osaa käyttää tarkoituksenmukaisia matemaattisia menetelmiä, teknisiä apuvälineitä ja tietolähteitä, saavuttaa jatko-opinnoissa (erityisesti teknisillä aloilla) tarvittavat valmiudet.

5 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Pakolliset kurssit Pakolliset kurssit tulee pääsääntöisesti suorittaa numerojärjestyksessä Funktiot ja yhtälöt (MAA1) vahvistaa yhtälön ratkaisemisen ja prosenttilaskennan taitojaan, syventää verrannollisuuden, neliöjuuren ja potenssin käsitteiden ymmärtämistään, tottuu käyttämään neliöjuuren ja potenssin laskusääntöjä, syventää funktiokäsitteen ymmärtämiseen tutkimalla potenssi- ja eksponenttifunktioita, oppii ratkaisemaan potenssiyhtälöitä, oppii laskimen peruskäytön. Potenssifunktio, potenssiyhtälön ratkaiseminen, juuret ja murtopotenssi, eksponenttifunktio Muita mahdollisia sisältöjä Lukujoukot, prosentti, lineaarisen yhtälön ratkaisu, verranto

6 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Polynomifunktiot (MAA2) harjaantuu käsittelemään polynomifunktioita, oppii ratkaisemaan toisen asteen polynomiyhtälöitä ja tutkimaan ratkaisujen lukumäärää, oppii ratkaisemaan korkeamman asteen polynomiyhtälöitä, jotka voidaan ratkaista ilman polynomien jakolaskua, oppii ratkaisemaan yksinkertaisia polynomiepäyhtälöitä, oppii soveltamaan käytäntöön polynomiyhtälöitä ja -epäyhtälöitä. Polynomien tulo ja binomikaavat, polynomifunktio, toisen ja korkeamman asteen polynomiyhtälöitä, toisen asteen yhtälön juurten lukumäärän tutkiminen, toisen asteen polynomin jakaminen tekijöihin, polynomiepäyhtälön ratkaiseminen

7 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Geometria (MAA3) harjaantuu hahmottamaan ja kuvaamaan tilaa sekä muotoa koskevaa tietoa sekä kaksi- että kolmiulotteisissa tilanteissa, harjaantuu muotoilemaan, perustelemaan ja käyttämään geometrista tietoa käsitteleviä lauseita, ratkaisee geometrisia ongelmia käyttäen hyväksi kuvioiden ja kappaleiden ominaisuuksia, yhdenmuotoisuutta, Pythagoraan lausetta sekä suora- ja vinokulmaisen kolmion trigonometriaa. Kuvioiden ja kappaleiden yhdenmuotoisuus, mittakaava, sini- ja kosinilause, ympyrän, sen osien ja siihen liittyvien suorien geometria, kuvioihin ja kappaleisiin liittyvien pituuksien, kulmien ja pinta-alojen ja tilavuuksien laskeminen Muita mahdollisia sisältöjä Geometrinen todistaminen

8 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Analyyttinen geometria (MAA4) ymmärtää, kuinka analyyttinen geometria luo yhteyksiä geometristen ja algebrallisten käsitteiden välille, ymmärtää pistejoukon yhtälön käsitteen ja oppii tutkimaan yhtälöiden avulla pisteitä, suoria, ympyröitä ja paraabeleja, syventää itseisarvokäsitteen ymmärtämystään ja oppii ratkaisemaan sellaisia itseisarvoyhtälöitä ja vastaavia epäyhtälöitä, jotka ovat tyyppiä f(x) = a tai f(x) = g(x), vahvistaa yhtälöryhmän ratkaisemisen taitojaan. Pistejoukon yhtälö, suoran, ympyrän, ja paraabelin yhtälö, itseisarvoyhtälön ja epäyhtälön ratkaiseminen, yhtälöpari ja sen sovelluksia, yhtälöryhmän ratkaiseminen, pisteen etäisyys suorasta Muita mahdollisia sisältöjä Kahden muuttujan epäyhtälön ja epäyhtälöryhmän ratkaisu, optimointi

9 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Vektorit (MAA5) ymmärtää vektorikäsitteen ja perehtyy vektorilaskennan perusteisiin, oppii tutkimaan kuvioiden ominaisuuksia vektoreiden avulla, tutkii kaksi- ja kolmiulotteisten koordinaatiston pisteitä, etäisyyksiä ja kulmia vektoreiden avulla. Vektorien perusominaisuudet, kantavektorit, vektorien yhteen- ja vähennyslasku ja vektorin kertominen luvulla, koordinaatiston vektoreiden, skalaaritulo, vektorien välinen kulma, suorat ja tasot avaruudessa Muita mahdollisia sisältöjä Geometriset ja fysiikan sovelluksia

10 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Todennäköisyys ja tilastot (MAA6) oppii havainnollistamaan diskreettejä ja jatkuvia tilastollisia jakaumia, arvioimaan tilastoja kriittisesti sekä määrittämään ja tulkitsemaan jakaumien tunnuslukuja, perehtyy kombinatorisiin menetelmiin, harjaantuu käyttämään laskimen tilastollisia ominaisuuksia, ymmärtää tilastojen merkityksen ilmiöiden kuvaamisessa ja sattuman vaikutuksen tapahtumiin, perehtyy todennäköisyyden käsitteeseen ja oppii määrittämään jakauman odotusarvon sekä soveltamaan sitä, ymmärtää diskreetin todennäköisyysjakauman käsitteen ja oppii määrittämään jakauman odotusarvon sekä soveltamaan sitä, perehtyy jatkuvan todennäköisyysjakauman käsitteeseen ja oppii soveltamaan normaalijakaumaa. Diskreetti ja jatkuva tilastollinen jakauma, jakauman tunnusluvut, klassinen ja tilastollinen todennäköisyys, kombinatoriikka, todennäköisyyksien laskusäännöt, diskreetti ja jatkuva todennäköisyysjakauma, diskreetin jakauman odotusarvo, normaalijakauma

11 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Derivaatta (MAA7) osaa määrittää rationaalifunktion nollakohdat ja ratkaista yksinkertaisia rationaaliepäyhtälöitä, omaksuu havainnollisen käsityksen funktion raja-arvosta, jatkuvuudesta ja derivaatasta, määrittää yksinkertaisten funktioiden derivaatat, osaa tutkia derivaatan avulla polynomifunktion kulkua ja määrittää sen ääriarvot, osaa määrittää rationaalifunktion suurimman ja pienimmän arvon sovellusongelmien yhteydessä, oppii soveltamaan derivaattaa käytäntöön. Rationaaliyhtälö ja -epäyhtälö, funktion raja-arvo, jatkuvuus ja derivaatta, polynomifunktion, funktioiden tulon ja osamäärän derivoiminen, polynomifunktion kulun tutkiminen ja ääriarvojen määrittäminen Muita mahdollisia sisältöjä Rationaalifunktioiden määrittely- ja arvojoukot, suoran kulmakertoimen ja nopeuden yhteys derivaattaan, korkeamman asteen derivaatat

12 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Juuri- ja logaritmifunktiot (MAA8) tuntee juuri-, eksponentti- ja logaritmifunktioiden ominaisuudet ja osaa ratkaista niihin liittyviä yhtälöitä, tutkii juuri-, eksponentti- ja logaritmifunktioita derivaatan avulla, oppii yhdistetyn funktion derivaatan, tutkii aidosti monotonisen funktion käänteisfunktioita. Juurifunktiot ja -yhtälöt, eksponenttifunktiot ja -yhtälöt, logaritmifunktiot ja - yhtälöt, yhdistetyn funktion derivaatta, käänteisfunktio ja sen derivaatta, juuri-, eksponentti- ja logaritmifunktioiden derivaatta

13 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Trigonometriset funktiot ja lukujonot (MAA9) oppii tutkimaan trigonometrisia funktioita yksikköympyrän symmetrioiden avulla, oppii ratkaisemaan sellaisia trigonometrisia yhtälöitä, jotka ovat tyyppiä sinf(x) = a tai sinf(x) = sing(x), osaa trigonometristen funktioiden yhteydet sin 2 x+cos 2 x = 1 ja tanx = sinx cosx, tutkii trigonometrisia funktioita derivaatan avulla, ymmärtää lukujonon käsitteen, oppii määrittelemään lukujonoja palautuskaavojen avulla, osaa ratkaista käytännön ongelmia aritmeettisen ja geometrisen jonon ja niistä muodostettujen summien avulla. Suunnattu kulma ja radiaani, trigonometriset funktiot symmetria- ja jaksollisuusominaisuuksineen, trigonometristen yhtälöiden ratkaiseminen, trigonometristen funktioiden derivaatat, lukujono, rekursiivinen lukujono, aritmeettinen jono ja summa, geometrinen jono, summa Muita mahdollisia sisältöjä Yksinkertaisia trigonometrisia laskukaavoja, matemaattinen induktio

14 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Integraalilaskenta (MAA10) ymmärtää integraalifunktion käsitteen ja oppii määrittämään alkeisfunktioiden integraalifunktioita, ymmärtää määrätyn integraalin käsitteen ja sen yhteyden pinta-alaan, oppii määrittämään pinta-aloja ja tilavuuksia määrätyn integraalin avulla, perehtyy integraalilaskennan sovelluksiin. Integraalifunktio, alkeisfunktioiden integraalifunktiot, määrätty integraali, pintaalan ja tilavuuden laskeminen Muita mahdollisia sisältöjä Tiheysfunktio ja kertymäfunktio

15 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Valtakunnalliset syventävät kurssit Lukuteoria ja logiikka (MAA11) Edellyttää kurssien MAA1 ja MAA2 sisältöjen hallintaa. oppii formalisoimaan väitelauseita ja tutkimaan niiden totuusarvoja totuustaulujen avulla, ymmärtää avoimen lauseen käsitteen ja oppii käyttämään kvanttoreita, oppii todistusperiaatteita ja harjoittelee todistamista, oppii lukuteorian peruskäsitteet ja perehtyy alkulukujen ominaisuuksiin, osaa, tutkia kokonaislukujen jaollisuutta jakoyhtälön ja kokonaislukujen kongruenssin avulla osaa määrittää kokonaislukujen suurimman yhteisen tekijän Eukleideen algoritmilla. Lauseen formalisoiminen, lauseen totuusarvot, avoin lause, kvanttorit, suora, käänteinen ja ristiriitatodistus, kokonaislukujen jaollisuus ja jakoyhtälö, Eukleideen algoritmi, alkuluvut, aritmetiikan peruslause, kokonaislukujen kongruenssi

16 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ 16 Muita mahdollisia sisältöjä Lukujärjestelmät

17 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Numeerisia ja algebrallisia menetelmiä (MAA12) Edellyttää kurssin MAA7 sisältöjen hallintaa. oppii ymmärtämään absoluuttisen ja suhteellisen virheen käsitteet ja niiden avulla likiarvolaskujen tarkkuutta koskevat säännöt peruslaskutoimitusten tapauksessa, ymmärtää iteroinnin käsitteen ja oppii ratkaisemaan yhtälöitä numeerisesti, oppii tutkimaan polynomien jaollisuutta ja määrittämään polynomin tekijät, oppii algoritmista ajattelua, harjaantuu käyttämään nykyaikaisia matemaattisia välineitä, oppii määrittämään numeerisesti muutosnopeutta ja pinta-alaa. Absoluuttinen ja suhteellinen virhe, Newtonin menetelmä ja iterointi, polynomien jakoalgoritmi, polynomien jakoyhtälö, muutosnopeus ja pinta-ala

18 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Differentiaali- ja integraalilaskennan jatkokurssi (MAA13) Edellyttää kaikkien pakollisten kurssien sisältöjen hallintaa. syventää differentiaali- ja integraalilaskennan teoreettisten perusteiden tuntemustaan, täydentää integraalilaskennan taitojaan ja soveltaa niitä muun muassa jatkuvien todennä-köisyysjakaumien tutkimiseen, tutkii lukujonon raja-arvoa, sarjoja ja niiden summia. Funktion jatkuvuuden ja derivoituvuuden tutkiminen, jatkuvien ja derivoituvien funktioiden yleisiä ominaisuuksia, funktioiden ja lukujonojen raja-arvot äärettömyydessä, epäoleelliset integraalit Muita mahdollisia sisältöjä Murtofunktioiden asymptootit, kuvaajia, yksinkertaisia differentiaaliyhtälöitä

19 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Koulukohtaiset syventävät kurssit Kohti ylioppilaskirjoituksia 1 (MAA14) kertaa pakollisten kurssien keskeiset sisällöt, saa kokonaiskuvan pakollisten kurssien tarjoamista matemaattisista menetelmistä, saavuttaa menetelmällisen varmuuden erityyppisten ongelmien ratkaisemiseksi. Pakollisten kurssien ydinkohtien kertaus, vanhojen ylioppilastehtävien ratkaiseminen

20 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Talousmatematiikka (MAA16) Kurssi on sama kuin MAB7. oppii ymmärtämään talouselämässä käytettyjä käsitteitä, saa matemaattisia valmiuksia oman taloutensa suunnitteluun, saa laskennallisen pohjan yrittäjyyden ja taloustiedon opiskeluun, soveltaa tilastollisia menetelmiä aineistojen käsittelyyn. Indeksi-, kustannus-, rahaliikenne-, laina-, verotus- ja muita laskelmia, taloudellisiin tilanteisiin soveltuvia matemaattisia malleja lukujonojen ja summien avulla Muita mahdollisia sisältöjä Prosenttikäsitteen syventäminen

21 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Kompleksiluvut ja differentiaaliyhtälöt (MAA21) omaksuu kompleksilukujen algebralliset ominaisuudet, oppii käsittelemään kompleksilukulausekkeita, osaa ratkaista erityyppisiä yhtälöitä kompleksitasossa, oppii ratkaisemaan separoituvia ja 1. kertaluvun lineaarisia differentiaaliyhtälöitä, osaa ratkaista differentiaaliyhtälöihin johtavia käytännön ongelmia, perehtyy vektorituloon ja skalaarikolmituloon, oppii käyttämään vektori- ja skalaarikolmituloa mm. pinta-alojen ja tilavuuksien määrityksissä. Kompleksiluvut tason pisteinä ja vektoreina, kompleksilukujen laskutoimitukset, liittoluku, yhtälöiden ratkaiseminen kompleksitasossa, separoituvat differentiaaliyhtälöt, 1. kertaluvun lineaariset differentiaaliyhtälöt, vektoritulo, skalaarikolmitulo

22 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Avaruusgeometria (MAA22) oppii määrittämään avaruuskulmia, tuntee tavanmukaiset kappaleet ja osaa määrittää niiden osien pituuksia, pinta-aloja ja tilavuuksia, perehtyy katkaistuun kartioon, pallosektoriin, pallosegmenttiin, kalottiin, vyöhykkeeseen ja Platonin monitahokkaisiin ja hallitsee niiden osien pituuksien, alojen ja tilavuuksien määrityksen, oppii ratkaisemaan avaruusgeometrisia ääriarvo-ongelmia. Kulma avaruudessa, katkaistu kartio, pallosektori ja -segmentti, kalotti ja vyöhyke, Platonin monitahokkaat, ääriarvotehtäviä avaruudessa

23 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Lineaarialgebra (MAA23) tuntee matriisin käytön numeerisen aineiston esitysmuotona, oppii matriisien peruslaskutoimitukset, hallitsee käänteismatriisin määrityksen, oppii ratkaisemaan yhtälöryhmiä Gaussin ja Gaussin-Jordanin menetelmillä, perehtyy vektoriavaruuden ja aliavaruuden käsitteisiin. Matriisien peruslaskutoimitukset, käänteismatriisi, Gaussin eliminointimenetelmä, Gaussin-Jordanin eliminointimenetelmä, vektoriavaruus ja aliavaruus

24 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Topologia (MAA24) Kurssi on tarkoitettu vain matemaattis-luonnontieteellisen linjan opiskelijoille. tutustuu reaalilukujen ja tason topologisiin perussuureisiin, omaksuu avoimen ja suljetun joukon sekä ympäristön käsitteet, oppii määrittämään reaaliluku- ja tason joukkojen sisä-, ulko- ja reunapisteitä sekä sulkeumia, sisäistää topologisen avaruuden yleistyksen, oppii topologisten perussuureiden määritelmät yleisissä topologisissa avaruuksissa. Topologinen avaruus, avoimet ja suljetut joukot, ympäristö, sisä-, ulko- ja reunapiste, sulkeuma, reaalilukujen topologiaa, tason topologiaa

25 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Algebra (MAA25) Kurssi on tarkoitettu vain matemaattis-luonnontieteellisen linjan opiskelijoille syventää funktio-käsitteen tuntemustaan algebrallisesta näkökulmasta relaatiokäsitteestä lähtien oppii tunnistamaan erityyppisiä funktioita (surjektio, injektio, bijektio) oppii vertaamaan äärettömien joukkojen kokoja omaksuu ryhmän ja renkaan käsitteet Relaatio, ekvivalenssirelaatio, funktio, surjektio, injektio, bijektio, mahtavuus, ryhmä, rengas

26 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Soveltavat kurssit Laskuharjoituskurssi 1 (MAA18) Pituus on puoli kurssia (kymmenen 75 minuutin oppituntia), toteutus kuukauden intensiivikurssina 1. jakson puolivälistä eteenpäin. Arvostellaan suoritusmerkinnällä. Kurssi on tarkoitettu lähinnä niille, joiden peruskoulun matematiikan arvosana on korkeintaan kahdeksan. kertaa keskeisiä peruskoulun matematiikan sisältöjä, saa paremmat valmiudet aloittaa lukion pitkän matematiikan opiskelu. Murtoluvut, potenssilaskenta, polynomit, muistikaavat, 1. asteen yhtälöt, prosenttilaskentaa

27 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Laskuharjoituskurssi 2 (MAA19) Kurssista annetaan suoritusmerkintä saa mahdollisuuden ohjattuun lisäharjoitteluun, kehittää lasku- ja ongelmanratkaisutaitoaan harjaantuu käyttämään ja soveltamaan meneillään olevalla kurssilla esitettyjä matemaattisia menetelmiä Kursseihin Todennäköisyys ja tilastot, Derivaatta, Juuri- ja logaritmifunktiot, Trigonometriset funktiot ja lukujonot ja Integraalilaskenta liittyvien tehtävien ratkaiseminen

28 LUKU 2. MATEMATIIKAN PITKÄ OPPIMÄÄRÄ Laskuharjoituskurssi 3 (MAA20) Kurssista annetaan suoritusmerkintä kehittää lasku- ja ongelmanratkaisutaitoaan, perehtyy ylioppilastehtäviin, oppii käyttämään joustavasti erilaisia menetelmiä ongelmien ratkaisussa, kertaa ja saa kokonaiskuvan pakollisten kurssien sisältämistä menetelmistä. aikaisempien vuosien ylioppilastehtävien ratkaiseminen

29 Luku 3 Matematiikan lyhyt oppimäärä Matematiikan lyhyen oppimäärän opetuksen tehtävänä on tarjota valmiuksia hankkia, käsitellä ja ymmärtää matemaattista tietoa ja käyttää matematiikkaa elämän eri tilanteissa ja jatko-opinnoissa. 3.1 Opetuksen tavoitteet Matematiikan lyhyen oppimäärän opetuksen tavoitteena on, että opiskelija osaa käyttää matematiikkaa jokapäiväisen elämän ja yhteiskunnallisen toiminnan apuvälineenä, saa myönteisiä oppimiskokemuksia matematiikan parissa työskennellessään ja oppii luottamaan omiin kykyihinsä, taitoihinsa ja ajatteluunsa, rohkaistuu kokeilevaan, tutkivaan ja keksivään oppimiseen, oppii yhteistyöhön muiden opiskelijoiden kanssa sekä itsenäiseen työskentelyyn, hankkii sellaisia matemaattisia tietoja, taitoja ja valmiuksia, jotka antavat riittävän pohjan jatko-opinnoille,

30 LUKU 3. MATEMATIIKAN LYHYT OPPIMÄÄRÄ 30 oppii laskemisen perusrutiineja, sisäistää matematiikan merkityksen välineenä, jolla ilmiöitä voidaan kuvata, selittää ja mallintaa ja jota voidaan käyttää johtopäätösten tekemisessä, saa käsityksen matemaattisen tiedon luonteesta ja sen loogisesta rakenteesta, harjaantuu vastaanottamaan ja analysoimaan viestimien matemaattisessa muodossa tarjoamaa informaatioita ja arvioimaan sen luotettavuutta, oppii laskimen peruskäytön, tutustuu matematiikan merkitykseen kulttuurin kehityksessä, osaa hahmottaa tehtävän annosta ratkaisun kannalta olennaiset seikat, oppii käyttämään kuvioita, kaavioita ja malleja ajattelun apuna, sekä esittämään tehtävän ratkaisun.

31 LUKU 3. MATEMATIIKAN LYHYT OPPIMÄÄRÄ Pakolliset kurssit Lausekkeet ja yhtälöt (MAB1) harjaantuu käyttämään matematiikkaa jokapäiväisen elämän ongelmien ratkaisemisessa ja oppii luottamaan omiin matemaattisiin kykyihinsä, ymmärtää lineaarisen riippuvuuden, verrannollisuuden ja toisen asteen polynomifunktion käsitteet, vahvistaa yhtälöiden ratkaisemisen taitojaan ja oppii ratkaisemaan toisen asteen yhtälöitä. Suureiden välinen lineaarinen riippuvuus ja verrannollisuus, ongelmien muotoileminen yhtälöiksi, yhtälöiden graafinen ja algebrallinen ratkaiseminen, ratkaisujen tulkinta ja arvioiminen, toisen asteen polynomifunktio ja toisen asteen yhtälön ratkaiseminen Muita mahdollisia sisältöjä Prosenttilaskentaa, polynomien peruslaskutoimitukset, murtoluvut, potenssit

32 LUKU 3. MATEMATIIKAN LYHYT OPPIMÄÄRÄ Geometria (MAB2) harjaantuu tekemään havaintoja ja päätelmiä kuvioiden ja kappaleiden geometrisista ominaisuuksista, vahvistaa tasokuvioiden ja kolmiulotteisten kappaleiden kuvien piirtämisen taitojaan, osaa ratkaista käytännön ongelmia geometriaa hyväksi käyttäen. Kuvioiden yhdenmuotoisuus, mittakaava, suorakulmaisen kolmion trigonometria, Pythagoraan lause, kuvioiden ja kappaleiden pinta-alan ja tilavuuden määrittäminen, menetelmien käyttö geometrian koordinaatistossa Muita mahdollisia sisältöjä Yksikkömuunnoksia, taitojen soveltaminen käytännön ongelmissa

33 LUKU 3. MATEMATIIKAN LYHYT OPPIMÄÄRÄ Matemaattisia malleja I (MAB3) näkee reaalimaailman ilmiöissä säännönmukaisuuksia ja riippuvuuksia ja kuvaa niitä matemaattisilla malleilla, tottuu arvioimaan mallien hyvyyttä ja käyttökelpoisuutta. Lineaarisen ja eksponentiaalisen mallin soveltaminen sekä mallien kuvaajat, potenssiyhtälön ratkaiseminen, eksponenttiyhtälön ratkaiseminen logaritmin avulla Muita mahdollisia sisältöjä Suoran kulmakerroin ja yhtälö, epäyhtälö, yhtälöpari

34 LUKU 3. MATEMATIIKAN LYHYT OPPIMÄÄRÄ Matemaattinen analyysi (MAB4) tutkii funktion muutosnopeutta graafisin ja numeerisin menetelmin, ymmärtää derivaatan käsitteen muutosnopeuden mittana, osaa tutkia polynomifunktion kulkua derivaatan avulla, oppii sovellusten yhteydessä määrittämään polynomifunktion suurimman ja pienimmän arvon. Polynomifunktion derivaatta, polynomifunktion merkin ja kulun tutkiminen, paraabeli, polynomifunktion suurimman ja pienimmän arvon määrittäminen, graafisia ja numeerisia menetelmiä Muita mahdollisia sisältöjä Tangentin kulmakerroin, kuvaajien tulkintaa, soveltavia tehtäviä

35 LUKU 3. MATEMATIIKAN LYHYT OPPIMÄÄRÄ Tilastot ja todennäköisyys (MAB5) harjaantuu käsittelemään ja tulkitsemaan tilastollisia aineistoja, tutustuu laskinten ja tietokoneiden käyttöön tilastotehtävissä, perehtyy todennäköisyyslaskennan perusteisiin. Jatkuvien ja diskreettien tilastollisten jakaumien tunnuslukujen määrittäminen, diagrammit, normaalijakauma ja jakauman normittaminen, kombinatoriikkaa, todennäköisyyden käsite, todennäköisyyden laskulakien ja niitä havainnollistavien mallien käyttöä Muita mahdollisia sisältöjä Tilastollisen aineiston kokoaminen, käsitteleminen ja tulkitseminen, binomitodennäköisyys, laskimen käyttö

36 LUKU 3. MATEMATIIKAN LYHYT OPPIMÄÄRÄ Matemaattisia malleja II (MAB6) varmentaa ja täydentää yhtälöiden ratkaisutaitojaan, osaa ratkaista käytännön tilanteisiin liittyviä lineaarisia optimointitehtäviä, ymmärtää lukujonon käsitteen, ratkaisee käytännön ongelmia aritmeettisen ja geometrisen jonon ja summan avulla. Kahden muuttujan lineaariset yhtälöt, lineaarisen yhtälöparin ratkaiseminen, kahden muuttujan epäyhtälön graafinen ratkaiseminen, lineaarinen optimointi, lukujono, aritmeettinen ja geometrinen jono ja summa Muita mahdollisia sisältöjä Yhtälöryhmät, soveltavat tehtävät

37 LUKU 3. MATEMATIIKAN LYHYT OPPIMÄÄRÄ Valtakunnalliset syventävät kurssit Talousmatematiikka (MAB7) oppii ymmärtämään talouselämässä käytettyjä käsitteitä, saa matemaattisia valmiuksia oman taloutensa suunnitteluun, saa laskennallisen pohjan yrittäjyyden ja taloustiedon opiskeluun, soveltaa tilastollisia menetelmiä aineistojen käsittelyyn. Indeksi-, kustannus-, rahaliikenne-, laina-, verotus- ja muita laskelmia, taloudellisiin tilanteisiin soveltuvia matemaattisia malleja lukujonojen ja summien avulla Muita mahdollisia sisältöjä Prosenttikäsitteen syventäminen

38 LUKU 3. MATEMATIIKAN LYHYT OPPIMÄÄRÄ Matemaattisia malleja III (MAB8) laajentaa käsitystään teknologisoituvassa yhteiskunnassa tarvittavasta matematiikasta, saa apuneuvoja jaksollisten ilmiöiden matemaattiseen käsittelyyn. Trigonometristen funktioiden määrittely yksikköympyrän avulla, radiaani, tyyppiä sinf(x) = a olevien trigonometristen yhtälöiden ratkaiseminen, muotoa f(x) = Asin(bx) olevien funktioiden kuvaajat jaksollisten ilmiöiden mallintajina, vektorin käsite ja vektoreiden peruslaskutoimitusten periaatteet, koordinaatiston vektoreiden komponenttiesitys ja skalaaritulo, kaksi- ja kolmiulotteisen koordinaatiston pisteiden ja kulmien tutkiminen vektoreiden avulla Muita mahdollisia sisältöjä Sini- ja kosinilause

39 LUKU 3. MATEMATIIKAN LYHYT OPPIMÄÄRÄ Koulukohtaiset syventävät kurssit Kertauskurssi (MAB9) kertaa pakollisten kurssien keskeiset sisällöt, saa kokonaiskuvan kusseista ja matemaattisista menetelmistä, harjaantuu yo-kirjoituksiin. Prosenttilaskenta, yhtälöt ja epäyhtälöt, taso- ja avaruusgeometria, lineaarinen ja eksponentiaalinen malli, derivaatta ja sen sovellukset, lukujonot ja niiden sovellukset, tilastotieteen ja todennäköisyyslaskennan menetelmät

40 LUKU 3. MATEMATIIKAN LYHYT OPPIMÄÄRÄ Laskuharjoituskurssi (MAB10) Kurssista annetaan suoritusmerkintä saa mahdollisuuden ohjattuun lisäharjoitteluun, kehittää lasku- ja ongelmanratkaisutaitojaan. Kurssien ydinkohdat

MATEMATIIKKA MATEMATIIKAN PITKÄ OPPIMÄÄRÄ. Oppimäärän vaihtaminen

MATEMATIIKKA MATEMATIIKAN PITKÄ OPPIMÄÄRÄ. Oppimäärän vaihtaminen MATEMATIIKKA Oppimäärän vaihtaminen Opiskelijan siirtyessä matematiikan pitkästä oppimäärästä lyhyempään hänen suorittamansa pitkän oppimäärän opinnot luetaan hyväksi lyhyemmässä oppimäärässä siinä määrin

Lisätiedot

Kurssikuvausten väljyyttä voidaan käyttää resurssien salliessa keskeisten sisältöjen syventämiseen ja eheyttävien kokonaisuuksien muodostamiseen.

Kurssikuvausten väljyyttä voidaan käyttää resurssien salliessa keskeisten sisältöjen syventämiseen ja eheyttävien kokonaisuuksien muodostamiseen. 5.6. Matematiikka Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa. Matematiikan opetuksen tehtävänä on tutustuttaa opiskelija

Lisätiedot

Matematiikan pitkä oppimäärä

Matematiikan pitkä oppimäärä Matematiikan pitkä oppimäärä Matematiikan pitkän oppimäärän opetuksen tehtävänä on antaa opiskelijalle matemaattiset valmiudet, joita tarvitaan ammatillisissa opinnoissa ja korkeakouluopinnoissa. Pitkän

Lisätiedot

Matematiikan pitkä oppimäärä

Matematiikan pitkä oppimäärä Matematiikan pitkä oppimäärä Matematiikan pitkän oppimäärän opetuksen tehtävänä on antaa opiskelijalle matemaattiset valmiudet, joita tarvitaan ammatillisissa opinnoissa ja korkeakouluopinnoissa. Pitkän

Lisätiedot

MATEMATIIKKA. MAA Matematiikan pitkä oppimäärä

MATEMATIIKKA. MAA Matematiikan pitkä oppimäärä MATEMATIIKKA Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa. Matematiikan opetuksen tehtävänä on tutustuttaa opiskelija matemaattisen

Lisätiedot

EHDOTUS. EHDOTUS Matematiikan opetussuunnitelmien perusteiden oppiainekohtaiset osat

EHDOTUS. EHDOTUS Matematiikan opetussuunnitelmien perusteiden oppiainekohtaiset osat EHDOTUS Matemaattisten aineiden opettajien liitto MAOL ry 12.2.2015 Asemamiehenkatu 4 00520 HELSINKI Opetushallitus Hakaniemenranta 6 00530 Helsinki EHDOTUS Matematiikan opetussuunnitelmien perusteiden

Lisätiedot

MATEMATIIKKA Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa.

MATEMATIIKKA Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa. MATEMATIIKKA Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa. Matematiikan opetuksen tehtävänä on tutustuttaa opiskelija matemaattisen

Lisätiedot

3. Lausekkeet ja yhtälöt (ma3) Keskeiset sisällöt polynomin käsite, polynomien yhteen-, vähennys- ja kertolasku

3. Lausekkeet ja yhtälöt (ma3) Keskeiset sisällöt polynomin käsite, polynomien yhteen-, vähennys- ja kertolasku 5.6 Matematiikka Perusopetus Opetuksen tavoitteet Matematiikan opetuksen tavoitteena on, että aikuisopiskelija oppii ymmärtämään matemaattisten käsitteiden ja sääntöjen merkityksen sekä oppii näkemään

Lisätiedot

Pitkä matematiikka, Lyhyt matematiikka MATEMATIIKKA, PITKÄ, LUKIO-OPETUS

Pitkä matematiikka, Lyhyt matematiikka MATEMATIIKKA, PITKÄ, LUKIO-OPETUS Pitkä matematiikka, Lyhyt matematiikka MATEMATIIKKA, PITKÄ, LUKIO-OPETUS Matematiikka tarjoaa välineitä johdonmukaisen ja täsmällisen ajattelun edistämiseen, avaruuden hahmottamiseen sekä käytännön ja

Lisätiedot

Matematiikka. Matematiikan pitkä oppimäärä. Pakolliset kurssit

Matematiikka. Matematiikan pitkä oppimäärä. Pakolliset kurssit Matematiikka Matematiikan pitkä oppimäärä Matematiikan pitkän oppimäärän opetuksen tehtävänä on antaa opiskelijalle matemaattiset valmiudet, joita tarvitaan ammatillisissa opinnoissa ja korkeakouluopinnoissa.

Lisätiedot

5.6. Matematiikka. 5.6.1. Pitkä matematiikka

5.6. Matematiikka. 5.6.1. Pitkä matematiikka 5.6. Matematiikka 5.6.1. Pitkä matematiikka Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa. Matematiikan opetuksen tehtävänä

Lisätiedot

Matematiikka vuosiluokat 7 9

Matematiikka vuosiluokat 7 9 Matematiikka vuosiluokat 7 9 Matematiikan opetuksen ydintehtävänä on tarjota oppilaille mahdollisuus hankkia sellaiset matemaattiset taidot, jotka antavat valmiuksia selviytyä jokapäiväisissä toiminnoissa

Lisätiedot

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan.

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan. VUOSILUOKAT 6 9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on syventää matemaattisten käsitteiden ymmärtämistä ja tarjota riittävät perusvalmiudet. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten

Lisätiedot

kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen 60-järjestelmään kellonaikojen avulla

kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen 60-järjestelmään kellonaikojen avulla 7.6.1 MATEMATIIKKA VUOSILUOKAT 3 5 Vuosiluokkien 3 5 matematiikan opetuksen ydintehtävinä ovat matemaattisen ajattelun kehittäminen, matemaattisten ajattelumallien oppimisen pohjustaminen, lukukäsitteen

Lisätiedot

Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein:

Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein: 9.8. MATEMATIIKKA Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein: AK 1 = Ihmisenä kasvaminen AK 2 = Kulttuuri-identiteetti

Lisätiedot

MAS- linjan matematiikan kurssit

MAS- linjan matematiikan kurssit Muutokset Vantaankosken koulun Matemaattis-luonnontieteellisen linjan (MAS) opetussuunnitelmaan lukuvuonna 2012 2013 aloittavista 7. luokista alkaen Kurssisisällöt ja -ajoitus ovat muuttuneet matematiikan

Lisätiedot

Päättöarvioinnin kriteerit arvosanalle hyvä (8)

Päättöarvioinnin kriteerit arvosanalle hyvä (8) Tavoitteet Jokaisella oppilaalla on peruskoulun aikana mahdollisuus hankkia matemaattiset perustiedot ja -taidot, jotka antavat valmiuden luovaan matemaattiseen ajatteluun ja taitojen soveltamiseen eri

Lisätiedot

Opiskelijan käsitys kielestä, teksteistä ja niiden tulkinnasta syvenee, ja hänen taitonsa lukea tekstejä

Opiskelijan käsitys kielestä, teksteistä ja niiden tulkinnasta syvenee, ja hänen taitonsa lukea tekstejä ÄIDINKIELI JA KIRJALLISUUS PAKOLLISET KURSSIT ÄI1 Kieli, tekstit ja vuorovaikutus Opiskelijan käsitys kielestä, teksteistä ja niiden tulkinnasta syvenee, ja hänen taitonsa lukea tekstejä kehittyy. Hän

Lisätiedot

ÄIDINKIELI LAHDEN RUDOLF STEINER KOULUN LUKION KURSSISISÄLLÖT

ÄIDINKIELI LAHDEN RUDOLF STEINER KOULUN LUKION KURSSISISÄLLÖT LAHDEN RUDOLF STEINER KOULUN LUKION KURSSISISÄLLÖT Äidinkieli Englanti A1 kieli Ruotsi B1 kieli Saksa B2 kieli Matematiikka Fysiikka Kemia Biologia Maantieto Uskonto Evankelis-luterilainen uskonto Ortodoksinen

Lisätiedot

Matemaattis-luonnontieteellinen linja

Matemaattis-luonnontieteellinen linja Luku 1 Matemaattis-luonnontieteellinen linja Erikoislukiolinja on tarkoitettu lähinnä niille, joiden jatkosuunnitelmat edellyttävät matemaattis-luonnontieteellistä tietoa ja osaamista. Erikoislinjalla

Lisätiedot

Kommentteja Markku Halmetojan ops-ehdotuksesta

Kommentteja Markku Halmetojan ops-ehdotuksesta Jorma Merikoski 10.1.2015 Kommentteja Markku Halmetojan ops-ehdotuksesta Markku Halmetoja on laatinut ehdotuksen lukion pitkän matematiikan uudeksi opetussuunnitelmaksi. Hän esittelee sitä matematiikan

Lisätiedot

MATEMATIIKKA. Oppiaineen tehtävä

MATEMATIIKKA. Oppiaineen tehtävä 1 MATEMATIIKKA Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaan loogista, täsmällistä ja luovaa ajattelua. Opetus luo pohjan matemaattisten käsitteiden ja rakenteiden ymmärtämiselle

Lisätiedot

OPS OPPIMISTAVOITTEET JA OPETUKSEN KESKEISET SISÄLLÖT MATEMATIIKKA

OPS OPPIMISTAVOITTEET JA OPETUKSEN KESKEISET SISÄLLÖT MATEMATIIKKA OPS OPPIMISTAVOITTEET JA OPETUKSEN MATEMATIIKKA 2013 2014 MATEMATIIKKA Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä

Lisätiedot

Verkkokurssien sisältö

Verkkokurssien sisältö Verkkokurssien sisältö vai11 Kielenhuollon kurssi oppii havaitsemaan erilaisten tekstien kielioppivirheitä ja korjaamaan ne. oppii välttämään teksteissään tavallisia vieras-, puhe- ja kapulakielisyyksiä.

Lisätiedot

MAB 9 kertaus MAB 1. Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi

MAB 9 kertaus MAB 1. Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi MAB 9 kertaus MAB 1 Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi Kertolaskussa osoittajat ja nimittäjät kerrotaan keskenään Jakolasku lasketaan kertomalla

Lisätiedot

Luonnos pitkän matematiikan opetussuunnitelmaksi. Pitkän matematiikan pakollinen oppimäärä

Luonnos pitkän matematiikan opetussuunnitelmaksi. Pitkän matematiikan pakollinen oppimäärä Luonnos pitkän matematiikan opetussuunnitelmaksi 2016 Kaikille lukiolaisille yhteisen johdantokurssin sisältö on luonnoksessa määritelty varsin yksityiskohtaisesti. Kurssin on annettava realistinen kuva

Lisätiedot

MATEMATIIKKA/Vuosiluokat 7-9

MATEMATIIKKA/Vuosiluokat 7-9 MATEMATIIKKA/Vuosiluokat 7-9 Oppiaineen tehtävä vuosiluokilla 7-9 Vuosiluokkien 7 9 matema ikan opetuksen tehtävänä on vahvistaa matemaa sta yleissivistystä. Opetuksessa syvennetään matemaattisten käsitteiden

Lisätiedot

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon

Lisätiedot

PORIN SUOMALAISEN YHTEISLYSEON LUKIO

PORIN SUOMALAISEN YHTEISLYSEON LUKIO 1 PORIN SUOMALAISEN YHTEISLYSEON LUKIO Lukujärjestyksen tekeminen (kurssitarjotin) Ainelyhenteet Lv. 2012 2013 kurssitarjotin tehdään netin kautta Wilmaan, osoite https://wilma.pori.fi Aloita valitsemalla

Lisätiedot

Mika Setälä Lehtori Lempäälän lukio

Mika Setälä Lehtori Lempäälän lukio LOPS 2016 matematiikka Mika Setälä Lehtori Lempäälän lukio Millainen on input? Oppilaiden lähtötaso edellisiin lukion opetussuunnitelmiin nähden pitää huomioida kun lukion uutta opetussuunnitelmaa tehdään.

Lisätiedot

Ehdotus vuonna 2016 voimaan astuvaksi pitkän matematiikan opetussuunnitelmaksi

Ehdotus vuonna 2016 voimaan astuvaksi pitkän matematiikan opetussuunnitelmaksi Ehdotus vuonna 2016 voimaan astuvaksi pitkän matematiikan opetussuunnitelmaksi Yhteisen johdantokurssin on annettava realistinen kuva pitkän matematiikan sisältöjen käsitteellisyystasosta. Myös lyhyen

Lisätiedot

KURSSISELOSTEET 1.8.2014 Päivitetty 7.2.2014 Päivitetty 12.6.2014 Päivitetty 11.12.2014 Päivitetty 11.6.2015

KURSSISELOSTEET 1.8.2014 Päivitetty 7.2.2014 Päivitetty 12.6.2014 Päivitetty 11.12.2014 Päivitetty 11.6.2015 KURSSISELOSTEET 1.8.2014 Päivitetty 7.2.2014 Päivitetty 12.6.2014 Päivitetty 11.12.2014 Päivitetty 11.6.2015 SISÄLLYSLUETTELO 6. Oppiainesuunnitelmat 6.1 Äidinkieli ja kirjallisuus, suomi äidinkielenä

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

TUTKINNON OSAN ARVIOINTISUUNNITELMA. Tutkinnon osa. Toteutus. 3.2 Matemaattis-luonnontieteellinen osaaminen, 9 osp

TUTKINNON OSAN ARVIOINTISUUNNITELMA. Tutkinnon osa. Toteutus. 3.2 Matemaattis-luonnontieteellinen osaaminen, 9 osp TUTKINNON OSAN ARVIOINTISUUNNITELMA Tutkinnon osa 3.2 Matemaattis-luonnontieteellinen osaaminen, 9 osp ARVIOINNIN KESKEISET ASIAT 1. Kuvaus osaamisen tunnustamisen toteuttamisesta Toteutus Ennen uuden

Lisätiedot

HYVÄ KALAJOEN LUKIOON AIKOVA

HYVÄ KALAJOEN LUKIOON AIKOVA 1 HYVÄ KALAJOEN LUKIOON AIKOVA Kalajoki on reilun 9000 asukkaan hiekkarantojen merikaupunki. Lukiossamme on noin 250 opiskelijaa Kalajoelta ja ympäristökunnista. Kalajoen lukio on turvallinen yleislukio,

Lisätiedot

S5-S9 L1, L2, L4, L5, L6, L7 havaintojensa pohjalta kannustaa oppilasta esittämään ratkaisujaan ja päätelmiään muille

S5-S9 L1, L2, L4, L5, L6, L7 havaintojensa pohjalta kannustaa oppilasta esittämään ratkaisujaan ja päätelmiään muille MATEMATIIKKA Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaan loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden ja rakenteiden

Lisätiedot

ÄIDINKIELI JA KIRJALLISUUS PAKOLLISET KURSSIT

ÄIDINKIELI JA KIRJALLISUUS PAKOLLISET KURSSIT ÄIDINKIELI JA KIRJALLISUUS PAKOLLISET KURSSIT ÄI1 Kieli, tekstit ja vuorovaikutus Käsitys kielestä, teksteistä ja niiden tulkinnasta syvenee, ja taito lukea tekstejä kehittyy. Opitaan jäsentämään viestintäympäristöä

Lisätiedot

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut KOMPLEKSILUVUT C Luonnolliset luvut N Kokonaisluvut Z Rationaaliluvut Q Reaaliluvut R Kompleksi luvut C Negat kokonaisluvut Murtoluvut Irrationaaliluvut Imaginaariluvut Erilaisten yhtälöiden ratkaiseminen

Lisätiedot

LUOKKA 1 LUOKKA 2 lukumäärä, lukusana ja numerosymboli. yhteydet luonnollisilla luvuilla luonnollisilla luvuilla

LUOKKA 1 LUOKKA 2 lukumäärä, lukusana ja numerosymboli. yhteydet luonnollisilla luvuilla luonnollisilla luvuilla 7.2.3. MATEMATIIKKA 88 TAVOITTEET: : oppii keskittymään, kuuntelemaan ja kommunikoimaan sekä kehittämään ajattelemistaan; ymmärtää lukukäsitteen ja oppii siihen soveltuvia peruslaskutaitoja; oppii perustelemaan

Lisätiedot

KURSSIESITTEET LV. 2015-2016

KURSSIESITTEET LV. 2015-2016 KURSSIESITTEET LV. 2015-2016 Salpauksen lukio, Nastola KOULUTUSKESKUS SALPAUS, SALPAUKSEN LUKIO, NASTOLA Rakokiventie 2 15550 NASTOLA Puh. 03-8287 201 Fax. 03-8287 225 www.salpaus.fi Opetusalapäällikkö

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

PII JA OPETUSSUUNNITELMAN PERUSTEET

PII JA OPETUSSUUNNITELMAN PERUSTEET PII JA OPETUSSUUNNITELMAN PERUSTEET Yläkoulun matematiikan oppimateriaali Pii noudattaa uuden opetussuunnitelman perusteita. Sarja tarjoaa kaikille oppijoille oman taitotasonsa mukaisia haasteita ja myönteisiä

Lisätiedot

(KU) KUVATAIDE. Arviointi Numeroarviointi Erityistä Materiaalimaksu, pakollisten kurssien jälkeen. KU 4 Taiteen kuvista omiin kuviin

(KU) KUVATAIDE. Arviointi Numeroarviointi Erityistä Materiaalimaksu, pakollisten kurssien jälkeen. KU 4 Taiteen kuvista omiin kuviin (KU) KUVATAIDE KU 1 Minä, kuva ja kulttuuri pa vuositaso 1 Tavoitteet Opiskelija oppii ilmaisemaan itseään kuvataiteen keinoin ja tekemään omakohtaisia ratkaisuja työskentelyssään. Värin, tilan, muodon

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

ÄIDINKIELI JA KIRJALLISUUS, SUOMI ÄIDINKIELENÄ. KLAUKKALAN AIKUISLUKIO lukuvuosi 2015-2016. Kurssien kuvaukset ja oppikirjat. Klikkaa oppiainetta

ÄIDINKIELI JA KIRJALLISUUS, SUOMI ÄIDINKIELENÄ. KLAUKKALAN AIKUISLUKIO lukuvuosi 2015-2016. Kurssien kuvaukset ja oppikirjat. Klikkaa oppiainetta KLAUKKALAN AIKUISLUKIO lukuvuosi 2015-2016 Kurssien kuvaukset ja oppikirjat. Klikkaa oppiainetta ÄIDINKIELI JA KIRJALLISUUS, SUOMI ÄIDINKIELENÄ RUOTSI, TOINEN KOTIMAINEN KIELIRUOTSI, TOINEN KOTIMAINEN

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

Esipuhe. Sirkka-Liisa Eriksson

Esipuhe. Sirkka-Liisa Eriksson 3 Esipuhe Matematiikka tieteiden kuningatar ja palvelija on lukioihin ja ammattikorkeakouluihin suunnattuun koulukohtaiseen valinnaiseen syventävään kurssiin perustuva kirja. Kirjan tarkoituksena on kerrata

Lisätiedot

Funktion määrittely (1/2)

Funktion määrittely (1/2) Funktion määrittely (1/2) Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon a täsmälleen yhden B:n alkion b. Merkitään b = f (a). Tässä A = M f on f :n määrittelyjoukko, B on f :n maalijoukko.

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

LAHDEN RUDOLF STEINER KOULUN LUKION KURSSISISÄLLÖT

LAHDEN RUDOLF STEINER KOULUN LUKION KURSSISISÄLLÖT LAHDEN RUDOLF STEINER KOULUN LUKION KURSSISISÄLLÖT Äidinkieli Englanti A1 kieli Ruotsi B1 kieli Saksa B2 kieli Matematiikka Fysiikka Kemia Biologia Maantieto Uskonto Evankelis-luterilainen uskonto Ortodoksinen

Lisätiedot

6. luokka 7. luokka. 6. luokka 7. luokka

6. luokka 7. luokka. 6. luokka 7. luokka VUOSILUOKAT 6-9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on matematiikan osaamisen vahvistaminen ja riittävien perusvalmiuksien tarjoaminen. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten

Lisätiedot

Laaja-alaiseen osaamiseen liittyvät painotukset matematiikassa vuosiluokilla 1-9

Laaja-alaiseen osaamiseen liittyvät painotukset matematiikassa vuosiluokilla 1-9 Matematiikan tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden ja rakenteiden ymmärtämiselle

Lisätiedot

Rakenteiset päättelyketjut ja avoin lähdekoodi

Rakenteiset päättelyketjut ja avoin lähdekoodi Rakenteiset päättelyketjut ja avoin lähdekoodi Mia Peltomäki Kupittaan lukio ja Turun yliopiston IT-laitos http://crest.abo.fi /Imped Virtuaalikoulupäivät 24. marraskuuta 2009 1 Taustaa Todistukset muodostavat

Lisätiedot

7 Matematiikka. 3. luokka

7 Matematiikka. 3. luokka 7 Matematiikka Matematiikka on tapa hahmottaa ja jäsentää ympäröivää maailmaa. Lapsi löytää ja omaksuu leikin, toiminnan sekä keskustelujen avulla matemaattisia käsitteitä, termejä, symboleja ja periaatteita.

Lisätiedot

1 lk Tavoitteet. 2 lk Tavoitteet

1 lk Tavoitteet. 2 lk Tavoitteet MATEMATIIKKA Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien oppimiseen.

Lisätiedot

MATEMATIIKKA VUOSILUOKAT 7-9

MATEMATIIKKA VUOSILUOKAT 7-9 MATEMATIIKKA VUOSILUOKAT 7-9 Oppiaineen tehtävä vuosiluokilla 7-9 Vuosiluokkien 7 9 matematiikan opetuksen tehtävänä on vahvistaa matemaattista yleissivistystä. Opetuksessa syvennetään matemaattisten käsitteiden

Lisätiedot

Kompleksiluvut 1/6 Sisältö ESITIEDOT: reaaliluvut

Kompleksiluvut 1/6 Sisältö ESITIEDOT: reaaliluvut Kompleksiluvut 1/6 Sisältö Kompleksitaso Lukukäsitteen vaiheittainen laajennus johtaa luonnollisista luvuista kokonaislukujen ja rationaalilukujen kautta reaalilukuihin. Jokaisessa vaiheessa ratkeavien

Lisätiedot

Matematiikka. Aineen kuvaus

Matematiikka. Aineen kuvaus Matematiikka Aineen kuvaus Matematiikkaa lähestytään peruskäsitteistä: määrä, muoto ja jatkuva muutos. Matematiikka sovelluksineen palvelee lähes kaikkia eri oppiaineita ja eri elämän- alueita. Matematiikan

Lisätiedot

7.6 Matematiikka. ympäristöään ja pohtii havaintojensa välisiä suhteita. Monet käytännön ongelmat ratkaistaan matemaattisesti.

7.6 Matematiikka. ympäristöään ja pohtii havaintojensa välisiä suhteita. Monet käytännön ongelmat ratkaistaan matemaattisesti. 7.6 Matematiikka M atematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien oppimiseen.

Lisätiedot

YHTEYSTIETOJA...2 HYVÄ KALAJOEN LUKIOON AIKOVA...3 KALAJOEN LUKION KURSSIT...4 ÄIDINKIELI JA KIRJALLISUUS...4 RUOTSI A1-KIELI...5 RUOTSI B1-KIELI...

YHTEYSTIETOJA...2 HYVÄ KALAJOEN LUKIOON AIKOVA...3 KALAJOEN LUKION KURSSIT...4 ÄIDINKIELI JA KIRJALLISUUS...4 RUOTSI A1-KIELI...5 RUOTSI B1-KIELI... 1 YHTEYSTIETOJA...2 HYVÄ KALAJOEN LUKIOON AIKOVA...3 KALAJOEN LUKION KURSSIT...4 ÄIDINKIELI JA KIRJALLISUUS...4 RUOTSI A1-KIELI...5 RUOTSI B1-KIELI...7 ENGLANTI A1-KIELI...8 RANSKA B2-KIELI alkanut vuosiluokilla

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.

Lisätiedot

MAOL-opas koulukohtaisen opetussuunnitelmatyön avuksi

MAOL-opas koulukohtaisen opetussuunnitelmatyön avuksi MAOL-opas koulukohtaisen opetussuunnitelmatyön avuksi Pedagoginen valiokunta 2003 Sisällysluettelo 1. Esipuhe... 3 2. Vanha ja uusi tuntijako ja niiden erot... 4 2.1. Perusopetuksen tuntijako... 4 2.1.1.

Lisätiedot

OPPIAINE KURSSI OPPIKIRJA KUSTANTAJA ISBN. BIOLOGIA 1 BIOS1, Eliömaailma (Uusin painos 2014) Sanoma Pro 978-952- 63-1349-8

OPPIAINE KURSSI OPPIKIRJA KUSTANTAJA ISBN. BIOLOGIA 1 BIOS1, Eliömaailma (Uusin painos 2014) Sanoma Pro 978-952- 63-1349-8 Haminan lukion oppikirjat lukuvuonna 01-016 Huomaa, että muutokset ovat vielä mahdollisia! OPPIAINE KURSSI OPPIKIRJA KUSTANTAJA ISBN BIOLOGIA 1 BIOS1, Eliömaailma (Uusin painos 01) Sanoma Pro 6-19-8 BIOS,

Lisätiedot

Oppilas oppii Luvut ja laskutoimitukset Geometria Mittaaminen ja taulukot ymmärtämään lukukäsitteen ja oppii käyttämään

Oppilas oppii Luvut ja laskutoimitukset Geometria Mittaaminen ja taulukot ymmärtämään lukukäsitteen ja oppii käyttämään 6.3.4 Matematiikka Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien oppimiseen.

Lisätiedot

10 %. Kuinka monta prosenttia arvo nousi yhteensä näiden muutosten jälkeen?

10 %. Kuinka monta prosenttia arvo nousi yhteensä näiden muutosten jälkeen? YLIOPPILASTUTKINTO- LAUTAKUNTA 3.3.0 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Kokeessa saa vastata enintään kymmeneen tehtävään. Tähdellä (*) merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioppilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitsten luonnehdinta

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2008 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 5. kesäkuuta 2008 (aamupäivä) KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Europpa-koulun antama taulukkovihkonen Funktiolaskin,

Lisätiedot

jakokulmassa x 4 x 8 x 3x

jakokulmassa x 4 x 8 x 3x Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää

Lisätiedot

SONKAJÄRVEN LUKIO LUKUVUOSI 2015-2016 OPPIKIRJAT. Kurssi Kirjan nimi Kust. ISBN

SONKAJÄRVEN LUKIO LUKUVUOSI 2015-2016 OPPIKIRJAT. Kurssi Kirjan nimi Kust. ISBN SONKAJÄRVEN LUKIO LUKUVUOSI 2015-2016 OPPIKIRJAT Kurssi Kirjan nimi Kust. ISBN ÄIDINKIELI Kurssit 1-10 Särmä: Suomen kieli ja kirj. Kielenhuolto O 978-951-1265863 Kurssit 1-10 Särmä: Suomen kieli ja kirjallisuus,

Lisätiedot

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio Olkoon a 1 = a 2 = 5 ja a n+1 = a n + 6a n 1 kun n 2. Todista induktiolla, että a n = 3 n ( 2) n, kun n on positiivinen

Lisätiedot

Kuutio ja OPS 2016 K U U T I O OPS 2016. Oppiaineen tehtävä. Oppimiskäsitys

Kuutio ja OPS 2016 K U U T I O OPS 2016. Oppiaineen tehtävä. Oppimiskäsitys Kuutio ja OPS 2016 Uusittu Kuutio noudattaa vuoden 2016 opetussuunnitelman perusteita ja vastaa digitaalisen kehityksen mukanaan tuomiin haasteisiin. Sen monipuoliset tehtävät ja mielenkiintoiset teemasivut

Lisätiedot

Ruoveden Yhteiskoulun lukion kirjalista 2014-2015

Ruoveden Yhteiskoulun lukion kirjalista 2014-2015 Äidinkieli ÄI1 ÄI2 ÄI3 ÄI4 ÄI5 ÄI6 ÄI7 ÄI8 ÄI9 Ruoveden Yhteiskoulun lukion kirjalista Aine Oppikirja Kustantaja Särmä suomen kieli ja kirjallisuus (sähköinen oppikirja) Särmä Tehtäviä 1 (sähköinen) Särmä

Lisätiedot

Pomarkun lukion kirjat 2015-2016

Pomarkun lukion kirjat 2015-2016 Pomarkun lukion kirjat 2015-2016 Äidinkieli Ai 1 ja Ai 2 Kieli ja tekstit 1 978 951 0 277 22 5 SanomaPro Ai 3 ja AI 4 Kieli ja tekstit 2 978 951 0 302 36 1 SanomaPro AI 1 - AI 9 Käsikirja 978 951 0 263

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 8..05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Aloitustunti MAA22 Starttikurssi pitkän matematiikan opiskeluun

Aloitustunti MAA22 Starttikurssi pitkän matematiikan opiskeluun Aloitustunti MAA22 Starttikurssi pitkän matematiikan opiskeluun 13. elokuuta 2015 Miksi matikkaa Erityisen tärkeää teknillisillä ja luonnontieteellisillä aloilla Ohjelmointi ja tietojenkäsittelytiede Lääketieteellinen

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

Opinto-ohjaaja Tuula Väisänen puh. 08 615 54452 tai 040 740 2567. Hyvä lukioon tulija

Opinto-ohjaaja Tuula Väisänen puh. 08 615 54452 tai 040 740 2567. Hyvä lukioon tulija AINEVALINTAOPAS PUOLANGAN LUKIO 1 ov opiskelijoille LV. 2016 201 2017 1 Opinto-ohjaaja Tuula Väisänen puh. 08 615 54452 tai 040 740 2567 Kanslia puh. 08 615 54451 Sähköposti: lukio@puolanka.fi Kotisivu:

Lisätiedot

Matematiikka. 1. luokka 2. luokka. Tavoitteet Oppilas

Matematiikka. 1. luokka 2. luokka. Tavoitteet Oppilas Matematiikka Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien oppimiseen.

Lisätiedot

* Trigonometriset funktiot suorakulmaisessa kolmiossa * Trigonometristen funktioiden kuvaajat

* Trigonometriset funktiot suorakulmaisessa kolmiossa * Trigonometristen funktioiden kuvaajat Trigonometria. a) Määrittele trigonometriset funktiot. b) Vertaa trigonometristen funktioiden ominaisuuksia määritys- ja arvojoukko sekä perusjakso). * Trigonometriset funktiot suorakulmaisessa kolmiossa

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 EB-TUTKINTO 2009 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

1.4 Funktion jatkuvuus

1.4 Funktion jatkuvuus 1.4 Funktion jatkuvuus Kun arkikielessä puhutaan jonkin asian jatkuvuudesta, mielletään asiassa olevan jonkinlaista yhtäjaksoisuutta, katkeamattomuutta. Tässä ei kuitenkaan käsitellä työasioita eikä ihmissuhteita,

Lisätiedot

HÄRMÄN LUKION KIRJALISTA 2015-2016

HÄRMÄN LUKION KIRJALISTA 2015-2016 HÄRMÄN LUKION KIRJALISTA 2015-2016 MAANTIETO - Lukion maantiede Ge 1, Sininen planeetta (Otava) - Lukion maantiede Ge 2, Yhteinen maailma (Otava) - Lukion maantiede 3, Ge 3, Riskien maailma (Otava) - Lukion

Lisätiedot

ÄIDINKIELI ISBN KUSTANTAJA LUOKKA KURSSI Särmä, suomen kieli ja 9789511234364 OTAVA 1-3 1-6

ÄIDINKIELI ISBN KUSTANTAJA LUOKKA KURSSI Särmä, suomen kieli ja 9789511234364 OTAVA 1-3 1-6 VIMPELIN LUKIO OPPIKIRJAT LV. 2015-2016 ÄIDINKIELI ISBN KUSTANTAJA LUOKKA KURSSI Särmä, suomen kieli ja 9789511234364 OTAVA 1-3 1-6 kirjallisuus Särmä, tehtäviä 1 9789511237211 OTAVA 1 1 Särmä, tehtäviä

Lisätiedot

Algoritmit C++ Kauko Kolehmainen

Algoritmit C++ Kauko Kolehmainen Algoritmit C++ Kauko Kolehmainen Algoritmit - C++ Kirjoittanut Taitto Kansi Kustantaja Kauko Kolehmainen Kauko Kolehmainen Frank Chaumont Oy Edita Ab IT Press PL 760 00043 EDITA Sähköpostiosoite Internet

Lisätiedot

4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA. T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen

4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA. T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen 4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen 1 2 TI-Nspire CX CAS kämmenlaite kevään 2013 pitkän matematiikan kokeessa Tehtävä 1. Käytetään komentoa

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,

Lisätiedot

NAANTALIN LUKION OPPIKIRJALUETTELO LV. 2013/2014

NAANTALIN LUKION OPPIKIRJALUETTELO LV. 2013/2014 NAANTALIN LUKION OPPIKIRJALUETTELO LV. 2013/2014 AINE ÄIDINKIELI 1-6 Särmä, Suomen kieli ja kirjallisuus, OTAVA 978-951-1-23436-4 1 Särmä, Tehtäviä 1, OTAVA 978-951-1-23721-1 2 Särmä, Tehtäviä 2, OTAVA

Lisätiedot

Valintaopas 2016 2017 Sievin lukio Aikuisten ops

Valintaopas 2016 2017 Sievin lukio Aikuisten ops Valintaopas 2016 2017 Sievin lukio Aikuisten ops SIEVIN LUKIO Jussinmäentie 2 B 85410 SIEVI http://peda.net/veraja/sievi/lukio s-posti: etunimi.sukunimi@sievi.fi Wilman osoite: https://edu.sievi.fi Rehtori

Lisätiedot

KAITAAN LUKION OPPIKIRJAT 2014 2015

KAITAAN LUKION OPPIKIRJAT 2014 2015 KAITAAN LUKION OPPIKIRJAT 2014 2015 O = Otava E = Edita K = Kustannus Oy KK = Kustannuskiila SP = Sanoma Pro SKS = Suomal.kirjall.seura *Oppikirjat voi hankkia perinteisinä kirjoina tai sähköisinä oppikirjoina*

Lisätiedot

SISÄLLYSLUETTELO. Lukion tuntijako 4. Ohjeita valintojen tekemisessä 5. Tulevien ykkösten valinnat 6. Sievin lukion kurssit, yhteenveto 9

SISÄLLYSLUETTELO. Lukion tuntijako 4. Ohjeita valintojen tekemisessä 5. Tulevien ykkösten valinnat 6. Sievin lukion kurssit, yhteenveto 9 SISÄLLYSLUETTELO Lukion tuntijako 4 Ohjeita valintojen tekemisessä 5 Tulevien ykkösten valinnat 6 Sievin lukion kurssit, yhteenveto 9 Opiskelijan valintakortti 12 Äidinkieli ja kirjallisuus 13 Ruotsi 14

Lisätiedot

K AITAAN LUKION OPPIKIRJAT 2015 2016

K AITAAN LUKION OPPIKIRJAT 2015 2016 K AITAAN LUKION OPPIKIRJAT 2015 2016 O = Otava E = Edita K = Kustannus Oy KK = Kustannuskiila SP = Sanoma Pro SKS = Suomal.kirjall.seura *Oppikirjat voi hankkia perinteisinä kirjoina tai sähköisinä oppikirjoina*

Lisätiedot

Haminan lukion oppikirjat lukuvuonna 2014-2015

Haminan lukion oppikirjat lukuvuonna 2014-2015 Haminan lukion oppikirjat lukuvuonna 01-015 OPPIAINE KURSSI OPPIKIRJA KUSTANTAJA ISBN BIOLOGIA 1 BIOS1, Eliömaailma (Uusin painos 01) Sanoma Pro 6-19-8 BIOLOGIA, Elämä (uusi OPS) BI BIOLOGIA, Ympäristöekologia

Lisätiedot

1 PROSENTTILASKENTAA 7

1 PROSENTTILASKENTAA 7 SISÄLTÖ 1 PROSENTTILASKENTAA 7 Peruskäsitteitä 8 Prosenttiarvo 9 Prosenttiluku 11 Perusarvo 13 Muutosten laskeminen 15 Lisäys ja vähennys 15 Alkuperäisten arvojen laskeminen 17 Muutosprosentti 19 Prosenttiyksikkö

Lisätiedot

Huomioi, että muutokset ovat vielä mahdollisia. Lisätietoja kurssien opettajilta. OPPIAINE KURSSI OPPIKIRJA KUSTANTAJA ISBN BIOLOGIA BI

Huomioi, että muutokset ovat vielä mahdollisia. Lisätietoja kurssien opettajilta. OPPIAINE KURSSI OPPIKIRJA KUSTANTAJA ISBN BIOLOGIA BI Haminan lukion oppikirjat lukuvuonna 06-07, opetussuunnitelma otettu käyttöön 00 Huomioi, että muutokset ovat vielä mahdollisia. Lisätietoja kurssien opettajilta. OPPIAINE KURSSI OPPIKIRJA KUSTANTAJA ISBN

Lisätiedot

Reaalifunktioista 1 / 17. Reaalifunktioista

Reaalifunktioista 1 / 17. Reaalifunktioista säilyy 1 / 17 säilyy Jos A, B R, niin funktiota f : A B sanotaan (yhden muuttujan) reaalifunktioksi. Tällöin karteesinen tulo A B on (aiempia esimerkkejä luonnollisemmalla tavalla) xy-tason osajoukko,

Lisätiedot

Kauppilantie 1 61600 Jalasjärvi UUSI KIRJA / "UUDEHKO" KIRJA, KATSO TARKASTI PAINOS YMS. TIEDOT Puh. 4580 460, 4580 461 OPPIKIRJAT LUKUVUONNA 2012-13

Kauppilantie 1 61600 Jalasjärvi UUSI KIRJA / UUDEHKO KIRJA, KATSO TARKASTI PAINOS YMS. TIEDOT Puh. 4580 460, 4580 461 OPPIKIRJAT LUKUVUONNA 2012-13 JALASJÄRVEN LUKIO 1.-3. VUOSIKURSSI Kauppilantie 1 61600 Jalasjärvi UUSI KIRJA / "UUDEHKO" KIRJA, KATSO TARKASTI PAINOS YMS. TIEDOT Puh. 4580 460, 4580 461 OPPIKIRJAT LUKUVUONNA 2012-13 Oppikirja ISBN

Lisätiedot

Tähdellä (*) merkityt oppikirjat saatavana myös sähköisenä digikirjana. Oppi- ja digikirjat ovat samansisältöiset.

Tähdellä (*) merkityt oppikirjat saatavana myös sähköisenä digikirjana. Oppi- ja digikirjat ovat samansisältöiset. 1 PAIMION LUKION LUKUVUODEN 2014-2015 OPPIKIRJAT Tähdellä (*) merkityt oppikirjat saatavana myös sähköisenä digikirjana. Oppi- ja digikirjat ovat samansisältöiset. Äidinkieli ja kirjallisuus ÄI 1 Särmä.

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot