Kalliolämpö osana uusiutuviin energioihin perustuvaa arktista lämmitysjärjestelmää

Koko: px
Aloita esitys sivulta:

Download "Kalliolämpö osana uusiutuviin energioihin perustuvaa arktista lämmitysjärjestelmää"

Transkriptio

1 AALTO-YLIOPISTON TEKNILLINEN KORKEAKOULU Insinööritieteiden ja arkkitehtuurin tiedekunta Energiatekniikan laitos Johanna Nylund Kalliolämpö osana uusiutuviin energioihin perustuvaa arktista lämmitysjärjestelmää Diplomityö, joka on jätetty opinnäytteenä tarkastettavaksi diplomi-insinöörin tutkintoa varten. Espoo Työn valvoja Työn ohjaaja Professori Kai Sirén Tekniikan tohtori Jukka Paatero

2 AALTO-YLIOPISTON TEKNILLINEN KORKEAKOULU Diplomityön tiivistelmä Tekijä: Johanna Nylund Työn nimi: Kalliolämpö osana uusiutuviin energioihin perustuvaa arktista lämmitysjärjestelmää Päivämäärä: Tiedekunta: Laitos: Professuuri: Työn valvoja: Työn ohjaaja: Insinööritieteiden ja arkkitehtuurin tiedekunta Energiatekniikan laitos Ene-58 LVI-tekniikka Professori Kai Sirén Tekniikan tohtori Jukka Paatero Sivumäärä: 98 + liitteet Tämä diplomityö on osa MATKA - hanketta. MATKA - hankkeen tarkoituksena on tutkia ja kehittää matkailua yhdyskuntarakenteessa ja selvittää miten matkailuteollisuus integroituu kestävään aluekehitykseen. Tämän tutkimuksen tavoitteena on mitoittaa Ylläkselle rakennettavaan uuteen matkailukylään ekotehokas aluelämmitysjärjestelmä. Aluelämmitysjärjestelmän energiantuottomuotoina tutkitaan lämpöpumppuihin, biomassaan ja aurinkolämpöön perustuvaa järjestelmää. Uusi matkailukylä on tarkoitus toteuttaa passiivi- ja matalaenergiatekniikalla. Siitä kuinka laajalle aluelämmitysjärjestelmä ulotetaan muodostettiin kaksi eri skenaariota. Skenaariot osoittautuivat kuitenkin niin samanlaisiksi, että kaikki laskelmat tehtiin skenaarion 2 lämmitysenergiantarpeilla. Lisäksi matalaenergiarakentamisen hyödyllisyys osoitettiin referenssitapauksen avulla. Matalaenergiarakentaminen säästää lämmitysenergiassa 7,6 GWh/a. Tutkittavia energiajärjestelmiä oli kaksi. Energiajärjestelmän 1 perusenergiantuotannosta vastaa lämpöpumppu ja kulutushuipusta pelletti, sekä energiajärjestelmän 2 perusenergiantuotannosta vastaa hake ja kulutushuipusta pelletti. Energiajärjestelmien sisällä valittiin osuudet eri energiamuodoille, mutta valitut energiaosuudet perustuvat arvioon, eivätkä ne välttämättä vastaa taloudellista optimia. Aurinkolämpöä voi energiajärjestelmien tukena käyttää lämpimän käyttöveden tuottamiseen kesällä sekä lämpökaivokentän lataamiseen. Aurinkolämmön suhteen tultiin tulokseen, että siihen on tuskin kannattavaa investoida. Energiajärjestelmän 1 lämpökaivokenttä mitoitettiin EED:llä, joka on lämpökaivojen mitoitukseen tarkoitettu ohjelmisto. EED:llä tehtiin monta eri mitoitusta, mutta lämpökaivokentän lämmönsiirtonesteen lämpötilaa ei saatu tasaantumaan. Tähän vaikuttivat se, että kentästä ainoastaan otettiin lämpöenergiaa, jolloin lämmönsiirtonesteen lämpötilan lasku oli odotettavissakin. Lisäksi Sodankylä korkeudella maanpinnan keskilämpötila on -1 ºC, jota geoterminen gradientti nostaa vain noin 1 ºC /100 m. Nämä seikat aiheuttivat yhdessä lämmönsiirtonesteen lämpötilan laskemisen niin matalaksi, että voi kyseenalaistaa onko pelkästään lämmitykseen tarkoitettu lämpökaivokenttää edes viisasta rakentaa Lappiin. Energiajärjestelmien 1 ja 2 ekotehokkuutta verrattiin laskemalla kummallekin elinkaarikustannukset sekä CO 2 -päästöt, 30 vuoden elinkaarella. Energiajärjestelmän 1 elinkaarikustannukset nousivat noin 2 milj.euroa eli noin 33 % korkeammiksi kuin energiajärjestelmällä 2. CO 2 -päästöjä arvioitaessa energiajärjestelmän 2 koko elinkaaren CO 2 -päästöt olivat yli kaksi kertaa suuremmat eli noin 137 % kuin energiajärjestelmällä 1. Avainsanat: aluelämmitys, kalliolämpö, kalliolämpökenttä, lämpöpumppu, ekotehokkuus 1

3 AALTO UNIVERSITY SCHOOL OF SCIENCE AND TECHNOLOGY Abstract of Master s Thesis Author: Johanna Nylund Title of the Ground source heat pump as part of the renewablesbased arctic heating system Thesis: Date: 31 May 2010 Faculty: Department: Professorship: Supervisor: Instructors: Faculty of Engineering and Architecture Department of Energy Technology Ene-58 HVAC Technology Professor Kai Sirén Jukka Paatero, D.Sc. (Tech.) Number of pages: 98 + app. This thesis is part of the MATKA - project. MATKA - project is designed to explore and develop tourism in urban structure and examine how the tourism industry integrades sustainable regional development. The aim of this study was to dimension eco-efficient district heating system for the new tourist village in Ylläs. Heat pumps, biomass and solar energy-based system were examined for source of energy for district heating system. The new tourist village is planned to use passive and low-energy technology. Scenarios 1 and 2 with different district heating system extensions were constructed. Scenarios, however, proved to be almost identical that all the calculations for heating energy demand were done by using scenario two. In addition, the utility of low-energy technology was demonstrated through reference case. The annual saving of the heating energy was 7.6 GWh by using low-energy construction. Two different energy systems were explored. On the energy system 1 the basic energy is produced by heat pump and the peak energy by pellet. On the energy system 2 the basic energy was produced by wood chip and the peak energy by the pellet. The chosen energy shares based on an estimate and do not necessarily corresponds to economic optima. The solar energy can be used for production of hot water on the summer time and loading the boreholes in the ground. The conclusion was that it is hardly profitable to invest to solar energy. Boreholes of energy system 1 were dimensioned by EED which is a PC-program for borehole heat exchanger desing. Sevaral dimensionings were done by EED but the temperature of heat transfer fluid did not settled. Thermal energy was only extracted from the ground when the decrease in temperature of heat transfer fluid was expected. In addition, in Sodankylä district the ground surface temperature is -1 º C, which is risen by the geothermal gradient 1 º C / 100 m. These facts caused that heat transfer fluid temperature decreased so low, that it may call into question whether it merely is not even wise to build heating system based on multiple boreholes in Lapland. Eco-efficiency of the energy systems 1 and 2 was compared by calculating both the lifecycle costs and CO 2 - emissions, by using 30-year life cycle. Life-cycle costs of energy system 1 rose about 2 million euros (33%) higher than for the energy system 2. CO 2 - emissions of energy system 2 were more than two times higher (137%) than for the energy system 1. Keywords: district heating, GSHP, GHE, BTES, heat pump, eco-efficiency 2

4 Esipuhe Tämä diplomityö on tehty MATKA-hankkeeseen Aalto-yliopiston teknillisen korkeakoulun tutkimusapulaisena. Työn valvojana toimi professori Kai Sirén ja ohjaajana tekniikan tohtori Jukka Paatero. Olen kiitollinen, että sain tehdä diplomityöni tästä mielenkiintoisesta ja ajankohtaisesta aiheesta. Kiitokset Jukka Paaterolle, jolta löytyi aina aikaa ja neuvoja ongelmia kohdatessani. Erityisen lämpimät kiitokset haluan välittää Kai Sirénille, joka näkemyksillään ja neuvoillaan auttoi minua saattamaan tämän työn päätökseen. Erityiskiitos myös vanhemmilleni, jotka ovat tukeneet ja kannustaneet sekä uskoneet minuun koko opintojeni ajan. Espoossa Johanna Nylund 3

5 Sisällysluettelo Diplomityön tiivistelmä... 1 Abstract of Master s Thesis... 2 Esipuhe... 3 Symboliluettelo Johdanto Tutkimuksen tausta Tutkimusongelma Tutkimuksen tavoite ja rajaus Aluelämmitys Lämmitysmuodot Lapissa Ulkolämpötila Energian tuotanto Kalliolämpökaivo Taustaa Maaperän vaikutus Lämmön siirtymisprosessi Lämpökaivokenttä Alueellinen kalliolämpöjärjestelmä TRT-mittaus Lämmönsiirtonesteen ja lämpökaivokentän lämpötilat Lämpökaivokentän muoto ja kytkennät Lämpöpumpun toiminta Lämpöpumpun termodynamiikkaa Carnot-prosessi Todellinen prosessi Lämpöpumpun tehokkuutta kuvaavat kertoimet Lämpökerroin (COP) Vuoden keskimääräinen lämpökerroin (SPF) Lämpöpumpun toimintalämpötilat Lämpimän käyttöveden tuottaminen Yleistä Tulistusjärjestelmä Loppulämmitys sähköllä tai vaihtuvalla lauhdutuksella Lämpöpumput sarjassa Täydentävät lämmöntuottomuodot Hakelämmitys Puu polttoaineena Kattilat Saatavuus

6 6.2 Pelletti lisälämmityksenä Aurinkolämpö Auringon säteily Passiivinen aurinkolämpö Aktiivinen aurinkoenergia Keräimet SAGSHP Kohde-esittely Alue Lämmitysenergiantarpeisiin vaikuttaneita tekijöitä Taustaa Sää Toimintalämpötilat Lämmitysenergiantarpeet Alueittain Käyttöaste Tunneittain Energiajärjestelmävaihtoehdot Taustaa Energiajärjestelmä Energiajärjestelmä Aurinkolämpö Kalliolämpökentän mitoitus EED Mitoitus Mitoitus Mitoitus Vertailu Ekotehokkuus Taustaa Elinkaarikustannukset Ympäristövaikutukset Päätelmät Johtopäätökset Suositukset Lähdeluettelo Liite 1:Mitoitus 1, lämpökaivokentän mitoitus EED:llä Liite 2:Mitoitus 2, lämpökaivokentän mitoitus EED:llä Liite 3:Mitoitus 3, lämpökaivokentän mitoitus EED:llä 5

7 Symboliluettelo Latinalaiset aakkoset A Ac COP COPc D Ein FR G GT H H y kalliolämpökentän pinta-ala keräimen pinta-ala lämpökerroin Carnot-prosessin mukainen lämpökerroin lämmönkeruuputken halkaisija systeemin syötetty sähköenergia keräystehokkuus kalliolämpökentän geometriakerroin auringonsäteilyn intensiteetti lämpökaivon syvyys lämpökaivon ylin osa H e energian hinta nykyhetkellä h h h k h l höyrystimessä tapahtuva entalpian muutos kompressorissa tapahtuva entalpian muutos lauhduttimessa tapahtuva entalpian muutos K e energiakustannusten nykyarvo K h huoltokustannusten nykyarvo K k kunnossapitokustannusten nykyarvo. K i investointikustannus km maaperän lämmönjohtavuus kt lämpökaivon täyteaineen lämmönjohtavuus 6

8 Ltot m n PK Q Qau lämpökaivojen yhteispituus kylmäaineen massavirta tarkasteluajan pituus kompressorin teho tuotettava energia aurinkokeräimen energiantuotto Qgr maaperästä saatava lämpöenergia Qcool jäähdytysenergiantarve Qheat QL Qused q q gr, h R ' R1 ' R2 ' R12 Rb lämmitysenergiantarve ja lauhduttimen tuottama lämpöenergia systeemistä saatu lämpöenergia lämpövirta lämpökaivojen ominaiskuorma lämpökaivon kokonaislämpövastus lämpövastus lämmönsiirtonesteen(meno) ja lämpökaivon seinän välillä lämpövastus lämmönsiirtonesteen(paluu) ja lämpökaivon seinän välillä lämpövastus lämmönsiirtonesteen meno- ja paluuputkien välillä. lämpövastus lämpökaivon sisäpuolella Rs r rb lämpövastus lämpökaivon ulkopuolella etäisyys lämpökaivon säde re energiakustannusten laskentakorko 7

9 S s TH TL Ti keräimestä absorboitunut energia terminen diffusiviteetti höyrystymislämpötila lauhtumislämpötila ja keräimeen sisään virtaavan nesteen lämpötila Tu t t0 ulkolämpötila lämpötila maaperän keskilämpötila tb lämpökaivon seinän lämpötila t f lämmönsiirtonesteen keskilämpötila t f 1 lämmönsiirtonesteen menolämpötila t f 2 lämmönsiirtonesteen paluulämpötila. th U L V v Wk huipunkäyttöaika keräimen katteen lämmönläpäisykerroin kalliolämpökentän tilavuus lämmönsiirtonesteen nopeus vuotuinen kompressorin käyttämä energiamäärä Kreikkalaiset aakkoset au kuormituskerroin keräimen hyötysuhde c Carnot-hyötysuhde lämmönsiirtonesteen tiheys 8

10 k ( ) max H L aika keräimen katteen läpäisysuhde keräimen efektiivinen absorptiokerroin lämmönsiirtonesteen dynaaminen viskositeetti huipputeho höyrystimen teho lauhduttimen teho Lyhenteet COP EED HWB IPCC LCC SAGSHP SPF TRT Coefficient of Performance Earth Energy Designer Hotter-Whillier- Bliss - yhtälö Intergovernmental Panel on Climate Change Life Cycle Costs solar assisted ground-source heat pump Seasonal Performance Factor Thermal Response Test 9

11 1 Johdanto 1.1 Tutkimuksen tausta Huoli ilmastonmuutoksesta on johtanut siihen, että ympäristövaikutuksiin kiinnitetään entistä enemmän huomiota. Myös Lapissa tähän on paneuduttu, kun Lapin liitto käynnisti vuoden 2008 lopulla maakunnallisen energiastrategian valmistelun. Tavoitteena oli tuoda energia-asiat voimakkaammin osaksi maakunnan pitkän aikavälin suunnittelua. Energiastrategian lähtökohtana oli erityisesti uusiutuvien energialähteiden hyödyntäminen, energian saatavuuden turvaaminen kilpailukykyisellä hinnalla sekä energiayrittäjyyden tukeminen. Tämä tutkimus on osa MATKA - hanketta. MATKA - hankkeen tarkoituksena on tutkia matkailua yhdyskuntarakenteessa ja selvittää miten matkailuteollisuus integroituu kestävään aluekehitykseen. Keskeisenä yhdyskuntarakenteeseen vaikuttavana toimintona tarkastellaan erityisesti matkailualueiden energiahuoltoa. Projekti on laajuutensa takia jaettu neljään osaan ja tämä tutkimus on osa Ekotehokkaan matkailualueen energiahuolto-tutkimuskokonaisuutta. Ekotehokkaana matkailualueena tutkitaan erityisesti pohjoisiin ilmasto-olosuhteisiin soveltuvia ratkaisuja, esimerkkialueena käytetään Yllästä ja sinne suunnitteilla olevaa uutta matkailukylää. Ekotehokkaalla tarkoitetaan toteutuksen keskeisimpiä suunnittelukriteerejä, jotka ovat järjestelmän elinkaaren aikana aiheutuva ympäristörasite sekä kokonaisjärjestelmän taloudellisuus. Energiatuotantomenetelminä tullaan tutkimaan uusiutuvia energianlähteitä, jotka tukevat maakunnallista energiastrategiaa eivätkä aiheuta suurta ympäristörasitetta. Niinpä kiinnostavimmat lämmöntuotannon ratkaisut ovat lämpöpumppuihin ja biomassaan pohjautuva alueellinen lämmitysjärjestelmä. Myös aurinkolämmön hyödyntämiseen paneudutaan kesäajan lämpimän käyttöveden lämmittämisen ja kalliolämpökentän lataamisen kannalta. Energiantuotantoratkaisujen lisäksi hankkeessa kiinnitetään erityishuomiota myös energiankulutukseen. Energiankulutusta vähentämällä saadaan samalla vähennettyä aiheutuvaa ympäristörasitetta ja kustannuksia. Näin ollen koko matkailukylä tullaan suunnittelemaan matalaenergia-alueeksi. Loma-asunnot suunnitellaan niin että ne 10

12 täyttävät passiivitalolle asetetut energiatavoitteet, sekä hotelli- ja liikerakennukset suunnitellaan niin että ne täyttävät matalaenergiatalolle asetetut energiatavoitteet. 1.2 Tutkimusongelma Matkailukylään suunnitellaan alueellinen lämmitysjärjestelmä. Yksi osa tutkimusongelmaa on, miten laajalle aluelämmitysjärjestelmä on järkevää ulottaa ilman, että kustannukset nousevat liian korkeiksi. Matkailukylän laitamilla on alueita, joiden aluetehokkuus on niin matala, että nämä rajautuvat aluelämmityksen ulkopuolelle. Tutkimukseen otetaan mukaan kaksi erilaajuista skenaariota siitä, miten suuren osan koko matkailukylän energiantuotannosta keskitetty lämmitysjärjestelmä kattaa. Toinen osa tutkimusongelmaa on aluelämmitysjärjestelmän mitoitus. Lämmitysjärjestelmä koostuu useasta eri energiamuodosta, jotka ovat kalliolämpö, hake ja pelletti. Näille tulisi kullekin löytää sopiva teho-osuus mitoitustehosta, niin että järjestelmä toimii kustannus- ja energiatehokkaasti ilman suurta ympäristörasitetta. Lisäksi tulee huomioida aurinkolämmön hyödyntämismahdollisuus kesäaikaisen lämpimän käyttöveden tuottamiseksi. Ensisijaisena lämmitysjärjestelmänä tarkastellaan kalliolämpöön perustuvaa järjestelmää, jota verrataan hakelämpöön perustuvaan järjestelmään. Kummassakin tapauksessa energian kulutushuipusta vastaa pellettilaitos. Matkailukylä suunnitellaan kokonaan matalaenergia-alueeksi, joka pienentää huomattavasti kokonaislämmitysenergiantarvetta. Matalaenergiarakentamisen hyödyllisyys pyritään kuitenkin osoittamaan vertaamalla matalaenergia-aluetta ns. normaalienergialueeseen, kuinka paljon suuremmaksi pitää lämmitysjärjestelmä kasvattaa jos ei tehdäkään passiivi- ja matalaenergiarakennuksia. Tärkeä osa lämmitysjärjestelmää on lämpimän käyttöveden tuottaminen. Kalliolämpö on matalalämpöjärjestelmä, joka toimii tehokkaimmin alhaisilla lauhtumislämpötiloilla. Lämpimän käyttöveden tuottamiseksi on useita eri vaihtoehtoja ja ratkaistavaksi jää, miten lämmin käyttövesi on järkevintä tuottaa. 11

13 1.3 Tutkimuksen tavoite ja rajaus Tutkimuksen tavoitteena on mitoittaa matkailukylän aluelämpöjärjestelmä. Aluelämpöjärjestelmä mitoitetaan konseptitasolle, joka tarkoittaa sitä että työssä ei tulla syventymään järjestelmämitoituksen yksityiskohtiin vaan pysytään suhteellisen karkealla ja yleisellä tasolla. Eri energiamuotojen osuuksia mitoitustehosta ei tulla selvittämään optimoimalla ja näin ollen ratkaisut eivät välttämättä tule vastaamaan ekotehokkainta minimiä. Energiaratkaisuja on kaksi erilaista, peruslämmön tuotannosta vastaa joko kalliolämpö tai hake, joista kalliolämpöjärjestelmän tapauksessa tullaan mitoittamaan järjestelmän tarvitsema lämpökaivokenttä. Kumpaankin energiajärjestelmään voidaan yhdistää aurinkolämmön hyödyntäminen ja tätä mahdollisuutta tullaan tarkastelemaan lähemmin. Lisäksi kummallekin energiaratkaisulle lasketaan elinkaarikustannukset ja aiheutuva ympäristörasite. 12

14 2 Aluelämmitys 2.1 Lämmitysmuodot Lapissa Lapin runsaat energiavarat ovat luoneet hyvät edellytykset energiantuotannolle maakunnan alueella. Lapissa hyödynnetään runsaasti vesivoimaa, sekä paikallisia puupolttoaineita, turvetta ja metsäteollisuuden jäteliemiä. Sähköntuotannon suhteen Lappi on hieman yliomavarainen, ja sähköntuotannossa uusiutuvan energian osuus on yli 91 %. Sähkön ja lämmöntuotantoon käytettävistä polttoaineista uusiutuvien osuus on 70 %. Lämpöenergiaa tuotetaan erityisesti teollisuudessa tuotannon omiin tarpeisiin, sekä taajamissa kauko- ja aluelämpöverkkoihin. (Lapin liitto, 2008) Lapissa rakennusten lämmitysmuodot vaihtelevat voimakkaasti riippuen siitä huomioidaanko vain erilliset pientalot vai kaikki rakennukset. Kuvassa 1 on tarkasteltu rakennusten energiankulutusta lämmitysmuodoittain. Kuvasta voidaan huomata, että otettaessa huomioon kaikki rakennukset, yleisin lämmitysmuoto on kauko- ja aluelämpö. Kun taas erillisten pientalojen, joiksi myös loma-asunnot voidaan laskea, yleisin lämmitysmuoto on sähkö. Pääasiassa haja-asutuksen vuoksi pientalojen kauko- ja aluelämmityksen osuus on pieni. Kuva 1. Rakennusten energiankulutus lämmitysmuodoittain Lapissa vuonna 2008 (Lapin liitto, 2008) 13

15 Ylläkselle sijoittuvaan uuteen matkailukylään tullaan suunnittelemaan aluelämmitysjärjestelmä. Aluelämmitys on rakennusten ja käyttöveden lämmittämiseen tarvittavan lämmön keskitettyä tuotantoa ja julkista jakelua asiakkaina oleville kiinteistöille (Energiateollisuus, 2006). Aluelämmitys soveltuu hyvin tähän kohteeseen, koska tavoitteena on löytää ekotehokas ja kestävää matkailualuetta palveleva energiaratkaisu. Aluelämpöjärjestelmässä on edullista hyödyntää uusia teknologioita ja vähentää päästöjä, koska kustannukset ovat jaettavissa useiden asiakkaiden kesken. Lisäksi suuria lämpökeskuksia sitovat päästörajoitukset ja monet päästöjen vähentämismenetelmät ovat sellaisia, joita voidaan hyödyntää vain suurissa kohteissa. (IEA, 1992) 2.2 Ulkolämpötila Lämmityksen tehontarve on voimakkaasti vuodenajasta ja ulkolämpötilasta riippuvainen. Rakentamismääräyskokoelman osassa D5 Suomi on jaettu neljään eri säävyöhykkeeseen. Lappi ja näin ollen myös Ylläs kuuluvat vyöhykkeeseen IV, jonka mitoittava ulkoilman lämpötila on -38 ºC, vuoden keskimääräinen ulkoilman lämpötila on 0 ºC ja lämmityskauden keskimääräinen ulkoilman lämpötila on -5 ºC. (Ympäristöministeriö, 2007) Kuvassa 2 on esitetty Sodankylästä vuonna 2004 mitattujen lämpötilojen jakauma. Kuvassa 3 samat lämpötilat on esitetty aika, lämpötilakoordinaatistossa. Kuvista 2 ja 3 on helppo huomata, että aivan kylmimpiä ulkolämpötiloja esiintyy harvoin ja niitä ei ole vuodessa montaakaan tuntia. 14

16 Lämpötilan pysyvyys [h/a] Ulkolämpötila [ o C] Kuva 2. Sodankylän ulkolämpötilojen jakauma vuoden 2004 mittaustulosten perusteella. (Jokiranta, 2010) Lämpötila [ o C] Aika [h] Kuva 3. Sodankylän ulkolämpötilojen pysyvyyskäyrä vuoden 2004 mittaustulosten perusteella. (Jokiranta, 2010) 15

17 2.3 Energian tuotanto Aluelämmön tuotantolaitosta suunniteltaessa on otettava huomioon sekä luotettavuus että taloudellisuus. Suunnittelun lähtökohtana pidetäänkin usein sitä, että tarvittava teho jaetaan vähintään kahden tuotantoyksikön kesken. Pienissä järjestelmissä ei ole teknisesti järkevää jakaa kapasiteettia kovin moneen tuotantoyksikköön, mutta perusja huipputeho kannattaa yleensä tuottaa erillisillä yksiköillä. Tällöin huippulaitos voi toimia varalaitoksena ja sillä voidaan tuottaa myös päälaitoksen huollon aikana tarvittava energia. Erillinen huippulaitos on hyödyllinen senkin takia, että lämmöntarpeen huiput esiintyvät harvoin ja niiden osuus kokonaisenergiasta on pieni. (Energiateollisuus, 2006; Gustavsson, 1993) Viitteellisen esimerkkilämpölaitoksen tehon pysyvyyskäyrä on esitetty kuvassa 4. Kuvasta on helppo huomata, että kulutushuippu on todella kapea ja valitsemalla peruslaitoksen huipputehoksi 30 % koko lämpölaitoksen huipputehosta, saadaan sillä kuitenkin katettua hyvin suuri osa koko vuoden lämmitysenergiantarpeesta. Kuvassa on vielä erotettu kesäaikaisen lämpimän käyttöveden tuottaminen peruslaitoksesta. Näin ei ole välttämätöntä tehdä, mutta monesti kesäaikainen lämmitysenergiantarve on melko vähäistä, jolloin esimerkiksi peruslaitoksen kattilaa ei pystytä käyttämään niin pienellä teholla. Kuva 4. Viitteellinen esimerkki lämpökeskuksen tehon pysyvyyskäyrästä. 16

18 Perustehosta vastaavan laitoksen huipun käyttöajan tulisi olla vähintään h/a. Huipputehon käyttöajalla tarkoitetaan kulutetun energian ja huipputehon suhdetta. Huipputehon käyttöaika t h lasketaan kaavalla (IEA, 1996): t h Q max (1) jossa Q tuotettu energiamäärä ja max huipputeho. Kalliolämpöjärjestelmää ei ole järkevää mitoittaa kattamaan koko lämmitysenergiantarvetta, koska tällöin käyttöaste jäisi liian alhaiseksi, jotta investointi olisi kannattava. Myös hakekattilan tapauksessa huippulaitoksen erottaminen peruslaitoksesta on perusteltua. Hakekattila toimii yleensä parhaalla hyötysuhteella ja sen hallittavuus on helpompaa suurilla tehoilla. Siksi hakekattila sopii hyvin peruslämmön tuottajaksi, jolloin sen kuorma on tasainen ja huipputehon käyttöaika mahdollisimman suuri. (Energiateollisuus, 2006; Valdimarsson, 1993) 17

19 3 Kalliolämpökaivo 3.1 Taustaa Maalämpöjärjestelmä perustuu maaperään, kallioon tai vesistöön varastoituneen aurinkoenergian hyödyntämiseen rakennuksen lämmityksessä ja jäähdytyksessä. Näistä suosituimmaksi on noussut kalliolämpö, koska kalliolämpökaivon energiasaanto on noin kaksinkertainen putkimetriä kohti verrattuna maalämpöputkistoon. (Aittomäki, 2001) Kuvassa 5 on esitetty lämmönkeruuputkiston eri sijoitusvaihtoehdot. Kuva 5. Aurinkoenergian hyödyntäminen kalliosta, maaperästä tai vesistöstä. (Geologian tutkimuskeskus, 2008) Tavallisin menetelmä saada aikaan lämmön vaihtumista lämpökaivossa on sijoittaa sinne yksi tai useampi U:n muotoinen polyeteeniputki. Kuvassa 6 on esitetty lämmönkeruuputkiston sijoittuminen lämpökaivoon kaksiputkijärjestelmässä. Kaivoon upotettavat putket liitetään alapäästään silmukaksi messinkisellä U-kappaleella, johon kiinnitetään kaivosyvyyden mukaan laskennallisesti määritetty paino, jonka tehtävä on vetää putket suorana alas. Putkistoja asennetaan kaksiputkijärjestelmän lisäksi myös kolmi- ja neliputkijärjestelminä, joista kolmiputkijärjestelmä on harvemmin 18

20 käytetty. Neliputkijärjestelmää puolestaan käytetään suuremmissa kohteissa ja se koostuu kahdesta rinnan kytketystä putkisilmukasta. Lämmönkeruuputket on eristettävä rakennuksen sisältä lämpökaivon huoltokaivoon asti ja mielellään itse kaivossa vielä routarajan alapuolelle asti. (Lund et al. 2004; Sulpu, 2009) Kuva 6. Lämmönkeruuputkisto lämpökaivossa. (Suomen ympäristökeskus, 2009) Kaivon halkaisija on Suomessa tyypillisesti 140 tai 165 mm ja yhden reiän syvyys on rakennuksen energiatarpeesta riippuen yleensä m. Käytännössä kaivoa ei ole järkevää porata 200 m syvemmäksi, jolloin pumppauskustannukset kasvaisivat suhteettoman suuriksi. Suurissa järjestelmissä on kuitenkin mahdollista käyttää syvempiäkin lämpökaivoja, aina 300 m asti. Lämmönsiirron tehostamiseksi lämpökaivo täytetään vedellä, jos se ei itsestään täyty pohjavedellä. Lämpökaivon teholliseksi syvyydeksi luetaan vain kaivon vedellä täyttynyt syvyys. Täyteaineena voidaan käyttää 19

21 myös muuta kuin vettä, mikä onkin tavallista muualla Euroopassa ja USA:ssa. (Lund et al. 2004; Sulpu, 2009) Termisesti parannetut täyteaineet ovat olleet USA:ssa käytössä jo yli 10 vuotta. Täyteaineen etu on se, että sillä saadaan pienennettyä lämpökaivon lämpövastusta. Mitä pienempi lämpökaivon lämpövastus on, sitä suurempi on kaivosta saatava lämpövirta. Taulukossa 1 on vertailtu täyteaineen lämmönjohtavuuden vaikutusta lämpövastukseen, kaksi- ja neliputkijärjestelmillä. Voidaan huomata, että varsinkin neliputkijärjestelmän tapauksessa täyteaine pienentää lämpövastusta huomattavan paljon. Suomessa lämpökaivon täyteaineena toimii vesi, jonka lämpövastus on 0,6 W/(m/K). (Lund et al. 2004) Taulukko 1. Täyteaineen lämmönjohtavuuden vaikutus lämpökaivon sisäpuoliseen lämpövastukseen, kaksi- ja neliputkijärjestelmissä. (Lund et al. 2004) Lämpökaivon Täyteaineen Lämpövastus tyyppi lämmönjohtavuus lämpökaivon sisäpuolella k t [W/(m/K)] R b [K/(W/m)] 2-putkijärjestelmä 0,8 0,196 1,6 0,112 4-putkijärjestelmä 0,8 0,134 1,6 0, Maaperän vaikutus Energia on varastoitunut kallioon pääosin auringosta, mutta pieni osa siitä on geotermistä lämpöenergiaa. Maan pinnan lämpötila vaihtelee ilman lämpötilojen ja vuodenaikojen mukaan. Taulukossa 2 on esitetty maanpinnan keskilämpötilat muutamalla paikkakunnalla. Kuvasta 7 voidaan puolestaan havaita, että jo 15 m syvyydessä kalliossa lämpötila on vuodenajasta riippumaton. (Leppäharju, 2008) 20

22 Taulukko 2. Maanpinnan keskilämpötilat paikkakunnittain. (EED, 2008) Paikkakunta Maanpinnan keskilämpötila, [ºC] Helsinki 5,6 Turku 4,8 Lappeenranta 3,6 Jyväskylä 2,6 Oulu 2,0 Sodankylä -1,0 Kuva 7. Maan pintakerroksen (0-16m) teoreettiset lämpötila-syvyyskäyrät joka toiselle kuukaudelle. (Leppäharju, 2008) Maaperän lämpötila 15 m alapuolella on maanpinnan keskilämpötilan ja geotermisen gradientin säätelemää. Geoterminen gradientti nostaa lämpötilaa 8-15 K/km, joten 100 m syvyydessä lämpötila on noussut maanpinnan keskilämpötilasta noin 1 ºC ja 200 m syvyydessä noin 2 ºC. Kuvassa 8 on esitetty kuvaa 7 vastaavat lämpötilasyvyys-käyrät, nyt myös geoterminen gradientti (10 K/km) on otettu nyt huomioon. (Gehlin, 2002; Leppäharju, 2009) 21

23 Kuva 8. Maaperän (0-100m) teoreettiset lämpötila-syvyyskäyrät joka toiselle kuukaudelle. (Leppäharju, 2008) Suomen kallioperän kivilajien lämmönjohtavuuksissa ei ole kovin suurta vaihteluväliä. Poikkeuksena on kvartsipitoinen kallio, jonka lämmönjohtavuus voi olla poikkeuksellisen hyvä. Enemmän on vaikutusta sillä kuinka rikkonaista kallio on ja kuinka paljon siinä liikkuu vettä. Vesi johtaa lämpöä paremmin kuin kivi, joten rikkonaisesta kalliosta voi saada lämmön tehokkaammin talteen, toisaalta taas liian rikkonaiseen kallioon poraaminen voi johtaa porareiän sortumiseen. (Gehlin, 2002; Geologian tutkimuskeskus, 2008) Hyvä sijoituspaikka lämpökaivoille on esimerkiksi pysäköintialueen alla. Tumma asfaltti tehostaa kesällä aurinkoenergian imeytymistä maaperään ja talvella asfaltti toimii eristeenä, joka hidastaa maaperän jäätymistä. (Geologian tutkimuskeskus, 2008) 22

24 3.3 Lämmön siirtymisprosessi Lämmön siirtymisprosessi maaperän ja lämpökaivon välillä on hyvin monimutkainen, koska siihen vaikuttavat monet eri seikat. (Jun, 2009) 1. Paikalliset ominaisuudet ilmasto- ja hydrogeologiset olosuhteet maaperän lämpöominaisuudet ja lämpöjakauma 2. Maalämpöjärjestelmän parametrit lämpökaivon tyyppi, syvyys ja halkaisija putkien sijoitus lämpökaivon sisällä, materiaali ja koko lämmönsiirtonesteen tyyppi, lämpötila ja nopeus putkessa 3. Operatiiviset olosuhteet lämmitys- ja jäähdytystarve järjestelmän ohjaus käyttöominaisuudet Lämpövastuksen avulla voidaan kuvata lämmön siirtymistä lämpökaivon sisä- ja ulkopuolella Lämmön siirtyminen mallintamiseksi lämpökaivossa ja sen ulkopuolella on kehitetty lukuisia eri malleja. Malleja on sekä analyyttisia ja numeerisia ja tämän lisäksi markkinoilla on monia eri tietokoneohjelmia. Tässä työssä tullaan käyttämään lämpökaivojen mitoitukseen ja suunnitteluun tarkoitettua ohjelmaa EED (Earth Energy Designer). EED on kehitetty Lundin yliopistossa Ruotsissa ja se perustuu Eskilsonin malliin. Eskilsonin malli on yhdistelmä analyyttisistä ja numeerisista ratkaisumenetelmistä. (Jun, 2009) 23

25 Eskilsonin mallin mukaan maaperän lämpötila-yhtälön kirjoittamiseksi tarvitaan sylinterikoordinaatteja (Yang, 2010): 2 2 t 1 t t 1 t 2 2 r r r z s t( r,0, ) t0 t( r, z,0) t0 H y H 1 t q( ) 2 rk m dz H r H y r rb (2) jossa t on lämpötila, r on etäisyys, rb on lämpökaivon säde, on aika, km on maaperän lämmönläpäisykerroin, s on maaperän terminen diffusiviteetti, H on lämpökaivon syvyys, H y on lämpökaivon ylin osa joka voidaan termisesti jättää ottamatta huomioon. Lämpötilaeroksi lämpökaivon ja maaperän välillä saadaan (Yang, 2010): t q t0 g( /, rb / H ) 2 k b s (3) jossa t b on lämpökaivon seinän lämpötila. G-funktio on dimensioton muuttuja, joka voidaan ratkaista numeerisesti. EED sisältääkin tietokannan, johon on valmiiksi laskettu 6385 g-funktion arvoa. (EED, 2008) Maaperän lämpövastus voidaan ratkaista kaavan 3 ja g-funktion arvojen avulla. Maaperän lämpövastus R s lasketaan (Hellström, 2003 ): tb t R s q 0 (4) 24

26 Lämpövastus lämpökaivon sisällä on lämpövastus lämmönsiirtonesteen ja lämpökaivon seinämän välillä, kuvan 9 mukaisesti. Lämpökaivon sisäpuolinen lämpövastus koostuu siis lämmönsiirtonesteen konvektiosta, lämmönsiirtoputkien konduktiosta sekä täyteaineen lämpövastuksesta. (Lamarche, 2010) Kuva 9. Lämpövastuksen muodostuminen lämpökaivon sisäpuolella. Lämpökaivo on leikattu vaakatasossa ja se sisältää yhden U-putken (kaksiputkijärjestelmä) ja kaivo on täytetty täyteaineella. (Lamarche, 2010) Kuvassa 9: T on lämpökaivon seinän lämpötila, T f 1, T f 2 b lämmönsiirtonesteen menoja paluulämpötila, ' R 1, ' R2 on lämpövastus lämmönsiirtonesteen ja lämpökaivon seinän välillä ja ' R12 on lämpövastus lämmönsiirtonesteen meno- ja paluuputkien välillä. 25

Maatilojen asuinrakennusten energiankulutuksen arviointi

Maatilojen asuinrakennusten energiankulutuksen arviointi Maatilojen asuinrakennusten energiankulutuksen arviointi Tässä esitetään yksinkertainen menetelmä maatilojen asuinrakennusten energiankulutuksen arviointiin. Vaikka asuinrakennuksia ei ole syytä ohittaa

Lisätiedot

Nupurinkartano Kalliolämpöratkaisu. Pasi Heikkonen Asuntorakentaminen

Nupurinkartano Kalliolämpöratkaisu. Pasi Heikkonen Asuntorakentaminen Nupurinkartano Kalliolämpöratkaisu Pasi Heikkonen Asuntorakentaminen 1 Nupurinkartano Noin 600 asukkaan pientaloalue Espoossa, Nupurinjärven itäpuolella. Noin 8 km Espoonkeskuksesta pohjoiseen. Alueelle

Lisätiedot

Energia. Energiatehokkuus. Megawatti vai Negawatti: Amory Lovins Rocky Mountain- instituutti, ympäristöystävällisyyden asiantuntija

Energia. Energiatehokkuus. Megawatti vai Negawatti: Amory Lovins Rocky Mountain- instituutti, ympäristöystävällisyyden asiantuntija Energia Energiatehokkuus Megawatti vai Negawatti: Amory Lovins Rocky Mountain- instituutti, ympäristöystävällisyyden asiantuntija Sähkön säästäminen keskimäärin kahdeksan kertaa edullisempaa kuin sen tuottaminen

Lisätiedot

Asiakkaalle tuotettu arvo

Asiakkaalle tuotettu arvo St1 Lähienergia Suunnittelee ja toteuttaa paikallisiin uusiutuviin energialähteisiin perustuvia lämpölaitoksia kokoluokaltaan 22 1000 kw energialaitosten toimitukset avaimet käteen -periaatteella, elinkaarimallilla

Lisätiedot

Energian tuotanto ja käyttö

Energian tuotanto ja käyttö Energian tuotanto ja käyttö Mitä on energia? lämpöä sähköä liikenteen polttoaineita Mistä energiaa tuotetaan? Suomessa tärkeimpiä energian lähteitä ovat puupolttoaineet, öljy, kivihiili ja ydinvoima Kaukolämpöä

Lisätiedot

Hake- ja pellettikattilan mitoitus

Hake- ja pellettikattilan mitoitus Hake- ja pellettikattilan mitoitus Kiinteistön kokoluokka ratkaisee millaista vaihtoehtoa lähdetään hakemaan Pienkiinteistö, suurkiinteistö, aluelämpölaitos Hake- ja pellettikattilan mitoitus Perinteinen

Lisätiedot

Esimerkki poistoilmaja. ilmavesilämpöpumpun D5:n mukaisesta laskennasta

Esimerkki poistoilmaja. ilmavesilämpöpumpun D5:n mukaisesta laskennasta Esimerkki poistoilmaja ilmavesilämpöpumpun D5:n mukaisesta laskennasta 4.11.2016 YMPÄRISTÖMINISTERIÖ Sisällysluettelo 1 Johdanto... 3 2 Poistoilma- ja ilmavesilämpöpumpun D5 laskenta... 4 2.1 Yleistä...

Lisätiedot

Jämsän energiatase Keski-Suomen Energiatoimisto/ Benet Oy

Jämsän energiatase Keski-Suomen Energiatoimisto/ Benet Oy Jämsän energiatase 2010 Keski-Suomen Energiatoimisto/ Benet Oy 1 Jämsän energiatase 2010 Öljy 398 GWh Turve 522 GWh Teollisuus 4200 GWh Sähkö 70 % Prosessilämpö 30 % Puupolttoaineet 1215 GWh Vesivoima

Lisätiedot

Jyväskylän energiatase 2014

Jyväskylän energiatase 2014 Jyväskylän energiatase 2014 Jyväskylän kaupunginvaltuusto 30.5.2016 Keski-Suomen Energiatoimisto www.kesto.fi www.facebook.com/energiatoimisto 1.6.2016 Jyväskylän energiatase 2014 Öljy 27 % Teollisuus

Lisätiedot

Energianeuvonta apunasi lämmitysjärjestelmien muutokset, vertailu ja kustannukset

Energianeuvonta apunasi lämmitysjärjestelmien muutokset, vertailu ja kustannukset Energianeuvonta apunasi lämmitysjärjestelmien muutokset, vertailu ja kustannukset Remontoi energiatehokkaasti 26.11.2013, Sedu Aikuiskoulutuskeskus Johanna Hanhila, Thermopolis Oy Oletko vaihtamassa lämmitysjärjestelmää?

Lisätiedot

KAKSOISKATTILAT ARITERM 520P+ ARITERM 520

KAKSOISKATTILAT ARITERM 520P+ ARITERM 520 KAKSOISKATTILAT ARITERM 520P+ ARITERM 520 ARITERM 520P+ HUOM! Poltin myydään erikseen. VALINNAN VAPAUS Ariterm 520P+ kaksoiskattila on tehty lämmittäjille, jotka haluavat nauttia valinnan vapaudesta. Valitse

Lisätiedot

Lämpöpumput ja aurinko energianlähteinä Energiaehtoo

Lämpöpumput ja aurinko energianlähteinä Energiaehtoo Lämpöpumput ja aurinko energianlähteinä Energiaehtoo 5.10.2016 Keski-Suomen Energiatoimisto www.kesto.fi/energianeuvonta energianeuvonta@kesto.fi 1 Energianeuvonta Keski-Suomessa Energianeuvontaa tarjotaan

Lisätiedot

Hevosenlannan mahdollisuudet ja haasteet poltossa ja pyrolyysissä

Hevosenlannan mahdollisuudet ja haasteet poltossa ja pyrolyysissä Hevosenlannan mahdollisuudet ja haasteet poltossa ja pyrolyysissä Markku Saastamoinen, Luke Vihreä teknologia, hevostutkimus Ypäjä HELMET hanke, aluetilaisuus, Jyväskylä 24.1.2017 Johdanto Uusiutuvan energian

Lisätiedot

Luku 8 EXERGIA: TYÖPOTENTIAALIN MITTA

Luku 8 EXERGIA: TYÖPOTENTIAALIN MITTA Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 8 EXERGIA: TYÖPOTENTIAALIN MITTA Copyright The McGraw-Hill Companies, Inc. Permission required

Lisätiedot

Lämmityskustannus vuodessa

Lämmityskustannus vuodessa Tutkimusvertailu maalämmön ja ilma/vesilämpöpumpun säästöistä Lämmityskustannukset keskiverto omakotitalossa Lämpöässä maalämpöpumppu säästää yli vuodessa verrattuna sähkö tai öljylämmitykseen keskiverto

Lisätiedot

Vesikiertoinen lattialämmitys / maalämpöpumppu Koneellinen tulo- ja poistoilmanvaihto, lämmöntalteenotto. Laskettu ostoenergia. kwhe/(m² vuosi) Sähkö

Vesikiertoinen lattialämmitys / maalämpöpumppu Koneellinen tulo- ja poistoilmanvaihto, lämmöntalteenotto. Laskettu ostoenergia. kwhe/(m² vuosi) Sähkö YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskettu kokonaisenergiankulutus ja ostoenergiankulutus Lämmitetty nettoala, m² 8.0 Lämmitysjärjestelmän kuvaus Ilmanvaihtojärjestelmän kuvaus Vesikiertoinen

Lisätiedot

Aurinkoenergia Suomessa

Aurinkoenergia Suomessa Tampere Aurinkoenergia Suomessa 05.10.2016 Jarno Kuokkanen Sundial Finland Oy Aurinkoteknillinen yhdistys Ry Aurinkoenergian termit Aurinkolämpö (ST) Aurinkokeräin Tuottaa lämpöä Lämpöenergia, käyttövesi,

Lisätiedot

KOKEMUKSIA LÄMPÖPUMPUISTA KAUKOLÄMPÖJÄRJESTELMÄSSÄ CASE HELEN. Kaukolämpöpäivät Juhani Aaltonen

KOKEMUKSIA LÄMPÖPUMPUISTA KAUKOLÄMPÖJÄRJESTELMÄSSÄ CASE HELEN. Kaukolämpöpäivät Juhani Aaltonen KOKEMUKSIA LÄMPÖPUMPUISTA KAUKOLÄMPÖJÄRJESTELMÄSSÄ CASE HELEN Kaukolämpöpäivät 25.8.2016 Juhani Aaltonen Vähemmän päästöjä ja lisää uusiutuvaa energiaa Tavoitteenamme on vähentää hiilidioksidipäästöjä

Lisätiedot

UUSIUTUVAN ENERGIAN RATKAISUT - seminaari

UUSIUTUVAN ENERGIAN RATKAISUT - seminaari UUSIUTUVAN ENERGIAN RATKAISUT - seminaari Timo Toikka 0400-556230 05 460 10 600 timo.toikka@haminanenergia.fi Haminan kaupungin 100 % omistama Liikevaihto n. 40 M, henkilöstö 50 Liiketoiminta-alueet Sähkö

Lisätiedot

Vuoden 2012 energiamääräysten mukainen perinnetalo. Avanto arkkitehdit

Vuoden 2012 energiamääräysten mukainen perinnetalo. Avanto arkkitehdit Vuoden 2012 energiamääräysten mukainen perinnetalo Equa Simulation Finland Oy TkL Mika Vuolle 23.5.2011 2 Sisällysluettelo 1 Keskeiset lähtötiedot ja tulokset... 3 1.1 Määräystenmukaisuuden osoittaminen

Lisätiedot

Lämmitysverkoston lämmönsiirrin (KL) Asuntokohtainen tulo- ja poistoilmajärjestelmä. Laskettu ostoenergia. kwhe/(m² vuosi) Sähkö Kaukolämpö

Lämmitysverkoston lämmönsiirrin (KL) Asuntokohtainen tulo- ja poistoilmajärjestelmä. Laskettu ostoenergia. kwhe/(m² vuosi) Sähkö Kaukolämpö YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskettu kokonaisenergiankulutus ja ostoenergiankulutus Lämmitetty nettoala, m² 50 Lämmitysjärjestelmän kuvaus Ilmanvaihtojärjestelmän kuvaus Lämmitysverkoston

Lisätiedot

Uuden sukupolven energiaratkaisu kiinteistöjen lämmitykseen. Erik Raita Polarsol Oy

Uuden sukupolven energiaratkaisu kiinteistöjen lämmitykseen. Erik Raita Polarsol Oy Uuden sukupolven energiaratkaisu kiinteistöjen lämmitykseen Erik Raita Polarsol Oy Polarsol pähkinänkuoressa perustettu 2009, kotipaikka Joensuu modernit tuotantotilat Jukolanportin alueella ISO 9001:2008

Lisätiedot

Suomenlinnan kestävän kehityksen mukaiset energiaratkaisut pitkällä aikavälillä

Suomenlinnan kestävän kehityksen mukaiset energiaratkaisut pitkällä aikavälillä TEKNOLOGIAN TUTKIMUSKESKUS VTT OY Suomenlinnan kestävän kehityksen mukaiset energiaratkaisut pitkällä aikavälillä Hiilineutraali Korkeasaari 9.2.2016 Antti Knuuti, VTT 040 687 9865, antti.knuuti@vtt.fi

Lisätiedot

Aurinkolämpö osana uusiutuvaa kaukolämmön tuotantoa - Case Savon Voima. Kaukolämpöpäivät Kari Anttonen

Aurinkolämpö osana uusiutuvaa kaukolämmön tuotantoa - Case Savon Voima. Kaukolämpöpäivät Kari Anttonen Aurinkolämpö osana uusiutuvaa kaukolämmön tuotantoa - Case Savon Voima Kaukolämpöpäivät 24.8.2016 Kari Anttonen Savon Voiman omistajat ja asiakkaat Kuopio 15,44 % Lapinlahti 8,49 % Iisalmi 7,34 % Kiuruvesi

Lisätiedot

Kuivauksen fysiikkaa. Hannu Sarkkinen

Kuivauksen fysiikkaa. Hannu Sarkkinen Kuivauksen fysiikkaa Hannu Sarkkinen 28.11.2013 Kuivatusmenetelmiä Auringon säteily Mikroaaltouuni Ilmakuivatus Ilman kosteus Ilman suhteellinen kosteus RH = ρ v /ρ vs missä ρ v = vesihöyryn tiheys (g/m

Lisätiedot

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskettu kokonaisenergiankulutus ja ostoenergiankulutus Lämmitetty nettoala 89. m² Lämmitysjärjestelmän kuvaus Maalämpöpumppu NIBE F454 / Maalämpöpumppu NIBE

Lisätiedot

Rakennusfysiikka 2007, Tampereen teknillinen yliopisto, RIL Seminaari Tampere-talossa 18 19.10.2007. Tiedämmekö, miten talot kuluttavat energiaa?

Rakennusfysiikka 2007, Tampereen teknillinen yliopisto, RIL Seminaari Tampere-talossa 18 19.10.2007. Tiedämmekö, miten talot kuluttavat energiaa? Rakennusfysiikka 2007, Tampereen teknillinen yliopisto, RIL Seminaari Tampere-talossa 18 19.10.2007 Tiedämmekö, miten talot kuluttavat energiaa? Professori Ralf Lindberg, Tampereen teknillinen yliopisto

Lisätiedot

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus HÖYRYTEKNIIKKA 1. Vettä (0 C) höyrystetään 2 bar paineessa 120 C kylläiseksi höyryksi. Laske

Lisätiedot

Keski-Suomen energiatase 2014

Keski-Suomen energiatase 2014 Keski-Suomen energiatase 2014 Keski-Suomen Energiatoimisto www.kesto.fi www.facebook.com/energiatoimisto Sisältö Keski-Suomen energiatase 2014 Energialähteet ja energiankäyttö Uusiutuva energia Sähkönkulutus

Lisätiedot

MIKKELIN AMMATTIKORKEAKOULU Tekniikka ja liikenne / Sähkövoimatekniikka T8415SJ Energiatekniikka. Hannu Sarvelainen HÖYRYKATTILAN SUUNNITTELU

MIKKELIN AMMATTIKORKEAKOULU Tekniikka ja liikenne / Sähkövoimatekniikka T8415SJ Energiatekniikka. Hannu Sarvelainen HÖYRYKATTILAN SUUNNITTELU MIKKELIN AMMATTIKORKEAKOULU Tekniikka ja liikenne / Sähkövoimatekniikka T8415SJ Energiatekniikka Hannu Sarvelainen HÖYRYKATTILAN SUUNNITTELU HARJOITUSTYÖOHJE SISÄLLYS SYMBOLILUETTELO 3 1 JOHDANTO 4 2 TYÖOHJE

Lisätiedot

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus KATTILAN VESIHÖYRYPIIRIN SUUNNITTELU Höyrykattilan on tuotettava höyryä seuraavilla arvoilla.

Lisätiedot

Metsäenergian käytön kokemukset ja tulevaisuuden haasteet

Metsäenergian käytön kokemukset ja tulevaisuuden haasteet Metsäenergian käytön kokemukset ja tulevaisuuden haasteet Risto Ryymin Jyväskylän Energia Oy Copyright 2014 Jyväskylän Energia Oy Copyright 2014 Jyväskylän Energia Oy Metsäenergian käytöstä Copyright 2014

Lisätiedot

Rakennuksen energiankulutus muuttuvassa ilmastossa

Rakennuksen energiankulutus muuttuvassa ilmastossa Rakennuksen energiankulutus muuttuvassa ilmastossa 8.11.2012 Juha Jokisalo Erikoistutkija, TkT juha.jokisalo@aalto.fi Aalto-yliopisto, Energiatekniikan laitos, LVI-tekniikka Taustaa Frame-hankkeen tutkimustulosten

Lisätiedot

Rajaville Oy:n Haukiputaan tehtaan energiatuotannon muutos. Loppuraportti Julkinen Pekka Pääkkönen

Rajaville Oy:n Haukiputaan tehtaan energiatuotannon muutos. Loppuraportti Julkinen Pekka Pääkkönen Rajaville Oy:n Haukiputaan tehtaan energiatuotannon muutos Loppuraportti Julkinen 10.2.2014 Pekka Pääkkönen KÄYTÖSSÄ OLEVAN ENERGIATUOTANNON KUVAUS Lähtökohta Rajaville Oy:n Haukiputaan betonitehtaan prosessilämpö

Lisätiedot

Geonergia osana kaupunkien energiaratkaisuja. Asmo Huusko Geologian tutkimuskeskus (GTK)

Geonergia osana kaupunkien energiaratkaisuja. Asmo Huusko Geologian tutkimuskeskus (GTK) Geonergia osana kaupunkien energiaratkaisuja Asmo Huusko Geologian tutkimuskeskus (GTK) GTK:n strategiset teemat DIGITAALISUUS Tuomme digitalisaation mahdollisuudet ja systeemiset hyödyt kaikkiin prosesseihin,

Lisätiedot

Pumppuvoimalaitosten toiminta

Pumppuvoimalaitosten toiminta Aalto-yliopiston teknillinen korkeakoulu Pumppuvoimalaitosten toiminta Raportti Olli Vaittinen Smart Grids and Energy Markets WP 3.2 Johdanto Tämä raportti pohjautuu kirjoittajan pitämään esitykseen SGEM

Lisätiedot

Exercise 3. (session: )

Exercise 3. (session: ) 1 EEN-E3001, FUNDAMENTALS IN INDUSTRIAL ENERGY ENGINEERING Exercise 3 (session: 7.2.2017) Problem 3 will be graded. The deadline for the return is on 28.2. at 12:00 am (before the exercise session). You

Lisätiedot

Sähköntuotanto energialähteittäin Power generation by energy source

Sähköntuotanto energialähteittäin Power generation by energy source Sähköntuotannon polttoaineet ja CO2-päästöt 2.1.216 1 (17) Sähköntuotanto energialähteittäin Power generation by energy source 8 7 6 GWh / kk GWh/ Month 5 4 3 2 1 7 8 9 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5

Lisätiedot

Pohjavesienergia. Kokkola Material Week, Teppo Arola

Pohjavesienergia. Kokkola Material Week, Teppo Arola Pohjavesienergia Kokkola Material Week, 1.11.2016 Teppo Arola Pumpatusta pohjavedestä otetaan talteen lämmönsiirtimellä joko lämpöenergia / kylmäenergia ja vesi injektoidaan takaisin. ATES (aquifer thermal

Lisätiedot

Kaksi yleismittaria, tehomittari, mittausalusta 5, muistiinpanot ja oppikirjat. P = U x I

Kaksi yleismittaria, tehomittari, mittausalusta 5, muistiinpanot ja oppikirjat. P = U x I Pynnönen 1/3 SÄHKÖTEKNIIKKA Kurssi: Harjoitustyö : Tehon mittaaminen Pvm : Opiskelija: Tark. Arvio: Tavoite: Välineet: Harjoitustyön tehtyäsi osaat mitata ja arvioida vastukseen jäävän tehohäviön sähköisessä

Lisätiedot

Combi Cooler Kompakti ilmankäsittelykoneen toiminto-osa, joka jäähdyttää ennätyksellisen energiatehokkaasti

Combi Cooler Kompakti ilmankäsittelykoneen toiminto-osa, joka jäähdyttää ennätyksellisen energiatehokkaasti Combi Cooler Kompakti ilmankäsittelykoneen toiminto-osa, joka jäähdyttää ennätyksellisen energiatehokkaasti Jäähdytyspalkkijärjestelmään yhdistetty Combi Cooler on helppo, toimintavarma ja sähkötehokas

Lisätiedot

Metsäenergian saatavuus, käytön kannattavuus ja työllisyysvaikutukset, Case Mustavaara

Metsäenergian saatavuus, käytön kannattavuus ja työllisyysvaikutukset, Case Mustavaara Metsäenergian saatavuus, käytön kannattavuus ja työllisyysvaikutukset, Case Mustavaara TIE-hankkeen päätösseminaari Taivalkoski 27.3.2013 Matti Virkkunen, VTT 2 Sisältö Metsähakkeen saatavuus Mustavaaran

Lisätiedot

EnergiaRäätäli Suunnittelustartti:

EnergiaRäätäli Suunnittelustartti: EnergiaRäätäli Suunnittelustartti: Taustaselvitys puukaasun ja aurinkoenergian tuotannon kannattavuudesta 10.10.2013 1 Lähtökohta Tässä raportissa käydään lävitse puukaasulaitoksen ja aurinkoenergian (sähkön

Lisätiedot

Hallituksen linjausten vaikutuksia sähkömarkkinoihin

Hallituksen linjausten vaikutuksia sähkömarkkinoihin Hallituksen linjausten vaikutuksia sähkömarkkinoihin Jukka Leskelä Energiateollisuus Energia- ja ilmastostrategian valmisteluun liittyvä asiantuntijatilaisuus 27.1.2016 Hiilen käyttö sähköntuotantoon on

Lisätiedot

Sähkölämmityksen tulevaisuus

Sähkölämmityksen tulevaisuus Sähkölämmityksen tulevaisuus Sähkölämmityksen tehostamisohjelma Elvarin päätöstilaisuus 5.10.2015 Pirkko Harsia Yliopettaja, sähköinen talotekniikka Koulutuspäällikkö, talotekniikka 1.10.2015 TAMK 2015/PHa

Lisätiedot

Uuraisten energiatase Keski-Suomen Energiatoimisto/ Benet Oy

Uuraisten energiatase Keski-Suomen Energiatoimisto/ Benet Oy Uuraisten energiatase 2010 Keski-Suomen Energiatoimisto/ Benet Oy 1 Uuraisten energiatase 2010 Öljy 53 GWh Puu 21 GWh Teollisuus 4 GWh Sähkö 52 % Prosessilämpö 48 % Rakennusten lämmitys 45 GWh Kaukolämpö

Lisätiedot

ENERGIANSÄÄSTÖTOIMIEN VAIKUTUS SISÄILMAAN

ENERGIANSÄÄSTÖTOIMIEN VAIKUTUS SISÄILMAAN ENERGIANSÄÄSTÖTOIMIEN VAIKUTUS SISÄILMAAN Artti Elonen, insinööri Tampereen Tilakeskus, huoltopäällikkö LAIT, ASETUKSET Rakennus on suunniteltava ja rakennettava siten, etteivät ilman liike, lämpösäteily

Lisätiedot

Pellettikoe. Kosteuden vaikutus savukaasuihin Koetestaukset, Energon Jussi Kuusela

Pellettikoe. Kosteuden vaikutus savukaasuihin Koetestaukset, Energon Jussi Kuusela Pellettikoe Kosteuden vaikutus savukaasuihin Koetestaukset, Energon Jussi Kuusela Johdanto Tässä kokeessa LAMKin ympäristötekniikan opiskelijat havainnollistivat miten puupellettien kosteuden muutos vaikuttaa

Lisätiedot

Konventionaalisessa lämpövoimaprosessissa muunnetaan polttoaineeseen sitoutunut kemiallinen energia lämpö/sähköenergiaksi höyryprosessin avulla

Konventionaalisessa lämpövoimaprosessissa muunnetaan polttoaineeseen sitoutunut kemiallinen energia lämpö/sähköenergiaksi höyryprosessin avulla Termodynamiikkaa Energiatekniikan automaatio TKK 2007 Yrjö Majanne, TTY/ACI Martti Välisuo, Fortum Nuclear Services Automaatio- ja säätötekniikan laitos Termodynamiikan perusteita Konventionaalisessa lämpövoimaprosessissa

Lisätiedot

Uponor G12 -lämmönkeruuputki. Asennuksen pikaohje

Uponor G12 -lämmönkeruuputki. Asennuksen pikaohje Uponor G12 -lämmönkeruuputki Asennuksen pikaohje poraajille Uponor G12 -lämmönkeruuputken asennus neljässä vaiheessa Uponor G12 -putket asennetaan periaatteessa samalla menetelmällä kuin tavanomaiset keruuputket.

Lisätiedot

Tulevaisuuden puupolttoainemarkkinat

Tulevaisuuden puupolttoainemarkkinat Tulevaisuuden puupolttoainemarkkinat Martti Flyktman, VTT martti.flyktman@vtt.fi Puh. 040 546 0937 10.10.2013 Martti Flyktman 1 Sisältö Suomen energian kokonaiskulutus Suomen puupolttoaineiden käyttö ja

Lisätiedot

Keski-Suomen energiatase 2009, matalasuhdanteen vaikutukset teollisuuden energiankulutukseen. Lauri Penttinen Keski-Suomen Energiatoimisto/ Benet Oy

Keski-Suomen energiatase 2009, matalasuhdanteen vaikutukset teollisuuden energiankulutukseen. Lauri Penttinen Keski-Suomen Energiatoimisto/ Benet Oy Keski-Suomen energiatase 2009, matalasuhdanteen vaikutukset teollisuuden energiankulutukseen Keski-Suomen Energiatoimisto/ Benet Oy 1 Sisältö Keski-Suomen taloudellinen kehitys 2008-2009 Matalasuhteen

Lisätiedot

KAUKOLÄMPÖ ON YMPÄRISTÖYSTÄVÄLLISTÄ ENERGIAA ENERGIAA JÄTTEESTÄ YHTEISTYÖ LUO VAKAUTTA

KAUKOLÄMPÖ ON YMPÄRISTÖYSTÄVÄLLISTÄ ENERGIAA ENERGIAA JÄTTEESTÄ YHTEISTYÖ LUO VAKAUTTA YMPÄRISTÖRAPORTTI 2015 KAUKOLÄMPÖ ON YMPÄRISTÖYSTÄVÄLLISTÄ ENERGIAA Kaukolämpö on ekologinen ja energiatehokas lämmitysmuoto. Se täyttää nykyajan kiristyneet rakennusmääräykset, joten kaukolämpötaloon

Lisätiedot

Jyväskylä 13.10.2010, Hannes Tuohiniitty Suomen Pellettienergiayhdistys ry. www.pellettienergia.fi

Jyväskylä 13.10.2010, Hannes Tuohiniitty Suomen Pellettienergiayhdistys ry. www.pellettienergia.fi Pelletti on modernia puulämmitystä Jyväskylä 13.10.2010, Hannes Tuohiniitty Suomen Pellettienergiayhdistys ry. Pelletin valmistus Pelletti on puristettua puuta Raaka-aineena käytetään puunjalostusteollisuuden

Lisätiedot

Alue-energiamalli. Ratkaisuja alueiden energiasuunnitteluun

Alue-energiamalli. Ratkaisuja alueiden energiasuunnitteluun Alue-energiamalli Ratkaisuja alueiden energiasuunnitteluun Lähes puolet Uudenmaan kasvihuonepäästöistä aiheutuu rakennuksista Uudenmaan liitto 3 4 5 Energiaverkot keskitetty Hajautettu tuotanto hajautettu

Lisätiedot

Minne energia kuluu taloyhtiössä? Energiaeksperttikoulutus Ilari Rautanen

Minne energia kuluu taloyhtiössä? Energiaeksperttikoulutus Ilari Rautanen Minne energia kuluu taloyhtiössä? Energiaeksperttikoulutus 10.10.2016 Ilari Rautanen 10.10.2016 Lauri Penttinen 2 Miksi energiaa kannattaa säästää? Energia yhä kalliimpaa ja ympäristövaikutuksia täytyy

Lisätiedot

Maaperästä saatavaa uusiutuvaa energiaa... HERZ lämpöpumpulla. commotherm 5-15

Maaperästä saatavaa uusiutuvaa energiaa... HERZ lämpöpumpulla. commotherm 5-15 IHR VERLÄSSLICHER PARTNER über 110 Jahre Marktpräsenz Maaperästä saatavaa uusiutuvaa energiaa... HERZ lämpöpumpulla commotherm 5-15 IHR VERLÄSSLICHER PARTNER Tulevaisuuden lämmitys HERZ lämpöpumpulla HERZ

Lisätiedot

METSÄBIOMASSAN KÄYTTÖ SÄHKÖN JA KAUKOLÄMMÖN TUOTANNOSSA TULEVAISUUDESSA Asiantuntijaseminaari Pöyry Management Consulting Oy

METSÄBIOMASSAN KÄYTTÖ SÄHKÖN JA KAUKOLÄMMÖN TUOTANNOSSA TULEVAISUUDESSA Asiantuntijaseminaari Pöyry Management Consulting Oy METSÄBIOMASSAN KÄYTTÖ SÄHKÖN JA KAUKOLÄMMÖN TUOTANNOSSA TULEVAISUUDESSA Asiantuntijaseminaari - 22.3.216 Pöyry Management Consulting Oy EU:N 23 LINJAUSTEN TOTEUTUSVAIHTOEHDOT EU:n 23 linjausten toteutusvaihtoehtoja

Lisätiedot

Pääasiallisen lämmitysjärjestelmän mitoitus täydelle lämmitysteholle korjaus- ja muutostöissä: Ohje lämpöpumppujärjestelmiä koskien

Pääasiallisen lämmitysjärjestelmän mitoitus täydelle lämmitysteholle korjaus- ja muutostöissä: Ohje lämpöpumppujärjestelmiä koskien Dnro: YM3/601/2014 Pääasiallisen lämmitysjärjestelmän mitoitus täydelle lämmitysteholle korjaus- ja muutostöissä: Ohje lämpöpumppujärjestelmiä koskien Ohje YM asetukseen 4/2013 rakennuksen energiatehokkuuden

Lisätiedot

ENERGIAN- SÄÄSTÖVINKKEJÄ LOGISTIIKKA- JA TUOTANTOTILOILLE

ENERGIAN- SÄÄSTÖVINKKEJÄ LOGISTIIKKA- JA TUOTANTOTILOILLE ENERGIAN- SÄÄSTÖVINKKEJÄ LOGISTIIKKA- JA TUOTANTOTILOILLE KIINTEISTÖN ENERGIA- TEHOKKUUTTA LUODAAN JOKA PÄIVÄ Kiinteistöjen tehokas energiankäyttö on fiksua paitsi ympäristön kannalta, myös taloudellisesta

Lisätiedot

ENERGIATODISTUS. HOAS 153 Pohjoinen Rautatiekatu 29 Pohjoinen Rautatiekatu , Helsinki. Muut asuinkerrostalot

ENERGIATODISTUS. HOAS 153 Pohjoinen Rautatiekatu 29 Pohjoinen Rautatiekatu , Helsinki. Muut asuinkerrostalot ENERGIATODISTUS Rakennuksen nimi ja osoite: HOAS 5 Pohjoinen Rautatiekatu 9 Pohjoinen Rautatiekatu 9 0000, Helsinki Rakennustunnus: Rakennuksen valmistumisvuosi: Rakennuksen käyttötarkoitusluokka: 000

Lisätiedot

Muuramen energiatase Keski-Suomen Energiatoimisto/ Benet Oy

Muuramen energiatase Keski-Suomen Energiatoimisto/ Benet Oy Muuramen energiatase 2010 Keski-Suomen Energiatoimisto/ Benet Oy 1 Muuramen energiatase 2010 Öljy 135 GWh Teollisuus 15 GWh Prosessilämpö 6 % Sähkö 94 % Turve 27 GWh Rakennusten lämmitys 123 GWh Kaukolämpö

Lisätiedot

Vähennä energian kulutusta ja kasvata satoa kasvihuoneviljelyssä

Vähennä energian kulutusta ja kasvata satoa kasvihuoneviljelyssä Avoinkirje kasvihuoneviljelijöille Aiheena energia- ja tuotantotehokkuus. Vähennä energian kulutusta ja kasvata satoa kasvihuoneviljelyssä Kasvihuoneen kokonaisenergian kulutusta on mahdollista pienentää

Lisätiedot

Kannattava aurinkosähköinvestointi

Kannattava aurinkosähköinvestointi Kannattava aurinkosähköinvestointi -aurinkosähköjärjestelmästä yleisesti -mitoittamisesta kannattavuuden kannalta -aurinkoenergia kilpailukyvystä Mikko Nurhonen, ProAgria Etelä-Savo p. 043-824 9498 senttiä

Lisätiedot

Aurinko energialähteenä

Aurinko energialähteenä Sakari Aalto, Ulvila Aurinkoteknillinen yhdistys ry Aurinko energialähteenä Aurinko- ja pellettienergiailta 8.2.2011 6.2.2011 Sakari Aalto, ATY 1 Aurinkoteknillinen yhdistys ry valvoo jäsentensä yleisiä

Lisätiedot

ENERGIATODISTUS. HOAS 155 Majurinkulma 2 talo 1 Majurinkulma , Espoo. Muut asuinkerrostalot. Uudisrakennusten määräystaso 2012

ENERGIATODISTUS. HOAS 155 Majurinkulma 2 talo 1 Majurinkulma , Espoo. Muut asuinkerrostalot. Uudisrakennusten määräystaso 2012 ENERGIATODISTUS Rakennuksen nimi ja osoite: HOAS 55 Majurinkulma talo Majurinkulma 0600, Espoo Rakennustunnus: Rakennuksen valmistumisvuosi: Rakennuksen käyttötarkoitusluokka: 00 Muut asuinkerrostalot

Lisätiedot

Vähähiilisiä energiaratkaisuja. - Kokemuksia Jouko Knuutinen

Vähähiilisiä energiaratkaisuja. - Kokemuksia Jouko Knuutinen Vähähiilisiä energiaratkaisuja - Kokemuksia 5.10 2016 Jouko Knuutinen TA-Yhtymä Oy valtakunnallinen, yleishyödyllinen koko maassa n. 15 000 asuntoa - Pohjois-Suomessa n. 3100 asuntoa uudistuotantoa n.

Lisätiedot

Keinoja uusiutuvan energian lisäämiseen ja energian säästöön

Keinoja uusiutuvan energian lisäämiseen ja energian säästöön Keinoja uusiutuvan energian lisäämiseen ja energian säästöön Terhi Harjulehto 1.12.29 Elomatic-esittely Katselmustoiminnan tausta Uusiutuvan energian kuntakatselmus Sievin kunta Energiantuotannon ja -käytön

Lisätiedot

Hybridilämmitysjärjestelmät ja elinkaarivertailu. www.ekolammox.fi

Hybridilämmitysjärjestelmät ja elinkaarivertailu. www.ekolammox.fi Hybridilämmitysjärjestelmät ja elinkaarivertailu www.ekolammox.fi Kari Balk Energia asiantuntija, Ins EET pätevyys Motiva energiakatselmoija www.ekolammox.fi Energiatehokkuuden asiantuntija Pientalot ja

Lisätiedot

Ympäristönsuojelupäivät Janne Juvonen

Ympäristönsuojelupäivät Janne Juvonen Lämpökaivo-opas Ympäristönsuojelupäivät 7.10.2010 Janne Juvonen Oppaan taustavoimat Opasta valmistelleessa asiantuntijaryhmässä mukana: YM SYKE Suomen Kaivonporausurakoitsijat Poratek r.y. Suomen Lämpöpumppuyhdistys

Lisätiedot

EU vaatii kansalaisiltaan nykyisen elämänmuodon täydellistä viherpesua.

EU vaatii kansalaisiltaan nykyisen elämänmuodon täydellistä viherpesua. EU vaatii kansalaisiltaan nykyisen elämänmuodon täydellistä viherpesua. Se asettaa itselleen energiatavoitteita, joiden perusteella jäsenmaissa joudutaan kerta kaikkiaan luopumaan kertakäyttöyhteiskunnan

Lisätiedot

MUISTIO No CFD/MECHA pvm 22. kesäkuuta 2011

MUISTIO No CFD/MECHA pvm 22. kesäkuuta 2011 Aalto yliopisto Insinööritieteiden korkeakoulu Virtausmekaniikka / Sovelletun mekaniikan laitos MUISTIO No CFD/MECHA-17-2012 pvm 22. kesäkuuta 2011 OTSIKKO Hilatiheyden määrittäminen ennen simulointia

Lisätiedot

Jos olet käynyt kurssin aikaisemmin, merkitse vuosi jolloin kävit kurssin nimen alle.

Jos olet käynyt kurssin aikaisemmin, merkitse vuosi jolloin kävit kurssin nimen alle. 1(4) Lappeenrannan teknillinen yliopisto School of Energy Systems LUT Energia Nimi, op.nro: BH20A0450 LÄMMÖNSIIRTO Tentti 13.9.2016 Osa 1 (4 tehtävää, maksimi 40 pistettä) Vastaa seuraaviin kysymyksiin

Lisätiedot

ENERGIATODISTUS. HOAS 106 Rasinkatu 7 Rasinkatu , Vantaa. Muut asuinkerrostalot. Uudisrakennusten määräystaso 2012

ENERGIATODISTUS. HOAS 106 Rasinkatu 7 Rasinkatu , Vantaa. Muut asuinkerrostalot. Uudisrakennusten määräystaso 2012 ENERGIATODISTUS Rakennuksen nimi ja osoite: HOAS 06 Rasinkatu 7 Rasinkatu 7 060, Vantaa Rakennustunnus: Rakennuksen valmistumisvuosi: Rakennuksen käyttötarkoitusluokka: 97 Muut asuinkerrostalot Todistustunnus:

Lisätiedot

SMG-4500 Tuulivoima. Toisen luennon aihepiirit VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT TUULET

SMG-4500 Tuulivoima. Toisen luennon aihepiirit VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT TUULET SMG-4500 Tuulivoima Toisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmavirtoihin vaikuttavien voimien yhteisvaikutuksista syntyvät tuulet Globaalit ilmavirtaukset 1 VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT

Lisätiedot

Energiajärjestelmän haasteet ja liikenteen uudet ratkaisut

Energiajärjestelmän haasteet ja liikenteen uudet ratkaisut Energiajärjestelmän haasteet ja liikenteen uudet ratkaisut Vihreä moottoritie foorumi 18.8.2010, Fortum, Espoo Petra Lundström Vice President, CTO Fortum Oyj Kolme valtavaa haastetta Energian kysynnän

Lisätiedot

Lypsykarjanavetan energiankulutus. Valion navettaseminaari, Pasi Eskelinen

Lypsykarjanavetan energiankulutus. Valion navettaseminaari, Pasi Eskelinen Lypsykarjanavetan energiankulutus Valion navettaseminaari, Pasi Eskelinen 4.2.2015 ERKKA hanke Energiatehokas tuotantorakennus Keskeisinä tutkimuskohteina maalämpö, uusiutuvat energiaratkaisut ja energiatehokkuus

Lisätiedot

KEMIN ENERGIA OY Ilmastopäivä Kemin Energia Oy Lämmöntuotanto Sähkön osakkuudet Energiatehokkuussopimus

KEMIN ENERGIA OY Ilmastopäivä Kemin Energia Oy Lämmöntuotanto Sähkön osakkuudet Energiatehokkuussopimus Kemin Energia Oy Lämmöntuotanto Sähkön osakkuudet Energiatehokkuussopimus Kemin Energia Oy on Kemin kaupungin 100 % omistama energiayhtiö Liikevaihto 16 miljoonaa euroa Tase 50 miljoonaa euroa 100 vuotta

Lisätiedot

Vedonrajoitinluukun merkitys savuhormissa

Vedonrajoitinluukun merkitys savuhormissa Vedonrajoitinluukun merkitys savuhormissa Savupiipun tehtävä on saada aikaan vetoa palamista varten ja kuljettaa pois tuotetut savukaasut. Siksi savupiippu ja siihen liittyvät järjestelyt ovat äärimmäisen

Lisätiedot

Mistäuuttakysyntääja jalostustametsähakkeelle? MikkelinkehitysyhtiöMikseiOy Jussi Heinimö

Mistäuuttakysyntääja jalostustametsähakkeelle? MikkelinkehitysyhtiöMikseiOy Jussi Heinimö Mistäuuttakysyntääja jalostustametsähakkeelle? MikkelinkehitysyhtiöMikseiOy Jussi Heinimö 14.11.2016 Mistä uutta kysyntää metsähakkeelle -haasteita Metsähakkeen käyttö energiantuotannossa, erityisesti

Lisätiedot

Nykykodin lämmitysjärjestelmät

Nykykodin lämmitysjärjestelmät yle Nykykodin lämmitysjärjestelmät Antero Mäkinen Lämmönjakojärjestelmät Vesikiertoiset Patterit Lattialämmitys (IV-koneen esilämmityspatteri) Ilma IV-kone Sähkölämmitin maalämpöfoorumi.fi Vesikiertoinen

Lisätiedot

Biomassan käyttö energian tuotannossa globaalit ja alueelliset skenaariot vuoteen 2050

Biomassan käyttö energian tuotannossa globaalit ja alueelliset skenaariot vuoteen 2050 Biomassan käyttö energian tuotannossa globaalit ja alueelliset skenaariot vuoteen 2 Erikoistutkija Tiina Koljonen VTT Energiajärjestelmät Bioenergian kestävä tuotanto ja käyttö maailmanlaajuisesti 6.3.29,

Lisätiedot

Visio uusiutuvasta lämmityksestä Euroopassa 2050

Visio uusiutuvasta lämmityksestä Euroopassa 2050 Visio uusiutuvasta lämmityksestä Euroopassa 2050 Keski Suomen Energiapäivä 28.1.2010 Kari Mutka 1 Kari Mutka 28.1.2010 Renewable Heating and Cooling Platform, RHC-ETP EU:n Komission vuonna 2009 käynnistämä

Lisätiedot

3t-hanke Tunnista, tiedosta, tehosta energiatehokkuus osaksi asumista. Energianeuvontailta Pornaisissa 21.9.2011 Jarkko Hintsala

3t-hanke Tunnista, tiedosta, tehosta energiatehokkuus osaksi asumista. Energianeuvontailta Pornaisissa 21.9.2011 Jarkko Hintsala 3t-hanke Tunnista, tiedosta, tehosta energiatehokkuus osaksi asumista Energianeuvontailta Pornaisissa 21.9.2011 Jarkko Hintsala Esityksen sisältö 1. Energiansäästö, energiatehokkuus ja asuminen 2. Vinkkejä

Lisätiedot

Energiakoulutus / Rane Aurinkolämmitys

Energiakoulutus / Rane Aurinkolämmitys Energiakoulutus / Rane Aurinkolämmitys 22.3.2016 Jarno Kuokkanen Sundial Finland Oy Aurinkoteknillinen yhdistys ry Sundial Finland Oy Perustettu 2009 Kotimainen yritys, Tampere Aurinkolämpöjärjestelmät

Lisätiedot

ENERGIATODISTUS. HOAS 146 Timpurinkuja 1 Timpurinkuja 1 A 02650, Espoo. Muut asuinkerrostalot. Uudisrakennusten määräystaso 2012

ENERGIATODISTUS. HOAS 146 Timpurinkuja 1 Timpurinkuja 1 A 02650, Espoo. Muut asuinkerrostalot. Uudisrakennusten määräystaso 2012 ENERGIATODISTUS Rakennuksen nimi ja osoite: HOAS 46 Timpurinkuja Timpurinkuja A 0650, Espoo Rakennustunnus: Rakennuksen valmistumisvuosi: Rakennuksen käyttötarkoitusluokka: 986 Muut asuinkerrostalot Todistustunnus:

Lisätiedot

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua Ideaalikaasulaki Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua ja tilanmuuttujat (yhä) paine, tilavuus ja lämpötila Isobaari, kun paine on vakio Kaksi

Lisätiedot

Päästövaikutukset energiantuotannossa

Päästövaikutukset energiantuotannossa e Päästövaikutukset energiantuotannossa 21.02.2012 klo 13.00 13.20 21.2.2013 IJ 1 e PERUSTETTU 1975 - TOIMINTA KÄYNNISTETTY 1976 OMISTAJANA LAPUAN KAUPUNKI 100 % - KAUPUNGIN TYTÄRYHTIÖ - OSAKEPÄÄOMA 90

Lisätiedot

Arvioita Suomen puunkäytön kehitysnäkymistä

Arvioita Suomen puunkäytön kehitysnäkymistä Arvioita Suomen puunkäytön kehitysnäkymistä Lauri Hetemäki Metsien käytön tulevaisuus Suomessa -seminaari, Suomenlinna, 25.3.2010, Metsäntutkimuslaitos Skogsforskningsinstitutet Finnish Forest Research

Lisätiedot

ENERGIASELVITYS. As Oy Munkkionpuisto Suuret asuinrakennukset Munkkionkuja Turku. Rakennuksen puolilämpimien tilojen ominaislämpöhäviö:

ENERGIASELVITYS. As Oy Munkkionpuisto Suuret asuinrakennukset Munkkionkuja Turku. Rakennuksen puolilämpimien tilojen ominaislämpöhäviö: TUNNISTE/PERUSTIEDOT Rakennuskohde: Rakennustyyppi: Osoite: Rakennustunnus: Rakennuslupatunnus: Energiaselvityksen tekijä: Pääsuunnittelija: As Oy Munkkionpuisto Suuret asuinrakennukset Munkkionkuja 7

Lisätiedot

Energiaa luonnosta. GE2 Yhteinen maailma

Energiaa luonnosta. GE2 Yhteinen maailma Energiaa luonnosta GE2 Yhteinen maailma Energialuonnonvarat Energialuonnonvaroja ovat muun muassa öljy, maakaasu, kivihiili, ydinvoima, aurinkovoima, tuuli- ja vesivoima. Energialuonnonvarat voidaan jakaa

Lisätiedot

Molaariset ominaislämpökapasiteetit

Molaariset ominaislämpökapasiteetit Molaariset ominaislämpökapasiteetit Yleensä, kun systeemiin tuodaan lämpöä, sen lämpötila nousee. (Ei kuitenkaan aina, kannattaa muistaa, että työllä voi olla osuutta asiaan.) Lämmön ja lämpötilan muutoksen

Lisätiedot

POLTTOAINEIDEN VEROMUUTOSTEN VAIKUTUSTEN SEURANTA SÄHKÖN JA LÄMMÖN YHTEISTUOTANNOSSA TIIVISTELMÄ - PÄIVITYS 12.2.2016

POLTTOAINEIDEN VEROMUUTOSTEN VAIKUTUSTEN SEURANTA SÄHKÖN JA LÄMMÖN YHTEISTUOTANNOSSA TIIVISTELMÄ - PÄIVITYS 12.2.2016 POLTTOAINEIDEN VEROMUUTOSTEN VAIKUTUSTEN SEURANTA SÄHKÖN JA LÄMMÖN YHTEISTUOTANNOSSA TIIVISTELMÄ - PÄIVITYS All rights reserved. No part of this document may be reproduced in any form or by any means without

Lisätiedot

Aurinkosuojaus integroituna osaksi kestävää rakentamista. SUOMEN AURINKOSUOJAUS RY

Aurinkosuojaus integroituna osaksi kestävää rakentamista. SUOMEN AURINKOSUOJAUS RY Aurinkosuojaus integroituna osaksi kestävää rakentamista REHVA Guide books Sivu 2 HAASTE Suunnittelukulttuurin tulee kehittyä ja oppia uusia keinoja. Aurinkosuojajärjestelmä on huomioitava suunnittelun

Lisätiedot

Metsäenergian aluetalousvaikutukset. METY loppuseminaari 21.1.2014 Tanja Ikonen & Johanna Routa Luonnonvarakeskus

Metsäenergian aluetalousvaikutukset. METY loppuseminaari 21.1.2014 Tanja Ikonen & Johanna Routa Luonnonvarakeskus Metsäenergian aluetalousvaikutukset METY loppuseminaari 21.1.2014 Tanja Ikonen & Johanna Routa Luonnonvarakeskus Tutkimuksen tavoite ja tausta Pohjois-Karjalan ilmasto- ja energiaohjelman asettaman tavoitteen

Lisätiedot

Myyrmäen keskusta Kasvihuonekaasupäästöjen mallinnus KEKO-ekolaskurilla

Myyrmäen keskusta Kasvihuonekaasupäästöjen mallinnus KEKO-ekolaskurilla Myyrmäen keskusta 001925 Kasvihuonekaasupäästöjen mallinnus KEKO-ekolaskurilla Vantaan kaupunki 23.9.2016 Vaikutukset ympäristöön ja ilmastoon Kaavaan esitettyjen uusien kortteleiden 15403, 15406 ja 15422,

Lisätiedot

Lämpöpumput kaukolämmön kumppani vai kilpailija? Jari Kostama Lämpöpumppupäivä Vantaa

Lämpöpumput kaukolämmön kumppani vai kilpailija? Jari Kostama Lämpöpumppupäivä Vantaa Lämpöpumput kaukolämmön kumppani vai kilpailija? Jari Kostama Lämpöpumppupäivä 29.11.2016 Vantaa Sisältö Kaukolämpö dominoi lämmitysmarkkinoilla Huhut kaukolämmön hiipumisesta ovat vahvasti liioiteltuja

Lisätiedot

RASTIKANKAAN YRITYSALUEEN ENERGIARATKAISUT

RASTIKANKAAN YRITYSALUEEN ENERGIARATKAISUT RASTIKANKAAN YRITYSALUEEN ENERGIARATKAISUT 2014 Antti Rusanen Lahden Seudun Kehitys LADEC Oy Hämeen uusiutuvan energian tulevaisuus -hanke SISÄLLYS 1 JOHDANTO... 3 2 RASTIKANKAAN YRITYSALUEEN ENERGIANKULUTUS...

Lisätiedot

Aurinkoenergiailta Joensuu

Aurinkoenergiailta Joensuu Aurinkoenergiailta Joensuu 17.3.2016 Uusiutuvan energian mahdollisuudet Uusiutuva energia on Aurinko-, tuuli-, vesi- ja bioenergiaa (Bioenergia: puuperäiset polttoaineet, peltobiomassat, biokaasu) Maalämpöä

Lisätiedot

Interaktiivinen asiakasrajapinta ja sen hyödyntäminen energiatehokkuudessa

Interaktiivinen asiakasrajapinta ja sen hyödyntäminen energiatehokkuudessa Interaktiivinen asiakasrajapinta ja sen hyödyntäminen energiatehokkuudessa Samuli Honkapuro Lappeenrannan teknillinen yliopisto Samuli.Honkapuro@lut.fi Tel. +358 400-307 728 1 Vähäpäästöinen yhteiskunta

Lisätiedot