Kalliolämpö osana uusiutuviin energioihin perustuvaa arktista lämmitysjärjestelmää

Koko: px
Aloita esitys sivulta:

Download "Kalliolämpö osana uusiutuviin energioihin perustuvaa arktista lämmitysjärjestelmää"

Transkriptio

1 AALTO-YLIOPISTON TEKNILLINEN KORKEAKOULU Insinööritieteiden ja arkkitehtuurin tiedekunta Energiatekniikan laitos Johanna Nylund Kalliolämpö osana uusiutuviin energioihin perustuvaa arktista lämmitysjärjestelmää Diplomityö, joka on jätetty opinnäytteenä tarkastettavaksi diplomi-insinöörin tutkintoa varten. Espoo Työn valvoja Työn ohjaaja Professori Kai Sirén Tekniikan tohtori Jukka Paatero

2 AALTO-YLIOPISTON TEKNILLINEN KORKEAKOULU Diplomityön tiivistelmä Tekijä: Johanna Nylund Työn nimi: Kalliolämpö osana uusiutuviin energioihin perustuvaa arktista lämmitysjärjestelmää Päivämäärä: Tiedekunta: Laitos: Professuuri: Työn valvoja: Työn ohjaaja: Insinööritieteiden ja arkkitehtuurin tiedekunta Energiatekniikan laitos Ene-58 LVI-tekniikka Professori Kai Sirén Tekniikan tohtori Jukka Paatero Sivumäärä: 98 + liitteet Tämä diplomityö on osa MATKA - hanketta. MATKA - hankkeen tarkoituksena on tutkia ja kehittää matkailua yhdyskuntarakenteessa ja selvittää miten matkailuteollisuus integroituu kestävään aluekehitykseen. Tämän tutkimuksen tavoitteena on mitoittaa Ylläkselle rakennettavaan uuteen matkailukylään ekotehokas aluelämmitysjärjestelmä. Aluelämmitysjärjestelmän energiantuottomuotoina tutkitaan lämpöpumppuihin, biomassaan ja aurinkolämpöön perustuvaa järjestelmää. Uusi matkailukylä on tarkoitus toteuttaa passiivi- ja matalaenergiatekniikalla. Siitä kuinka laajalle aluelämmitysjärjestelmä ulotetaan muodostettiin kaksi eri skenaariota. Skenaariot osoittautuivat kuitenkin niin samanlaisiksi, että kaikki laskelmat tehtiin skenaarion 2 lämmitysenergiantarpeilla. Lisäksi matalaenergiarakentamisen hyödyllisyys osoitettiin referenssitapauksen avulla. Matalaenergiarakentaminen säästää lämmitysenergiassa 7,6 GWh/a. Tutkittavia energiajärjestelmiä oli kaksi. Energiajärjestelmän 1 perusenergiantuotannosta vastaa lämpöpumppu ja kulutushuipusta pelletti, sekä energiajärjestelmän 2 perusenergiantuotannosta vastaa hake ja kulutushuipusta pelletti. Energiajärjestelmien sisällä valittiin osuudet eri energiamuodoille, mutta valitut energiaosuudet perustuvat arvioon, eivätkä ne välttämättä vastaa taloudellista optimia. Aurinkolämpöä voi energiajärjestelmien tukena käyttää lämpimän käyttöveden tuottamiseen kesällä sekä lämpökaivokentän lataamiseen. Aurinkolämmön suhteen tultiin tulokseen, että siihen on tuskin kannattavaa investoida. Energiajärjestelmän 1 lämpökaivokenttä mitoitettiin EED:llä, joka on lämpökaivojen mitoitukseen tarkoitettu ohjelmisto. EED:llä tehtiin monta eri mitoitusta, mutta lämpökaivokentän lämmönsiirtonesteen lämpötilaa ei saatu tasaantumaan. Tähän vaikuttivat se, että kentästä ainoastaan otettiin lämpöenergiaa, jolloin lämmönsiirtonesteen lämpötilan lasku oli odotettavissakin. Lisäksi Sodankylä korkeudella maanpinnan keskilämpötila on -1 ºC, jota geoterminen gradientti nostaa vain noin 1 ºC /100 m. Nämä seikat aiheuttivat yhdessä lämmönsiirtonesteen lämpötilan laskemisen niin matalaksi, että voi kyseenalaistaa onko pelkästään lämmitykseen tarkoitettu lämpökaivokenttää edes viisasta rakentaa Lappiin. Energiajärjestelmien 1 ja 2 ekotehokkuutta verrattiin laskemalla kummallekin elinkaarikustannukset sekä CO 2 -päästöt, 30 vuoden elinkaarella. Energiajärjestelmän 1 elinkaarikustannukset nousivat noin 2 milj.euroa eli noin 33 % korkeammiksi kuin energiajärjestelmällä 2. CO 2 -päästöjä arvioitaessa energiajärjestelmän 2 koko elinkaaren CO 2 -päästöt olivat yli kaksi kertaa suuremmat eli noin 137 % kuin energiajärjestelmällä 1. Avainsanat: aluelämmitys, kalliolämpö, kalliolämpökenttä, lämpöpumppu, ekotehokkuus 1

3 AALTO UNIVERSITY SCHOOL OF SCIENCE AND TECHNOLOGY Abstract of Master s Thesis Author: Johanna Nylund Title of the Ground source heat pump as part of the renewablesbased arctic heating system Thesis: Date: 31 May 2010 Faculty: Department: Professorship: Supervisor: Instructors: Faculty of Engineering and Architecture Department of Energy Technology Ene-58 HVAC Technology Professor Kai Sirén Jukka Paatero, D.Sc. (Tech.) Number of pages: 98 + app. This thesis is part of the MATKA - project. MATKA - project is designed to explore and develop tourism in urban structure and examine how the tourism industry integrades sustainable regional development. The aim of this study was to dimension eco-efficient district heating system for the new tourist village in Ylläs. Heat pumps, biomass and solar energy-based system were examined for source of energy for district heating system. The new tourist village is planned to use passive and low-energy technology. Scenarios 1 and 2 with different district heating system extensions were constructed. Scenarios, however, proved to be almost identical that all the calculations for heating energy demand were done by using scenario two. In addition, the utility of low-energy technology was demonstrated through reference case. The annual saving of the heating energy was 7.6 GWh by using low-energy construction. Two different energy systems were explored. On the energy system 1 the basic energy is produced by heat pump and the peak energy by pellet. On the energy system 2 the basic energy was produced by wood chip and the peak energy by the pellet. The chosen energy shares based on an estimate and do not necessarily corresponds to economic optima. The solar energy can be used for production of hot water on the summer time and loading the boreholes in the ground. The conclusion was that it is hardly profitable to invest to solar energy. Boreholes of energy system 1 were dimensioned by EED which is a PC-program for borehole heat exchanger desing. Sevaral dimensionings were done by EED but the temperature of heat transfer fluid did not settled. Thermal energy was only extracted from the ground when the decrease in temperature of heat transfer fluid was expected. In addition, in Sodankylä district the ground surface temperature is -1 º C, which is risen by the geothermal gradient 1 º C / 100 m. These facts caused that heat transfer fluid temperature decreased so low, that it may call into question whether it merely is not even wise to build heating system based on multiple boreholes in Lapland. Eco-efficiency of the energy systems 1 and 2 was compared by calculating both the lifecycle costs and CO 2 - emissions, by using 30-year life cycle. Life-cycle costs of energy system 1 rose about 2 million euros (33%) higher than for the energy system 2. CO 2 - emissions of energy system 2 were more than two times higher (137%) than for the energy system 1. Keywords: district heating, GSHP, GHE, BTES, heat pump, eco-efficiency 2

4 Esipuhe Tämä diplomityö on tehty MATKA-hankkeeseen Aalto-yliopiston teknillisen korkeakoulun tutkimusapulaisena. Työn valvojana toimi professori Kai Sirén ja ohjaajana tekniikan tohtori Jukka Paatero. Olen kiitollinen, että sain tehdä diplomityöni tästä mielenkiintoisesta ja ajankohtaisesta aiheesta. Kiitokset Jukka Paaterolle, jolta löytyi aina aikaa ja neuvoja ongelmia kohdatessani. Erityisen lämpimät kiitokset haluan välittää Kai Sirénille, joka näkemyksillään ja neuvoillaan auttoi minua saattamaan tämän työn päätökseen. Erityiskiitos myös vanhemmilleni, jotka ovat tukeneet ja kannustaneet sekä uskoneet minuun koko opintojeni ajan. Espoossa Johanna Nylund 3

5 Sisällysluettelo Diplomityön tiivistelmä... 1 Abstract of Master s Thesis... 2 Esipuhe... 3 Symboliluettelo Johdanto Tutkimuksen tausta Tutkimusongelma Tutkimuksen tavoite ja rajaus Aluelämmitys Lämmitysmuodot Lapissa Ulkolämpötila Energian tuotanto Kalliolämpökaivo Taustaa Maaperän vaikutus Lämmön siirtymisprosessi Lämpökaivokenttä Alueellinen kalliolämpöjärjestelmä TRT-mittaus Lämmönsiirtonesteen ja lämpökaivokentän lämpötilat Lämpökaivokentän muoto ja kytkennät Lämpöpumpun toiminta Lämpöpumpun termodynamiikkaa Carnot-prosessi Todellinen prosessi Lämpöpumpun tehokkuutta kuvaavat kertoimet Lämpökerroin (COP) Vuoden keskimääräinen lämpökerroin (SPF) Lämpöpumpun toimintalämpötilat Lämpimän käyttöveden tuottaminen Yleistä Tulistusjärjestelmä Loppulämmitys sähköllä tai vaihtuvalla lauhdutuksella Lämpöpumput sarjassa Täydentävät lämmöntuottomuodot Hakelämmitys Puu polttoaineena Kattilat Saatavuus

6 6.2 Pelletti lisälämmityksenä Aurinkolämpö Auringon säteily Passiivinen aurinkolämpö Aktiivinen aurinkoenergia Keräimet SAGSHP Kohde-esittely Alue Lämmitysenergiantarpeisiin vaikuttaneita tekijöitä Taustaa Sää Toimintalämpötilat Lämmitysenergiantarpeet Alueittain Käyttöaste Tunneittain Energiajärjestelmävaihtoehdot Taustaa Energiajärjestelmä Energiajärjestelmä Aurinkolämpö Kalliolämpökentän mitoitus EED Mitoitus Mitoitus Mitoitus Vertailu Ekotehokkuus Taustaa Elinkaarikustannukset Ympäristövaikutukset Päätelmät Johtopäätökset Suositukset Lähdeluettelo Liite 1:Mitoitus 1, lämpökaivokentän mitoitus EED:llä Liite 2:Mitoitus 2, lämpökaivokentän mitoitus EED:llä Liite 3:Mitoitus 3, lämpökaivokentän mitoitus EED:llä 5

7 Symboliluettelo Latinalaiset aakkoset A Ac COP COPc D Ein FR G GT H H y kalliolämpökentän pinta-ala keräimen pinta-ala lämpökerroin Carnot-prosessin mukainen lämpökerroin lämmönkeruuputken halkaisija systeemin syötetty sähköenergia keräystehokkuus kalliolämpökentän geometriakerroin auringonsäteilyn intensiteetti lämpökaivon syvyys lämpökaivon ylin osa H e energian hinta nykyhetkellä h h h k h l höyrystimessä tapahtuva entalpian muutos kompressorissa tapahtuva entalpian muutos lauhduttimessa tapahtuva entalpian muutos K e energiakustannusten nykyarvo K h huoltokustannusten nykyarvo K k kunnossapitokustannusten nykyarvo. K i investointikustannus km maaperän lämmönjohtavuus kt lämpökaivon täyteaineen lämmönjohtavuus 6

8 Ltot m n PK Q Qau lämpökaivojen yhteispituus kylmäaineen massavirta tarkasteluajan pituus kompressorin teho tuotettava energia aurinkokeräimen energiantuotto Qgr maaperästä saatava lämpöenergia Qcool jäähdytysenergiantarve Qheat QL Qused q q gr, h R ' R1 ' R2 ' R12 Rb lämmitysenergiantarve ja lauhduttimen tuottama lämpöenergia systeemistä saatu lämpöenergia lämpövirta lämpökaivojen ominaiskuorma lämpökaivon kokonaislämpövastus lämpövastus lämmönsiirtonesteen(meno) ja lämpökaivon seinän välillä lämpövastus lämmönsiirtonesteen(paluu) ja lämpökaivon seinän välillä lämpövastus lämmönsiirtonesteen meno- ja paluuputkien välillä. lämpövastus lämpökaivon sisäpuolella Rs r rb lämpövastus lämpökaivon ulkopuolella etäisyys lämpökaivon säde re energiakustannusten laskentakorko 7

9 S s TH TL Ti keräimestä absorboitunut energia terminen diffusiviteetti höyrystymislämpötila lauhtumislämpötila ja keräimeen sisään virtaavan nesteen lämpötila Tu t t0 ulkolämpötila lämpötila maaperän keskilämpötila tb lämpökaivon seinän lämpötila t f lämmönsiirtonesteen keskilämpötila t f 1 lämmönsiirtonesteen menolämpötila t f 2 lämmönsiirtonesteen paluulämpötila. th U L V v Wk huipunkäyttöaika keräimen katteen lämmönläpäisykerroin kalliolämpökentän tilavuus lämmönsiirtonesteen nopeus vuotuinen kompressorin käyttämä energiamäärä Kreikkalaiset aakkoset au kuormituskerroin keräimen hyötysuhde c Carnot-hyötysuhde lämmönsiirtonesteen tiheys 8

10 k ( ) max H L aika keräimen katteen läpäisysuhde keräimen efektiivinen absorptiokerroin lämmönsiirtonesteen dynaaminen viskositeetti huipputeho höyrystimen teho lauhduttimen teho Lyhenteet COP EED HWB IPCC LCC SAGSHP SPF TRT Coefficient of Performance Earth Energy Designer Hotter-Whillier- Bliss - yhtälö Intergovernmental Panel on Climate Change Life Cycle Costs solar assisted ground-source heat pump Seasonal Performance Factor Thermal Response Test 9

11 1 Johdanto 1.1 Tutkimuksen tausta Huoli ilmastonmuutoksesta on johtanut siihen, että ympäristövaikutuksiin kiinnitetään entistä enemmän huomiota. Myös Lapissa tähän on paneuduttu, kun Lapin liitto käynnisti vuoden 2008 lopulla maakunnallisen energiastrategian valmistelun. Tavoitteena oli tuoda energia-asiat voimakkaammin osaksi maakunnan pitkän aikavälin suunnittelua. Energiastrategian lähtökohtana oli erityisesti uusiutuvien energialähteiden hyödyntäminen, energian saatavuuden turvaaminen kilpailukykyisellä hinnalla sekä energiayrittäjyyden tukeminen. Tämä tutkimus on osa MATKA - hanketta. MATKA - hankkeen tarkoituksena on tutkia matkailua yhdyskuntarakenteessa ja selvittää miten matkailuteollisuus integroituu kestävään aluekehitykseen. Keskeisenä yhdyskuntarakenteeseen vaikuttavana toimintona tarkastellaan erityisesti matkailualueiden energiahuoltoa. Projekti on laajuutensa takia jaettu neljään osaan ja tämä tutkimus on osa Ekotehokkaan matkailualueen energiahuolto-tutkimuskokonaisuutta. Ekotehokkaana matkailualueena tutkitaan erityisesti pohjoisiin ilmasto-olosuhteisiin soveltuvia ratkaisuja, esimerkkialueena käytetään Yllästä ja sinne suunnitteilla olevaa uutta matkailukylää. Ekotehokkaalla tarkoitetaan toteutuksen keskeisimpiä suunnittelukriteerejä, jotka ovat järjestelmän elinkaaren aikana aiheutuva ympäristörasite sekä kokonaisjärjestelmän taloudellisuus. Energiatuotantomenetelminä tullaan tutkimaan uusiutuvia energianlähteitä, jotka tukevat maakunnallista energiastrategiaa eivätkä aiheuta suurta ympäristörasitetta. Niinpä kiinnostavimmat lämmöntuotannon ratkaisut ovat lämpöpumppuihin ja biomassaan pohjautuva alueellinen lämmitysjärjestelmä. Myös aurinkolämmön hyödyntämiseen paneudutaan kesäajan lämpimän käyttöveden lämmittämisen ja kalliolämpökentän lataamisen kannalta. Energiantuotantoratkaisujen lisäksi hankkeessa kiinnitetään erityishuomiota myös energiankulutukseen. Energiankulutusta vähentämällä saadaan samalla vähennettyä aiheutuvaa ympäristörasitetta ja kustannuksia. Näin ollen koko matkailukylä tullaan suunnittelemaan matalaenergia-alueeksi. Loma-asunnot suunnitellaan niin että ne 10

12 täyttävät passiivitalolle asetetut energiatavoitteet, sekä hotelli- ja liikerakennukset suunnitellaan niin että ne täyttävät matalaenergiatalolle asetetut energiatavoitteet. 1.2 Tutkimusongelma Matkailukylään suunnitellaan alueellinen lämmitysjärjestelmä. Yksi osa tutkimusongelmaa on, miten laajalle aluelämmitysjärjestelmä on järkevää ulottaa ilman, että kustannukset nousevat liian korkeiksi. Matkailukylän laitamilla on alueita, joiden aluetehokkuus on niin matala, että nämä rajautuvat aluelämmityksen ulkopuolelle. Tutkimukseen otetaan mukaan kaksi erilaajuista skenaariota siitä, miten suuren osan koko matkailukylän energiantuotannosta keskitetty lämmitysjärjestelmä kattaa. Toinen osa tutkimusongelmaa on aluelämmitysjärjestelmän mitoitus. Lämmitysjärjestelmä koostuu useasta eri energiamuodosta, jotka ovat kalliolämpö, hake ja pelletti. Näille tulisi kullekin löytää sopiva teho-osuus mitoitustehosta, niin että järjestelmä toimii kustannus- ja energiatehokkaasti ilman suurta ympäristörasitetta. Lisäksi tulee huomioida aurinkolämmön hyödyntämismahdollisuus kesäaikaisen lämpimän käyttöveden tuottamiseksi. Ensisijaisena lämmitysjärjestelmänä tarkastellaan kalliolämpöön perustuvaa järjestelmää, jota verrataan hakelämpöön perustuvaan järjestelmään. Kummassakin tapauksessa energian kulutushuipusta vastaa pellettilaitos. Matkailukylä suunnitellaan kokonaan matalaenergia-alueeksi, joka pienentää huomattavasti kokonaislämmitysenergiantarvetta. Matalaenergiarakentamisen hyödyllisyys pyritään kuitenkin osoittamaan vertaamalla matalaenergia-aluetta ns. normaalienergialueeseen, kuinka paljon suuremmaksi pitää lämmitysjärjestelmä kasvattaa jos ei tehdäkään passiivi- ja matalaenergiarakennuksia. Tärkeä osa lämmitysjärjestelmää on lämpimän käyttöveden tuottaminen. Kalliolämpö on matalalämpöjärjestelmä, joka toimii tehokkaimmin alhaisilla lauhtumislämpötiloilla. Lämpimän käyttöveden tuottamiseksi on useita eri vaihtoehtoja ja ratkaistavaksi jää, miten lämmin käyttövesi on järkevintä tuottaa. 11

13 1.3 Tutkimuksen tavoite ja rajaus Tutkimuksen tavoitteena on mitoittaa matkailukylän aluelämpöjärjestelmä. Aluelämpöjärjestelmä mitoitetaan konseptitasolle, joka tarkoittaa sitä että työssä ei tulla syventymään järjestelmämitoituksen yksityiskohtiin vaan pysytään suhteellisen karkealla ja yleisellä tasolla. Eri energiamuotojen osuuksia mitoitustehosta ei tulla selvittämään optimoimalla ja näin ollen ratkaisut eivät välttämättä tule vastaamaan ekotehokkainta minimiä. Energiaratkaisuja on kaksi erilaista, peruslämmön tuotannosta vastaa joko kalliolämpö tai hake, joista kalliolämpöjärjestelmän tapauksessa tullaan mitoittamaan järjestelmän tarvitsema lämpökaivokenttä. Kumpaankin energiajärjestelmään voidaan yhdistää aurinkolämmön hyödyntäminen ja tätä mahdollisuutta tullaan tarkastelemaan lähemmin. Lisäksi kummallekin energiaratkaisulle lasketaan elinkaarikustannukset ja aiheutuva ympäristörasite. 12

14 2 Aluelämmitys 2.1 Lämmitysmuodot Lapissa Lapin runsaat energiavarat ovat luoneet hyvät edellytykset energiantuotannolle maakunnan alueella. Lapissa hyödynnetään runsaasti vesivoimaa, sekä paikallisia puupolttoaineita, turvetta ja metsäteollisuuden jäteliemiä. Sähköntuotannon suhteen Lappi on hieman yliomavarainen, ja sähköntuotannossa uusiutuvan energian osuus on yli 91 %. Sähkön ja lämmöntuotantoon käytettävistä polttoaineista uusiutuvien osuus on 70 %. Lämpöenergiaa tuotetaan erityisesti teollisuudessa tuotannon omiin tarpeisiin, sekä taajamissa kauko- ja aluelämpöverkkoihin. (Lapin liitto, 2008) Lapissa rakennusten lämmitysmuodot vaihtelevat voimakkaasti riippuen siitä huomioidaanko vain erilliset pientalot vai kaikki rakennukset. Kuvassa 1 on tarkasteltu rakennusten energiankulutusta lämmitysmuodoittain. Kuvasta voidaan huomata, että otettaessa huomioon kaikki rakennukset, yleisin lämmitysmuoto on kauko- ja aluelämpö. Kun taas erillisten pientalojen, joiksi myös loma-asunnot voidaan laskea, yleisin lämmitysmuoto on sähkö. Pääasiassa haja-asutuksen vuoksi pientalojen kauko- ja aluelämmityksen osuus on pieni. Kuva 1. Rakennusten energiankulutus lämmitysmuodoittain Lapissa vuonna 2008 (Lapin liitto, 2008) 13

15 Ylläkselle sijoittuvaan uuteen matkailukylään tullaan suunnittelemaan aluelämmitysjärjestelmä. Aluelämmitys on rakennusten ja käyttöveden lämmittämiseen tarvittavan lämmön keskitettyä tuotantoa ja julkista jakelua asiakkaina oleville kiinteistöille (Energiateollisuus, 2006). Aluelämmitys soveltuu hyvin tähän kohteeseen, koska tavoitteena on löytää ekotehokas ja kestävää matkailualuetta palveleva energiaratkaisu. Aluelämpöjärjestelmässä on edullista hyödyntää uusia teknologioita ja vähentää päästöjä, koska kustannukset ovat jaettavissa useiden asiakkaiden kesken. Lisäksi suuria lämpökeskuksia sitovat päästörajoitukset ja monet päästöjen vähentämismenetelmät ovat sellaisia, joita voidaan hyödyntää vain suurissa kohteissa. (IEA, 1992) 2.2 Ulkolämpötila Lämmityksen tehontarve on voimakkaasti vuodenajasta ja ulkolämpötilasta riippuvainen. Rakentamismääräyskokoelman osassa D5 Suomi on jaettu neljään eri säävyöhykkeeseen. Lappi ja näin ollen myös Ylläs kuuluvat vyöhykkeeseen IV, jonka mitoittava ulkoilman lämpötila on -38 ºC, vuoden keskimääräinen ulkoilman lämpötila on 0 ºC ja lämmityskauden keskimääräinen ulkoilman lämpötila on -5 ºC. (Ympäristöministeriö, 2007) Kuvassa 2 on esitetty Sodankylästä vuonna 2004 mitattujen lämpötilojen jakauma. Kuvassa 3 samat lämpötilat on esitetty aika, lämpötilakoordinaatistossa. Kuvista 2 ja 3 on helppo huomata, että aivan kylmimpiä ulkolämpötiloja esiintyy harvoin ja niitä ei ole vuodessa montaakaan tuntia. 14

16 Lämpötilan pysyvyys [h/a] Ulkolämpötila [ o C] Kuva 2. Sodankylän ulkolämpötilojen jakauma vuoden 2004 mittaustulosten perusteella. (Jokiranta, 2010) Lämpötila [ o C] Aika [h] Kuva 3. Sodankylän ulkolämpötilojen pysyvyyskäyrä vuoden 2004 mittaustulosten perusteella. (Jokiranta, 2010) 15

17 2.3 Energian tuotanto Aluelämmön tuotantolaitosta suunniteltaessa on otettava huomioon sekä luotettavuus että taloudellisuus. Suunnittelun lähtökohtana pidetäänkin usein sitä, että tarvittava teho jaetaan vähintään kahden tuotantoyksikön kesken. Pienissä järjestelmissä ei ole teknisesti järkevää jakaa kapasiteettia kovin moneen tuotantoyksikköön, mutta perusja huipputeho kannattaa yleensä tuottaa erillisillä yksiköillä. Tällöin huippulaitos voi toimia varalaitoksena ja sillä voidaan tuottaa myös päälaitoksen huollon aikana tarvittava energia. Erillinen huippulaitos on hyödyllinen senkin takia, että lämmöntarpeen huiput esiintyvät harvoin ja niiden osuus kokonaisenergiasta on pieni. (Energiateollisuus, 2006; Gustavsson, 1993) Viitteellisen esimerkkilämpölaitoksen tehon pysyvyyskäyrä on esitetty kuvassa 4. Kuvasta on helppo huomata, että kulutushuippu on todella kapea ja valitsemalla peruslaitoksen huipputehoksi 30 % koko lämpölaitoksen huipputehosta, saadaan sillä kuitenkin katettua hyvin suuri osa koko vuoden lämmitysenergiantarpeesta. Kuvassa on vielä erotettu kesäaikaisen lämpimän käyttöveden tuottaminen peruslaitoksesta. Näin ei ole välttämätöntä tehdä, mutta monesti kesäaikainen lämmitysenergiantarve on melko vähäistä, jolloin esimerkiksi peruslaitoksen kattilaa ei pystytä käyttämään niin pienellä teholla. Kuva 4. Viitteellinen esimerkki lämpökeskuksen tehon pysyvyyskäyrästä. 16

18 Perustehosta vastaavan laitoksen huipun käyttöajan tulisi olla vähintään h/a. Huipputehon käyttöajalla tarkoitetaan kulutetun energian ja huipputehon suhdetta. Huipputehon käyttöaika t h lasketaan kaavalla (IEA, 1996): t h Q max (1) jossa Q tuotettu energiamäärä ja max huipputeho. Kalliolämpöjärjestelmää ei ole järkevää mitoittaa kattamaan koko lämmitysenergiantarvetta, koska tällöin käyttöaste jäisi liian alhaiseksi, jotta investointi olisi kannattava. Myös hakekattilan tapauksessa huippulaitoksen erottaminen peruslaitoksesta on perusteltua. Hakekattila toimii yleensä parhaalla hyötysuhteella ja sen hallittavuus on helpompaa suurilla tehoilla. Siksi hakekattila sopii hyvin peruslämmön tuottajaksi, jolloin sen kuorma on tasainen ja huipputehon käyttöaika mahdollisimman suuri. (Energiateollisuus, 2006; Valdimarsson, 1993) 17

19 3 Kalliolämpökaivo 3.1 Taustaa Maalämpöjärjestelmä perustuu maaperään, kallioon tai vesistöön varastoituneen aurinkoenergian hyödyntämiseen rakennuksen lämmityksessä ja jäähdytyksessä. Näistä suosituimmaksi on noussut kalliolämpö, koska kalliolämpökaivon energiasaanto on noin kaksinkertainen putkimetriä kohti verrattuna maalämpöputkistoon. (Aittomäki, 2001) Kuvassa 5 on esitetty lämmönkeruuputkiston eri sijoitusvaihtoehdot. Kuva 5. Aurinkoenergian hyödyntäminen kalliosta, maaperästä tai vesistöstä. (Geologian tutkimuskeskus, 2008) Tavallisin menetelmä saada aikaan lämmön vaihtumista lämpökaivossa on sijoittaa sinne yksi tai useampi U:n muotoinen polyeteeniputki. Kuvassa 6 on esitetty lämmönkeruuputkiston sijoittuminen lämpökaivoon kaksiputkijärjestelmässä. Kaivoon upotettavat putket liitetään alapäästään silmukaksi messinkisellä U-kappaleella, johon kiinnitetään kaivosyvyyden mukaan laskennallisesti määritetty paino, jonka tehtävä on vetää putket suorana alas. Putkistoja asennetaan kaksiputkijärjestelmän lisäksi myös kolmi- ja neliputkijärjestelminä, joista kolmiputkijärjestelmä on harvemmin 18

20 käytetty. Neliputkijärjestelmää puolestaan käytetään suuremmissa kohteissa ja se koostuu kahdesta rinnan kytketystä putkisilmukasta. Lämmönkeruuputket on eristettävä rakennuksen sisältä lämpökaivon huoltokaivoon asti ja mielellään itse kaivossa vielä routarajan alapuolelle asti. (Lund et al. 2004; Sulpu, 2009) Kuva 6. Lämmönkeruuputkisto lämpökaivossa. (Suomen ympäristökeskus, 2009) Kaivon halkaisija on Suomessa tyypillisesti 140 tai 165 mm ja yhden reiän syvyys on rakennuksen energiatarpeesta riippuen yleensä m. Käytännössä kaivoa ei ole järkevää porata 200 m syvemmäksi, jolloin pumppauskustannukset kasvaisivat suhteettoman suuriksi. Suurissa järjestelmissä on kuitenkin mahdollista käyttää syvempiäkin lämpökaivoja, aina 300 m asti. Lämmönsiirron tehostamiseksi lämpökaivo täytetään vedellä, jos se ei itsestään täyty pohjavedellä. Lämpökaivon teholliseksi syvyydeksi luetaan vain kaivon vedellä täyttynyt syvyys. Täyteaineena voidaan käyttää 19

21 myös muuta kuin vettä, mikä onkin tavallista muualla Euroopassa ja USA:ssa. (Lund et al. 2004; Sulpu, 2009) Termisesti parannetut täyteaineet ovat olleet USA:ssa käytössä jo yli 10 vuotta. Täyteaineen etu on se, että sillä saadaan pienennettyä lämpökaivon lämpövastusta. Mitä pienempi lämpökaivon lämpövastus on, sitä suurempi on kaivosta saatava lämpövirta. Taulukossa 1 on vertailtu täyteaineen lämmönjohtavuuden vaikutusta lämpövastukseen, kaksi- ja neliputkijärjestelmillä. Voidaan huomata, että varsinkin neliputkijärjestelmän tapauksessa täyteaine pienentää lämpövastusta huomattavan paljon. Suomessa lämpökaivon täyteaineena toimii vesi, jonka lämpövastus on 0,6 W/(m/K). (Lund et al. 2004) Taulukko 1. Täyteaineen lämmönjohtavuuden vaikutus lämpökaivon sisäpuoliseen lämpövastukseen, kaksi- ja neliputkijärjestelmissä. (Lund et al. 2004) Lämpökaivon Täyteaineen Lämpövastus tyyppi lämmönjohtavuus lämpökaivon sisäpuolella k t [W/(m/K)] R b [K/(W/m)] 2-putkijärjestelmä 0,8 0,196 1,6 0,112 4-putkijärjestelmä 0,8 0,134 1,6 0, Maaperän vaikutus Energia on varastoitunut kallioon pääosin auringosta, mutta pieni osa siitä on geotermistä lämpöenergiaa. Maan pinnan lämpötila vaihtelee ilman lämpötilojen ja vuodenaikojen mukaan. Taulukossa 2 on esitetty maanpinnan keskilämpötilat muutamalla paikkakunnalla. Kuvasta 7 voidaan puolestaan havaita, että jo 15 m syvyydessä kalliossa lämpötila on vuodenajasta riippumaton. (Leppäharju, 2008) 20

22 Taulukko 2. Maanpinnan keskilämpötilat paikkakunnittain. (EED, 2008) Paikkakunta Maanpinnan keskilämpötila, [ºC] Helsinki 5,6 Turku 4,8 Lappeenranta 3,6 Jyväskylä 2,6 Oulu 2,0 Sodankylä -1,0 Kuva 7. Maan pintakerroksen (0-16m) teoreettiset lämpötila-syvyyskäyrät joka toiselle kuukaudelle. (Leppäharju, 2008) Maaperän lämpötila 15 m alapuolella on maanpinnan keskilämpötilan ja geotermisen gradientin säätelemää. Geoterminen gradientti nostaa lämpötilaa 8-15 K/km, joten 100 m syvyydessä lämpötila on noussut maanpinnan keskilämpötilasta noin 1 ºC ja 200 m syvyydessä noin 2 ºC. Kuvassa 8 on esitetty kuvaa 7 vastaavat lämpötilasyvyys-käyrät, nyt myös geoterminen gradientti (10 K/km) on otettu nyt huomioon. (Gehlin, 2002; Leppäharju, 2009) 21

23 Kuva 8. Maaperän (0-100m) teoreettiset lämpötila-syvyyskäyrät joka toiselle kuukaudelle. (Leppäharju, 2008) Suomen kallioperän kivilajien lämmönjohtavuuksissa ei ole kovin suurta vaihteluväliä. Poikkeuksena on kvartsipitoinen kallio, jonka lämmönjohtavuus voi olla poikkeuksellisen hyvä. Enemmän on vaikutusta sillä kuinka rikkonaista kallio on ja kuinka paljon siinä liikkuu vettä. Vesi johtaa lämpöä paremmin kuin kivi, joten rikkonaisesta kalliosta voi saada lämmön tehokkaammin talteen, toisaalta taas liian rikkonaiseen kallioon poraaminen voi johtaa porareiän sortumiseen. (Gehlin, 2002; Geologian tutkimuskeskus, 2008) Hyvä sijoituspaikka lämpökaivoille on esimerkiksi pysäköintialueen alla. Tumma asfaltti tehostaa kesällä aurinkoenergian imeytymistä maaperään ja talvella asfaltti toimii eristeenä, joka hidastaa maaperän jäätymistä. (Geologian tutkimuskeskus, 2008) 22

24 3.3 Lämmön siirtymisprosessi Lämmön siirtymisprosessi maaperän ja lämpökaivon välillä on hyvin monimutkainen, koska siihen vaikuttavat monet eri seikat. (Jun, 2009) 1. Paikalliset ominaisuudet ilmasto- ja hydrogeologiset olosuhteet maaperän lämpöominaisuudet ja lämpöjakauma 2. Maalämpöjärjestelmän parametrit lämpökaivon tyyppi, syvyys ja halkaisija putkien sijoitus lämpökaivon sisällä, materiaali ja koko lämmönsiirtonesteen tyyppi, lämpötila ja nopeus putkessa 3. Operatiiviset olosuhteet lämmitys- ja jäähdytystarve järjestelmän ohjaus käyttöominaisuudet Lämpövastuksen avulla voidaan kuvata lämmön siirtymistä lämpökaivon sisä- ja ulkopuolella Lämmön siirtyminen mallintamiseksi lämpökaivossa ja sen ulkopuolella on kehitetty lukuisia eri malleja. Malleja on sekä analyyttisia ja numeerisia ja tämän lisäksi markkinoilla on monia eri tietokoneohjelmia. Tässä työssä tullaan käyttämään lämpökaivojen mitoitukseen ja suunnitteluun tarkoitettua ohjelmaa EED (Earth Energy Designer). EED on kehitetty Lundin yliopistossa Ruotsissa ja se perustuu Eskilsonin malliin. Eskilsonin malli on yhdistelmä analyyttisistä ja numeerisista ratkaisumenetelmistä. (Jun, 2009) 23

25 Eskilsonin mallin mukaan maaperän lämpötila-yhtälön kirjoittamiseksi tarvitaan sylinterikoordinaatteja (Yang, 2010): 2 2 t 1 t t 1 t 2 2 r r r z s t( r,0, ) t0 t( r, z,0) t0 H y H 1 t q( ) 2 rk m dz H r H y r rb (2) jossa t on lämpötila, r on etäisyys, rb on lämpökaivon säde, on aika, km on maaperän lämmönläpäisykerroin, s on maaperän terminen diffusiviteetti, H on lämpökaivon syvyys, H y on lämpökaivon ylin osa joka voidaan termisesti jättää ottamatta huomioon. Lämpötilaeroksi lämpökaivon ja maaperän välillä saadaan (Yang, 2010): t q t0 g( /, rb / H ) 2 k b s (3) jossa t b on lämpökaivon seinän lämpötila. G-funktio on dimensioton muuttuja, joka voidaan ratkaista numeerisesti. EED sisältääkin tietokannan, johon on valmiiksi laskettu 6385 g-funktion arvoa. (EED, 2008) Maaperän lämpövastus voidaan ratkaista kaavan 3 ja g-funktion arvojen avulla. Maaperän lämpövastus R s lasketaan (Hellström, 2003 ): tb t R s q 0 (4) 24

26 Lämpövastus lämpökaivon sisällä on lämpövastus lämmönsiirtonesteen ja lämpökaivon seinämän välillä, kuvan 9 mukaisesti. Lämpökaivon sisäpuolinen lämpövastus koostuu siis lämmönsiirtonesteen konvektiosta, lämmönsiirtoputkien konduktiosta sekä täyteaineen lämpövastuksesta. (Lamarche, 2010) Kuva 9. Lämpövastuksen muodostuminen lämpökaivon sisäpuolella. Lämpökaivo on leikattu vaakatasossa ja se sisältää yhden U-putken (kaksiputkijärjestelmä) ja kaivo on täytetty täyteaineella. (Lamarche, 2010) Kuvassa 9: T on lämpökaivon seinän lämpötila, T f 1, T f 2 b lämmönsiirtonesteen menoja paluulämpötila, ' R 1, ' R2 on lämpövastus lämmönsiirtonesteen ja lämpökaivon seinän välillä ja ' R12 on lämpövastus lämmönsiirtonesteen meno- ja paluuputkien välillä. 25

Uusiutuvan energian yhdistäminen kaasulämmitykseen

Uusiutuvan energian yhdistäminen kaasulämmitykseen Aurinko Maalämpö Kaasu Lämpöpumput Uusiutuvan energian yhdistäminen kaasulämmitykseen Kaasulämmityksessä voidaan hyödyntää uusiutuvaa energiaa käyttämällä biokaasua tai yhdistämällä lämmitysjärjestelmään

Lisätiedot

Lämpöpumpputekniikkaa Tallinna 18.2. 2010

Lämpöpumpputekniikkaa Tallinna 18.2. 2010 Lämpöpumpputekniikkaa Tallinna 18.2. 2010 Ari Aula Chiller Oy Lämpöpumpun rakenne ja toimintaperiaate Komponentit Hyötysuhde Kytkentöjä Lämpöpumppujärjestelmän suunnittelu Integroidut lämpöpumppujärjestelmät

Lisätiedot

Maalämpöpumput suurissa kiinteistöissä mitoitus, soveltuvuus, toiminta Finlandia-talo 14.12.2011. Sami Seuna Motiva Oy

Maalämpöpumput suurissa kiinteistöissä mitoitus, soveltuvuus, toiminta Finlandia-talo 14.12.2011. Sami Seuna Motiva Oy Maalämpöpumput suurissa kiinteistöissä mitoitus, soveltuvuus, toiminta Finlandia-talo 14.12.2011 Sami Seuna Motiva Oy Lämpöpumpun toimintaperiaate Höyry puristetaan kompressorilla korkeampaan paineeseen

Lisätiedot

Maalämpö sopii asunto-osakeyhtiöihinkin

Maalämpö sopii asunto-osakeyhtiöihinkin Maalämpö sopii asunto-osakeyhtiöihinkin Maalämpöä on pidetty omakotitalojen lämmitystapana. Maailma kehittyy ja paineet sen pelastamiseksi myös. Jatkuva ilmastonmuutos sekä kestävä kehitys vaativat lämmittäjiä

Lisätiedot

Aurinkolämpöjärjestelmät

Aurinkolämpöjärjestelmät Energiaekspertti koulutusilta Aurinkolämpöjärjestelmät 17.11.2015 Jarno Kuokkanen Sundial Finland Oy Energiaekspertti koulutusilta Aurinkolämpöjärjestelmät 1. Aurinkolämpö Suomessa 2. Aurinkolämmön rooli

Lisätiedot

Tornio 24.5.2012 RAMK Petri Kuisma

Tornio 24.5.2012 RAMK Petri Kuisma Tornio 24.5.2012 RAMK Petri Kuisma Sisältö Aurinko Miten aurinkoenergiaa hyödynnetään? Aurinkosähkö ja lämpö Laitteet Esimerkkejä Miksi aurinkoenergiaa? N. 5 miljardia vuotta vanha, fuusioreaktiolla toimiva

Lisätiedot

Tulevaisuuden kaukolämpöasuinalueen energiaratkaisut (TUKALEN) Loppuseminaari 16.10.2014

Tulevaisuuden kaukolämpöasuinalueen energiaratkaisut (TUKALEN) Loppuseminaari 16.10.2014 Tulevaisuuden kaukolämpöasuinalueen energiaratkaisut (TUKALEN) Loppuseminaari 16.10.2014 Kaukolämpökytkennät Jorma Heikkinen Sisältö Uusiutuvan energian kytkennät Tarkasteltu pientalon aurinkolämpökytkentä

Lisätiedot

09.10.2012. 03/2010 Viessmann Werke. Aurinkolämmitys Tyypillinen kohde omakotitalo, jossa lisälämmitys auringon avulla. Welcome!

09.10.2012. 03/2010 Viessmann Werke. Aurinkolämmitys Tyypillinen kohde omakotitalo, jossa lisälämmitys auringon avulla. Welcome! Welcome! VITOSOL Aurinkolämpö mitoitus Seminaari 9.10.2012 Course instructor Jukka Väätänen Viessmann Werke Template 1 05/2011 Viessmann Werke Aurinkolämmitys Tyypillinen kohde omakotitalo, jossa lisälämmitys

Lisätiedot

Uusiutuvien energiamuotojen hyödyntämisestä kiinteistöissä. Sairaalatekniikan päivät Ville Reinikainen 13.2.2014

Uusiutuvien energiamuotojen hyödyntämisestä kiinteistöissä. Sairaalatekniikan päivät Ville Reinikainen 13.2.2014 Uusiutuvien energiamuotojen hyödyntämisestä kiinteistöissä Sairaalatekniikan päivät Ville Reinikainen 13.2.2014 1 2 IPCC = The Intergovernmental Panel on Climate Change 3 Energiaskenaariot, määräykset

Lisätiedot

Aurinkoenergia Suomessa

Aurinkoenergia Suomessa Aurinkoenergia Suomessa Aurinkolämmitys on ennen kaikkea vesilämmitys Aurinkoenergia Suomessa Suomessa saadaan auringonsäteilyä yleisesti luultua enemmän. Kesällä säteilyä Suomessa saadaan pitkistä päivistä

Lisätiedot

Rakennuksien lämmitysjärjestelmät Kontiolahti 9.5.2009

Rakennuksien lämmitysjärjestelmät Kontiolahti 9.5.2009 Rakennuksien lämmitysjärjestelmät Kontiolahti 9.5.2009 Simo Paukkunen Pohjois-Karjalan ammattikorkeakoulu liikelaitos Biotalouden keskus simo.paukkunen@pkamk.fi, 050 9131786 Lämmitysvalinnan lähtökohtia

Lisätiedot

24.5.2012 Gasum Petri Nikkanen 1

24.5.2012 Gasum Petri Nikkanen 1 24.5.2012 Gasum Petri Nikkanen 1 UUSIA OHJEITA, OPPAITA JA STANDARDEJA KAASULÄMMITYS JA UUSIUTUVA ENERGIA JOKO KAASULÄMPÖPUMPPU TULEE? 24.5.2012 Gasum Petri Nikkanen 2 Ajankohtaista: Ympäristöministeriö:

Lisätiedot

Uudet energiainvestoinnit Etelä-Savossa 7.5.2013. Aurinkokeräimet Jari Varjotie, CEO

Uudet energiainvestoinnit Etelä-Savossa 7.5.2013. Aurinkokeräimet Jari Varjotie, CEO Uudet energiainvestoinnit Etelä-Savossa 7.5.2013 Aurinkokeräimet Jari Varjotie, CEO Esityksen sisältö Aurinkoenergia Savosolar keräimet Aurinkolämpöenergiaa maailmalla Aurinkolämpöhankkeita Etelä-Savossa

Lisätiedot

3/18/2012. Ennen aloitusta... Tervetuloa! Maalämpö. 15.3.2012 Arto Koivisto Viessmann Oy. Tervetuloa!

3/18/2012. Ennen aloitusta... Tervetuloa! Maalämpö. 15.3.2012 Arto Koivisto Viessmann Oy. Tervetuloa! Tervetuloa! Maalämpö 15.3.2012 Arto Koivisto Viessmann Oy Mustertext Titel Vorlage 1 01/2006 Viessmann Werke Ennen aloitusta... Tervetuloa! Osallistujien esittely. (Get to together) Mitä omia kokemuksia

Lisätiedot

Scanvarm SCS-sarjan lämpöpumppumallisto ratkaisu pieniin ja suuriin kiinteistöihin

Scanvarm SCS-sarjan lämpöpumppumallisto ratkaisu pieniin ja suuriin kiinteistöihin Scanvarm SCS-sarjan lämpöpumppumallisto ratkaisu pieniin ja suuriin kiinteistöihin 05/2013 SCS10-15 SCS21-31 SCS40-120 SCS10-31 Scanvarm SCS-mallisto on joustava ratkaisu erityyppisiin maaenergiajärjestelmiin.

Lisätiedot

Öljyalan Palvelukeskus Oy Laskelma lämmityksen päästöistä. Loppuraportti 60K30031.02-Q210-001D 27.9.2010

Öljyalan Palvelukeskus Oy Laskelma lämmityksen päästöistä. Loppuraportti 60K30031.02-Q210-001D 27.9.2010 Öljyalan Palvelukeskus Oy Laskelma lämmityksen päästöistä Loppuraportti 60K30031.02-Q210-001D 27.9.2010 Tausta Tämän selvityksen laskelmilla oli tavoitteena arvioida viimeisimpiä energian kulutustietoja

Lisätiedot

ENERGIATEHOKAS KARJATALOUS

ENERGIATEHOKAS KARJATALOUS ENERGIATEHOKAS KARJATALOUS PELLON GROUP OY / Tapio Kosola ENERGIAN TALTEENOTTO KOTIELÄINTILALLA Luonnossa ja ympäristössämme on runsaasti lämpöenergiaa varastoituneena. Lisäksi maatilan prosesseissa syntyvää

Lisätiedot

MAALÄMPÖJÄRJESTELMÄ 11.3.2013 11.3.2013 1

MAALÄMPÖJÄRJESTELMÄ 11.3.2013 11.3.2013 1 Porin Puuvilla MAALÄMPÖJÄRJESTELMÄ Porin Puuvillan maalämpöjärjestelmä Lämmön ja jäähdytyksen y tuotanto o yhdistetty y Maaperää hyödynnetään lämmitykseen talvella Ja jäähdytykseen kesällä Myös ympärivuotinen

Lisätiedot

Jäspi GTV ja Jäspi Ovali

Jäspi GTV ja Jäspi Ovali Jäspi GTV ja Jäspi Ovali Energiavaraajat lataa lämpöenergia talteen! jäspi gtv -energiavaraajat Jäspi GTV -energiavaraajat soveltuvat erinomaisesti niin uudis- kuin saneeraustalonkin lämmitysjärjestelmän

Lisätiedot

0 ENERGIA MAHDOLLISTA TÄNÄPÄIVÄNÄ EIKÄ VASTA VUONNA 2020 ALLAN MUSTONEN INSINÖÖRITOIMISTO MUSTONEN OY

0 ENERGIA MAHDOLLISTA TÄNÄPÄIVÄNÄ EIKÄ VASTA VUONNA 2020 ALLAN MUSTONEN INSINÖÖRITOIMISTO MUSTONEN OY 0 ENERGIA MAHDOLLISTA TÄNÄPÄIVÄNÄ EIKÄ VASTA VUONNA 2020 ALLAN MUSTONEN INSINÖÖRITOIMISTO MUSTONEN OY MIKÄ ON NOLLA-ENERGIA Energialähteen perusteella (Net zero source energy use) Rakennus tuottaa vuodessa

Lisätiedot

ATY AURINKOSEMINAARI 2014 2.10.2014. Katsaus OKT- ja rivi-/kerrostalo ratkaisuista suomen tasolla. Jarno Kuokkanen Sundial Finland Oy

ATY AURINKOSEMINAARI 2014 2.10.2014. Katsaus OKT- ja rivi-/kerrostalo ratkaisuista suomen tasolla. Jarno Kuokkanen Sundial Finland Oy ATY AURINKOSEMINAARI 2014 2.10.2014 Katsaus OKT- ja rivi-/kerrostalo ratkaisuista suomen tasolla Jarno Kuokkanen Sundial Finland Oy Aurinkoenergian potentiaali Aurinkoenergia on: Ilmaista Rajoittamattomasti

Lisätiedot

BIOENERGIAN HYÖDYNTÄMINEN LÄMMITYKSESSÄ. Lämmitystekniikkapäivät 2015. Petteri Korpioja. Start presentation

BIOENERGIAN HYÖDYNTÄMINEN LÄMMITYKSESSÄ. Lämmitystekniikkapäivät 2015. Petteri Korpioja. Start presentation BIOENERGIAN HYÖDYNTÄMINEN LÄMMITYKSESSÄ Lämmitystekniikkapäivät 2015 Petteri Korpioja Start presentation Bioenergia lämmöntuotannossa tyypillisimmät lämmöntuotantomuodot ja - teknologiat Pientalot Puukattilat

Lisätiedot

Jäähdytysenergian tarve ja kulutusprofiili

Jäähdytysenergian tarve ja kulutusprofiili Jäähdytysenergian tarve ja kulutusprofiili TkL Mika Vuolle Equa Simulation Finland Oy Energiaa käytetään Taloteknisten palvelujen tuottamiseen Lämpöolosuhteet Sisäilmanlaatu Valaistusolosuhteet Äänilosuhteet

Lisätiedot

Uudet energiatehokkuusmääräykset, E- luku

Uudet energiatehokkuusmääräykset, E- luku Tietoa uusiutuvasta energiasta lämmitysmuodon vaihtajille ja uudisrakentajille 31.1.2013/ Dunkel Harry, Savonia AMK Uudet energiatehokkuusmääräykset, E- luku TAUSTAA Euroopan unionin ilmasto- ja energiapolitiikan

Lisätiedot

Varaavan tulisijan liittäminen rakennuksen energiajärjestelmään

Varaavan tulisijan liittäminen rakennuksen energiajärjestelmään Varaavan tulisijan liittäminen rakennuksen energiajärjestelmään DI, TkT Sisältö Puulla lämmittäminen Suomessa Tulisijatyypit Tulisijan ja rakennuksessa Lämmön talteenottopiiput Veden lämmittäminen varaavalla

Lisätiedot

KAKSOISKATTILAT ARITERM 520P+

KAKSOISKATTILAT ARITERM 520P+ KAKSOISKATTILAT ARITERM 520P+ ARITERM 520P+ HUOM! Poltin myydään erikseen. VALINNAN VAPAUS Ariterm 520P+ kaksoiskattila on tehty lämmittäjille, jotka haluavat nauttia valinnan vapaudesta. Valitse puu,

Lisätiedot

Tehokas lämmitys. TARMOn lämpöilta taloyhtiöille. Petri Jaarto. 30.9.2013 Jäävuorenhuippu Oy

Tehokas lämmitys. TARMOn lämpöilta taloyhtiöille. Petri Jaarto. 30.9.2013 Jäävuorenhuippu Oy Tehokas lämmitys TARMOn lämpöilta taloyhtiöille Petri Jaarto 30.9.2013 Jäävuorenhuippu Oy 1 Tekninen kunto Ohjaavana tekijänä tekninen käyttöikä KH 90 00403 Olosuhteilla ja kunnossapidolla suuri merkitys

Lisätiedot

T-MALLISTO. ratkaisu T 0

T-MALLISTO. ratkaisu T 0 T-MALLISTO ratkaisu T 0 120 Maalämpö säästää rahaa ja luontoa! Sähkölämmitykseen verrattuna maksat vain joka neljännestä vuodesta. Lämmittämisen energiatarve Ilmanvaihdon 15 % jälkilämmitys Lämpimän käyttöveden

Lisätiedot

Tulistusmaalämpöpumppu Geopro SH. Suomalaisessa maaperässä on erityistä lämpöä

Tulistusmaalämpöpumppu Geopro SH. Suomalaisessa maaperässä on erityistä lämpöä Tulistusmaalämpöpumppu Geopro SH Suomalaisessa maaperässä on erityistä lämpöä Ympäristöystävällinen lämmitysenergia varastoituu maaperässämme Tavalla tai toisella me kaikki elämme luonnosta. Siitä meidän

Lisätiedot

PORVOON ENERGIA LUONNOLLINEN VALINTA. Mikko Ruotsalainen

PORVOON ENERGIA LUONNOLLINEN VALINTA. Mikko Ruotsalainen PORVOON ENERGIA LUONNOLLINEN VALINTA Skaftkärr Skaftkärr hankkeen tavoitteena on rakentaa Porvooseen uusi energiatehokas 400 hehtaarin suuruinen, vähintään 6000 asukkaan asuinalue. Skaftkärr Koko projekti

Lisätiedot

GEOLOGIAN TUTKIMUSKESKUS Raportti 1 (7) Länsi-Suomen yksikkö Herukka Oulu (1162057) Kokkola Annu Martinkauppi ja Petri Hakala 27.8.

GEOLOGIAN TUTKIMUSKESKUS Raportti 1 (7) Länsi-Suomen yksikkö Herukka Oulu (1162057) Kokkola Annu Martinkauppi ja Petri Hakala 27.8. GEOLOGIAN TUTKIMUSKESKUS Raportti 1 (7) Länsi-Suomen yksikkö Herukka Oulu (1162057) Kokkola Annu Martinkauppi ja Petri Hakala TULOKSIA GEOFYSIKAALISISTA PAIKKATUTKIMUKSISTA OULUN HERUKAN SALEN TUTKIMUSKOHTEESSA

Lisätiedot

Keski-Suomen energiatase 2008. Lauri Penttinen Keski-Suomen Energiatoimisto/ Benet Oy

Keski-Suomen energiatase 2008. Lauri Penttinen Keski-Suomen Energiatoimisto/ Benet Oy Keski-Suomen energiatase 2008 Keski-Suomen Energiatoimisto/ Benet Oy 1 Keski-Suomen Energiatoimisto Perustettu 1998 jatkamaan Keski-Suomen liiton energiaryhmän työtä EU:n IEE-ohjelman tuella Energiatoimistoa

Lisätiedot

Suomen lämpöpumppuyhdistys. SULPU ry.

Suomen lämpöpumppuyhdistys. SULPU ry. . Petri Koivula toiminnanjohtaja DI 1 Palkittua työtä Suomen hyväksi Ministeri Mauri Pekkarinen luovutti SULPUlle Vuoden 2009 energia teko- palkinnon SULPUlle. Palkinnon vastaanottivat SULPUn hallituksen

Lisätiedot

Tiivis, Tehokas, Tutkittu. Projektipäällikkö

Tiivis, Tehokas, Tutkittu. Projektipäällikkö Tiivis, Tehokas, Tutkittu Timo Mantila Projektipäällikkö Tiivis, Tehokas, Tutkittu Suvilahden energiaomavarainen asuntoalue Tutkimuskohde Teirinkatu 1 A ja B Tutkimussuunnitelma Timo Mantila 15.4.2010

Lisätiedot

Aurinkolämpöreferenssejä aluelämmityskohteisiin Kansallinen cleantech-investointifoorumi

Aurinkolämpöreferenssejä aluelämmityskohteisiin Kansallinen cleantech-investointifoorumi Aurinkolämpöreferenssejä aluelämmityskohteisiin Kansallinen cleantech-investointifoorumi 11.4.2013 Jari Varjotie, CEO Uusi innovatiivinen konsepti energian tuottamiseen SAVOSOLAR kokoalumiininen direct

Lisätiedot

Sähkön käytön ja tuotannon yhteensovittaminen

Sähkön käytön ja tuotannon yhteensovittaminen Sähkön käytön ja tuotannon yhteensovittaminen Matti Lehtonen, 8.10.2015 Rakennusten energiaseminaari Uusiutuvan energian haaste: vaihteleva ja vaikeasti ennustettava tuotantoteho Tuulivoimatuotanto Saksassa

Lisätiedot

BIOSAIMAA Hajautettu energiantuotanto ja energiaomavaraiset asuinalueet seminaari 22.5.2012

BIOSAIMAA Hajautettu energiantuotanto ja energiaomavaraiset asuinalueet seminaari 22.5.2012 BIOSAIMAA Hajautettu energiantuotanto ja energiaomavaraiset asuinalueet seminaari 22.5.2012 Aurinkoenergia paikallisessa energiantuotannossa Jari Varjotie Esityksen sisältö Lämmittelyä Savosolar lyhyesti

Lisätiedot

Energiapaalut. Geoenergian hyödyntäminen perustuspaalujen kautta rakennusten lämmitykseen ja viilennykseen. Hannu Vesamäki, Tuoteryhmäpäällikkö

Energiapaalut. Geoenergian hyödyntäminen perustuspaalujen kautta rakennusten lämmitykseen ja viilennykseen. Hannu Vesamäki, Tuoteryhmäpäällikkö Energiapaalut Geoenergian hyödyntäminen perustuspaalujen kautta rakennusten lämmitykseen ja viilennykseen Hannu Vesamäki, Tuoteryhmäpäällikkö Geoener-seminaari 1.12.2010 15.12.2010 Teräspaalut energian

Lisätiedot

Maalämpöpumppu Geopro GT. Suomalaisessa maaperässä on erityistä lämpöä

Maalämpöpumppu Geopro GT. Suomalaisessa maaperässä on erityistä lämpöä Maalämpöpumppu Geopro GT Suomalaisessa maaperässä on erityistä lämpöä Ympäristöystävällinen lämmitysenergia varastoituu maaperässämme Tavalla tai toisella me kaikki elämme luonnosta. Siitä meidän tulee

Lisätiedot

Lämpöässä T-mallisto ratkaisu pieniin ja suuriin kiinteistöihin T 10-15 T 21-31 T 40-120

Lämpöässä T-mallisto ratkaisu pieniin ja suuriin kiinteistöihin T 10-15 T 21-31 T 40-120 Lämpöässä T-mallisto ratkaisu pieniin ja suuriin kiinteistöihin T 10-15 T 21-31 T 40-120 T 10-31 Lämpöässä T-mallisto on joustava ratkaisu erityyppisiin maaenergiajärjestelmiin. Tyypillisiä T 10-31 -mallien

Lisätiedot

Aurinkoenergia Lopullinen ratkaisu

Aurinkoenergia Lopullinen ratkaisu FINNBUILD MESSUJEN AURINKOSEMINAARI 9.10.2012 Jari Varjotie, CEO Aurinkoenergia Lopullinen ratkaisu Joka vuosi yli 1,080,000,000 TWh energiaa säteilee maapallolle auringosta 60,000 kertaa maailman sähköntarve.

Lisätiedot

Suomen lämpöpumppuyhdistys. SULPU ry.

Suomen lämpöpumppuyhdistys. SULPU ry. . Petri Koivula toiminnanjohtaja DI 1 Energia Asteikot ja energia -Miten pakkasesta saa energiaa? Celsius-asteikko on valittu ihmisen mittapuun mukaan, ei lämpöenergian. Atomien liike pysähtyy vasta absoluuttisen

Lisätiedot

Jäähdytysjärjestelmän tehtävä on poistaa lämpöä jäähdytyskohteista.

Jäähdytysjärjestelmän tehtävä on poistaa lämpöä jäähdytyskohteista. Taloudellista ja vihreää energiaa Scancool-teollisuuslämpöpumput Teollisuuslämpöpumpulla 80 % säästöt energiakustannuksista! Scancoolin teollisuuslämpöpumppu ottaa tehokkaasti talteen teollisissa prosesseissa

Lisätiedot

Thermia Diplomat Optimum G3 paras valinta pohjoismaisiin olosuhteisiin.

Thermia Diplomat Optimum G3 paras valinta pohjoismaisiin olosuhteisiin. Thermia Diplomat Optimum G3 paras valinta pohjoismaisiin olosuhteisiin. Ruotsin energiaviranomaisten maalämpöpumpputestin tulokset 2012 Tiivistelmä testituloksista: Ruotsin energiaviranomaiset testasivat

Lisätiedot

Aurinkolämpöjärjestelmät THE FUTURE OF ENERGY. www.sonnenkraft.com

Aurinkolämpöjärjestelmät THE FUTURE OF ENERGY. www.sonnenkraft.com Aurinkolämpöjärjestelmät THE FUTURE OF ENERGY www.sonnenkraft.com w w w. s o n n e n k r a f t. c o m COMPACT aurinkolämpöjärjestelmät IHANTEELLINEN ALOITUSPAKETTI KÄYTTÖVEDEN LÄMMITTÄMISEEN COMPACT aurinkolämpöjärjestelmä

Lisätiedot

Aurinkolämpö. Tässä on tarkoitus kertoa aurinkolämmön asentamisesta ja aurinkolämmön talteen ottamiseen tarvittavista osista ja niiden toiminnasta.

Aurinkolämpö. Tässä on tarkoitus kertoa aurinkolämmön asentamisesta ja aurinkolämmön talteen ottamiseen tarvittavista osista ja niiden toiminnasta. Aurinkolämpö Tässä on tarkoitus kertoa aurinkolämmön asentamisesta ja aurinkolämmön talteen ottamiseen tarvittavista osista ja niiden toiminnasta. Keräimien sijoittaminen ja asennus Keräimet asennetaan

Lisätiedot

Ratkaisu suuriin kiinteistöihin. Lämpöässä T/P T/P 60-120

Ratkaisu suuriin kiinteistöihin. Lämpöässä T/P T/P 60-120 Ratkaisu suuriin kiinteistöihin Lämpöässä T/P T/P 60-120 T/P 60-120 Ratkaisu kahdella erillisvaraajalla T/P 60-120 -mallisto on suunniteltu suuremmille kohteille kuten maatiloille, tehtaille, päiväkodeille,

Lisätiedot

Tulevaisuuden kaukolämpöasuinalueen energiaratkaisut (TUKALEN) Loppuseminaari 16.10.2014

Tulevaisuuden kaukolämpöasuinalueen energiaratkaisut (TUKALEN) Loppuseminaari 16.10.2014 Tulevaisuuden kaukolämpöasuinalueen energiaratkaisut (TUKALEN) Loppuseminaari 16.10.2014 Elinkaariarvio pientalojen kaukolämpöratkaisuille Sirje Vares Sisältö Elinkaariarvio ja hiilijalanjälki Rakennuksen

Lisätiedot

Aurinkolämpö Kerros- ja rivitaloihin 15.2.2012. Anssi Laine Tuotepäällikkö Riihimäen Metallikaluste Oy

Aurinkolämpö Kerros- ja rivitaloihin 15.2.2012. Anssi Laine Tuotepäällikkö Riihimäen Metallikaluste Oy Aurinkolämpö Kerros- ja rivitaloihin 15.2.2012 Anssi Laine Tuotepäällikkö Riihimäen Metallikaluste Oy Riihimäen Metallikaluste Oy Perustettu 1988 Suomalainen omistus 35 Henkilöä Liikevaihto 5,7M v.2011/10kk

Lisätiedot

Jätä jälkeesi. puhtaampi tulevaisuus. aurinkoenergiajärjestelmät

Jätä jälkeesi. puhtaampi tulevaisuus. aurinkoenergiajärjestelmät Jätä jälkeesi puhtaampi tulevaisuus aurinkoenergiajärjestelmät Normaali 2-kerrospinnoitteinen tyhjiöputki Uuden sukupolven energiatehokkuutta Huipputehokas 3-kerrospinnoitteinen Nova-aurinkokeräimen tyhjiöputki

Lisätiedot

KAKSOISKATTILAT. Arimax 520 kaksoiskattilat Arimax 520 plus kaksoiskattilat

KAKSOISKATTILAT. Arimax 520 kaksoiskattilat Arimax 520 plus kaksoiskattilat KAKSOISKATTILAT Arimax 520 kaksoiskattilat Arimax 520 plus kaksoiskattilat ARIMAX 520 -kaksoiskattila ARIMAX 520 Teho - puu Vesitila 15-20 kw - öljy 20 kw - sähkövalmius 6 kw Lämminvesituotto Sähkövastuksen

Lisätiedot

Energiakaivojen mitoitukseen vaikuttavat tekijät

Energiakaivojen mitoitukseen vaikuttavat tekijät Energiakaivojen mitoitukseen vaikuttavat tekijät Nina Leppäharju FM, geofyysikko Suomen Lämpöpumppuyhdistyksen 15-vuotisjuhlaseminaari 30.10.2014 Kokoushotelli Sofia, Helsinki SULPU:n energiakaivojen mitoitustyöryhmä

Lisätiedot

Esimerkkejä energiatehokkaista korjausratkaisuista

Esimerkkejä energiatehokkaista korjausratkaisuista Esimerkkejä energiatehokkaista korjausratkaisuista DI Petri Pylsy, Suomen Kiinteistöliitto Tee parannus!-aluekiertue Turku 18.01.2010 Tarjolla tänään Energiatehokkaita korjausratkaisuja: Ilmanvaihdon parantaminen

Lisätiedot

Markku J. Virtanen, Dr 31.3.2009

Markku J. Virtanen, Dr 31.3.2009 Aluetason energiaratkaisut Markku J. Virtanen, Dr 31.3.2009 Viitekehys paradigman muutokselle 2 Missä ja milloin innovaatiot syntyvät? Business (Kannattavuus) 3 Ekotehokkaan alueen suunnitteluperiaatteita

Lisätiedot

Uusi. innovaatio. Suomesta. Kierrätä kaikki energiat talteen. hybridivaihtimella

Uusi. innovaatio. Suomesta. Kierrätä kaikki energiat talteen. hybridivaihtimella Uusi innovaatio Suomesta Kierrätä kaikki energiat talteen hybridivaihtimella Säästövinkki Älä laske energiaa viemäriin. Asumisen ja kiinteistöjen ilmastopäästöt ovat valtavat! LÄMPÖTASE ASUINKERROSTALOSSA

Lisätiedot

Lämpöpumpun toiminta. Toiminnan periaate

Lämpöpumpun toiminta. Toiminnan periaate Lämpöpumpun toiminta Lämpöpumppu eroaa monissa suhteissa perinteisestä öljylämmityksestä sekä suorasta sähkölämmityksestä. Kuten öljylämmitys, lämpöpumppulämmitys on keskuslämmitys, toisin sanoen lämpö

Lisätiedot

AURINKOLÄMMÖN LIIKETOIMINTAMAHDOLLISUUDET KAUKOLÄMMÖN YHTEYDESSÄ SUOMESSA

AURINKOLÄMMÖN LIIKETOIMINTAMAHDOLLISUUDET KAUKOLÄMMÖN YHTEYDESSÄ SUOMESSA AURINKOLÄMMÖN LIIKETOIMINTAMAHDOLLISUUDET KAUKOLÄMMÖN YHTEYDESSÄ SUOMESSA KAUKOLÄMPÖPÄIVÄT 28-29.8.2013 KUOPIO PERTTU LAHTINEN AURINKOLÄMMÖN LIIKETOIMINTAMAHDOLLISUUDET SUOMESSA SELVITYS (10/2012-05/2013)

Lisätiedot

Suomen geoenergiavarannot. Asmo Huusko Geologian tutkimuskeskus GTK asmo.huusko@gtk.fi

Suomen geoenergiavarannot. Asmo Huusko Geologian tutkimuskeskus GTK asmo.huusko@gtk.fi Suomen geoenergiavarannot Asmo Huusko Geologian tutkimuskeskus GTK asmo.huusko@gtk.fi 1 Mitä geoenergia on? Geoenergialla tarkoitetaan yleisellä tasolla kaikkea maaja kallioperästä sekä vesistöistä saatavaa

Lisätiedot

Talotekniikan järjestelmiä. RAK-C3004 Rakentamisen tekniikat 08.10.2015 Jouko Pakanen

Talotekniikan järjestelmiä. RAK-C3004 Rakentamisen tekniikat 08.10.2015 Jouko Pakanen Talotekniikan järjestelmiä RAK-C3004 Rakentamisen tekniikat 0 Jouko Pakanen Pientalon energiajärjestelmiä Oilon Home http://oilon.com/media/taloanimaatio.html Sähköinen lattialämmitys (1) Suoraa sähköistä

Lisätiedot

Rakennusmääräykset. Mikko Roininen Uponor Suomi Oy

Rakennusmääräykset. Mikko Roininen Uponor Suomi Oy Talotekniikka ja uudet Rakennusmääräykset Mikko Roininen Uponor Suomi Oy Sisäilmastonhallinta MUKAVUUS ILMANVAIHTO ERISTÄVYYS TIIVEYS LÄMMITYS ENERGIA VIILENNYS KÄYTTÖVESI April 2009 Uponor 2 ULKOISET

Lisätiedot

25.6.2015. Mynämäen kaivon geoenergiatutkimukset 2010-2014

25.6.2015. Mynämäen kaivon geoenergiatutkimukset 2010-2014 25.6.2015 Mynämäen kaivon geoenergiatutkimukset 20102014 Geologian tutkimuskeskus 1 TUTKIMUSALUE Tutkimusalue sijaitsee Kivistönmäen teollisuusalueella Mynämäellä 8tien vieressä. Kohteen osoite on Kivistöntie

Lisätiedot

RAKENTAMINEN JA ENERGIATEHOKKUUS

RAKENTAMINEN JA ENERGIATEHOKKUUS RAKENTAMINEN JA ENERGIATEHOKKUUS primäärienergia kokonaisenergia ostoenergia omavaraisenergia energiamuotokerroin E-luku nettoala bruttoala vertailulämpöhäviö Mikkelin tiedepäivä 7.4.2011 Mikkelin ammattikorkeakoulu

Lisätiedot

Geoenergia ja pohjavesi. Asmo Huusko Geologian tutkimuskeskus GTK asmo.huusko@gtk.fi

Geoenergia ja pohjavesi. Asmo Huusko Geologian tutkimuskeskus GTK asmo.huusko@gtk.fi Geoenergia ja pohjavesi Asmo Huusko Geologian tutkimuskeskus GTK asmo.huusko@gtk.fi 1 Geoenergiaa voidaan hyödyntää eri lähteistä Maaperästä (irtaimet maalajit), jolloin energia on peräisin auringosta

Lisätiedot

Uusiutuva energia ja hajautettu energiantuotanto

Uusiutuva energia ja hajautettu energiantuotanto Uusiutuva energia ja hajautettu energiantuotanto Seminaari 6.5.2014 Veli-Pekka Reskola Maa- ja metsätalousministeriö 1 Esityksen sisältö Uudet ja uusvanhat energiamuodot: lyhyt katsaus aurinkolämpö ja

Lisätiedot

Energiansäästö viljankuivauksessa

Energiansäästö viljankuivauksessa Energiansäästö viljankuivauksessa Antti-Teollisuus Oy Jukka Ahokas 30.11.2011 Maatalous-metsätieteellinen tiedekunta Maataloustieteiden laitos Agroteknologia Öljyä l/ha tai viljaa kg/ha Kuivaamistarve

Lisätiedot

Energiataloudellinen uudisrakennus tai lyhyt takaisinmaksuaika yhdistämällä energiasaneeraus Julkisen rakennuksen remonttiin

Energiataloudellinen uudisrakennus tai lyhyt takaisinmaksuaika yhdistämällä energiasaneeraus Julkisen rakennuksen remonttiin Energiataloudellinen uudisrakennus tai lyhyt takaisinmaksuaika yhdistämällä energiasaneeraus Julkisen rakennuksen remonttiin Timo Luukkainen 2009-05-04 Ympäristön ja energian säästö yhdistetään parantuneeseen

Lisätiedot

Plusenergiaklinikka Tulosseminaari 16.1.2014. Pellervo Matilainen, Skanska

Plusenergiaklinikka Tulosseminaari 16.1.2014. Pellervo Matilainen, Skanska Plusenergiaklinikka Tulosseminaari 16.1.2014 Pellervo Matilainen, Skanska Alueiden energiatehokkuus Kruunuvuori, Helsinki Finnoo, Espoo Kivistö, Vantaa Härmälänranta, Tampere Energiatehokkuus Energiantuotanto

Lisätiedot

Sähkölämmityksen toteutus 1.7.2012 jälkeen SÄHKÖLÄMMITYSFOORUMI RY

Sähkölämmityksen toteutus 1.7.2012 jälkeen SÄHKÖLÄMMITYSFOORUMI RY Sähkölämmityksen toteutus 1.7.2012 jälkeen SÄHKÖLÄMMITYSFOORUMI RY Mihin rakennuksiin sovelletaan Normaalit asuinrakennukset Vuokra- tai vastaavaan käyttöön tarkoitetut vapaa-ajan rakennukset Yksityiskäyttöön

Lisätiedot

Energia- ja ilmastopolitiikan infografiikkaa. Elinkeinoelämän keskusliitto

Energia- ja ilmastopolitiikan infografiikkaa. Elinkeinoelämän keskusliitto Energia- ja ilmastopolitiikan infografiikkaa Elinkeinoelämän keskusliitto Energiaan liittyvät päästöt eri talousalueilla 1000 milj. hiilidioksiditonnia 12 10 8 Energiaan liittyvät hiilidioksidipäästöt

Lisätiedot

Vuoden 2012 energiamääräysten mukainen perinnetalo. Arkkitehtitoimisto A-konsultit Oy

Vuoden 2012 energiamääräysten mukainen perinnetalo. Arkkitehtitoimisto A-konsultit Oy Vuoden 2012 energiamääräysten mukainen perinnetalo Equa Simulation Finland Oy TkL Mika Vuolle 25.5.2011 2 Sisällysluettelo 1 Keskeiset lähtötiedot ja tulokset... 3 1.1 Määräystenmukaisuuden osoittaminen

Lisätiedot

Geoenergian (maa- ja kalliolämpö) hyödyntäminen rakennusten ja yhdyskuntien energiahuollossa sekä huomioiminen kaavoituksessa

Geoenergian (maa- ja kalliolämpö) hyödyntäminen rakennusten ja yhdyskuntien energiahuollossa sekä huomioiminen kaavoituksessa Geoenergian (maa- ja kalliolämpö) hyödyntäminen rakennusten ja yhdyskuntien energiahuollossa sekä huomioiminen kaavoituksessa Asmo Huusko Geologian tutkimuskeskus GTK asmo.huusko@gtk.fi Kuntamarkkinat

Lisätiedot

Valokuva: Aalto-yliopistokiinteistöt Otaniemen geoenergiapotentiaali

Valokuva: Aalto-yliopistokiinteistöt Otaniemen geoenergiapotentiaali Valokuva: Aalto-yliopistokiinteistöt Otaniemen geoenergiapotentiaali Energianhallinta Aallon kampuksilla tilaisuus Helsinki 25.3.2015 Nina Leppäharju, Geologian tutkimuskeskus (GTK) Esityksen sisältö 1.

Lisätiedot

Valitse sopiva. rinnakkaislämmitys

Valitse sopiva. rinnakkaislämmitys Valitse sopiva rinnakkaislämmitys KANSIKUVA: Shutterstock Ota yhteys asiantuntijaan: www.ley.fi Varmista, että talo on kokonaisuutena mahdollisimman energiatehokas: eristykset, ovet, ikkunat Arvioi, onko

Lisätiedot

Miten kaasuala vastaa uusiin rakentamis ja energiatehokkuusvaatimuksiin? Gasum 13.9.2011 Petri Nikkanen

Miten kaasuala vastaa uusiin rakentamis ja energiatehokkuusvaatimuksiin? Gasum 13.9.2011 Petri Nikkanen Miten kaasuala vastaa uusiin rakentamis ja energiatehokkuusvaatimuksiin? Gasum 13.9.2011 Petri Nikkanen TAUSTAA Uusi rakennusmääräyskokoelman osa D3 Rakennusten energiatehokkuus on annettu maaliskuun 30.2011

Lisätiedot

Sähkölämmityksen toteutus. SÄHKÖLÄMMITYSFOORUMI RY ( www.lamminkoti.fi)

Sähkölämmityksen toteutus. SÄHKÖLÄMMITYSFOORUMI RY ( www.lamminkoti.fi) Sähkölämmityksen toteutus 1.7.2012 jälkeen SÄHKÖLÄMMITYSFOORUMI RY ( www.lamminkoti.fi) Mihin rakennuksiin sovelletaan Normaalit asuinrakennukset Vuokra-tai vastaavaan käyttöön tarkoitetut vapaa-ajan rakennukset

Lisätiedot

Uusiutuvat energialähteet. RET-seminaari 13.04.2011 Tapio Jalo

Uusiutuvat energialähteet. RET-seminaari 13.04.2011 Tapio Jalo Uusiutuvat energialähteet RET-seminaari 13.04.2011 Tapio Jalo Energialähteet Suomessa Energian kokonaiskulutus 2005 2005 (yht. 1366 PJ) Maakaasu 11% Öljy 27% Hiili 9% ~50 % Fossiiliset Muut fossiiliset

Lisätiedot

Kotkan kantasataman uusiutuvan energian hyödyntämisen selvitys aurinkosähkön käytöstä jäähdytykseen. Uusiutuvan energian kuntakatselmus - Kotka

Kotkan kantasataman uusiutuvan energian hyödyntämisen selvitys aurinkosähkön käytöstä jäähdytykseen. Uusiutuvan energian kuntakatselmus - Kotka Kotkan kantasataman uusiutuvan energian hyödyntämisen selvitys aurinkosähkön käytöstä jäähdytykseen Uusiutuvan energian kuntakatselmus - Kotka KYAMK Hannu Sarvelainen VTT Mari Sepponen, Kari Sipilä 12/21

Lisätiedot

Aurinkolämpö. Tässä on tarkoitus kertoa aurinkolämmön asentamisesta ja aurinkolämmön talteen ottamiseen tarvittavista osista ja niiden toiminnasta.

Aurinkolämpö. Tässä on tarkoitus kertoa aurinkolämmön asentamisesta ja aurinkolämmön talteen ottamiseen tarvittavista osista ja niiden toiminnasta. Aurinkolämpö Tässä on tarkoitus kertoa aurinkolämmön asentamisesta ja aurinkolämmön talteen ottamiseen tarvittavista osista ja niiden toiminnasta. Keräimien sijoittaminen ja asennus Kaikista aurinkoisin

Lisätiedot

Hybridilämmitys. Tero Lindén Kaukomarkkinat Oy

Hybridilämmitys. Tero Lindén Kaukomarkkinat Oy Hybridilämmitys Tero Lindén Kaukomarkkinat Oy Hybridilämmitys Hybridi tarkoittaa yhdistelmää Hybridilämmitys on vähintään kahden eri energiamuodon yhdistelmä Usein hybridilämmitys koostuu päälämmönlähteestä

Lisätiedot

TOMMI LAHTI LÄMPÖKAIVOKENTTÄ LÄMMÖNLÄHTEENÄ

TOMMI LAHTI LÄMPÖKAIVOKENTTÄ LÄMMÖNLÄHTEENÄ TOMMI LAHTI LÄMPÖKAIVOKENTTÄ LÄMMÖNLÄHTEENÄ Diplomityö Tarkastaja: professori Hannu Ahlstedt Tarkastaja ja aihe hyväksytty Luonnontieteiden tiedekuntaneuvoston kokouksessa 8. marraskuuta 2013 i TIIVISTELMÄ

Lisätiedot

Maalämpöjärjestelmät

Maalämpöjärjestelmät Maalämpö Aurinko- ja geotermistä energiaa Lämmönkeruu yleensä keruuputkiston ja keruuliuoksen avulla Jalostetaan rakennusten ja käyttöveden lämmitysenergiaksi maalämpöpumpun avulla Uusiutuvaa ja saasteetonta

Lisätiedot

Lämpöpumppuratkaisuja TALOTEKNIIKKASEMINAARI VASEK ja Kestävä rakentaminen ja energiatehokkuus Vaasan seudulla. Mikko Pieskä, Merinova

Lämpöpumppuratkaisuja TALOTEKNIIKKASEMINAARI VASEK ja Kestävä rakentaminen ja energiatehokkuus Vaasan seudulla. Mikko Pieskä, Merinova Lämpöpumppuratkaisuja TALOTEKNIIKKASEMINAARI VASEK ja Kestävä rakentaminen ja energiatehokkuus Vaasan seudulla Mikko Pieskä, Merinova Yleisesti lämpöpumpuista sisältö Lämpöpumppujen nykytilanne Lämpöpumppujen

Lisätiedot

Fortum Otso -bioöljy. Bioöljyn tuotanto ja käyttö sekä hyödyt käyttäjälle

Fortum Otso -bioöljy. Bioöljyn tuotanto ja käyttö sekä hyödyt käyttäjälle Fortum Otso -bioöljy Bioöljyn tuotanto ja käyttö sekä hyödyt käyttäjälle Kasperi Karhapää Head of Pyrolysis and Business Development Fortum Power and Heat Oy 1 Esitys 1. Fortum yrityksenä 2. Fortum Otso

Lisätiedot

Lämpötase ja vedenkulutus kerrostalossa

Lämpötase ja vedenkulutus kerrostalossa Lämpötase ja vedenkulutus kerrostalossa Kuva: Motiva, verkkosivut Lämpimän käyttöveden suhteellinen osuus: 15-25 % vanhoissa kiinteistöissä 25-35 % nykyrakennuksissa Yli 50 % nollaenergiarakennuksissa

Lisätiedot

Vesitakat uudisrakennuksissa

Vesitakat uudisrakennuksissa Vesitakat uudisrakennuksissa Onni Ovaskainen, Tulikivi Onni Ovaskainen 17.4.2013 Puulämmitys modernissa talossa mennyttä aikaa? Nykytalojen lämmöntarve Lämmöntarve vähentyy 4-kertaisesti vanhaan rakennuskantaan

Lisätiedot

Aki Kilpijärvi MAALÄMPÖPUMPPUJEN MITOITUKSIEN VERTAILU

Aki Kilpijärvi MAALÄMPÖPUMPPUJEN MITOITUKSIEN VERTAILU Aki Kilpijärvi MAALÄMPÖPUMPPUJEN MITOITUKSIEN VERTAILU MAALÄMPÖPUMPPUJEN MITOITUKSIEN VERTAILU Aki Kilpijärvi Opinnäytetyö Kevät 2015 Talotekniikankoulutusohjelma Oulun ammattikorkeakoulu TIIVISTELMÄ Oulun

Lisätiedot

ENERGIATEHOKAAN TALON LÄMMITYSRATKAISUT PEP Promotion of European Passive Houses Intelligent Energy Europe seminaari 23.11.

ENERGIATEHOKAAN TALON LÄMMITYSRATKAISUT PEP Promotion of European Passive Houses Intelligent Energy Europe seminaari 23.11. ENERGIATEHOKAAN TALON LÄMMITYSRATKAISUT PEP Promotion of European Passive Houses Intelligent Energy Europe seminaari 23.11.26 Espoo Mikko Saari, VTT 24.11.26 1 Energiatehokas kerrostalo kuluttaa 7 % vähemmän

Lisätiedot

NIBE maalämpöpumppujen myynti, asennus, huolto ja suunnittelu. Lämpöpumppu+lämpökaivo+lattialämmitys+käyttövesikaivo.

NIBE maalämpöpumppujen myynti, asennus, huolto ja suunnittelu. Lämpöpumppu+lämpökaivo+lattialämmitys+käyttövesikaivo. NIBE maalämpöpumppujen myynti, asennus, huolto ja suunnittelu Lämpöpumppu+lämpökaivo+lattialämmitys+käyttövesikaivo. Kaikki yhdeltä toimittajalta!! KYSY ILMAINEN MITOITUSSUUNNITELMA JA KUSTANNUSARVIO.

Lisätiedot

aimo.palovaara@lakkapaa.com

aimo.palovaara@lakkapaa.com BIOENERGIAA TILOILLE JA TALOILLE Torniossa 24.5.2012 Aimo Palovaara aimo.palovaara@lakkapaa.com 050-3890 819 24.5.2012 1 Energiapuu: 1. hakkuutähde => HAKETTA 2. kokopuu => HAKETTA 3. ranka => HAKETTA,

Lisätiedot

Lämpöilta taloyhtiöille. Tarmo. 30.9. 2013 Wivi Lönn Sali. Lämmitysjärjestelmien ja energiaremonttien taloustarkastelut

Lämpöilta taloyhtiöille. Tarmo. 30.9. 2013 Wivi Lönn Sali. Lämmitysjärjestelmien ja energiaremonttien taloustarkastelut Lämpöilta taloyhtiöille Tarmo 30.9. 2013 Wivi Lönn Sali Lämmitysjärjestelmien ja energiaremonttien taloustarkastelut Juhani Heljo Tampereen teknillinen yliopisto Talon koon (energiankulutuksen määrän)

Lisätiedot

Aurinko lämmönlähteenä 31.1.2013 Miika Kilgast

Aurinko lämmönlähteenä 31.1.2013 Miika Kilgast Aurinko lämmönlähteenä 31.1.2013 Miika Kilgast Savosolar, Mikkeli Perustettu 2009 joulukuussa Kilpailuvahvuuksina vahva osaaminen tyhjiöpinnoitustekniikassa ja innovatiivinen, markkinoiden tehokkain aurinkokeräin

Lisätiedot

Matalaenergiarakentaminen

Matalaenergiarakentaminen Matalaenergiarakentaminen Jyri Nieminen 1 Sisältö Mitä on saavutettu: esimerkkejä Energian kokonaiskulutuksen minimointi teknologian keinoin Energiatehokkuus ja arkkitehtuuri Omatoimirakentaja Teollinen

Lisätiedot

25.4.2012 Juha Hiitelä Metsäkeskus. Uusiutuvat energiaratkaisut ja lämpöyrittäjyys, puuenergian riittävyys Pirkanmaalla

25.4.2012 Juha Hiitelä Metsäkeskus. Uusiutuvat energiaratkaisut ja lämpöyrittäjyys, puuenergian riittävyys Pirkanmaalla 25.4.2012 Juha Hiitelä Metsäkeskus Uusiutuvat energiaratkaisut ja lämpöyrittäjyys, puuenergian riittävyys Pirkanmaalla Pirkanmaan puuenergiaselvitys 2011 Puuenergia Pirkanmaalla Maakunnan energiapuuvarat

Lisätiedot

Aurinko - ilmaista energiaa

Aurinko - ilmaista energiaa Aurinko - ilmaista energiaa Vuosittainen auringon säteilyn määrä (kwh / m²) 14 päivän aikana maa vastaanottaa tarpeeksi energiaa täyttääksemme meidän energiantarpeen koko vuodeksi. Aurinko - ilmaista energiaa

Lisätiedot

Rakennusten energiahuollon näkymiä

Rakennusten energiahuollon näkymiä Rakennusten energiahuollon näkymiä Peter Lund Aalto yliopisto Perustieteiden korkeakoulu peter.lund@aalto.fi Rakennusten energiaseminaari 2014 5.11.2014, Dipoli Hiilipäästöt kasvavat edelleen I. 20% väestöstä

Lisätiedot

Maija-Stina Tamminen / WWF ENERGIA HALTUUN! WWF:n opetusmateriaali yläkouluille ja lukioille

Maija-Stina Tamminen / WWF ENERGIA HALTUUN! WWF:n opetusmateriaali yläkouluille ja lukioille Maija-Stina Tamminen / WWF ENERGIA HALTUUN! WWF:n opetusmateriaali yläkouluille ja lukioille MITÄ ENERGIA ON? WWF-Canon / Sindre Kinnerød Energia on kyky tehdä työtä. Energia on jotakin mikä säilyy, vaikka

Lisätiedot

Hirsirakenteisten kesämökkien kuivanapitolämmitys

Hirsirakenteisten kesämökkien kuivanapitolämmitys 1 Hirsirakenteisten kesämökkien kuivanapitolämmitys Puupäivä 11.11.2010 Jarkko Piironen Tutkija, dipl.ins. Tampereen teknillinen yliopisto Rakennustekniikan laitos Esityksen sisältö 2 1. Taustaa ja EREL

Lisätiedot