S Laskennallisen tieteen erikoiskurssi. Antti Kuronen Teknillinen korkeakoulu Laskennallisen tekniikan laboratorio PL TKK

Koko: px
Aloita esitys sivulta:

Download "S-114.250 Laskennallisen tieteen erikoiskurssi. Antti Kuronen Teknillinen korkeakoulu Laskennallisen tekniikan laboratorio PL 9400 02015 TKK"

Transkriptio

1 S Laskennallisen tieteen erikoiskurssi Antti Kuronen Teknillinen korkeakoulu Laskennallisen tekniikan laboratorio PL TKK maaliskuu 2000

2 i Esittely iii Materiaalia iii Esitiedot ja edellytykset iv Yleistä 1 Fysiikan tietokonesimulaatioista 1 Deterministiset ja stokastiset simulaatiomenetelmät 2 Monte Carlo -menetelmän historiasta 5 Esimerkkejä sovellutuksista 6 Statistista fysiikkaa 10 Faasiavaruus 10 Ensemblet 12 Makroskooppisten suureiden laskeminen 17 Todennäköisyyslaskentaa 20 Yleistä 20 Tärkeimmät todennäköisyysjakaumat 23 Ajasta riippuvat ilmiöt 25 Metropoliksen Monte Carlo 35 Monte Carlo -integrointi 35 Metropolis-algoritmi 38 Metropolis-algoritmin parannuksia 49 Monte Carlo -simulaatiot eri ensembleissä 57 Yleistä 57 Mikrokanoninen ensemble 57 Vakiopaine-ensemble 58 Suurkanoninen ensemble 63 Simulaatio-ohjelma käytännössä 71 Reunaehdot 71 Potentiaalienergian laskeminen 74 Pitkän kantaman potentiaalit 78 Alkuehdot 83 Tulosten analysoinnista 85 Satunnaisluvuista 91 Tasaisesti jakautuneiden satunnaislukujen generointi 91 Erilaiset sartunnaislukujakaumat 100 Atomien välisistä vuorovaikutuspotentiaaleista 105 Yleistä 105 Idealisoidut potentiaalit 106 Redusoidut yksiköt 109 Realistiset potentiaalit 110 Tasapainosimulaatioiden sovellutuksia 115 Tilanyhtälö ja faasitasapaino 115 Faasitasapainon simulointi 121 Ajasta riippuvien ilmiöiden simulointi 128 Yleistä 128 Säteilyn kulkeutumisen simulointi 129 Varaustenkuljettajien kulkeutuminen puolijohdemateriaaleissa 143

3 ii Kineettinen Monte Carlo 144 Yleistä 144 Pinnan kasvu ja pintadiffuusio 149 Van der Waalsin tilanyhtälö 167

4 iii Esittely Kurssi S Laskennallisen tieteen erikoiskurssi kuuluu laskennallisen tekniikan pää/sivuaineen vaihtoehtoisiin opintoihin Kurssin laajuus on 4opintoviikkoa ja suoritus koostuu harjoituksista (osuus loppuarvosanassa 40%) ja lopputyöstä (60%) Kevätlukukaudella 2000 luennoitsijana toimii tutkija Antti Kuronen Laskennallisen tekniikan laboratorio puh Lukujärjestys on seuraavanlainen: luennot: harjoitukset: ma klo sali H402 ke klo sali H402 pe klo sali S3 ma klo sali H402 Päämääränä on perehdyttää opiskelija stokastisiin ja jonkin verran myös deterministisiin simulointimenetelmiin ja niiden soveltamiseen fysikaalisten ilmiöiden tutkimisessa Materiaalia Tärkein materiaali on kurssin luentomoniste, jotka on käsissäsi Muuta materiaalia ja viitteitä löydät kurssin kotisivulta Kotisivulla on mm kurssin ilmoitustaulu Kirjoista voisi mainita seuraavat: 1 M P Allen, D J Tildesley: Computer Simulation of Liquids

5 Varsin kattava ja usein viitattu teos, joka käsittelee molekyylisysteemien siumlointia Monte Carlo - ja molekyylidynamiikkamenetelmillä (Viittauksissa nimellä Allen-Tildesley) 2 DWHeermann: Computer Simulation Methods in Theoretical Physics Kirja käsittelee sekä deterministisiä (molekyylidynamiikka) että stokastisia (Monte Carlo, Langevin) simulointimenetelmiä (Viittauksissa nimellä Heermann) 3 KBinder, DWHeermann: Monte Carlo Simulation in Statistical Physics: An Introduction Kirjassa käydään läpi Monte Carlo -menetelmän teoreettisia perusteita statistisen fysiikan sovellutusten kannalta (Viittauksissa nimellä Binder-Heermann) 4 DFrenkel, BSmit: Understanding Molecular Simulation: From Algorithms to Applications Kirja rajoittuu -kuten nimikin kertoo- molekyylisysteemien simulointiin Sekä molekyylidynamiikka että Monte Carlo -menetelmät käydään läpi Kirjaan liittyy esimerkkiohjelmia, jotka voi hakea kirjan kotisivulta osoitteesta frenkel_smit (Viittauksissa nimellä Frenkel-Smit) 5 AKersch, WJ Mokoroff: Transport Simulation in Microelectronics Kirja käsittelee Monte Carlo -menetelmän käyttöä mikroelektroniikan materiaalien prosessoinnin ja komponenttien varauksenkuljetuksen mallintamisessa (Viittauksissa nimellä Kersch-Mokoroff) iv Esitiedot ja edellytykset Statistisen fysiikan perusteet Jonkin ohjelmointikielen hallinta (C tai Fortran) - Kurssin laskuharjoituksissa ja varsinkin lopputyössä laaditaan ohjelmia, joten ohjelmointitaito on välttämätön Tietokoneen käyttömahdollisuus

6 1 1 Yleistä 11 Fysiikan tietokonesimulaatioista Simulaatioiden (tai laskennallisten menetelmien) asemaa fysiikassa voi parhaiten havainnollistaa seuraavalla kuvalla LUONTO MALLI MITTAUKSET SIMULAATIOT TEORIA KOETULOKSET EKSAKTEJA TULOKSIA MALLISTA TEOREETTISIA ENNUSTUKSIA VERTAILU VERTAILU MALLIN TESTAUS TEORIAN TESTAUS Kuva 11: Tietokonesimulaatioiden asema fysiikassa Simulaatioilla voidaan testata sekä teorioita että malleja Ne kaventavat kuilua teorian ja mittausten välillä Toisaalta tämä menetelmä on algoritminen lähestymistapa: lopputlokseen ei ole oikotietä Äärellisen laskentakapasiteetin vuoksi tutkittavan systeemin koko ja myös ilmiön mallintamisen aikaskaala ovat rajoitettuja Tämän vuoksi ns äärelliseen koon vaikutusten (finite size effects) osuutta simulaatiotuloksiin tulisi aina tutkia Lisäksi simulaatioiden statistisesta luonteesta johtuen tuloksissa on statistista epämääräisyyttä Simulaation suoritus voidaan jakaa eri vaiheisiin kuvan 12 mukaan

7 2 Malli voi olla hyvinkin ilmeinen (esim kiinteä aineatomit, jotka vuorovaikuttavat potentiaalin välityksellä) tai sitten ei Otetaan esimerkiksi ns Isingin malli Siinä systeemi koostuu spineistä S i, joilla voi olla arvot ± 1 Systeemin energia on Fysikaalinen ilmiö E J S i S j i, j, (11) Malli missä summa käy yli lähinaapuriparien Numeerinen algoritmi j i Simulointiohjelma Tietokonemittaus Kuva 13: Isingin malli Isingin mallilla voidaan jossain määrin kuvata ferromagneettisia aineita, mihin malli alunperin kehitettiinkin Mutta se soveltuu moneen muuhunkin ilmiöön Esimerkiksi kaksikomponenttista metalliseosta voidaan kuvata tällä mallilla A Kuva 12: Simulaation suorituksen vaiheet A B Numeerisen algoritmin avulla pystytään laskemaan mallin antamia tuloksia Se voi olla esim algoritmi, jolla kuljetetaan systeemiä ajassa eteenpäin ( liikeyhtälöt ) tai jolla käydään läpi systeemin faasiavaruutta Simulaatioissa ja kokeellisissa mittauksissa on samankaltaisia piirteitä (raakadatan käsittely, statistiset virheet tuloksissa,), joten usein simulaatioita kutsutaan tietokonemittauksiksi (computer experiments) A A B A A Kuva 14: Kaksikomponenttisen metalliseoksen Isingin malli, B 12 Deterministiset ja stokastiset simulaatiomenetelmät Simulaatiomenetelmät voidaan tietyllä tasolla jakaa deterministisiin ja stokastisiin Esimerkiksi laskettaessa monen vapausasteen systeemin tasapaino-ominaisuuksia jako on selkeä Olkoon systeemin Hamiltonin funktio (eli kokonaisenergia) H, ja tilan määrää vektori x

8 3 x ( x 1, x 2,, x n ), (12) missä n on vapausasteiden lukumäärä Monesti systeemi koostuu N:stä atomista tai molekyylistä, jolloin n 6N ja x ( r 1, r 2,, r N, p 1, p 2,, p N ) (13) Usein haluamme laskea tietyn suureen A odotusarvon A Z 1 A( x)f( H( x) ) dx Ω, (14) Z Ω f( H( x) ) dx (15) missä Ω on systeemin faasiavaruus ja f( H( x) ) on todennäköisyystiheysfunktio Tämä on ns ensemblekeskiarvo, jota ei suoraan voi laskea simuloimalla, koska koko faasiavaruutta ei voida käydä läpi On tyydyttävä enemmän tai vähemmän edustavaan otokseen Deterministinen tapa antaa systeemin oman dynamiikan (liikeyhtälöt) kuljettaa tilavektoria halki faasiavaruuden Ensemblekeskiarvo korvataan aikakeskiarvolla A t x t A t t 1 A( x() τ ) dτ 0 (16) Ergodisuus takaa, että A A Käytännössä on tyydyttävä siihen, että A A t Tätä menetelmää kutsutaan molekyylidynamiikaksi (MD) x ( m) Stokastisessa menetelmässä systeemin tiloja generoidaan satunnaisesti Markovin prosessilla Useimmiten ollaan kiinnostuneita vain x:n konfiguraatio-osasta eli koordinaateista r i Liikemäärä voidaan integroida erikseen Suureen A odotusarvo on nyt M A M 1 A( x ( m) ) k 1 (17) Tämä menetelmä on Monte Carlo -simulaatio (MC) Ongelmana on kehittää tehokas algoritmi, jolla käydään läpi faasiavaruuden niitä osia, jotka ovat merkittäviä suureen A laskemisen kannalta Yksi algoritmi on kanonisen ensemblen yhteydessä käytettävä Metropolisalgoritmi: 1 generoi uusi tila: x ( m) x ( m + 1) 2 laske energiaero E H( x ( m + 1) ) H( x ( m) ) 3 jos E < 0, hyväksy uusi tila todennäköisyydellä 1, muuten hyväksy se todennäköisyydellä exp( E kt)

9 4 Voidaan osoittaa (ja myöhemmin kurssilla osoitetaan), että algoritmi generoi tiloja, jotka noudattavat kanonista jakaumaa exp( H( x) kt) MD-menetelmän etuna on, että sillä voidaan tutkia ajasta riippuvia ilmiöitä; Metropolis- MC:llä taas ei Sen avulla toisaalta voidaan tutkia systeemeitä, joilla ei varsinaista sisäistä dynamiikkaa ole ollenkaan Esimerkkinä olkoon Ising-malli: H Ising J S i S j B S ; S (18) i i ± 1 i, j Lisäksi MC-menetelmän avulla voidaan systeemiin tuoda esimerkiksi kemiallisia vapausasteita: algoritmi voi muuttaa atomin tai molekyylin lajia Huomaa, että ylläolevassa esimerkissä ei itse systeemissä (tai sen mallissa) ollut mitään stokastista, satunnaista Integroitaessa faasiavaruuden yli MC-menetelmässä vain käytettiin satunnaisotantaa Itse systeemissä voi olla satunnaiselementtejä i Esimerkiksi gammasäteilyn etenemisessä väliaineessa vuorovaikutusten välimatka on satunnainen suure, joka noudattaa tiettyä todennäköisyysjakaumaa Satunnaisuus voi johtua myös puutteellisesta mallista: jotkut vapausasteet otetaan huomioon stokastisina elementteinä Esimerkkinä Brownin liike, jossa väliaineen vaikutus otetaan huomioon Langevinin liikeyhtälöllä dv m dt γv + Rt (), (19) missä γ on kitkavakio ja Rt () ajasta riippuva satunnaisvoima, jonka statistisista ominaisuuksista tiedämme jotain Langevinin liikeyhtälöitä voidaan käyttää kuvaamaan systeemiä ympäröivää lämpökylpyä (kanoninen ensemble) Termiä Monte Carlo käytetään varsin erilaisisten stokastisten simulaatiomenetelmien yhteydessä Karkeasti ottaen voisi sanoa, että Monte Carlo -menetelmiä ovat simulaatiot, joissa käytetään paljon satunnaislukuja

10 5 13 Monte Carlo -menetelmän historiasta Italialainen matemaatikko Lazzerini arvioi piin likiarvoa heittämällä 3407 kertaa neulan tasavälisten suorien päälle (Buffonin neula) Likiarvoksi tuli eli 7 numeron tarkkuudella oikea (sattumalta?) d P hit 2l πd W S Gossett ( Student ) arvioi -jakaumansa korrelaatiokertoimia otantakokeella Lordi Kelvinin assistentti generoi 5000 satunnaista rataa tutkiessaan hiukkasen ja kaarevan välisiä törmäyksiä l Kuva 15: Buffonin neula Varsinainen Metropolis-MC kehitettiin Los Alamosissa 50-luvulla Ensimmäinen julkaisu lienee N Metropolis, A W Rosenbluth, M N Rosenbluth, A H Teller, E Teller, Equation of State Calculations by Fast Computing Machines, J Chem Phys, 21 (1953) 1087 Julkaisussa tutkittiin kaksiulotteisten kovien kiekkojen tilanyhtälöä Kuva 16: Ensimmäinen MC-julkaisu

11 6 14 Esimerkkejä sovellutuksista Tasapainoilmiöiden simulaatioista otetaan esimerkiksi Lennard-Jones-systeemin (LJ-systeemin) tilanyhtälö LJ-systeemi koostuu atomeista, jotka vuorovaikuttavat LJ-potentiaalin välityksellä V LJ ( r ij ) 4ε σ σ 6 r ij r ij (110) Oheisessa kuvassa on esitetty eri simulaatiomenetelmillä lasketut tilanyhtälöt ρ( P) [F F Abraham Adv Phys 35 (1986) 1] Paineen ja tiheyden yksikköinä on käytetty LJ-systeemin redusoituja yksiköitä Kuvasta näkyvät selvästi eri olomuodot sekä kiteen ylkuumeneminen ja nesteen alijäähtyminen Faasitransitiosta olkoon esimerkkinä kaasun kondensoituminen ja sen klusterimalli [F F Abraham, J Vac Sci Technol B 2 (1984) 534] Kuva 17: Lennard-Jones -systeemin tilanyhtälö MCMonte Carlo, SD,CD,LVdynaamisia menetelmiä Kuva 18: Argonkaasun kondensoituminen

12 Esimerkkinä kuljetusilmiöstä on gamma- ja elektronisäteilyn eteneminen väliaineessa Analyyttisten ratkaisutapojen ongelmana on mm sekundäärihiukkasten synty: elektronigammakaskadi Ilmiön MC-simuloinnin periaate on seuraava: heijastuminen absorptio 7 läpäisy Seurataan hiukkasta väliaineessa vuorovaikutuksesta toiseen Kuva 19: Sätelilyn eteneminen väliaineessa Vuorovaikutusten välimatkan todennäköisyysjakauma on Ps () e s λ λ, missä hiukkasen keskimääräinen vapaa matka λ 1 σ ja on vuorovaikutuksen vaikutusala eli todennäköisyys σ Simuloinnissa generoidaan välimatkoja s ja jokaisen vuorovaikutuksen kohdalla arvotaan vuorovaikutusmekanismi (ks oheinen kuva) Hiukkasen uusi suunta ja energia saadaan ko vuorovaikutuksen differentiaalivaikutusalasta Myös mahdollisen sekundäärihiukkasen tiedot otetaan muistiin Kuvassa 111 on esitetty muutamia MC-menetelmällä simuloituja elektronien ja niiden synnyttämien fotonien ratoja 1 γ 1 γ 2 e - γ γ 1 γ 2 Ze e + e - e - e - γ Ze e -/+ γ 1 e + e - γ 2 e - Kuva 110: Gamma- ja elektronisäteilyn vuorovaikutusmekanismit 1 Elektronin energia lienee muutama sata kev

13 8 05 cm Kuva 111: Energeettisten (muutama sata kev) elektronien eteneminen vedessä Monte Carlo - simulaatiolla laskettuna Erilaisia kuljetus- ja kasvuilmiöitä voidaan mallintaa kineettisellä Monte Carlolla (KMC) Tärkeitä sovellutuksia ovat mm diffuusio kiinteässä aineessa, kiteen kasvu, säteilyvaurioiden kulkeutuminen KMC perustuu siihen, että kuvaamme systeemiä sellaisella tasolla, että voimme erottaa tietyn joukon diskreettejä tapahtumia E { e 1, e 2,, e N }, joissa systeemi siirtyy tilasta toiseen Lisäksi aikaskaala on sellainen, että mitkään tapahtumat eivät tapahdu samanaikaisesti Otetaan esimerkiksi kiteen kasvu kaasufaasista Tapahtumia ovat: adsorptio, desorptio ja atomin hypyt pinnalla erilaisissa geometrioissa adsorptio desorptio diffuusio diffuusio diffuusio

14 9 Kuva 112: Kiteen kasvatuksessa havaittavat tapahtumat Algoritmi tämän toteuttamiseksi voisi olla seuraavanlainen: i Generoi tasaisesti jakautunut satunnaisluku ξ [ 0, QC ( k )) ii Valitse tätä vastaava tapahtuma: valitse ensimmäinen indeksi s, jolle pätee s a 1 R a ( C k ) ξ iii Etene uuteen konfiguraatioon toteuttamalla tapahtuma C k + 1 s iv Päivitä niitä todennäköisyyksiä R a, jotka ovat muuttuneet tapahtuman s seurauksena Päivitä Q ja muut tarvittavat tietorakenteet Tässä C k on systeemin tila simulointiaskeleella k, Q( C k ) on kokonaistodennäköisyys aikayksikköä kohti, että systeemi siirtyy johonkin toiseen tilaan ja R a ( C k ) tapahtuman a todennäköisyys aikayksikköä kohti systeemin tilassa C k Lisäksi Monte Carlo -menetelmiä voidaan käyttää kvanttimekaanisten systeemien tutkimiseen (kvantti-monte Carlo, quantum Monte Carlo QMC)

15 10 2 Statistista fysiikkaa (lähteenä Allen-TIldesley) 21 Faasiavaruus Kertaamme seuraavassa lyhyesti kurssilla tarvittavia statistisen fysiikan käsitteitä Pitäydymme klassisessa statistisessa fysiikassa Statistisessa fysiikassa on viimekädessä kyse siitä, miten aineen mikroskooppisesta kuvauksesta saadaan makroskooppisia (termodynaamisia, mitattavia suureita): { qp, } (tai{ r, p} ) makroskooppiset suureet, missä q { q i } ovat systeemin koordinaatit ja p { p i } liikemäärät Systeemiä kuvaa Hamiltonin funktio (eli kokonaisenergia) H( qp, ) Atomisysteemeille Hamiltonin funktio on useimmiten muotoa H( qp, ) H( rp, ) N i 1 p i m i V ( q) (21) Systeemin dynamiikkaa (aikakehitystä) kuvaavat Hamiltonin liikeyhtälöt 1 q k H( qp, ) p k (22) ṗ k H( qp, ) q k (23) Yksinkertaisissa tapauksissa Hamiltonin yhtälöistä saadaan Newtonin liikeyhtälöt dr i dt v i dm (, i v i ) F( r (24) dt ij ) i j Jos meillä on N hiukkasta, koko systeemin tilaa voidaan kuvata pisteellä Γ 6N-ulotteisessa faasiavaruudessa Pisteen kulun määräävät liikeyhtälöt Olemme luonnollisesti kiinnostuneita jonkin suureen A A( Γ) arvosta Kokeellisesti pääsemme käsiksi keskiarvoon: A obs 1 A t A( Γ() t ) t lim A( Γ() t ) dt t obs t obs t obs 0 (25) 1 Kuten olemme jo todenneet, aina ei mallissa ole liikeyhtälöitä

16 11 Simulaatioissa tulisi pystyä laskemaan mikroskooppisesta mallista lähtien Statistisessa fysiikassa käytetään Gibbsin ensemblejä kuvaamaan systeemin todennäköisyyttä olla tietyssä faasiavaruuden pisteessä Tällä tavalla pystytään helpommin laskemaan erilaisia asioita verrattuna siihen, että integroisimme liikeyhtälöitä Olkoon meillä suuri määrä (ensemble) samanlaisia systeemejä (mutta erilaisissa mikroskooppissa tiloissa) Todennäköisyystiheys ρ ens ( Γ)dΓ on verrannollinen faasiavaruuden alkiossa dγ olevien systeemien lukumäärään Tiheys ρ ens on erilainen erilaisille ulkoisille olosuhteille Koska piste Γ on yhtä kuin systeemi, ρ ens ( Γ) riippuu ajasta ρ ens Tiheydelle pätevät säilymislait i ρ käyttäytyy kuten kokoonpuristumaton neste dρ ii Systeemejä ei häviä eikä synny: ens 0 dt ρ iii Tasapainossa ens 0 t A obs Näistä voidaan johtaa tiheydelle liikeyhtälö ρens ( Γ, t) ilρ t ens ( Γ, t), (26) missä Liouvillen operaattori L on il i r i ri + i p i pi (27) Statistisessa fysiikassa aikakeskiarvo siis korvataan ensemblekeskiarvolla A obs A ens A( Γ)ρ ens ( Γ) Γ (28) Eräs tärkeä ja kiistanalainenkin asia on ergodisuus Jos systeemi on ergodinen, tietystä alkutilasta lähdettäessä käydään läpi (liikeyhtälöiden mukaan) kaikki faasiavaruuden pisteet, joissa on nollasta poikkeava ρ ens Todennäköisyystiheydestä käytetään myös normittamatonta muotoa ρ ens ( Γ) w ens ( Γ) ; Q ens w ens ( Γ) (29) Q ens Γ

17 12 w ens ( Γ)A( Γ) Γ A ens w ens ( Γ) Γ (210) Tuo normitustekijä eli partitiofunktio Q ens riippuu systeemin makroskooppisista ominaisuuksista Yhteys termodynamiikkaan saadaan määrittelemällä Ψ ens lnq ens termodynaaminen potentiaali (211) Simuloinnin 1 tarkoitus on yleensä käydä läpi faasiavaruutta mahdollisimman tehokkaasti keskiarvojen laskemista varten A obs Kuten aikaisemmin mainittiin tähän tehtävään on kaksi lähestymistapaa i molekyylidynamiikka: A t ii Monte Carlo: A ens (importance sampling) Tärkeimmät ensemblet eli ulkoiset olosuhteen statistisessa fysiikassa ovat i mikrokanoninen: hiukkaslukumäärä, tilavuus ja sisäinen energia vakioita (NVE) ii kanoninen (NVT): kuten edellä, mutta energian sijasta lämpötila vakio iii isoterminen-isobaarinen (NPT): kuten edellä, mutta tilavuuden sijasta paine vakio iv suurkanoninen (µvt): kuten kanoninen ensemble, mutta hiukkaslukumäärän sijasta kemiallinen potentiaali vakio (Huom: Seuraavassa symbolilla V merkitään systeemin tilavuutta ja symbolilla U systeemin hiukkasten välistä vuorovaikutuspotentiaalia) 22 Ensemblet Miten saadaan nuo tiheysfunktiot erilaisille ulkoisille olosuhteille? 2 Gibbsin entropia määritellään ρ ens S k B ρ ens ( Γ) ln( C N ρ ens ( Γ) ) dγ, (212) missä on Boltzmannin vakio k B Mikrokanonisessa ensemblessä systeemin hiukkaslukumäärä, tilavuus ja kokonaisenergia ovat 1 Tarkemmin: tasapainosimulaation 2 Katso esimerkiksi L E Reichl, A Modern Course in Statistical Physics

18 vakioita (NVE-ensemble) Tasapainotilassa entropia on maksimissaan ja tiheysfunktion on oltava normitettu: 13 ρ ( NVE Γ ) dγ 1 H( Γ) E (213) Käytetään Lagrangen kerrointa etsittäessä tiheysfunktiota: α 0 δ ( α 0 ρ NVE ( Γ) k B ρ NVE ( Γ) ln( C N ρ NVE ( Γ) ) ) dγ 0 (214) H( Γ) E Tästä edelleen ( α 0 k B ln[ C N ρ NVE ( Γ) ] k )δρ ( Γ) dγ B 0 NVE H( Γ) E, (215) ja koska variaatio δρ NVE ( Γ) on mielivaltainen, on integrandin hävittävä: α 0 k B ln[ C N ρ NVE ( Γ) ] 0 k B (216) Saamme siis ρ NVE ( Γ) KH, ( Γ) E 0, muulloin (217) Normitusehdon huomioonottaen saadaan lopulta ρ NVE ( Γ) 1 Ω , ( E, V, N) H ( Γ ) E 0, muulloin (218) Kanonisen ensemblen tapauksessa energian sijasta lämpötila on vakio Mukaan tulee siten lisäehto, että sisäisen energian keskiarvo pysyy vakiona: E H( Γ)ρ NVT ( Γ) dγ (219) Variaatioyhtälö tulee nyt muotoon (uusi Lagrangen kerroin ): α E δ [ ( α 0 ρ NVE ( Γ) + α E H( Γ)ρ NVT ( Γ) k B ρ NVE ( Γ) ln[ C N ρ NVE ( Γ) ]) dγ] 0, (220)

19 14 josta edelleen Samaan tapaan saadaan muiden ensembleiden tiheydet Metropoliksen MC-algoritmi kehitettiin alunperin kanonista ensembleä varten, mutta on helposti yleistettävissä muihinkin ensembα 0 + α E H( Γ) k B ln[ C N ρ NVT ( Γ) ] k B 0 (221) ja ρ NVT ( Γ) exp C N α H( Γ) k B α E k B (222) Normalisaatiosta seuraa α 0 Q NVT exp k B exp C N α E H( Γ) dγ k B (223) Seuraavaksi määritämme kertoimen α E Kertomalla yhtälö (221) ρ NVT :llä ja integroimalla saadaan ( ) ρ NVT ( Γ) dγ + α E H( Γ)ρ NVT ( Γ) dγ ρ NVT ( Γ) ln[ C N ρ NVT ( Γ) ] dγ 0 α 0 k B k B, (224) jonka voimme kirjoittaa muotoon ln + α E E + S 0 k B Q NVT (225) Helmholtzin vapaa energia määritellään joten voimme tehdä seuraavat identifikaatiot missä partitiofunktio on nyt ja tiheysfunktio A U + ST 0, (226) 1 α E ---, A k, (227) T B TlnQ NVT 1 Q NVT e βh( Γ) d Γ ( β ( k B T ) 1 ) (228) C N ρ NVT ( Γ) C N e βh Γ Q NVT ( ) (229)

20 15 leihin Listataan lopuksi vielä eri ensembleiden tiheysfunktiot ja termodynaamiset potentiaalit 1 Mikrokanoninen ensemble: NVE vakioita (eristetty) ρ NVE ( Γ) δ( H( Γ) E) (230) Q NVE δ( H( Γ) E) Γ C N dr dpδ( H( r,p) E) (231) Termodynaaminen potentiaali on nyt entropia: S lnq k NVE B (232) Kanoninen ensemble : NVT vakioita (suljettu) ρ NVT ( Γ) exp( H( Γ) k B T ) (233) Q NVT exp( H( Γ) k B T ) Γ C N r d dpexp( H( r,p) k B T ) (234) Termodynaaminen potentiaali on Helmholtzin vapaa energia: A lnq k B T NVT (235) Isoterminen-isobaarinen ensemble: NPT vakioita ρ NPT ( Γ) exp( ( H( Γ) + PV) k B T ) (236) Q NPT Γ exp( ( H( Γ) + PV) k B T ) C N drdpexp( ( H( r,p) + PV) k V B T ) 0 (237) Termodynaaminen potentiaali on Gibbsin vapaa energia: G lnq k B T NPT (238) 1 Vakio C N h 3N erilaisille hiukkasille ja N!h 3N identtisille

21 16 Suurkanoninen ensemble: µvt vakioita ρ µvt ( Γ) exp( ( H( Γ) + µn ) k B T ) (239) Q µvt N Γ, N exp( ( H( Γ) + µn ) k B T ) exp( µ N k B T ) C N drdpexp( H( r,p) k B T ) (240) Termodynaaminen potentiaali on suuri potentiaali: Ω lnq k B T µvt (241) Jos systeemin Hamiltonin funk tio voidaan jakaa koordinaateista ja liikemääristä riippuviin osiin H( r,p) K( p) + U( r), (242) voimme integroida pois liikemääräosuuden: 1 Q NVT d pexp( K( p) k B T ) d rexp( U( r) k B T ) C N (243) Q NVT id ex Q NVT Q NVT, (244) Tässä ideaalikaasuosuus on id Q NVT V N h ; (245) N!Λ 3N Λ πmk B T ja hiukkasten vuorovaikutuksesta aiheutuva osuus on ex Q NVT d rexp( U( r) k B T ) V N (246) ex Q NVT Metropolis-MC:llä lasketaan vain koordinaateista riippuva osa (konfiguraatio-osa)

22 17 23 Makroskooppisten suureiden laskeminen Simulaatiossa on tarkoituksena siis laskea makroskooppisia (termodynaamisia) suureita systeemin mikroskooppisten ominaisuuksien avulla Seuraavassa on lyhyesti esitetty tärkeimpien suureiden laskeminen lähinnä atomeista koostuville systeemeille Systeemin sisäinen energia on sen kokonaisenergian keskiarvo E H K + U p i U( q) 2m i i (247) Lämpötila taas on kineettisen energian keskiarvo T 2 K Nk B N p i Nk B m i i 1 (248) Systeemin paine P taas saadaan ns viriaalin avulla PV Nk B T + W, (249) missä viriaali W on N W r i f i i 1, (250) f i ja on hiukkaseen i kohdistuva voima Ylläolevat yhtälöt voidaan johtaa ns yleistetystä ekvipartitioteoreemasta 1 H H p k k, (251) p B T q k k k q B T k Kuten myöhemmin tulemme huomaamaan, ei tasapainoilmiöiden Monte Carlo -simulaatioissa ole ollenkaan mukana hiukkasten liikemääriä, joten lämpötilaa ei voi laskea Toisaalta, jos tutkimme ensembleä, jossa lämpötila on vakio, on se ennalta annettu parametri; siis simulaation syöttötieto Erilaiset vastefunktiot kertovat, miten systeemi reagoi tietyn tilamuuttujan muutokseen Tärkein näistä lienee vakiotilavuuslämpökapasiteetti C V Sehän määritellään sisäisen energian lämpötiladerivaattana 1 Ks Allen-Tildesley kappale 24

23 18 C V ( T ) E T V (252) Simulaatioilla :n laskemisen voisi toteuttaa tekemällä useita ajoja eri lämpötiloilla ja integroimalla yhtälö (252) Toisaalta kanonisessa ensemblessä fluktuaatioilla ja vastefunktioilla on yhteys 1, josta voimme lämpökapasiteetin laskea missä C V δh 2 k B T 2 C V, (253) δh 2 H 2 H 2 (254) Tämän fluktuaatio-vastefunktio -yhteyden avulla voidaan monia muitakin vastefunktioita laskea; esimerkiksi lämpölaajenemiskerroin, isoterminen puristuvuus jne Termodynaamisten potentiaalien (eli vapaiden energioiden) laskemista tarvitaan monessa yhteydessä Esimerkiksi kiinteän aineen sulamispisteen saa selville, jos pystyy laskemaan kiteisen ja nestemäisen rakenteen Helmholtzin vapaat energiat Potentiaalien laskeminen ei ole kuitenkaan kovin helppoa Esimerkiksi Helmholtzin vapaan energian potentiaalienergiasta riippuva osa 2 voidaan lausua muodossa A ex exp k B T exp( U k B T ) Qex NVT (255) Toisaalta kanonisessa ensemblessä todennäköisimmät tilat ovat sellaisia, joille on suuri, joten suora keskiarvon lakeminen on tehotonta exp( U k B T ) Käyttökelpoinen tapa laskea energiaeroja on integrointi reversiibeliä reittiä pitkin Esimerkiksi A --- T 2 A --- T 1 T 2 E dt T 1 T 2 (256) tai A --- T 2 A --- T 1 V 2 P --- T d V V 1 (257) Toinen tapa on lähteä idealisoidusta mallista, jonka vapaa energia pystytään laskemaan eksaktisti Olkoon systeemin potentiaalienergia riippuvainen parametrista λ : U U( r, λ) Tällöin saamme seuraavan yhteyden 1 AT, kappale 25 2 A A id + A ex, ks kaavat (235) ja (245)

24 19 A λ k B T [ ln rexp( U( r,λ) k λ d B T )] U d r exp( U k λ B T ) d rexp( U k B T ) U λ (258) Vapaan energian absoluuttiarvo on laskettavissa, jos λ :n avulla voimme kuvata systeemiä, jonka A on laskettavissa (ideaalikaasu, harmoninen kide): A( λ) A( λ 0 ) λ U dλ λ (259) λ 0 Otetaan esimerkiksi harmoninen kide (Einsteinin malli) U( r, λ) U 0 ( r) + λ ( r i r i0 ) 2 N i 1 (260) Kun λ 0, systeemi on alkuperäinen, ja kun λ kasvaa lähestyy systeemi harmonista kidettä Vapaa energia saadaan integraalina A( λ 0) A( λ) λ 0 U dλ' λ (261) Helmholtzin vapaa energia suurella λ :n arvolla voidaan laskea tarkasti A( λ 0) 3Nhω Nk 2 B T 1 e hω k BT ln( ) + O( 1 λ) (262)

25 3 Todennäköisyyslaskentaa Yleistä Seuraavassa käydään läpi kurssiin liittyvää todennäköisyyslaskentaa Todennäköisyyden avulla voimme kuvata enemmän tai vähemmän kvantitatiivisesti jonkin tapahtuman tai kokeen odotettavissa olevaa tulosta Jos tapahtuman A todennäköisyys on P( A), voimme odottaa, että N :n identtisen kokeen tuloksena saamme NP( A) kappaletta tapahtumia A Rajalla N, tapahtumien A osuus lähestyy arvoa P( A) Kokeen otosavaruus (sample space) S on kokeen mahdollisten tulosten joukko Siis jokainen kokeen tulos vastaa yhtä tai useampaa joukon alkiota (otosavaruuden pistettä) Koe tai tapahtuma on S :n osajoukko Todennäköisyys, että saadaan joko tulos A tai B on P( A B) P( A) + PB ( ) P( A B), (31) missä P( A B) on todennäköisyys, että saadaan sekä A että B Jos tapahtumat A 1, A 2,, A m ovat toisensa poissulkevia ja lisäksi A i :t jakavat S :n osiin: A 1 A 2 A m S, (32) niin pätee P( A 1 ) + P( A 2 ) + + P( A m ) 1 Tapahtumat A ja B ovat riippumattomia, jos P( A B) P( A)PB ( ) (33) Ehdollinen todennäköisyys on todennäköisyys, että tapahtuma A toteutuu ehdolla, että myös tapahtuma B toteutuu Se määritellään PBA ( ) P( A B) PB ( ) (34) Koska P( A B) PB ( A) pätee myös P( A)P( A B) PB ( )PBA ( ) (35) Jos A ja B ovat riippumattomia 1 Lähteenä pääasiassa LEReichl: A Modern Course in Statistical Physics

26 21 PBA ( ) P( A) (36) Suure, jonka arvon määrää edelläesitellyn kokeen tulos on satunnaismuuttuja tai stokastinen muuttuja Otosavaruuden S satunnaismuuttuja X on funktio, joka kuvaa S:n alkiot reaalilukujoukolle Jokaisessa kokeessa muuttuja X voi saada jonkin arvon joukosta { } Pari esimerkkiä X :stä: a) kruunujen lukumäärä kolmen kolikon heiton jälkeen b) noppien silmälukujen maksimi, neljän nopan heiton jälkeen Olkoon X stokastinen muuttuja avaruudessa S Olkoot sallitut arvot X( S) { x 1, x 2, } Voimme tehdä X( S) :stä otosavaruuden antamalla jokaiselle x i :lle todennäköisyyden Nämä todennäköisyydet f( x i ) määrittelevät S :n todennäköisyysjakauman ja niille pätee x i f( x i ) 0 (37) f ( x ) i 1 i (38) Usein meillä on tietoa vain jakauman f momenteista: X n x n i f( x i ) i (39) Ensimmäinen momentti X on keskiarvo ja jakauman standardipoikkema on σ X ( X 2 X 2 ) 12 / (310) Stokastinen muuttuja X voi tietysti saada myös jatkuvia arvoja Esimerkiksi reaalilukuakselin väli a X b voi vastata yhtä tapahtumaa Todennäköisyysjakauma on sellainen paloittain jatkuva funktio, että tapahtuman a X b todennäköisyys on Pa ( X b) f X ( x) dx Lisäksi jakaumafunktio toteuttaa ehdot b a (311) f( x) ja f X ( x) 0 (312) a b Kuva 31: Todennäköisyysjakauma x f ( X x ) d x 1 (313)

27 22 Vastaavasti momentit määritellään x n f X ( x) dx X n (314) Jos tunnemme f X :n kaikki momentit, tunnemme jakauman täysin Tämä voidaan osoittaa ns karakteristisen funktion φ X ( k) avulla: φ X ( k) e ikx e ikx f X ( x) dx n 0 ( ik) n X n n! (315) Todennäköisyystiheys on karakteristisen funktion Fourier-muunnos: f X ( x) e 2π ikx φ X ( k) dk (316) Vastaavasti jakauman momentit saadaan karakteristisen funktion derivaattoina: X n 1 i --- n n d φx dk n ( k) k 0 (317) Stokastisia muuttujia voi olla useampiakin Olkoon meillä muuttujat X( S) { x 1, x 2, } ja Y( S) { y 1, y 2, } Näiden tulojoukko X( S) Y( S) {( x 1, y 1 ), ( x 1, y 2 ),, ( x i, y j ), } muodostaa nyt otosavaruuden, kun määrittelemme parin { x i, y j } todennäköisyydeksi PX ( x i, Y y j ) f( x i, y j ) (318) Muuttujien kovarianssi määritellään cov( X, Y) ( x X )( y Y )f( x, y) dxdy xyf ( x, y) dxdy X Y XY X Y (319) ja korrelaatio cor( X, Y) cov( X, Y) σ X σ Y (320) Korrelaatiolla on seuraavat ominaisuudet (i) cor( X, Y) cor( Y, X), (ii) 1 cor( X, Y) 1,

28 23 (iii) cor( X, X) 1, cor( X, X) 1, (iv) cor( ax + b, cy + d) cor( X, Y), jos ac, 0 (321) Jos muuttujat X ja Y ovat riippumattomia pätevät seuraavat relaatiot (i ) f( x, y) f X ( x)f Y ( y), (ii ) XY X Y, (iii ) ( X + Y) X + Y X 2 X + Y 2 Y, (iv ) cov( X, Y) 0 (322) 32 Tärkeimmät todennäköisyysjakaumat Usein meillä on kyseessä tilanne, jossa on suuri määrä N kokeita, joilla jokaisella on kaksi mahdollista tulosta ( +1 ja 1 ) Esimerkiksi hiukkanen joko siroaa tietyllä matkalla tai sitten ei Olkoot todennäköisyydet tuloksille p ja q Selvästikin p + q 1 Todennäköisyys, että N :n kokeen tuloksena on n 1 kertaa +1 ja n 2 kertaa 1 on P N ( n 1 ) N! p n 1 q n 2 n 1!n 2! (323) Tämä on ns binomijakauma Sen keskiarvo ja standardipoikkeama ovat n 1 pn, σ2 N Npq (324) Binomijakaumasta saadaan rajalla N ja pn (siis p ei ole kovin pieni) Gaussin jakauma P N ( n 1 ) exp 2π σ N ( n 1 n 1 ) σ N 2, (325) missä σ N Npq (326) Gaussin jakauman määräävät kaksi ensimmäistä momenttia n 1 ja σ N Taasen rajalla N ja p 0 siten, että Np a «N (missä a on äärellinen vakio) binomijakaumaa voidaan approksimoida Poissonin jakaumalla

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi. Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 10: Reaalikaasut Pe 1.4.2016 1 AIHEET 1. Malleja, joissa pyritään huomioimaan

Lisätiedot

6. Yhteenvetoa kurssista

6. Yhteenvetoa kurssista Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 6. Yhteenvetoa kurssista 1 Keskeisiä käsitteitä I Energia TD1, siirtyminen lämpönä

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 7: Ekvipartitioteoreema, partitiofunktio ja ideaalikaasu Ke 16.3.2016 1 KURSSIN

Lisätiedot

Integrointialgoritmit molekyylidynamiikassa

Integrointialgoritmit molekyylidynamiikassa Integrointialgoritmit molekyylidynamiikassa Markus Ovaska 28.11.2008 Esitelmän kulku MD-simulaatiot yleisesti Integrointialgoritmit: mitä integroidaan ja miten? Esimerkkejä eri algoritmeista Hyvän algoritmin

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä

Lisätiedot

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Satunnaislukujen generointi

Satunnaislukujen generointi Satunnaislukujen generointi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Satunnaislukujen generointi 1/27 Kevät 2003 Lähteet Knuth, D., The Art of Computer Programming,

Lisätiedot

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ] 766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta)

TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta) TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta) Kvanttimekaniikassa yhden hiukkasen systeemin täydellisen kuvauksen antaa tilavektori, joka on

Lisätiedot

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen) Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 8: Kemiallinen potentiaali, suurkanoninen ensemble Pe 18.3.2016 1 AIHEET 1. Kanoninen

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

V ar(m n ) = V ar(x i ).

V ar(m n ) = V ar(x i ). Mat-.3 Stokastiset prosessit Syksy 007 Laskuharjoitustehtävät 6 Poropudas/Kokkala. Olkoon M n = X +... + X n martingaali ja M 0 = 0. Osoita, että V ar(m n ) = n V ar(x i ). i= Huomattavaa on, että muuttujia

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle 13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

Martingaalit ja informaatioprosessit

Martingaalit ja informaatioprosessit 4A Martingaalit ja informaatioprosessit Tämän harjoituksen tavoitteena on tutustua satunnaisvektorin informaation suhteen lasketun ehdollisen odotusarvon käsitteeseen sekä oppia tunnistamaan, milloin annettu

Lisätiedot

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic

Lisätiedot

Normaalijakaumasta johdettuja jakaumia

Normaalijakaumasta johdettuja jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma

Lisätiedot

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4) 76A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 4 Kevät 214 1. Tehtävä: Yksinkertainen malli kovalenttiselle sidokselle: a) Äärimmäisen yksinkertaistettuna mallina elektronille atomissa voidaan pitää syvää potentiaalikuoppaa

Lisätiedot

Molaariset ominaislämpökapasiteetit

Molaariset ominaislämpökapasiteetit Molaariset ominaislämpökapasiteetit Yleensä, kun systeemiin tuodaan lämpöä, sen lämpötila nousee. (Ei kuitenkaan aina, kannattaa muistaa, että työllä voi olla osuutta asiaan.) Lämmön ja lämpötilan muutoksen

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 1: Lämpötila ja Boltzmannin jakauma Ke 24.2.2016 1 YLEISTÄ KURSSISTA Esitietovaatimuksena

Lisätiedot

BM20A0900, Matematiikka KoTiB3

BM20A0900, Matematiikka KoTiB3 BM20A0900, Matematiikka KoTiB3 Luennot: Matti Alatalo Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luvut 1 4. 1 Sisältö Ensimmäisen kertaluvun differentiaaliyhtälöt

Lisätiedot

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3 76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15

Lisätiedot

4.0.2 Kuinka hyvä ennuste on?

4.0.2 Kuinka hyvä ennuste on? Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki

Lisätiedot

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua Ideaalikaasulaki Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua ja tilanmuuttujat (yhä) paine, tilavuus ja lämpötila Isobaari, kun paine on vakio Kaksi

Lisätiedot

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio,

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio, Differentiaaliyhtälöt, Kesä 06 Harjoitus 3 Kaikissa tehtävissä, joissa pitää tarkastella kriittisten pisteiden stabiliteettia, jos kyseessä on satulapiste, ilmoita myös satulauraratkaisun (tai kriittisessä

Lisätiedot

3.7 Todennäköisyysjakaumia

3.7 Todennäköisyysjakaumia MAB5: Todennäköisyyden lähtökohdat 4 Luvussa 3 Tunnusluvut perehdyimme jo jakauman käsitteeseen yleensä ja normaalijakaumaan vähän tarkemmin. Lähdetään nyt tutustumaan binomijakaumaan ja otetaan sen jälkeen

Lisätiedot

Markov-ketjut pitkällä aikavälillä

Markov-ketjut pitkällä aikavälillä MS-C2111 Stokastiset prosessit 2A Markov-ketjut pitkällä aikavälillä Tämän harjoituksen tavoitteena on oppia lukemaan siirtymämatriisista tai siirtymäkaaviosta, milloin Markov-ketju on yhtenäinen ja jaksoton;

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y ) MATEMATIIKAN JA TILASTOTIETEEN LAITOS Differentiaaliyhtälöt, kesä 00 Tehtävät 3-8 / Ratkaisuehdotuksia (RT).6.00 3. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: y = + y + y = + y + ( y ) (y

Lisätiedot

1.4. VIRIAALITEOREEMA

1.4. VIRIAALITEOREEMA 1.4. VIRIAALITEOREEMA Vaikka N-kappaleen ongelman yleistä ratkaisua ei tunneta, on olemassa eräitä tärkeitä yleisiä tuloksia Jos systeemi on stabiili, eli paikat ja nopeudet eivät kasva rajatta kineettisen

Lisätiedot

Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt

Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa Matlab-esittelyä 1 / 20 Luennon sisältö Digress: vakio-

Lisätiedot

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki Termodynamiikka Fysiikka III 2007 Ilkka Tittonen & Jukka Tulkki Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät

Lisätiedot

ẋ(t) = s x (t) + f x y(t) u x x(t) ẏ(t) = s y (t) + f y x(t) u y y(t),

ẋ(t) = s x (t) + f x y(t) u x x(t) ẏ(t) = s y (t) + f y x(t) u y y(t), Aalto-yliopiston Perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Mat-2.4129 Systeemien Identifiointi 1. harjoituksen ratkaisut 1. Tarkastellaan maita X ja Y. Olkoon näiden varustelutaso

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1

Lisätiedot

4. Funktion arvioimisesta eli approksimoimisesta

4. Funktion arvioimisesta eli approksimoimisesta 4. Funktion arvioimisesta eli approksimoimisesta Vaikka nykyaikaiset laskimet osaavatkin melkein kaiken muun välttämättömän paitsi kahvinkeiton, niin joskus, milloin mistäkin syystä, löytää itsensä tilanteessa,

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-25 Todennäköisyyslaskenta Tentti 12.4.216 / Kimmo Vattulainen Funktiolaskin sallittu. Palauta kaavakokoelma 1. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi

Lisätiedot

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt 766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö

Lisätiedot

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9.

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9. Python linkit: Python tutoriaali: http://docs.python.org/2/tutorial/ Numpy&Scipy ohjeet: http://docs.scipy.org/doc/ Matlabin alkeet (Pääasiassa Deni Seitzin tekstiä) Matriisit ovat matlabin perustietotyyppejä.

Lisätiedot

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 5: Termodynaamiset potentiaalit Maanantai 28.11. ja tiistai 29.11. Kotitentti Julkaistaan to 8.12., palautus viim. to 22.12.

Lisätiedot

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 1 IDEAALIKAASU Ideaalikaasu Koostuu pistemäisistä hiukkasista Ei vuorovaikutuksia hiukkasten välillä Hiukkasten liike satunnaista Hiukkasten

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Aiheet: Satunnaisvektorit ja moniulotteiset jakaumat Tilastollinen riippuvuus ja lineaarinen korrelaatio Satunnaisvektorit ja moniulotteiset

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

Tehtävä 4.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla.

Tehtävä 4.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla. Tehtävä.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla. x = (a + b cos(θ)) cos(ψ) y = (a + b cos(θ)) sin(ψ) = b sin(θ), a > b, θ π, ψ π Figure. Toruksen hajoituskuva Oletetaan,

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 4: Entropia Maanantai 21.11. ja tiistai 22.11. Ideaalikaasun isoterminen laajeneminen Kaasuun tuodaan määrä Q lämpöä......

Lisätiedot

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa 8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen

Lisätiedot

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin FUNKTIONAALIANALYYSI, RATKAISUT 1 KEVÄT 211, (AP) 1. Ovatko seuraavat reaaliarvoiset funktiot p : R 3 R normeja? Ovatko ne seminormeja? ( x = (x 1, x 2, x 3 ) R 3 ) a) p(x) := x 2 1 + x 2 2 + x 2 3, b)

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos

Lisätiedot

(s 2 + 9)(s 2 + 2s + 5) ] + s + 1. s 2 + 2s + 5. Tästä saadaan tehtävälle ratkaisu käänteismuuntamalla takaisin aikatasoon:

(s 2 + 9)(s 2 + 2s + 5) ] + s + 1. s 2 + 2s + 5. Tästä saadaan tehtävälle ratkaisu käänteismuuntamalla takaisin aikatasoon: TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2429 Systeemien Identifiointi 2 harjoituksen ratkaisut Yhtälö voitaisiin ratkaista suoraankin, mutta käytetään Laplace-muunnosta tehtävän ratkaisemisessa

Lisätiedot

Tilastollinen aineisto Luottamusväli

Tilastollinen aineisto Luottamusväli Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Kertymäfunktio TKK (c) Ilkka Mellin (2005) 1 Kertymäfunktio Kertymäfunktio: Määritelmä Diskreettien jakaumien kertymäfunktiot Jatkuvien jakaumien kertymäfunktiot TKK (c)

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

Kvanttidynamiikka Tarkastellaan ensin hieman bra/ket-merkintää ja vertaillaan sitä muihin merkintätapoihin.

Kvanttidynamiikka Tarkastellaan ensin hieman bra/ket-merkintää ja vertaillaan sitä muihin merkintätapoihin. Kvanttidynamiikka 30.10.2010 0.1 Bra- ja Ket-merkinnöistä Tarkastellaan ensin hieman bra/ket-merkintää ja vertaillaan sitä muihin merkintätapoihin. Oletetaan, että ket ψ ja bra φ ovat alkioita, jotka liittyvät

Lisätiedot

2 Osittaisderivaattojen sovelluksia

2 Osittaisderivaattojen sovelluksia 2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä

Lisätiedot

Luento 10: Työ, energia ja teho

Luento 10: Työ, energia ja teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin

Lisätiedot

Ekvipartitioteoreema. Entropia MB-jakaumassa. Entropia tilastollisessa mekaniikassa

Ekvipartitioteoreema. Entropia MB-jakaumassa. Entropia tilastollisessa mekaniikassa Ekvipartitioteoreema lämpötilan ollessa riittävän korkea, kukin molekyylin liikkeen vapausaste tuo energian ½ kt sekä keskimääräiseen liike-energiaan ja kineettiseen energiaan energian lisäys ja riittävän

Lisätiedot

Ekvipartitioteoreema

Ekvipartitioteoreema Ekvipartitioteoreema lämpötilan ollessa riittävän korkea, kukin molekyylin liikkeen vapausaste tuo energian ½ kt sekä keskimääräiseen liike-energiaan ja kineettiseen energiaan energian lisäys ja riittävän

Lisätiedot

SARJAT JA DIFFERENTIAALIYHTÄLÖT

SARJAT JA DIFFERENTIAALIYHTÄLÖT SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 43 0.5 0.4 0.3 0.2 0.1 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 Kuva 12. Esimerkin 4.26(c kuvauksen

Lisätiedot

FYSA234 Potentiaalikuoppa, selkkarityö

FYSA234 Potentiaalikuoppa, selkkarityö FYSA234 Potentiaalikuoppa, selkkarityö Jari Partanen, Jani Komppula JYFL FL246, S118 japapepa@jyu.fi, jani.komppula@jyu.fi 13. lokakuuta 2014 Ohjaus Työn ja ohjelman esittely (15-30 min) Harjoitellaan

Lisätiedot

Parametrin estimointi ja bootstrap-otanta

Parametrin estimointi ja bootstrap-otanta Parametrin estimointi ja bootstrap-otanta Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Parametrin estimointi ja bootstrap-otanta 1/27 Kevät 2003 Käytännön asioista

Lisätiedot

Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit

Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Luento 8 6.3.2015 1 Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) 2 Makroskooppisia voimia, jotka syntyvät pyrkimyksestä

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla

Lisätiedot

Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten

Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten Todennäköisyys Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten tietoliikennejärjestelmien ymmärtämisessä

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kertausta 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat: 1. Potenssisarjojen suppenemissäe, suppenemisväli ja suppenemisjoukko. 2. Derivaatan laskeminen

Lisätiedot

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3 Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,

Lisätiedot

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016 Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.

Lisätiedot

12. Hessen matriisi. Ääriarvoteoriaa

12. Hessen matriisi. Ääriarvoteoriaa 179 12. Hessen matriisi. Ääriarvoteoriaa Tarkastelemme tässä luvussa useamman muuttujan (eli vektorimuuttujan) n reaaliarvoisia unktioita : R R. Edellisessä luvussa todettiin, että riittävän säännöllisellä

Lisätiedot

Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1,

Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1, Todennäköisyyslaskenta, 2. kurssikoe 7.2.22 Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu.. Satunnaismuuttujien X ja Y yhteistiheysfunktio on

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 4 To 15.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 4 To 15.9.2011 p. 1/38 p. 1/38 Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä matriisimuodossa Ax = b

Lisätiedot

TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä

TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä J. Virtamo 38.3143 Jonoteoria / Todennäköisyyslaskenta 1 TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä Otosavaruus S S on satunnaiskokeen E kaikkien mahdollisten alkeistapahtumien e joukko. Esim. 1. Noppaa

Lisätiedot

6. Toisen ja korkeamman kertaluvun lineaariset

6. Toisen ja korkeamman kertaluvun lineaariset SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 51 6. Toisen ja korkeamman kertaluvun lineaariset differentiaaliyhtälöt Määritelmä 6.1. Olkoon I R avoin väli. Olkoot p i : I R, i = 0, 1, 2,..., n, ja q : I R jatkuvia

Lisätiedot

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu 2 Interpolointi Olkoon annettuna n+1 eri pistettä x 0, x 1, x n R ja n+1 lukua y 0, y 1,, y n Interpoloinnissa etsitään funktiota P, joka annetuissa pisteissä x 0,, x n saa annetut arvot y 0,, y n, (21)

Lisätiedot

Generointi yksinkertaisista diskreeteistä jakaumista

Generointi yksinkertaisista diskreeteistä jakaumista S-38.148 Tietoverkkojen simulointi / Satunnaismuuttujien generointi 1(18) Generointi yksinkertaisista diskreeteistä jakaumista Seuraavassa U, U 1,..., U n tarkoittavat riippumattomia U(0,1)-jakautuneita

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

MCMC-menetelmien ongelmakohtia ja ratkaisuja

MCMC-menetelmien ongelmakohtia ja ratkaisuja MCMC-menetelmien ongelmakohtia ja ratkaisuja Aleksi Saari 72 Lähteet: Mackay: Introduction to Monte Carlo Methods Neal: Suppressing Random Walks in Markov Chain Monte Carlo Using Ordered Overrelaxation

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-200 Todennäköisyyslaskenta Tentti 29.04.20 / Kimmo Vattulainen Funktiolaskin sallittu.. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi kuutosen. A aloittaa

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt Yhtälöryhmät 1/6 Sisältö Yhtälöryhmä Yhtälöryhmässä on useita yhtälöitä ja yleensä myös useita tuntemattomia. Tavoitteena on löytää tuntemattomille sellaiset arvot, että kaikki yhtälöt toteutuvat samanaikaisesti.

Lisätiedot