TKT-2540 Paikannuksen menetelmät. Jussi Collin Helena Leppäkoski Martti Kirkko-Jaakkola

Koko: px
Aloita esitys sivulta:

Download "TKT-2540 Paikannuksen menetelmät. Jussi Collin Helena Leppäkoski Martti Kirkko-Jaakkola"

Transkriptio

1 TKT-2540 Paikannuksen menetelmät Jussi Collin Helena Leppäkoski Martti Kirkko-Jaakkola 2010

2 Esipuhe Tämä moniste on jatkoa kurssin MAT Paikannuksen matematiikka (http://math.tut. fi/courses/mat-45800/) luentomonisteelle. Nämä kurssit liittyvät läheisesti toisiinsa, ja aiempina vuosina niillä onkin käytetty samaa luentomonistetta. Tänä vuonna kuitenkin näiden kahden kurssin asiat on erotettu omiin monisteisiinsa. Paikannuksen matematiikka on tälle kurssille erittäin suositeltava, muttei kuitenkaan pakollinen esitieto. Tarkoituksena on, että paikannuksen matematiikan kurssilla esitetään paikannusmenetelmien taustalla olevia matemaattisia periaatteita, etenkin tilastomatematiikkaa ja optimointia, joita sitten tällä kurssilla sovelletaan käytännön paikannusongelmiin. Jos ja kun monisteesta löytyy virheitä, ilmoitetaan niistä kurssin kotisivulla cs.tut.fi/kurssit/2540/. Kiitokset Simo Ali-Löytylle, Niilo Sirolalle ja Henri Pesoselle varsinkin tässä monisteessa käytetyn LATEX-pohjan jalostamisesta. Lisäksi erityiskiitos Hanna Sairolle monisteen edellisissä versioissa julkaistuista osuuksista, joiden pohjalta luvun 2 alku on kirjoitettu. Tampereella, 19. helmikuuta 2010 tekijät 2

3 Sisältö 1 Anturiavusteinen paikannus Kiihtyvyys- ja kulmanopeusanturit Matkamittarit Korkeusmittaus Antureiden mittausvirheet Kantoaaltomittauksiin perustuva satelliittipaikannus Doppler-ilmiö Differentiaalinen paikannus Real-Time Kinematics Luotettavuus ja eheys Paikannuksen suorituskyvyn mittareita Tilastollinen päättely ja hypoteesien testaus Residuaalit Receiver Autonomous Integrity Monitoring Luotettavuustestaus globaalin ja lokaalin testin avulla Hakemisto 46 Viitteet 48 3

4 Luku 1 Anturiavusteinen paikannus JUSSI COLLIN Koska satelliittisignaalien lähetysteho on kovin pieni, kohtaa käyttäjä usein tilanteita, joissa paikannusratkaisua ei ole saatavilla. Maanalaiset parkkipaikat ja ostoskeskukset ovat tiloja, joissa tarkasta paikkaratkaisusta voisi olla paljonkin hyötyä, mutta GPS-laite ei tällaista voi tarjota. Tällaisissa tiloissa esim. WLAN-verkko tarjoaa mahdollisuuden radiosignaaleihin perustuvaan paikkaratkaisuun, mutta varustamalla laite sopivilla antureilla voidaan saada tietoa liikkeestä ilman ulkoista apua. Tässä osiossa esitellään paikannukseen sopivia antureita, katsotaan, miten mittauksista saadaan paikkaratkaisu, ja käydään lyhyesti yksinkertaisia anturivirhemalleja läpi. Paikannuksen matematiikan kurssilla [2, Luku 1] käytiin läpi koordinaatistojen vaihtoja, ja periaatteessa anturipaikannusalgoritmit perustuvatkin näihin operaatioihin: mitataan paikan muutos laitteeseen sidotussa koordinaatistossa, muunnetaan se karttakoordinaatistoon ja integroidaan. Tuloksena on reitti kartalla, kunhan alkupaikka saadaan tietoon käyttäen jotakin muuta paikannusjärjestelmää. Käytännössä apua tarvitaan useamminkin kuin kerran, koska integroinnin luonteeseen kuuluu vakiovirheiden kertaantuminen. 1.1 Kiihtyvyys- ja kulmanopeusanturit Termi inertia viittaa kappaleen pyrkimykseen jatkaa kulkuansa, jos siihen ei kohdistu ulkoisia voimia. Kiihtyvyysanturit perustuvatkin tähän periaatteeseen, kuten myös osa gyroista. Kiihtyvyysanturin rakentamiseen tarvitaan massa, jousi, kotelo ja jonkinlainen indikaattori massan paikasta kotelon suhteen (kuva 1.1). Voiman ja kiihtyvyyden suhde on tietysti tunnettu, ja jousen puristuma tai venymä kertoo voiman suuruuden. Lisänä voi olla vielä takaisinkytkentä, joka pyrkii pitämään massan paikallaan koteloon nähden. 4

5 Kuva 1.1: Kiihtyvyysanturin toimintaperiaate. Lähde: [27] Mittauksen ongelmana on g:n puuttuminen: anturitriadin mittaus on vektori a B g B. Kuvassa 1.1 näkyvän jousen puristuman voi nimittäin aiheuttaa joko normaalivoiman ja gravitaation yhteisvaikutus (anturin ollessa paikallaan) tai kiihtyvyys inertiakehyksessä (ilman gravitaatiota). Anturi ei tiedä, kumpi tilanne on kyseessä. Newtonin liikelakien käyttö vaatii kuitenkin myös gravitaatiovoimien mittaamisen, mutta sepä ei kiihtyvyysantureilta suoraan onnistukaan! Siksi inertialaskuissa gravitaatio lisätäänkin mittauksiin gravitaatiomallin avulla. Toisaalta, jos newtonilainen kiihtyvyys tiedetään anturin koordinaatiostossa, saadaan gravitaatiovektori laskettua mittausyhtälöstä. Jos anturitriadin tiedetään olevan paikallaan (a B = 0), se mittaa ylöspäin suuntaava vektoria, josta saadaan kallistusmittaus. Lisäksi kiihtyvyysantureilla voidaan mitata syklisiä tärähdyksiä, esimerkiksi askelia, jolloin saadaan epäsuorasti estimoitua kuljettua matkaa. Tästä lisää luentojen jalankulkija-osiossa. Kulmanopeuden mittaamiseen on useita eri vaihtoehtoja. Mekaaniset gyrot perustuvat myös inertiaan, tällä kertaa liikkuvan anturielementin pyrkimyksiin vastustaa kiertoja. Yksi tapa mitata kulmanopeutta on asentaa pyörivä massa M laakeroituun koteloon B, w B BM =[0 0 ω M] T. Ripustetaan massa siten, että pyörivä massa laakereineen pääsee pyörimään suunnassa u B out =[0 ± 1 0]T, mutta ei suunnassa u in =[±1 0 0] T. Tällöin liike w B IB =[ω in 0 0] T aiheuttaa ripustuksen kiertymisen suunnassa w B BM wb IB, joka onkin u out:n suuntainen akseli. Kun mitataan kiertymistä tämän akselin suhteen, saadaan tieto kulmanopeudesta u in -akselin suhteen. Pyörivä massa ei välttämättä ole käytännöllinen, jos anturin suunnittelijalle on annettu rajoituksia koon tai virrankulutuksen suhteen. Toinen mekaaninen gyrotyyppi on värähtelevä gyro, jossa liike on edestakaista. Kuva 1.2 esittää äänirautagyron (tuning fork gyro) toimintaperiaatteen. Ylempi haarukka laitetaan resonoimaan sähkövirran avulla. Jos anturi pyörii sisäänmenoakselin ympäri, coriolis-voima aiheuttaa edestakaisen liikkeen, joka on kohtisuorassa pakotetun resonoinnin suuntaan ja sisäänmenoakselin suuntaan nähden (nuolet alemmassa haarukassa). Tätä liikettä mitataan (yleensä kapasitiivisesti), ja tuloksena on kulmanopeudella moduloitu signaali, josta saadaan kulmanopeus selville. Mikroelektromekaaniset (MEMS) gyrot toimivat tällä periaatteella. Pyörimisen mittaamiseen ei välttämättä tarvita liikkuvia osia, sillä mekaanisille pyörimiseen 5

6 Kuva 1.2: Esimerkki coriolis-voimaan perustuvasta gyrosta. Lähde: [27] liittyville ilmiöille löytyy sähkömagneettimen vastine, Sagnac-ilmiö. Ilmiön selittämiseen tarvitaan suhteellisuusteoriaa, mutta tämän kurssin puitteissa voidaan oikaista hieman: Lähetetään lasersäde matkaan, ja peilien avulla ohjataan säde takaisin lähtöpaikkaansa kulkusuunta myötäpäivään. Lisätään toinen lasersäde, joka kulkee vastapäivään. Syntyy kaksi seisovaa aaltoa, joiden taajuuseroa mitataan. Kun kotelo pyörii I-koordinaatiston suhteen (laserin reitin määräämän tason normaalin ympäri), tämä taajuusero muuttuu. Tällä periatteella toimivaa gyroa kutsutaan rengaslasergyroksi (Ring Laser Gyro, RLG). Optisella mittaustavalla on useita etuja: Kuva 1.3: Lasergyro. Lähde: [27] Pyörimissuuntaan kulkeva säde kulkee pidemmän matkan I-koordinaatistosta katsottuna... 6

7 Erinomainen tarkkuus Rajaton sisäänmenokaista Ei liikkuvia osia, joten tärinä ei haittaa ja luotettavuus on mekaanisia gyroja parempi. Lineaarinen kiihtyvyys ei vaikuta mittaukseen. Toisaalta hinta, koko ja virrankulutus estävät käytön henkilökohtaisissa sovelluksissa ainakin toistaiseksi. 1.2 Matkamittarit Kiihtyvyyteen perustuvassa siirtymän mittauksessa perustava ongelma on kaksoisintegrointi: pienikin vakiovirhe mittauksessa kasautuu ajan myötä suureksi. Tästä syystä ajoneuvon pyörän kierroslaskurit ym. matkaa mittaavat anturit tuottavat lähes poikkeuksetta tarkemman tuloksen. Isoin virhekomponentti matkamittareilla on skaalausvirhe: esimerkiksi renkaan säde ei ole tarkkaan tiedoissa. Paikkavirhe on tällöin verrannollinen kuljettuun matkaan eikä aikaan. Toisin kuin puhtaat inertiamittaukset, nämä menetelmät ovat jonkin verran ulkoisista tekijöistä riippuvaisia: jos tienpinta on liukas, rengas saattaa pyöriä tyhjää. Doppler-tutkaa voi myös käyttää kuljetun matkan laskemiseen, erityisesti työkoneissa, joissa anturin asentaminen renkaaseen tai sellaisen ylläpito on joko hankalaa. Doppler radar speed Measured speed (km/h) True speed (km/h) Kuva 1.4: Erään Doppler-tutkan ulostulo nopeuden funktiona. Mittaus on etumerkitön, ja pienillä nopeuksilla ulostulo on nolla 1.3 Korkeusmittaus Kun siirrytään ilmakehässä korkeammalle, on yläpuolellamme vähemmän ilmaa ja siten ilmanpaine pienenee. Ilmanpainetta mittaamalla saadaan siis korkeustietoa. Ilmanpaine kuitenkin 7

8 muuttuu sään myötä (ja sisätiloissa ilmastoinnin), joten ilmanpaineeseen perustuva korkeusmittari on kalibroitava usein. Paikannussovelluksissa muutamalla metrilläkin voi olla merkitystä (esim. oikean kerroksen tunnistaminen rakennuksessa), ja tällöin on tarpeen asettaa toinen ilmanpainemittari läheiseen paikkaan tunnettuun korkeuteen. Tällöin ilmanpaineiden erotuksesta saadaan korkeusero tarkasti määritettyä. altitude (m) rd floor 4th floor stairs stairs Elevator 5th floor 2nd floor 1st floor 3rd floor stairs 162 Stairs to outside time (s) Kuva 1.5: MEMS-ilmanpainemittarin korkeusratkaisu sisätiloissa. Ratkaisu saadaan tarkasti metreinä merenpinnasta, kun tukiasema on samassa rakennuksessa tunnetulla korkeudella Inertiapaikannusyhtälöt * (Asiaa ei käsitellä tällä kurssilla. Inertiapaikannus on siirtynyt kurssin TKT-2556 vastuulle, mutta näistä yhtälöistä voi olla hyötyä muissakin sovelluksissa.) Tämän kappaleen kaavojen muoto on melko suoraan viittestä [22]. Paikkavektorin origona käytetään E-koordinaatiston origoa, ja g L lasketaan erikseen paikan funktiona (esim. gravitaatiomalli). B-koordinaatiston ja L-koordinaatiston aikaderivaatta on Ċ L B = C B L(w B IB ) (w L IL )C L B. (1.1) Alkuehto C L B saadaan erilliseltä alustusalgoritmilta (Harjoitus 1.8). Kulmanopeustermi wb IB saadaan gyrotriadilta, ja termi w L IL on maan pyörimisen ja maanopeudesta johtuvan lokaalin koordinaatiston pyörimisen summa: w L IL = w L IE+ w L EL (1.2) Lokaali koordinaatisto L pitää z-akselin kohtisuorassa pallon (ellipsoidin) pintaan nähden, joten kohteen liikkuessa maan pinnalla tämä koordinaatisto pyörii kulmanopeudella w L EL = F c (u L ZL v L )+ρ ZL u L ZL. (1.3) 3 3-matriisin F c koostumus riippuu siitä, käytetäänkö ellipsoidi- vai pallomallia. Lisäksi termillä ρ ZL säädetään L:n pohjoisakselin liikettä (harjoitus 1.1). u L ZL on yksikkövektori joka kertoo suunnan ylös L-koordinaatistossa, eli meidän sopimuksillamme u L ZL =[0 0 1]T. 8

9 Mitatun kiihtyvyysvektorin (merk. a B SF = ab g B ) muunnos L-koordinaatistoon: a L SF = C L Ba B SF. (1.4) Lopuksi tarvitaan painovoima (g P =gravitaatio plus maapallon pyörimisen vaikutus) nopeusvektorin (suhteessa maapalloon, E-kehys) muutos ja horisontaalinen paikan muutosnopeus sekä korkeuden muutosnopeus g L P = g L (w L IE )(w L IE )R L, (1.5) v L = a L SF+ g L P (w L EL+ 2w L IE) v L, (1.6) Ċ E L = C E L(w L EL ) (1.7) ḣ=u L ZL v L. (1.8) Siinä kaikki. Paikka ja nopeus voidaan sopivasta alkuehdosta lähtien ratkaista differentiaaliyhtälöistä (1.6) (1.8). Ryhmitellään tärkeimpitä termejä hieman, jotta kokonaiskuva selkiytyy: Tietoa antureilta: a B SF ja wb IB Maapallon ominaisuuksiin liittyvät termit: w IE, g, F c Ja näitä alunperin haluttiin laskea: R E (paikkavektori ECEF:ssä; C E L ja korkeus h ajavat saman asian, ks. harjoitus 1.2), v L (nopeus maapallon suhteen), C L B (INS-laitteen asento L-koordinaatistoon nähden). 1.4 Antureiden mittausvirheet Otetaan ensimmäiseksi esimerkiksi gyrotriadin mittaus, joka olkoon y. Paikannuksen matematiikka -kurssin [2, Luku 1] mukaan ideaalinen mittaus on w B IB, ja eräs virhemalli voisi olla yhtälön y=mw B IB+ b+n (1.9) mukainen. Tässä matriisi M sisältää skaalaus- ja kohdistusvirheet (scale factor, misalignment). Kohinatermit on jaettu biastyyppiseen (b) ja autokorreloimattomaan kohinaan (n). Huomaa, että virhetermi on nyt v=(m I)w B IB+ b+n, eli skaalaus- ja kohdistusvirheet aiheuttavat sen, että virhe on mitattavan suureen funktio. Tämä aiheuttaa ongelmia mittavirheiden tilastollisessa analysoinnissa. 9

10 Peruskokoonpanossa on kolme anturia, joiden mittausakselit ovat kohtisuorassa toisiinsa nähden. Tällöin 3 3-matriisin M diagonaalialkiot ovat vastaavien antureiden skaalausvirheet. Kohdistusvirhe johtuu siitä, että todellisuudessa antureita ei saada tarkalleen kohtisuoraan toisiinsa nähden. Tällöin tietyn akselin data näkyy myös toiselle anturille. Huippuluokan INSlaitteissa kohdistusvirhe on asteen tuhannesosan luokkaa, ja skaalauskerroinvirhe muutama miljoonasosa signaalin suurudesta (ppm, parts per million). Huomaa, että antureita ei välttämättä tarvitse sijoittaa kohtisuoraan toisiinsa nähden, kunhan akseleiden väliset kulmat tiedetään. Antureita voi myös olla vikatilanteiden varalta enemmänkin kuin vaadittavat kolme. Tässä tapauksessa kohtisuora asennus ei ole tietenkään edes mahdollista. Virhetermi b on ehkä mielenkiintoisin ja käytännössä myös haastavin. Sillä viitataan virheisiin jotka pysyvät samana tai lähes samana pitkään. Jako b:n ja n:n välillä ei ole mitenkään itsestäänselvä. Ääritilannetta, jossa b olisi aina vakio ja n olisi täysin korreloimaton näytteiden välillä, ei reaalimaailmasta löydy (tällöin bias-termi saataisiin ratkaistua ja korjattua täysin jo tehdaskalibroinnissa). Käytännössä b:n korrelaatioaika on laitteen käynnistysten välisen ajan luokkaa (tunteja kuukausia), ja n:n korrelaatioaika on selvästi lyhyempi. Virhetermin n käsittelystä onkin edellisissä kappaleissa paljon tietoa. Kannattaa jälleen kerran huomata, että antureiden käyttö paikannuksessa edellyttää melkein aina mittausten integrointia, joten virheen korrelaatiolla ajan suhteen on merkittävä vaikutus paikannustarkkuuteen. Vaikka lyhyt näyte datasta näyttäisi kohinaiselta, ei kannata vetää liian jyrkkiä johtopäätöksiä: on vakava virhe vertailla gyrojen laatua muutaman minuutin näytteistä otetuilla keskihajontaestimaateilla. Malli (1.9) käy sellaisenaan myös kiihtyvyysantureille, kunhan termi w IB korvataan termillä a B SF. Taulukossa 1.1 kerrotaan, mitä antureilta vaaditaan, jos INS-ratkaisun virheen halutaan pysyvän muutamassa kilometrissä tunnin navigoinnin jälkeen. Vaatimukset ovat kovat, erityisesti gyroille. Lisäksi käyttökohteesta riippuen saattaa olla dynamiikkavaatimuksia: voi esim. olla, että 500 astetta sekunnissa tapahtuva pyörähdys on pystyttävä mittaamaan. Tämän tason INS-laitteiden hinta liikkuu dollarin tienoilla, mutta hinnat tulevat toki alas koko ajan. Hinnan lisäksi ongelmia aiheuttavat vientirajoitukset, sillä tarkat INS-laitteet luokitellaan useissa maissa aseteknologiaksi. MEMS-anturit eivät vielä täytä lähellekään näitä vaatimuksia, mutta ovat helposti saatavilla ja luonnollisesti edullisempia; vaikka INS sellaisenaan ei onnistuisikaan mittausvirheiden vuoksi, inertiamittauksilla saadaan arvokasta lisätietoa paikannusalgoritmeille [5] Virheprosesseista Yksinkertainen virheprosessi saadaan riippumattomista satunnaismuuttujista n t, joiden odotusarvo on nolla ja varianssi σ 2 n <. Tätä kutsutaan valkoseksi kohinaksi (white noise). Oletetaan vielä, että satunnaismuuttujat ovat normaalijakautuneita. Kuvassa 1.6 esitetään valkoisen kohinan (σ 2 n = 1) realisaatio ja sen kumulatiiven summa x t = t t=1 n t. (1.10) 10

11 Taulukko 1.1: Antureiden tarkkuusvaatimuksia, kun paikannusvirhe saa kasvaa enintään 0.1 tai 1 merimailia (1.852 km) tunnissa [23]. Virhelähde Vaadittava tarkkuus 0.1 nmph 1 nmph Kiihtyvyysanturi bias 5 µg 40 µg skaalausvirhe 40 ppm 200 ppm kohdistusvirhe 1/3600 7/3600 Gyro bias /h /h skaalausvirhe 1 ppm 5 ppm kohdistusvirhe 0.7/3600 3/3600 Seuraavaksi lisätään prosessiin autokorrelaatiota, ensin AR(1)-prosessi x t = ρx t 1 + n t. (1.11) σ 2 n Jotta saadaan stationäärinen prosessi, vaaditaan, että ρ < 1. Prosessin realisaatiota generoitaessa pitää ottaa x 0 jakaumasta N(0, ), jotta stationäärisyys pätee äärelliselle sarjalle (ks. 1 ρ 2 esim. [24]). Valitaan ρ=0.9 ja σ 2 n = 1 ρ2, jolloin prosessilla on sama varianssi kuin edellisellä prosessilla. Integroituna sarja saa hyvin isoja arvoja verrattuna edelliseen: Integroidun sarjan viimeisen satunnaismuuttujan keskihajonta 96.5, ja korreloimattoman kohinan tapauksessa se on Nämä lukemat tarkistetaan harjoituksissa r=randn(500,1) cumsum(r) Kuva 1.6: Valkoista kohinaa ja siitä integroitu satunnaiskävely (random walk). 11

12 Kuva 1.7: AR(1)-realisaatio ja sen kumulatiivinen summa. Nämä kohinamallit ovat melko yksinkertaisia, ja valitettavasti todellisuudessa kohdataankin usein monimutkaisempia prosesseja. Yhtenä esimerkkinä olkoon 1/ f -kohina (tai diskreettiaikaisena ARFIMA(0,0.5,0), ks. esim. [4, 29] mielenkiintoisine esimerkkeineen), josta saadaan realisaatio puoli-integroimalla valkoista kohinaa. Koska alakolmiomatriisi A= (1.12) integroi kerran aikasarjavektorin x kertolaskussa Ax, niin haetaan matriisi B, joka toteuttaa BB=A. Lasketaan matriisin neliöjuuri [2, Luku 1] tutulla sqrtm-komennolla, jolloin B= (1.13) Nyt käytetään B:tä kerroinmatriisina valkoiselle kohinalle (σ 2 n = 1), tulos kuvassa 1.8. Tälle kohinatyypille ominaista on bias-heilahtelu : suuri osa tehosta on hyvin pienillä taajuksilla. Tässä esiteltyjen kohinaprosessien identifiointiin käytetään usein Allan-varianssia (Allan variance, two-sample variance) [3, 19] σ 2 x(τ)= 1 2 E( x 2 x 1 ) 2, (1.14) 12

13 Kuva 1.8: Diskreettiaikaisen 1/ f -kohinan realisaatio jossa keskiarvot otetaan peräkkäisistä τ:n pituisista lohkoista x 1 = 1 τ x 2 = 1 τ Estimaatti Allan-varianssista saadaan kokoamalla otos m lohkoon, ˆσ 2 x(τ,m)= m 1 1 2(m 1) τ 1 x t (1.15) t=0 2τ 1 x t. (1.16) t=τ k=1 Tietyillä ehdoilla prosessille x t tämä tuottaa harhattoman estimaatin [20]. ( x k+1 x k ) 2. (1.17) 13

14 Harjoitustehtäviä 1.1. Käydään kaava w L EL = F c (u L ZL v L )+ρ ZL u L ZL läpi. Millainen matriisi F c on, jos käytetään pallomallia, pallon säde R? Mitä termi ρ ZL tekee? Vihje: ajattele lentokonetta joka lentää hyvin lähellä pohjoisnapaa. Jos L-kehyksen y-akseli pidetään aina osoittamaan pohjoista, mitä tapahtuu vektorille w L EL? 1.2. Onko C E L yhdessä h:n kanssa riittävä tieto yksiselitteiseen paikkaratkaisuun? 1.3. INS-sovelluksissa kolme gyroa on riittävä määrä, mutta vikatilanteiden varalta niitä voi laittaa useammankin. Oletetaan että kolme gyroa ovat kohtisuorassa toisiinsa nähden, ja lisätään yksi gyro siten, että tämän mittausakseli ei ole yhdensuuntainen muiden gyrojen kanssa. Voidaanko nyt havaita, jos joku antureista antaa täysin virheellisiä mittauksia? Jos kyllä, voidaanko ko. anturi tunnistaa ja siten väärät mittaukset eristää? Entä jos meillä onkin 5 anturia siten, että mitkään kolme akselia eivät ole samassa tasossa? 1.4. Näytä, että virhe g:n laskemisessa (gravitaatiomallin virhe) aiheuttaa positiivisen takaisinkytkennän INS:n korkeusvirheelle Oletetaan että joskus MEMS-gyro analogisella ulostulolla saavuttaa 1 nmph INSvaatimukset, ks. taulukko 1.1 sivulla 11. Jotta signaali saadaan digitaaliseksi, tarvitaan A/D-muunnin. Arvioi vaadittavaa resoluutiota, ts. montako bittiä kvantisointiin tarvitaan Monenko integraattorin läpi termi w B IB (eli gyrodata) menee INS-yhtälöissä? Mitä tapahtuu (lähes) korreloimattomalle kohinalle näin monen integroinnin jälkeen? Entä bias-tyyppiselle kohinalle? 1.7. Tietokonetehtävä: Takaisinkytkennät INS-mekanisoinnissa Tietokonetehtävä: C L B :n alustus maan pyörimisvektorin ja normaalivoiman avulla. 14

15 Luku 2 Kantoaaltomittauksiin perustuva satelliittipaikannus MARTTI KIRKKO-JAAKKOLA Seuratessaan satelliittisignaalia GNSS-vastaanotin mittaa sekä signaaliin moduloidun koodin vaihetta että itse signaalin sinimuotoisen kantoaallon vaihetta. Näistä kahdesta perusmittauksesta voidaan laskea pseudoetäisyys ja ns. integroitu Doppler, joita usein (virheellisesti) pidetäänkin vastaanottimen perusmittauksina. Tässä luvussa tutustutaan kantoaaltomittausten hyödyntämiseen paikannuksessa. Itse asiassa alun perin kantoaaltomittauksia ei suunniteltu edes käytettäväksi paikannuksessa mihinkään, mutta 1970-luvun lopulla Counselman et al. [7] osoittivat, että niissä on potentiaalia erittäin tarkkaan paikannukseen. Koodimittaukset ovat kantoaaltomittauksia selvästi kohinaisempia (koodimittauksissa on tyypillisesti vähintään desimetriluokan kohina, kun taas edullisetkin vastaanottimet mittaavat kantoaallon vaihetta noin senttimetrin tarkkuudella), kuten kuvassa 2.1 on näytetty. Kantoaaltomittausten käyttämistä hankaloittaa kuitenkin oleellisesti se, että kyseinen mittaus sellaisenaan kertoo vain aallon vaiheen modulo 2π pelkkää vaihetta mittaamalla ei saada tietoon täysien kantoaaltojaksojen määrää, joka on kullekin satelliitille erisuuruinen kokonaisluku. Tästä syystä kantoaaltomittauksia käytetään henkilökohtaisessa paikannuksessa vain etäisyyden muutoksen arviointiin, jolloin koodimittausten kohinaa voidaan tasoittaa (carrier smoothing, ks. esim. [21]). Kantoaaltopaikannuksen toteuttamista kuluttajalaitteilla henkilökohtaisessa paikannuksessa tutkitaan kuitenkin aktiivisesti [1]. 2.1 Doppler-ilmiö Paikannussatelliitit liikkuvat käyttäjiinsä nähden koko ajan monta kilometriä sekunnissa, esimerkiksi GPS-satelliittien ratanopeus on noin 4 km/s; lisäksi toki käyttäjät itsekin voivat Tavallisesti tosin kantoaaltomittaukset ilmoitetaan skaalattuna jaksoiksi, ei radiaaneina tai metreinä 15

16 Koodi Kantoaalto vaihe ero [m] Kuva 2.1: Koodi- ja kantoaaltomittausten kohinatasot. Tässä kuvassa näytetään vain peräkkäisten mittausten (molemmat metreissä) erotukset eikä itse absoluuttisia mittauksia, jolloin biastyyppiset termit (ml. kokonaislukutuntematon) kumoutuvat. liikkua. Tämä suhteellinen liike vaikuttaa siihen taajuuteen, jolla vastaanotin signaalin havaitsee: jos vastaanotin liikkuu kohti aaltolähdettä, kohtaa se aaltorintamia useammin kuin paikalla ollessaan, ja toisaalta taas liikkuessaan lähettimestä poispäin kohtaa niitä harvemmin. Molemmissa tapauksissa vastaanotin havaitsee signaalin eri taajuudella kuin mikä todellinen lähetystaajuus on. Tätä lähettimen ja vastaanottimen välisen suhteellisen liikkeen vaikutusta vastaanotettuun taajuuteen kutsutaan Doppler-ilmiöksi. Valon nopeudella eteneville aalloille Doppler-ilmiö mallinnetaan kaavalla ( f R = f T 1 v r u ), (2.1) c jossa f R on vastaanotettu taajuus, f T on lähetetty taajuus, v r on satelliitin ja vastaanottajan välinen suhteellinen nopeus, u on yksikkövektori vastaanottajan sijainnista satelliittia kohti ja c on valon nopeus. Doppler-ilmiön aiheuttamaa taajuusmuutosta sanotaan Doppler-siirtymäksi f D : f D = f R f T = v r u c. (2.2) Vastaanottimen on signaalia seuratessaan luonnollisesti oltava selvillä sen taajuudesta, johon Doppler-ilmiö vaikuttaa. Siten vastaanotin mittaa samalla kunkin satelliittisignaalin Dopplersiirtymää. Seuraavissa kappaleissa nähdään, mitä hyötyä tästä on paikannuksen kannalta. Esimerkiksi ääniaalloille (tuttuna mallitapauksena toimii vaikkapa ohi ajavan ambulanssin sireeni) Dopplersiirtymä lasketaan hieman eri tavalla, koska silloin ei voida approksimoida v+v s v, missä v on aaltojen etenemisnopeus ja v s aaltolähteen nopeus.. 16

17 2.1.1 Doppler-siirtymän ja etäisyysmittauksen muutoksen välinen yhteys Paikannuksen matematiikan monisteessa [2, Esimerkki 15, s. 24] on esitelty mittausmalli pseudoetäisyysmittaukselle. Lasketaan nyt satelliitille i tehdyn mittauksen aikaderivaatta (deltaetäisyys): ρ i = d dt ( s i x +b)=(v i v u ) s x + ḃ, (2.3) s x missä v i on satelliitin i nopeusvektori, v u on vastaanottajan nopeusvektori ja ḃ vastaanottimen kellon käyntivirhe [s/s] (clock drift). Välivaiheiden laskeminen jätetään harjoitustehtäväksi. Verrattaessa yhtälöitä (2.2) ja (2.3) huomataan, että u= s x s x ja v r = v i v u. Nyt siis deltaetäisyys saadaan affiinilla muunnoksella Doppler-siirtymästä: ρ i = c f D + ḃ. (2.4) Deltaetäisyyksiä käytetään esim. vastaanottimen nopeuden määrittämiseen. Myös paikannus niiden perusteella on mahdollista, tosin mittausmallista johtuen huomattavasti virheherkempää kuin pseudoetäisyyspaikannus [18] Doppler-siirtymän ja vaihemittauksen välinen yhteys Kantoaaltomittausta sanotaan myös integroiduksi Doppleriksi. Uusi kantoaaltomittaus φ i (t) saadaan vähentämällä vanhasta mittauksesta φ i (t T) Doppler-siirtymän integraali mittausajan (pituus T ) yli. Kyseessä on nimenomaan vähennys eikä lisäys, koska Doppler-taajuushan kasvaa, kun vastaanotin lähestyy satelliittia eli näiden välinen etäisyys pienenee. Vaihemittauksen halutaan luonnollisesti käyttäytyvän päinvastoin. Huomaamalla, että yhtälössä (2.1) pistetulo suhteellisen nopeuden v r ja suuntayksikkövektorin u välillä on suhteellisen nopeuden projektio kohtisuoralle etäisyydelle eli toisin sanoen etäisyyden r aikaderivaatta, voidaan Doppler-siirtymä (2.2) kirjoittaa vielä uuteen muotoon f D = ṙ λ, (2.5) missä λ = c/ f on signaalin aallonpituus. Tästä integroimalla saadaan kantoaaltomittaus t φ i (t)= φ i (t T) f D (τ)dτ=λ 1 (r i (t) r i (t T)). (2.6) t T Merkitään nyt φ i (0) = r i (0)+b(0)+N i, missä r i (0) on todellinen etäisyys vastaanottimen ja satelliitin i välillä hetkellä t = 0, b(0) vastaanottimen kellovirhe samana hetkenä ja N on tuntematon määrä kantoaaltojaksoja (tämän arvoa ei siis tiedetä pelkkää vaihetta mittaamalla). Lisäämällä vielä satelliitin kellovirhe b i (t) sekä mittausvirhetermi ε i (t) (sisältäen esim. satelliitin rataparametrien (ephemeris) virheet ja monitie-etenemisen) saadaan kantoaaltomittausmalliksi φ i (t)= r i(t) λ + b(t) b i(t)+n i + ε i (t). (2.7) 17

18 Yksikkönä on kantoaaltojakso. Todellisuudessa tähän malliin tulisi vielä lisätä pseudoetäisyysmittauksista tuttuja virhelähteitä kuten ilmakehä, mutta ne on jätetty yksinkertaisuuden vuoksi pois. Erityisesti tulee huomata, että kokonaislukutuntematon N i ei riipu ajasta t, vaan N i määräytyy signaalin hakuvaiheessa ja pysyy vakiona niin kauan kuin satelliittia i seurataan katkoksitta. Käytännössä joskus (varsinkin edullisilla vastaanottimilla) kokonaislukutuntematon N i voi kuitenkin muuttua lyhyen signaalikatkoksen takia. Tällaista tilannetta sanotaan jaksohypyksi (cycle slip), ja niiden havaitseminen (ja mahdollisesti korjaus) on erittäin tärkeää tarkassa paikannuksessa, sillä jokaisesta jaksohypystä aiheutuu vähintään desimetriluokan etäisyysvirhe. Jaksohyppyjä voidaan tunnistaa esim. peräkkäisten kantoaaltomittausten erotuksista RAIMmenetelmällä (s. 37), ks. esim. [14]. 2.2 Differentiaalinen paikannus Kuten todettu, mittausmalli (2.7) ei ole totuudenmukainen, vaan siitä puuttuu merkittäviä virhelähteitä. Mikäli paikannusta tehdään jälkiprosessointina ja tulokset voidaan ilmoittaa vaikka parin viikon viiveellä, voidaan käyttää esim. IGS:n (International GPS Service) [9] toimittamia tarkkoja satelliitti- ja ilmakehädatoja näiden virheiden korjaamiseen. Reaaliaikasovelluksissa tämä kuitenkaan ole mahdollista. Toinen mahdollinen tapa päästä eroon mittausmallin virheistä on hyödyntää tietoa siitä, että osa virheistä korreloi ajan ja paikan mukaan: esimerkiksi ilmakehän aiheuttamat virheet ovat käytännössä yhtä suuret lähellä toisiaan sijaitseville vastaanottimille. Tähän perustuu differentiaalinen paikannus, jossa ideana on käyttää itse paikannettavaa laitetta riittävän lähellä sijaitsevaa referenssivastaanotinta. Yksinkertaisimmillaan differentiaalipaikannus toimii niin, että jokin tunnetussa paikassa sijaitseva vastaanotin arvioi, paljonko sen mittauksissa on virheitä, jotka siirtävät paikkaestimaatin pois todellisesta sijainnista, ja lähettää tämän kokonaisvirhe-estimaatin, differentiaalikorjauksen, paikannettaville vastaanottimille esim. radiolinkin yli. Selective Availabilityn (SA) poissaollessa nämä virheet eivät muutu nopeasti ajan myötä, joten lähetetty korjaus on käyttökelpoinen pidemmänkin aikaa, eikä uusia korjauksia tarvitse laskea ja lähettää joka mittaushetkellä. Kokonaisvirhearvio sisältää myös vastaanottimen kellovirheen, mistä ei ole kuitenkaan haittaa, mikäli korjausdataa käyttävät vastaanottimet eivät käytä satelliitteja, joihin korjausdataa ei ole: Tällöin vain käyttäjien vastaanotinten on ratkaistava oman kellovirheensä ja referenssivastaanottimen kellovirheen summa, mikä onnistuu aivan samalla tavalla kuin pelkän oman kellovirheen ratkaiseminen ilman korjausdataa. Jos käytössä on useampia referenssivastaanottimia, ei kokonaisarvioiduista korjauksista ole niin suurta hyötyä, vaan olisi parempi, jos eri virhelähteet, kuten esim. ilmakehä ja satelliitin kello, saataisiin arvioitua erikseen. Näin toimivat monet GPS:n laajennokset, kuten USA:n kattava On täysin tilanneriippuvaista, kuinka paljon on riittävän lähellä : Yksitaajuusvastaanottimella huonolla kelillä se voi olla muutama kilometri, kun taas kaksitaajuusvastaanottimella pilvettömällä säällä satakin kilometriä voi riittää [21]. 18

19 Wide Area Augmentation System (WAAS). Myös eurooppalaisille on vastaavanlainen järjestelmä nimeltään European Geostationary Navigation Overlay System (EGNOS), joka tuli virallisesti käyttöön lokakuussa Kuten nimistä voi päätellä, nämä järjestelmät hyödyntävät geostationäärisiä satelliitteja korjausdatan välittämisessä suuremmalle alueelle. Valitettavasti geosatelliitit näkyvät Suomen leveyspiireille melko huonosti, koska niiden kiertorata kulkee päiväntasaajan kohdalla Suhteellinen paikannus Mikäli riittää ratkaista vain kahden vastaanottimen välistä etäisyysvektori, ns. perusviiva (baseline), voidaan eri vastaanotinten tekemiä mittauksia vähentää toisistaan sellaisenaan erillisiä virhearvioita konstruoimatta. Tällöin kuitenkin menetetään absoluuttinen paikkainformaatio. Jos vastaanottimista toisen sanottakoon sitä referenssivastaanottimeksi paikka tunnetaan, voidaan jäljelle jäävän, jota kutsuttakoon käyttäjäksi (englanninkielisessä kirjallisuudessa yleensä rover receiver), absoluuttinenkin paikka määrittää referenssivastaanottimen paikan tai perusviivaestimaatin tarkkuudella riippuen siitä, kumpi on epätarkempi. Suhteellinen paikannus hyötyy huomattavasti kantoaaltomittausten käytöstä. Koska systemaattisia mittausvirheitä saadaan differentiaalimenelmällä vähennettyä, alkaa mittauskohina olla merkittävä virhelähde differentiaalipaikkaestimaatteihin käytettäessä koodimittauksia. Kuten tiedetään, kantoaaltomittaukset ovat muutamaa kertaluokkaa tarkempia kuin koodin vaiheeseen perustuvat pseudoetäisyydet. Ongelmaksi tulevat kuitenkin kokonaisten kantoaaltojaksojen lukumäärät eli kokonaislukutuntemattomat N i. Mikäli ne saadaan ratkaistua, voidaan perusviivaa estimoida parhaimmillaan jopa millimetrien tarkkuudella Yksittäisdifferenssi vastaanotinten välillä Jos käytettävissä on mallin (2.7) mukaiset mittaukset myös käyttäjää riittävän lähellä olevalla referenssivastaanottimella r, kuten kuvassa 2.2, voidaan muodostaa näiden vastaanotinten satelliittiin i tekemien mittausten erotus eli yksittäisdifferenssi r φ i (t)= r r i(t) λ + r b(t)+ r N i + r ε i, (2.8) missä operaattori r merkitsee yksittäisdifferentiointia vastaanottimen r kanssa. Satelliitin kellovirhe b i (t) on yhtä suuri molemmille vastaanottimelle, joten mallista (2.8) se on kumoutunut kokonaan pois. Lisäksi ilmakehävirheet ovat läheisyysoletuksen nojalla lähes samat molemmille vastaanottimille, joten niidenkin vaikutus pienee merkittävästi ja ne jätetään pois tästä mallista. Sen sijaan vastaanottimen kellovirhe, kokonaislukutuntemattomat ja kohina sekä monitieeteneminen eivät korreloi vastaanotinten välillä, joten ne eivät kumoudu vaan määrittyvät uudelleen. Differentioituinakin näiden käsittely on laskennallisesti kuitenkin vastaavanlaista kuin 19

20 alkuperäisissäkin malleissa, ja kokonaislukutuntemattomat säilyttävät kokonaislukuluonteensa. Satunnainen mittauskohina jopa voimistuu: sen keskihajonta kasvaa 2-kertaiseksi, ts. var r ε i = 2varε i, (2.9) kun molempien vastaanottimien kohinat oletetaan identtisesti jakautuneiksi ja toisistaan riippumattomiksi. s i Referenssi Perusviiva Käyttäjä Kuva 2.2: Yksittäisdifferenssi satelliittiin i. Merkitsemällä perusviivaa r x = x x r, missä x on käyttäjän ja x r referenssivastaanottimen paikka, ja kehittämällä (2.8) ensimmäisen asteen Taylor-polynomiksi saadaan r φ i (t) λ 1 x r(t) s i x r (t) s i (t) r x(t)+ r N i + r b(t)+ r ε i (t), (2.10) kun satelliitin i paikkaa merkitään vektorilla s i. Tämän tuloksen johtaminen jätetään harjoitustehtäväksi Kaksoisdifferenssi Kahdesta eri satelliitteihin liittyvästä yksittäisdifferenssistä saadaan muodostettua kaksoisdifferenssi (kuva 2.3): r φ i j (t)= r φ i (t) r φ j (t) ( λ 1 xr (t) s i (t) x r (t) s i (t) x ) r(t) s j (t) r x(t)+ r N i j + r ε i j (t). x r (t) s j (t) (2.11) Differentioimalla mittaukset satelliittien välillä päästään eroon vastaanottimesta riippuvista virheistä, joista oleellisin on kellovirhe r b(t). Tämän operaation hintana on yhden (yksittäisdifferentioidun) mittauksen menettäminen ja kohinan vahvistuminen edelleen (tehtävä 2.2). Kokonaislukutuntematon N i j on edelleen kokonaisluku, muttei enää (välttämättä) sama kuin yksittäisdifferentioitu kokonaislukutuntematon. Joskus kirjallisuudessa satelliittien välistä differentiointia merkitään operaattorilla, jolloin kaksoisdifferenssejä merkitään operaattoriparilla. 20

Satelliittipaikannus

Satelliittipaikannus Kolme maailmalaajuista järjestelmää 1. GPS (USAn puolustusministeriö) Täydessä laajuudessaan toiminnassa v. 1994. http://www.navcen.uscg.gov/gps/default.htm 2. GLONASS (Venäjän hallitus) Ilmeisesti 11

Lisätiedot

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti 14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

1 Kannat ja kannanvaihto

1 Kannat ja kannanvaihto 1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:

Lisätiedot

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio:

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio: Inversio-ongelmista Craig, Brown: Inverse problems in astronomy, Adam Hilger 1986. Havaitaan oppositiossa olevaa asteroidia. Pyörimisestä huolimatta sen kirkkaus ei muutu. Projisoitu pinta-ala pysyy ilmeisesti

Lisätiedot

Harjoitus 6 ( )

Harjoitus 6 ( ) Harjoitus 6 (30.4.2014) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on max θ(u,v) s.t. u 0,

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Radiotekniikan sovelluksia

Radiotekniikan sovelluksia Poutanen: GPS-paikanmääritys sivut 72 90 Kai Hahtokari 11.2.2002 Konventionaalinen inertiaalijärjestelmä (CIS) Järjestelmä, jossa z - akseli osoittaa maapallon impulssimomenttivektorin suuntaan standardiepookkina

Lisätiedot

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

Esimerkki - Näkymätön kuu

Esimerkki - Näkymätön kuu Inversio-ongelmat Inversio = käänteinen, päinvastainen Inversio-ongelmilla tarkoitetaan (suoran) ongelman ratkaisua takaperin. Arkipäiväisiä inversio-ongelmia ovat mm. lääketieteellinen röntgentomografia

Lisätiedot

Harjoitus 6 ( )

Harjoitus 6 ( ) Harjoitus 6 (21.4.2015) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s. t. g(x) 0 h(x) = 0 x X olevan optimointitehtävän Lagrangen duaali on missä max θ(u, v) s. t.

Lisätiedot

Suorista ja tasoista LaMa 1 syksyllä 2009

Suorista ja tasoista LaMa 1 syksyllä 2009 Viidennen viikon luennot Suorista ja tasoista LaMa 1 syksyllä 2009 Perustuu kirjan Poole: Linear Algebra lukuihin I.3 - I.4 Esko Turunen esko.turunen@tut.fi Aluksi hiukan 2 ja 3 ulotteisen reaaliavaruuden

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

1 Määrittele seuraavat langattoman tiedonsiirron käsitteet.

1 Määrittele seuraavat langattoman tiedonsiirron käsitteet. 1 1 Määrittele seuraavat langattoman tiedonsiirron käsitteet. Radiosignaalin häipyminen. Adaptiivinen antenni. Piilossa oleva pääte. Radiosignaali voi edetä lähettäjältä vastanottajalle (jotka molemmat

Lisätiedot

Harjoitus 3 (31.3.2015)

Harjoitus 3 (31.3.2015) Harjoitus (..05) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i,j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

Harjoitus 3 (3.4.2014)

Harjoitus 3 (3.4.2014) Harjoitus 3 (3..) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i, j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

Identifiointiprosessi

Identifiointiprosessi Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi

Lisätiedot

Mitä on pätö-, näennäis-, lois-, keskimääräinen ja suora teho sekä tehokerroin? Alla hieman perustietoa koskien 3-vaihe tehomittauksia.

Mitä on pätö-, näennäis-, lois-, keskimääräinen ja suora teho sekä tehokerroin? Alla hieman perustietoa koskien 3-vaihe tehomittauksia. Mitä on sähköinen teho? Tehojen mittaus Mitä on pätö-, näennäis-, lois-, keskimääräinen ja suora teho sekä tehokerroin? Alla hieman perustietoa koskien 3-vaihe tehomittauksia. Tiettynä ajankohtana, jolloin

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

Ei-inertiaaliset koordinaatistot

Ei-inertiaaliset koordinaatistot orstai 25.9.2014 1/17 Ei-inertiaaliset koordinaatistot Tarkastellaan seuraavaa koordinaatistomuunnosta: {x} = (x 1, x 2, x 3 ) {y} = (y 1, y 2, y 3 ) joille valitaan kantavektorit: {x} : (î, ĵ, ˆk) {y}

Lisätiedot

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3 Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,

Lisätiedot

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän

Lisätiedot

5.2 Ensimmäisen asteen yhtälö

5.2 Ensimmäisen asteen yhtälö 5. Ensimmäisen asteen ytälö 5. Ensimmäisen asteen yhtälö Aloitetaan antamalla nimi yhtälön osille. Nyt annettavat nimet eivät riipu yhtälön tyypistä tai asteesta. Tarkastellaan seuraavaa yhtälöä. Emme

Lisätiedot

2.3 Voiman jakaminen komponentteihin

2.3 Voiman jakaminen komponentteihin Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.

Lisätiedot

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7 1 Tuotteen hinta nousee ensin 10 % ja laskee sitten 10 %, joten lopullinen hinta on... alkuperäisestä hinnasta. alkuperäisestä hinnasta. YLIOPPILASTUTKINTO- LAUTAKUNTA 23.3.2016 MATEMATIIKAN KOE PITKÄ

Lisätiedot

Markku.Poutanen@fgi.fi

Markku.Poutanen@fgi.fi Global Navigation Satellite Systems GNSS Markku.Poutanen@fgi.fi Kirjallisuutta Poutanen: GPS paikanmääritys, Ursa HUOM: osin vanhentunut, ajantasaistukseen luennolla ilmoitettava materiaali (erit. suomalaiset

Lisätiedot

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 LIIKE Jos vahvempi kaveri törmää heikompaan kaveriin, vahvemmalla on enemmän voimaa. Pallon heittäjä antaa pallolle heittovoimaa, jonka

Lisätiedot

Vektorilla on suunta ja suuruus. Suunta kertoo minne päin ja suuruus kuinka paljon. Se on siinä.

Vektorilla on suunta ja suuruus. Suunta kertoo minne päin ja suuruus kuinka paljon. Se on siinä. Koska varsinkin toistensa suhteen liikkuvien kappaleiden liikkeen esittäminen suorastaan houkuttelee käyttämään vektoreita, mutta koska ne eivät kaikille ehkä ole kuitenkaan niin tuttuja kuin ansaitsisivat,

Lisätiedot

Successive approximation AD-muunnin

Successive approximation AD-muunnin AD-muunnin Koostuu neljästä osasta: näytteenotto- ja pitopiiristä, (sample and hold S/H) komparaattorista, digitaali-analogiamuuntimesta (DAC) ja siirtorekisteristä. (successive approximation register

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Mittalaitteiden staattiset ominaisuudet Mittalaitteita kuvaavat tunnusluvut voidaan jakaa kahteen luokkaan Staattisiin

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2008 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 5. kesäkuuta 2008 (aamupäivä) KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Europpa-koulun antama taulukkovihkonen Funktiolaskin,

Lisätiedot

1 Oikean painoisen kuulan valinta

1 Oikean painoisen kuulan valinta Oikean painoisen kuulan valinta Oheisessa kuvaajassa on optimoitu kuulan painoa niin, että se olisi mahdollisimman nopeasti perillä tietyltä etäisyydeltä ammuttuna airsoft-aseella. Tulos on riippumaton

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Syksy 2016 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia Ajankohtaista Presemokyselyn poimintoja Millä odotuksilla aloitat

Lisätiedot

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5 MATRIISIALGEBRA Harjoitustehtäviä syksy 2014 Tehtävissä 1-3 käytetään seuraavia matriiseja: ( ) 6 2 3, B = 7 1 2 2 3, C = 4 4 2 5 3, E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1. Määrää

Lisätiedot

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet .3 Suoran ja toisen asteen käyrän yhteiset pisteet Tämän asian taustana on ratkaista sellainen yhtälöpari, missä yhtälöistä toinen on ensiasteinen ja toinen toista astetta. Tällainen pari ratkeaa aina

Lisätiedot

Lineaarialgebra MATH.1040 / voima

Lineaarialgebra MATH.1040 / voima Lineaarialgebra MATH.1040 / voima 1 Seuraavaksi määrittelemme kaksi vektoreille määriteltyä tuloa; pistetulo ja. Määritelmät ja erilaiset tulojen ominaisuudet saattavat tuntua, sekavalta kokonaisuudelta.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa

Lisätiedot

7. Resistanssi ja Ohmin laki

7. Resistanssi ja Ohmin laki Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut MS-C34 Lineaarialgebra ja differentiaaliyhtälöt, IV/26 Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / t Alkuviikon tuntitehtävä Hahmottele matriisia A ( 2 6 3 vastaava vektorikenttä Matriisia A

Lisätiedot

Mittausjärjestelmän kalibrointi ja mittausepävarmuus

Mittausjärjestelmän kalibrointi ja mittausepävarmuus Mittausjärjestelmän kalibrointi ja mittausepävarmuus Kalibrointi kalibroinnin merkitys kansainvälinen ja kansallinen mittanormaalijärjestelmä kalibroinnin määritelmä mittausjärjestelmän kalibrointivaihtoehdot

Lisätiedot

Nyt kerrataan! Lukion FYS5-kurssi

Nyt kerrataan! Lukion FYS5-kurssi Nyt kerrataan! Lukion FYS5-kurssi Vaakasuora heittoliike Heittoliikettä voidaan tarkastella erikseen vaaka- ja pystysuunnassa v=(v x,v y ) Jos ilmanvastausta ei oteta huomioon (yleensä ei), vaakasuunnalle

Lisätiedot

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän

Lisätiedot

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32 1 / 32 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki 4B.2 Esimerkki 4B.3 Esimerkki 4C.1 Esimerkki 4C.2 Esimerkki 4C.3 2 / 32 Esimerkki 4A.1 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9.

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9. Python linkit: Python tutoriaali: http://docs.python.org/2/tutorial/ Numpy&Scipy ohjeet: http://docs.scipy.org/doc/ Matlabin alkeet (Pääasiassa Deni Seitzin tekstiä) Matriisit ovat matlabin perustietotyyppejä.

Lisätiedot

4. Käyrän lokaaleja ominaisuuksia

4. Käyrän lokaaleja ominaisuuksia 23 VEKTORIANALYYSI Luento 3 4 Käyrän lokaaleja ominaisuuksia Käyrän tangentti Tarkastellaan parametrisoitua käyrää r( t ) Parametrilla t ei tarvitse olla mitään fysikaalista merkitystä, mutta seuraavassa

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat:

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat: Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) 21.2.-25.2.2011 OT 1. a) Määritä seuraavat summat: [2] 4 + [3] 4, [2] 5 + [3] 5, [2] 6 + [2] 6 + [2] 6, 7 [3]

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

A/D-muuntimia. Flash ADC

A/D-muuntimia. Flash ADC A/D-muuntimia A/D-muuntimen valintakriteerit: - bittien lukumäärä instrumentointi 6 16 audio/video/kommunikointi/ym. 16 18 erikoissovellukset 20 22 - Tarvittava nopeus hidas > 100 μs (

Lisätiedot

4.1 Kaksi pistettä määrää suoran

4.1 Kaksi pistettä määrää suoran 4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien

Lisätiedot

Autonomisen liikkuvan koneen teknologiat. Hannu Mäkelä Navitec Systems Oy

Autonomisen liikkuvan koneen teknologiat. Hannu Mäkelä Navitec Systems Oy Autonomisen liikkuvan koneen teknologiat Hannu Mäkelä Navitec Systems Oy Autonomisuuden edellytykset itsenäinen toiminta ympäristön havainnointi ja mittaus liikkuminen ja paikannus toiminta mittausten

Lisätiedot

Anturit ja Arduino. ELEC-A4010 Sähköpaja Tomi Pulli Signaalinkäsittelyn ja akustiikan laitos Mittaustekniikka

Anturit ja Arduino. ELEC-A4010 Sähköpaja Tomi Pulli Signaalinkäsittelyn ja akustiikan laitos Mittaustekniikka Anturit ja Arduino Tomi Pulli Signaalinkäsittelyn ja akustiikan laitos Mittaustekniikka Anturit ja Arduino Luennon sisältö 1. Taustaa 2. Antureiden ominaisuudet 3. AD-muunnos 4. Antureiden lukeminen Arduinolla

Lisätiedot

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2 .3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. Toisen asteen yhtälön a + b + c 0 ratkaisukaavassa neliöjuuren alla olevaa lauseketta b b 4ac + a b b 4ac a D b 4 ac sanotaan yhtälön

Lisätiedot

Kombinatorinen optimointi

Kombinatorinen optimointi Kombinatorinen optimointi Sallittujen pisteiden lukumäärä on äärellinen Periaatteessa ratkaisu löydetään käymällä läpi kaikki pisteet Käytännössä lukumäärä on niin suuri, että tämä on mahdotonta Usein

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi) Kenguru 2012 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Funktion derivoituvuus pisteessä

Funktion derivoituvuus pisteessä Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Mielikuva: Funktio f on derivoituva x = a, jos sen kuvaaja (xy-tasossa) pisteen (a, f(a))

Lisätiedot

Geotrim TAMPEREEN SEUTUKUNNAN MITTAUSPÄIVÄT 29.3.2006

Geotrim TAMPEREEN SEUTUKUNNAN MITTAUSPÄIVÄT 29.3.2006 Geotrim TAMPEREEN SEUTUKUNNAN MITTAUSPÄIVÄT 29.3.2006 Satelliittimittauksen tulevaisuus GPS:n modernisointi, L2C, L5 GALILEO GLONASS GNSS GPS:n modernisointi L2C uusi siviilikoodi L5 uusi taajuus Block

Lisätiedot

Luento 7: Pyörimisliikkeen dynamiikkaa

Luento 7: Pyörimisliikkeen dynamiikkaa Luento 7: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä 1 / 37 Luennon sisältö Johdanto

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Mat Dynaaminen optimointi, mallivastaukset, kierros 1

Mat Dynaaminen optimointi, mallivastaukset, kierros 1 Mat-214 Dynaaminen optimointi, mallivastaukset, kierros 1 1 a) Sekoitussäiliöön A virtaa puhdasta vettä virtauksella v A, säiliöstä A säiliöön B täysin sekoittunutta liuosta virtauksella v AB ja säiliöstä

Lisätiedot

Ohjeita fysiikan ylioppilaskirjoituksiin

Ohjeita fysiikan ylioppilaskirjoituksiin Ohjeita fysiikan ylioppilaskirjoituksiin Kari Eloranta 2016 Jyväskylän Lyseon lukio 11. tammikuuta 2016 Kokeen rakenne Fysiikan kokeessa on 13 tehtävää, joista vastataan kahdeksaan. Tehtävät 12 ja 13 ovat

Lisätiedot

Monisensoripaikannusta kaikissa ympäristöissä

Monisensoripaikannusta kaikissa ympäristöissä Monisensoripaikannusta kaikissa ympäristöissä Ratkaisuja Luonnosta - Lynetin tutkimuspäivä 4.10.2016 Sanna Kaasalainen Laura Ruotsalainen FGI:n Navigoinnin ja paikannuksen osasto Henkilöstö: 18 Tutkimus

Lisätiedot

Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä

Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä Tekijä: Mikko Laine Tekijän sähköpostiosoite: miklaine@student.oulu.fi Koulutusohjelma: Fysiikka Mittausten suorituspäivä: 04.02.2013 Työn

Lisätiedot

Ota tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta

Ota tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta MAA5.2 Loppukoe 26.9.2012 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Olkoon vektorit

Lisätiedot

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun.

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun. Matematiikka KoTiA1 Demotehtäviä 1. Ratkaise epäyhtälöt x + 1 x 2 b) 3 x 1 < 2 x + 1 c) x 2 x 2 2. Ratkaise epäyhtälöt 2 x < 1 2 2 b) x 3 < x 2x 3. Olkoon f (x) kolmannen asteen polynomi jonka korkeimman

Lisätiedot

kartiopinta kartio. kartion pohja, suora ympyräkartio vino pyramidiksi

kartiopinta kartio. kartion pohja, suora ympyräkartio vino pyramidiksi 5.3 Kartio Kun suora liikkuu avaruudessa niin, että yksi sen piste pysyy paikoillaan ja suoran jokin toinen piste kiertää jossakin tasossa jonkin suljetun käyrän palaten lähtöpaikkaansa, syntyy kaksiosainen

Lisätiedot

Infrastruktuurista riippumaton taistelijan tilannetietoisuus INTACT

Infrastruktuurista riippumaton taistelijan tilannetietoisuus INTACT Infrastruktuurista riippumaton taistelijan tilannetietoisuus INTACT Laura Ruotsalainen Paikkatietokeskus FGI, MML Matinen rahoitus: 77 531 INTACT tarve Taistelijan tilannetietoisuus rakennetuissa ympäristöissä,

Lisätiedot

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: Tasoalueen pinta-ala Jos funktio f saa välillä [a, b] vain ei-negatiivisia arvoja, so. f() 0, kun [a, b], voidaan kuvaajan y = f(), -akselin

Lisätiedot

1 Laske ympyrän kehän pituus, kun

1 Laske ympyrän kehän pituus, kun Ympyrään liittyviä harjoituksia 1 Laske ympyrän kehän pituus, kun a) ympyrän halkaisijan pituus on 17 cm b) ympyrän säteen pituus on 1 33 cm 3 2 Kuinka pitkä on ympyrän säde, jos sen kehä on yhden metrin

Lisätiedot

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa Todellinen vuosikorko Huomioitavaa Edellinen keskimaksuhetkeen perustuva todellinen vuosikorko antaa vain arvion vuosikorosta. Tarkempi arvio todellisesta korosta saadaan ottamalla huomioon mm. koronkorko.

Lisätiedot

Öljysäiliö maan alla

Öljysäiliö maan alla Kaigasniemen koulu Öljysäiliö maan alla Yläkoulun ketaava ja syventävä matematiikan tehtävä Vesa Maanselkä 009 Ostat talon jossa on öljylämmitys. Takapihalle on kaivettu maahan sylintein muotoinen öljysäiliö

Lisätiedot

Henkilötunnus Sukunimi Etunimet

Henkilötunnus Sukunimi Etunimet Valintakokeessa on kaksi osaa: Osa 1 sisältää viisi esseetehtävää kansantaloustieteestä. Osasta 1 voi saada 0 30 pistettä. Osa sisältää kuusi matematiikan laskutehtävää. Osasta voi saada 0 30 pistettä.

Lisätiedot

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa

Lisätiedot

Matlab-tietokoneharjoitus

Matlab-tietokoneharjoitus Matlab-tietokoneharjoitus Tämän harjoituksen tavoitteena on: Opettaa yksinkertaisia piirikaavio- ja yksikkömuunnoslaskuja. Opettaa Matlabin perustyökaluja mittausten analysoimiseen. Havainnollistaa näytteenottotaajuuden,

Lisätiedot

Jännite, virran voimakkuus ja teho

Jännite, virran voimakkuus ja teho Jukka Kinkamo, OH2JIN oh2jin@oh3ac.fi +358 44 965 2689 Jännite, virran voimakkuus ja teho Jännite eli potentiaaliero mitataan impedanssin yli esiintyvän jännitehäviön avulla. Koska käytännön radioamatöörin

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

Signaalien taajuusalueet

Signaalien taajuusalueet Signaalien taajuusalueet 1420 MHz H 2 GPS: kaksi taajuutta, tulevaisuudessa kolme Galileo: useita taajuuksia Kuinka paikannus tehdään? Kantoaalto kahdella taajuudella L1 = 1575.42 MHz = 19.0 cm L2 = 1227.60

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

KON C3004 14.10.2015 H03 Ryhmä G Samppa Salmi, 84431S Joel Tolonen, 298618. Koesuunnitelma

KON C3004 14.10.2015 H03 Ryhmä G Samppa Salmi, 84431S Joel Tolonen, 298618. Koesuunnitelma KON C3004 14.10.2015 H03 Ryhmä G Samppa Salmi, 84431S Joel Tolonen, 298618 Koesuunnitelma Sisällysluettelo Sisällysluettelo 1 1 Tutkimusongelma ja tutkimuksen tavoit e 2 2 Tutkimusmenetelmät 3 5 2.1 Käytännön

Lisätiedot

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2

Lisätiedot

6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4

6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4 Datamuuntimet 1 Pekka antala 19.11.2012 Datamuuntimet 6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4 7. AD-muuntimet 5 7.1 Analoginen

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,

Lisätiedot

7. laskuharjoituskierros, vko 10, ratkaisut

7. laskuharjoituskierros, vko 10, ratkaisut 7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,

Lisätiedot