Kliininen arviointi ja kliininen tieto mikä riittää?

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Kliininen arviointi ja kliininen tieto mikä riittää?"

Transkriptio

1 Kliininen arviointi ja kliininen tieto mikä riittää? Riittävä tutkimuksen otoskoko ja tulos Timo Partonen LT, psykiatrian dosentti, Helsingin yliopisto Ylilääkäri, Terveyden ja hyvinvoinnin laitos

2 Tutkimuksen taso Tasokas tutkimus Tutkimus on validi: asetelma soveltuu tutkittavaan ongelmaan ja piste-estimaatti (esim. systolisen verenpaineen keskiarvo) on uskottava ja harhan riski on pieni.

3 Tutkimuksen taso Kelvollinen tutkimus Tutkimuksen validiteetissa on puutteita: asetelma soveltuu tutkittavaan ongelmaan ja piste-estimaatti on uskottava mutta harhan riski on kohtalainen. Heikko tutkimus Tutkimuksen validiteetissa on huomattavia puutteita eikä se täytä tasokkaan tai kelvollisen tutkimuksen kriteereitä: asetelma ei sovellu tutkittavaan ongelmaan tai piste-estimaatti ei ole uskottava tai harhan riski on muuten suuri.

4 Näytön aste Näytön aste A On vähintään 2 tasokasta tutkimusta, joiden tulokset ovat samansuuntaiset. Tutkimuksissa on käytetty tutkittavan aiheen suhteen parasta saavutettavaa tutkimusasetelmaa. Lopputulosmuuttujalla on arvioitu suoraan kliinistä hyötyä tai haittaa. Tutkitut väestöt vastaavat hoitosuosituksen kohdeväestöä tai ovat siihen sovellettavissa. Tulosten alfavirheet (tehdään johtopäätös, että eri hoitojen välillä on eroa, vaikka sitä todellisuudessa ei ole: syynä tähän sattuma tai väärä testi) ja beetavirheet (tehdään johtopäätös, että eri hoitojen välillä ei ole eroa, vaikka sitä todellisuudessa on: syynä tähän riittämätön aineistokoko tai väärä testi) sekä 95 %:n luottamusvälit ovat pieniä. On epätodennäköistä, että uudet tutkimukset muuttaisivat arviota vaikutuksen suunnasta tai suuruudesta.

5 Näytön aste Näytön aste B Tasokkaita tutkimuksia on vain 1, tai tasokkaita tutkimuksia on useita mutta niiden tuloksissa on vähäistä ristiriitaa, tai on useita kelvollisia tutkimuksia joiden tuloksissa ei ole systemaattista virhettä ja tulokset ovat samansuuntaiset. Tutkimuksissa on käytetty tutkittavan aiheen suhteen parasta saavutettavaa tutkimusasetelmaa. Lopputulosmuuttujalla on arvioitu suoraan kliinistä hyötyä tai haittaa. Tutkitut väestöt vastaavat hoitosuosituksen kohdeväestöä tai ovat siihen sovellettavissa. Uudet tutkimukset saattavat vaikuttaa arvioon vaikutuksen suunnasta ja suuruudesta.

6 Näytön aste Näytön aste C Tasokkaita tutkimuksia on useita mutta niiden tuloksissa on merkittävää ristiriitaa, tai kelvollisia kontrolloituja tutkimuksia joiden tulokset voidaan yleistää kohdeväestöön on ainakin 1. Tutkimuksissa ei ole käytetty tutkittavan aiheen suhteen parasta saavutettavaa tutkimusasetelmaa. Lopputulosmuuttujalla ei ole arvioitu suoraan kliinistä hyötyä tai haittaa. Tutkitut väestöt eivät täysin vastaa hoitosuosituksen kohdeväestöä tai ole siihen sovellettavissa. Vertailtavien ryhmien tulee olla samanaikaisia, historiallinen kontrolliryhmä tai vertaaminen kirjallisuudesta poimittuihin arvoihin ei riitä. Uudet tutkimukset todennäköisesti vaikuttavat arvioon vaikutuksen suunnasta ja suuruudesta.

7 Näytön aste Näytön aste D Mikä tahansa arvio vaikutuksen suunnasta ja suuruudesta on epävarma. Tutkimuksia on olemassa mutta ne eivät menetelmällisesti yllä näytön asteessa luokkiin A C, tai tutkimusnäyttöä ei ole.

8 Näytön aste Näytön astetta voi vahvistaa: yhtenäinen näyttö vaikutuksen suunnasta ja suuruudesta yhtenäinen näyttö annosvaikutuksesta. Näytön astetta voi heikentää: tutkimusten huono suunnittelu, puutteellinen toteutus tai huono raportointi ristiriitaisuus tutkimustuloksissa lopputulosmuuttuja, jolla ei ole mitattu suoraan kliinistä hyötyä tai haittaa tulosten analysointi niin, että käytännön hyötyä on vaikea arvioida ilmeinen julkaisuharha.

9 Voima Tutkimuksen (testin) voima eli power (1-β): ilmoittaa millä todennäköisyydellä käytetyllä aineistokoolla ja tilastollisella merkitsevyystasolla voidaan todeta tietyn suuruinen vaikutus käytetyssä vaste- tai lopputulosmuuttujassa, mikäli vaikutus on olemassa. ilmoittaa todennäköisyyden hylätä nollahypoteesi silloin, kun vaihtoehtoinen hypoteesi on tosi.

10 Voimalaskelma On syytä kirjata ainakin seuraavat: muuttuja, jonka perusteella aineistokoon arviointi on suoritettu mitä menetelmää on käytetty mitä merkitsevyystasoa on käytetty (tavallisesti 5 %) mitä voimaa laskelmissa on käytetty (tavallisesti 80 %) kuinka suureen vaikutuksen suuruuteen (kliinisesti merkittävään eroon) voimalaskelma perustuu. On suositeltavaa jo ennen tutkimuksen aloittamista tehdä voimalaskelma, jonka perusteella arvioidaan, onko otoskoko sopiva (realistisesti odotettavissa olevan) vaikutuksen tutkimiseen. Mikäli aineistokokoa ei ole etukäteen kuvattu tai se asetelman luonteesta johtuen on ollut vaikea laskea, voi laskelmia tehdä myös jälkikäteen ja esittää ne tutkimusraportin pohdintaosassa.

11 Milloin näyttö riittää? Näyttö alkaa riittää, kun: 2 tasokkaan tutkimuksen tulokset ovat vaikutuksen suunnan ja suuruuden osalta yhtenäiset kliiniset hyödyt ja haitat on dokumentoitu, raportoitu ja arvioitu 2 riippumatonta, tasokasta tutkimusta ovat toistaneet tulokset.

12 Kirjallisuutta rja4/_files/ /default/kirja4_06.pdf

Käypä hoito suositukset. Jorma Komulainen Lastenendokrinologian erikoislääkäri KH toimittaja

Käypä hoito suositukset. Jorma Komulainen Lastenendokrinologian erikoislääkäri KH toimittaja Käypä hoito suositukset Jorma Komulainen Lastenendokrinologian erikoislääkäri KH toimittaja 14.3.2005 Esityksen tavoitteet Kuvata näyttöön pohjautuvan lääketieteen ajattelutapaa Kertoa Käypä hoito hankkeesta

Lisätiedot

Aineistokoko ja voima-analyysi

Aineistokoko ja voima-analyysi TUTKIMUSOPAS Aineistokoko ja voima-analyysi Johdanto Aineisto- eli otoskoon arviointi ja tutkimuksen voima-analyysi ovat tilastollisen tutkimuksen suunnittelussa keskeisimpiä asioita. Otoskoon arvioinnilla

Lisätiedot

Kaatumisten ja kaatumistapaturmien ehkäisyn fysioterapiasuositus päivitetty 2017

Kaatumisten ja kaatumistapaturmien ehkäisyn fysioterapiasuositus päivitetty 2017 Kaatumisten ja kaatumistapaturmien ehkäisyn fysioterapiasuositus päivitetty 2017 Suositustyöryhmän puolesta Maarit Piirtola, FT, ft maarit.piirtola@helsinki.fi TYÖRYHMÄ Satu Havulinna (pj.), Maarit Piirtola

Lisätiedot

Otoskoon arviointi. Tero Vahlberg

Otoskoon arviointi. Tero Vahlberg Otoskoon arviointi Tero Vahlberg Otoskoon arviointi Otoskoon arviointi (sample size calculation) ja tutkimuksen voima-analyysi (power analysis) ovat tilastollisen tutkimuksen suunnittelussa keskeisiä kysymyksiä

Lisätiedot

NÄYTÖN ARVIOINTI: SYSTEMAATTINEN KIRJALLISUUSKATSAUS JA META-ANALYYSI. EHL Starck Susanna & EHL Palo Katri Vaasan kaupunki 22.9.

NÄYTÖN ARVIOINTI: SYSTEMAATTINEN KIRJALLISUUSKATSAUS JA META-ANALYYSI. EHL Starck Susanna & EHL Palo Katri Vaasan kaupunki 22.9. NÄYTÖN ARVIOINTI: SYSTEMAATTINEN KIRJALLISUUSKATSAUS JA META-ANALYYSI EHL Starck Susanna & EHL Palo Katri Vaasan kaupunki 22.9.2016 Näytön arvioinnista Monissa yksittäisissä tieteellisissä tutkimuksissa

Lisätiedot

Evidence based medicine näyttöön perustuva lääketiede ja sen periaatteet. Eeva Ketola, LT, Kh-päätoimittaja Suomalainen Lääkäriseura Duodecim

Evidence based medicine näyttöön perustuva lääketiede ja sen periaatteet. Eeva Ketola, LT, Kh-päätoimittaja Suomalainen Lääkäriseura Duodecim Evidence based medicine näyttöön perustuva lääketiede ja sen periaatteet Eeva Ketola, LT, Kh-päätoimittaja Suomalainen Lääkäriseura Duodecim Tiedon tulva, esimerkkinä pneumonia Googlesta keuhkokuume-sanalla

Lisätiedot

Harjoitus 7: NCSS - Tilastollinen analyysi

Harjoitus 7: NCSS - Tilastollinen analyysi Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen

Lisätiedot

Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto

Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Tutkimusaineistomme otantoja Hyödyt Ei tarvitse tutkia kaikkia Oikein tehty otanta mahdollistaa yleistämisen

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 18 1 Kertausta: momenttimenetelmä ja suurimman uskottavuuden menetelmä 2 Tilastollinen

Lisätiedot

Tilastollisia peruskäsitteitä ja Monte Carlo

Tilastollisia peruskäsitteitä ja Monte Carlo Tilastollisia peruskäsitteitä ja Monte Carlo Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Tilastollisia peruskäsitteitä ja Monte Carlo 1/13 Kevät 2003 Tilastollisia

Lisätiedot

ADHD:n Käypä hoito-suositus 2017 Aikuisten ADHD:n lääkehoito. Sami Leppämäki psykiatrian dosentti, psykoterapeutti

ADHD:n Käypä hoito-suositus 2017 Aikuisten ADHD:n lääkehoito. Sami Leppämäki psykiatrian dosentti, psykoterapeutti ADHD:n Käypä hoito-suositus 2017 Aikuisten ADHD:n lääkehoito Sami Leppämäki 12.10.2017 psykiatrian dosentti, psykoterapeutti SIDONNAISUUDET KOLMEN VIIMEISEN VUODEN AJALTA Päätoimi yksityislääkäri Sivutoimet

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Tilastollinen testaus Tilastollinen testaus Tilastollisessa testauksessa tutkitaan tutkimuskohteita koskevien oletusten tai väitteiden paikkansapitävyyttä havaintojen avulla. Testattavat oletukset tai

Lisätiedot

Väliestimointi (jatkoa) Heliövaara 1

Väliestimointi (jatkoa) Heliövaara 1 Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).

Lisätiedot

Interventiotutkimuksen arviointi

Interventiotutkimuksen arviointi Interventiotutkimuksen arviointi Raija Sipilä LT, toimituspäällikkö Kriittisen arvioinnin kurssi, VKTK 28.9.2015 Kiitos Käypä hoito -tiimille Sidonnaisuudet Päätyö: Duodecim, Käypä hoito Työnanatajan edustajana

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170 VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain

Lisätiedot

Mitä on näyttö vaikuttavuudesta. Matti Rautalahti Suomalainen Lääkäriseura Duodecim

Mitä on näyttö vaikuttavuudesta. Matti Rautalahti Suomalainen Lääkäriseura Duodecim Mitä on näyttö vaikuttavuudesta Matti Rautalahti Suomalainen Lääkäriseura Duodecim Sidonnaisuudet Päätoimi Suomalaisessa Lääkäriseurassa Duodecimissa Suomen ASH ry hallitus Tieteellinen näyttö Perustana

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 2. luento: Tilastolliset testit Kai Virtanen 1 Tilastollinen testaus Tutkimuksen kohteena olevasta perusjoukosta esitetään väitteitä oletuksia joita

Lisätiedot

Lääkkeiden taloudellinen arviointi Olli Pekka Ryynänen Itä Suomen yliopisto, Fimea

Lääkkeiden taloudellinen arviointi Olli Pekka Ryynänen Itä Suomen yliopisto, Fimea Lääkkeiden taloudellinen arviointi Olli Pekka Ryynänen Itä Suomen yliopisto, Fimea Lääkevalmisteiden arviointi Onko lääke tehokas ja turvallinen; täyttääkö se laatuvaatimukset? Lääkehoitojen arviointi

Lisätiedot

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1 Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin

Lisätiedot

Kokeellinen asetelma. Klassinen koeasetelma

Kokeellinen asetelma. Klassinen koeasetelma Kokeellinen asetelma Salla Grommi, sh, verisuonihoitaja, TtM, TtT-opiskelija Hoitotyön tutkimuspäivä 31.10.2016 Klassinen koeasetelma Pidetään tieteellisen tutkimuksen ideaalimallina ns. kultaisena standardina.

Lisätiedot

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään tiedetään, että ainakin kaksi

Lisätiedot

Hoitosuositus. Jorma Komulainen KRAK,

Hoitosuositus. Jorma Komulainen KRAK, Hoitosuositus Jorma Komulainen KRAK, 4.10.2017 Mitä hoitosuositukset ovat? Clinical practice guidelines are statements that include recommendations intended to optimize patient care that are informed by

Lisätiedot

Linnea Lyy, Elina Nummi & Pilvi Vikberg

Linnea Lyy, Elina Nummi & Pilvi Vikberg Linnea Lyy, Elina Nummi & Pilvi Vikberg Tämän opinnäytetyön tarkoituksena on verrata kuntoutujien elämänhallintaa ennen ja jälkeen syöpäkuntoutuksen Tavoitteena on selvittää, miten kuntoutus- ja sopeutumisvalmennuskurssit

Lisätiedot

Mitä uutta Käypä hoito -suosituksessa

Mitä uutta Käypä hoito -suosituksessa Mitä uutta Käypä hoito -suosituksessa Julkaistu 11.12.2014 Jaana Suokas LT, dosentti, psykiatrian erikoislääkäri oyl, HUS/HYKS Syömishäiriöklinikka erikoistutkija, THL 20.1.2015 Sidonnaisuudet Asiantuntijapalkkiot:

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 4. luento: Jakaumaoletuksien testaaminen Kai Virtanen 1 Jakaumaoletuksien testaamiseen soveltuvat testit χ 2 -yhteensopivuustesti yksi otos otoksen

Lisätiedot

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään, tiedetään, että ainakin

Lisätiedot

Luentokalvoja tilastollisesta päättelystä. Kalvot laatinut Aki Taanila Päivitetty 30.11.2012

Luentokalvoja tilastollisesta päättelystä. Kalvot laatinut Aki Taanila Päivitetty 30.11.2012 Luentokalvoja tilastollisesta päättelystä Kalvot laatinut Aki Taanila Päivitetty 30.11.2012 Otanta Otantamenetelmiä Näyte Tilastollinen päättely Otantavirhe Otanta Tavoitteena edustava otos = perusjoukko

Lisätiedot

Kokeellinen interventiotutkimus

Kokeellinen interventiotutkimus Kokeellinen interventiotutkimus Raija Sipilä LT, toimituspäällikkö Suomalainen Lääkäriseura Duodecim Kriittisen arvioinnin kurssi 2.10.2017 Kiitos Käypä hoito -tiimille Interventio Interventio tarkoittaa

Lisätiedot

Mitä eri tutkimusmetodeilla tuotetusta tiedosta voidaan päätellä? Juha Pekkanen, prof Hjelt Instituutti, HY Terveyden ja Hyvinvoinnin laitos

Mitä eri tutkimusmetodeilla tuotetusta tiedosta voidaan päätellä? Juha Pekkanen, prof Hjelt Instituutti, HY Terveyden ja Hyvinvoinnin laitos Mitä eri tutkimusmetodeilla tuotetusta tiedosta voidaan päätellä? Juha Pekkanen, prof Hjelt Instituutti, HY Terveyden ja Hyvinvoinnin laitos Päätöksentekoa tukevien tutkimusten tavoitteita kullakin oma

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 5

031021P Tilastomatematiikka (5 op) viikko 5 031021P Tilastomatematiikka (5 op) viikko 5 Jukka Kemppainen Mathematics Division Hypoteesin testauksesta Tilastollisessa testauksessa on kyse havainnoista tapahtuvasta päätöksenteosta. Kokeellisen tutkimuksen

Lisätiedot

Pienet ännät tutkimuksessa Tilastollisen analyysin työpaja. Jari Westerholm Niilo Mäki instituutti Jyväskylän yliopisto

Pienet ännät tutkimuksessa Tilastollisen analyysin työpaja. Jari Westerholm Niilo Mäki instituutti Jyväskylän yliopisto Pienet ännät tutkimuksessa Tilastollisen analyysin työpaja Jari Westerholm Niilo Mäki instituutti Jyväskylän yliopisto Luennon sisältö Pienten otoskokojen haasteista Pieni otoskoko Suositeltuja metodeja

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti

Lisätiedot

Tutkimusasetelmat. - Oikea asetelma oikeaan paikkaan - Vaikeakin tutkimusongelma voi olla ratkaistavissa oikealla tutkimusasetelmalla

Tutkimusasetelmat. - Oikea asetelma oikeaan paikkaan - Vaikeakin tutkimusongelma voi olla ratkaistavissa oikealla tutkimusasetelmalla Tutkimusasetelmat - Oikea asetelma oikeaan paikkaan - Vaikeakin tutkimusongelma voi olla ratkaistavissa oikealla tutkimusasetelmalla Jotta kokonaisuus ei unohdu Tulisi osata Tutkimusasetelmat Otoskoko,

Lisätiedot

Saavatko monien ongelmien kuormittamat lapset tarvitsemansa avun lasten mielenterveyspalveluissa?

Saavatko monien ongelmien kuormittamat lapset tarvitsemansa avun lasten mielenterveyspalveluissa? Saavatko monien ongelmien kuormittamat lapset tarvitsemansa avun lasten mielenterveyspalveluissa? Päivi Santalahti, Lastenpsykiatrian erikoislääkäri ja dosentti Mitä mieltä!? 30.11.2017 9.12.2017 Santalahti

Lisätiedot

¼ ¼ joten tulokset ovat muuttuneet ja nimenomaan huontontuneet eivätkä tulleet paremmiksi.

¼ ¼ joten tulokset ovat muuttuneet ja nimenomaan huontontuneet eivätkä tulleet paremmiksi. 10.11.2006 1. Pituushyppääjä on edellisenä vuonna hypännyt keskimäärin tuloksen. Valmentaja poimii tämän vuoden harjoitusten yhteydessä tehdyistä muistiinpanoista satunnaisesti kymmenen harjoitushypyn

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 5 Tilastollisten hypoteesien testaaminen Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu

Lisätiedot

Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan

Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan 17.11.2006 1. Kahdesta kohteesta (A ja K) kerättiin maanäytteitä ja näistä mitattiin SiO -pitoisuus. Tulokset (otoskoot ja otosten tunnusluvut): A K 10 16 Ü 64.94 57.06 9.0 7.29 Oletetaan mittaustulosten

Lisätiedot

Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin

Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin Tilastollisen analyysin perusteet Luento 10: Sisältö Varianssianalyysi Varianssianalyysi on kahden riippumattoman otoksen t testin yleistys. Varianssianalyysissä perusjoukko koostuu kahdesta tai useammasta

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.04 Tilastollisen analyysin perusteet, kevät 007 4. luento: Jakaumaoletuksien testaaminen Kai Virtanen Jakaumaoletuksien testaamiseen soveltuvat testit χ -yhteensopivuustesti yksi otos otoksen vertaaminen

Lisätiedot

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. 6.10.2015/1 MTTTP1, luento 6.10.2015 KERTAUSTA JA TÄYDENNYSTÄ Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Tilastollisen merkitsevyyden testaus Osa II Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset

Lisätiedot

Järvitesti Ympäristöteknologia T571SA 7.5.2013

Järvitesti Ympäristöteknologia T571SA 7.5.2013 Hans Laihia Mika Tuukkanen 1 LASKENNALLISET JA TILASTOLLISET MENETELMÄT Järvitesti Ympäristöteknologia T571SA 7.5.2013 Sarkola Eino JÄRVITESTI Johdanto Järvien kuntoa tutkitaan monenlaisilla eri menetelmillä.

Lisätiedot

Mielipiteet ydinvoimasta Maaliskuu 2015. Mielipiteet ydinvoimasta maaliskuu 2015

Mielipiteet ydinvoimasta Maaliskuu 2015. Mielipiteet ydinvoimasta maaliskuu 2015 Mielipiteet ydinvoimasta 2015 Sisältö sivu 1. Aineiston rakenne 3 2. Tutkimustulokset Yleissuhtautuminen ydinvoimaan energianlähteenä 5 Ydinvoiman hyväksyminen ilmastomuutoksen torjuntakeinona 11 3. Liitteet

Lisätiedot

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut Mat-2.091 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Avainsanat: Estimointi, Havaittu frekvenssi, Homogeenisuus,

Lisätiedot

10. laskuharjoituskierros, vko 14, ratkaisut

10. laskuharjoituskierros, vko 14, ratkaisut 10. laskuharjoituskierros, vko 14, ratkaisut D1. Eräässä kokeessa verrattiin kahta sademäärän mittaukseen käytettävää laitetta. Kummallakin laitteella mitattiin sademäärät 10 sadepäivän aikana. Mittaustulokset

Lisätiedot

Oikeutusoppaan esittelyä

Oikeutusoppaan esittelyä Oikeutusoppaan esittelyä Säteilyturvallisuus ja laatu isotooppilääketieteessä Tarkastaja, STUK 11.2.2015 Oikeutus säteilylle altistavissa tutkimuksissa opas hoitaville lääkäreille (STUK opastaa / maaliskuu

Lisätiedot

Tilastollinen testaaminen tai Tilastollinen päättely. Geneettinen analyysi

Tilastollinen testaaminen tai Tilastollinen päättely. Geneettinen analyysi Tilastollinen testaaminen tai Tilastollinen päättely Geneettinen analyysi Tilastollisen testaamisen tarkoitus Tilastollisten testien avulla voidaan tutkia otantapopulaatiota (perusjoukkoa) koskevien väittämien

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Tilastollisen analyysin perusteet Luento 4: Testi suhteelliselle osuudelle

Tilastollisen analyysin perusteet Luento 4: Testi suhteelliselle osuudelle Tilastollisen analyysin perusteet Luento 4: Sisältö Testiä suhteelliselle voidaan käyttää esimerkiksi tilanteessa, jossa tarkastellaan viallisten tuotteiden osuutta tuotantoprosessissa. Tilanne palautuu

Lisätiedot

Kosteus- ja homevaurioista oireileva potilas Käypä hoito -suositus. Sisäilmastoseminaari 2017 Jussi Karjalainen, Tays allergiakeskus

Kosteus- ja homevaurioista oireileva potilas Käypä hoito -suositus. Sisäilmastoseminaari 2017 Jussi Karjalainen, Tays allergiakeskus Kosteus- ja homevaurioista oireileva potilas Käypä hoito -suositus Sisäilmastoseminaari 2017 Jussi Karjalainen, Tays allergiakeskus Näyttöön perustuva lääketiede Näyttöön perustuva lääketiede (engl. evidence-based

Lisätiedot

tilastotieteen kertaus

tilastotieteen kertaus tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla

Lisätiedot

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto Kynä-paperi -harjoitukset Taina Lehtinen 43 Loput ratkaisut harjoitustehtäviin 44 Stressitestin = 40 s = 8 Kalle = 34 pistettä Ville = 5 pistettä Z Kalle 34 8 40 0.75 Z Ville 5 8 40 1.5 Kalle sijoittuu

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemianalyysin laboratorio Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 11 (vko 48/003) (Aihe: Tilastollisia testejä, Laininen luvut 4.9, 15.1-15.4, 15.7) Nordlund 1. Kemiallisen prosessin

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle

Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle - Sisältö - - - Varianssianalyysi Varianssianalyysissä (ANOVA) testataan oletusta normaalijakautuneiden otosten odotusarvojen

Lisätiedot

Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 2. TODENNÄKÖISYYS...

Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 2. TODENNÄKÖISYYS... Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 1.1 INDUKTIO JA DEDUKTIO... 9 1.2 SYYT JA VAIKUTUKSET... 11 TEHTÄVIÄ... 13

Lisätiedot

Interventiotutkimuksen arviointi

Interventiotutkimuksen arviointi Interventiotutkimuksen arviointi 11.1.2018 Tutkimustiedon kriittisen arvioinnin kurssi Marja Pöllänen Käypä hoito toimittaja HLT, erikoishammaslääkäri Marja.pollanen@duodecim.fi Sidonnaisuudet Päätyö:

Lisätiedot

Tutkimuksellinen vai toiminnallinen opinnäytetyö

Tutkimuksellinen vai toiminnallinen opinnäytetyö Tutkimuksellinen vai toiminnallinen opinnäytetyö (Salonen 2013.) (Salonen (Salonen 2013.) Kajaanin ammattikorkeakoulun opinnäytetyön arviointi (opettaja, opiskelija ja toimeksiantaja) https://www.kamk.fi/opari/opinnaytetyopakki/lomakkeet

Lisätiedot

Onko käytösoireiden lääkehoidon tehosta näyttöä? Ari Rosenvall Yleislääketieteen erikoislääkäri Mehiläinen Ympyrätalo

Onko käytösoireiden lääkehoidon tehosta näyttöä? Ari Rosenvall Yleislääketieteen erikoislääkäri Mehiläinen Ympyrätalo Onko käytösoireiden lääkehoidon tehosta näyttöä? Ari Rosenvall Yleislääketieteen erikoislääkäri Mehiläinen Ympyrätalo Näytön varmuusaste Käypä hoito -suosituksissa Koodi Näytön aste Selitys A B C D Vahva

Lisätiedot

Postanalytiikka ja tulosten tulkinta

Postanalytiikka ja tulosten tulkinta Postanalytiikka ja tulosten Veli Kairisto dosentti, kliinisen kemian ja hematologisten laboratoriotutkimusten erikoislääkäri kliininen diagnoosi tulkittu löydös päätös kliininen taso suhteutus viitearvoihin

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi

Lisätiedot

Kojemeteorologia (53695) Laskuharjoitus 1

Kojemeteorologia (53695) Laskuharjoitus 1 Kojemeteorologia (53695) Laskuharjoitus 1 Risto Taipale 20.9.2013 1 Tehtävä 1 Erään lämpömittarin vertailu kalibrointistandardiin antoi keskimääräiseksi eroksi standardista 0,98 C ja eron keskihajonnaksi

Lisätiedot

Aineistoista. Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin

Aineistoista. Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin Aineistoista 11.2.09 IK Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin Muotoilussa kehittyneet menetelmät, lähinnä luotaimet Havainnointi:

Lisätiedot

Lectio praecursoria. Satunnaistusalgoritmeja tiedonlouhinnan tulosten merkitsevyyden arviointiin. Markus Ojala. 12.

Lectio praecursoria. Satunnaistusalgoritmeja tiedonlouhinnan tulosten merkitsevyyden arviointiin. Markus Ojala. 12. Lectio praecursoria Satunnaistusalgoritmeja tiedonlouhinnan tulosten merkitsevyyden arviointiin Markus Ojala 12. marraskuuta 2011 Käsitteet Satunnaistusalgoritmeja tiedonlouhinnan tulosten merkitsevyyden

Lisätiedot

Testit järjestysasteikollisille muuttujille

Testit järjestysasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten

Lisätiedot

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden 1.12.2006 1. Satunnaisjakauman tiheysfunktio on Ü µ Üe Ü, kun Ü ja kun Ü. Määritä parametrin estimaattori momenttimenetelmällä ja suurimman uskottavuuden menetelmällä. Ratkaisu: Jotta kyseessä todella

Lisätiedot

Toimitusprosessi ja näytön vahvuus Point-of-Care -tietokannoissa. BMF syysseminaari Veera Mujunen, EBSCO Health

Toimitusprosessi ja näytön vahvuus Point-of-Care -tietokannoissa. BMF syysseminaari Veera Mujunen, EBSCO Health Toimitusprosessi ja näytön vahvuus Point-of-Care -tietokannoissa BMF syysseminaari 11.11.2016 Veera Mujunen, EBSCO Health Esimerkkinä DynaMed Plus ja Nursing Reference Center Plus tietokannat Kriittinen

Lisätiedot

Interventiotutkimuksen etiikkaa. Mikko Yrjönsuuri Metodifestivaali Jyväskylä

Interventiotutkimuksen etiikkaa. Mikko Yrjönsuuri Metodifestivaali Jyväskylä Interventiotutkimuksen etiikkaa Mikko Yrjönsuuri Metodifestivaali Jyväskylä 22.5.2013 Klassinen interventiotutkimus James Lind tekee interventiotutkimusta HMS Salisburyllä 1747 Keripukin hoitoa mm. siiderillä,

Lisätiedot

Tilastollisten aineistojen kerääminen ja mittaaminen. Tilastollisten aineistojen kerääminen ja mittaaminen

Tilastollisten aineistojen kerääminen ja mittaaminen. Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2004) 1 ja mittaaminen Johdatus tilastotieteeseen ja mittaaminen TKK (c) Ilkka Mellin (2004) 2 ja mittaaminen: Mitä opimme? 1/3 Tilastollisen tutkimuksen kaikki mahdolliset kohteet

Lisätiedot

Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2005) 1 ja mittaaminen Tilastollisten aineistojen kerääminen Mittaaminen ja mitta-asteikot TKK (c)

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Tilastollisen merkitsevyyden testaus (+ jatkuvan parametrin Bayes-päättely) Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden

Lisätiedot

Johdatus tilastotieteeseen Tilastolliset testit. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Tilastolliset testit. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Tilastolliset testit TKK (c) Ilkka Mellin (2005) 1 Tilastolliset testit Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset testit ja testisuureet Virheet testauksessa

Lisätiedot

ASUINKERROSTALON ÄÄNITEKNISEN LAADUN ARVIOINTI. Mikko Kylliäinen

ASUINKERROSTALON ÄÄNITEKNISEN LAADUN ARVIOINTI. Mikko Kylliäinen ASUINKERROSTALON ÄÄNITEKNISEN LAADUN ARVIOINTI Mikko Kylliäinen Insinööritoimisto Heikki Helimäki Oy Dagmarinkatu 8 B 18, 00100 Helsinki kylliainen@kotiposti.net 1 JOHDANTO Suomen rakentamismääräyskokoelman

Lisätiedot

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. 5.10.2017/1 MTTTP1, luento 5.10.2017 KERTAUSTA Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla todennäköisyydellä,

Lisätiedot

Estimointi. Vilkkumaa / Kuusinen 1

Estimointi. Vilkkumaa / Kuusinen 1 Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman

Lisätiedot

Mielipiteet ydinvoimasta

Mielipiteet ydinvoimasta Mielipiteet ydinvoimasta Maaliskuu 12 Pauli Minkkinen 22262 TUTKIMUKSEN TILAAJA Energiateollisuus ry. TUTKIMUSMENETELMÄ: Puhelinhaastattelu HAASTATTELUAJANKOHTA: 28.2.-12.3.12 HAASTATTELUJEN MÄÄRÄ: 02

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan

Lisätiedot

Tutkimuksesta vastaavan henkilön eettinen arvio tutkimussuunnitelmasta. Tapani Keränen TAYS

Tutkimuksesta vastaavan henkilön eettinen arvio tutkimussuunnitelmasta. Tapani Keränen TAYS eettinen arvio tutkimussuunnitelmasta Tapani Keränen TAYS eettinen arvio tutkimussuunnitelmasta: perusteet Tutkimuksesta vastaavan henkilön (TVH) tulee havaita ja arvioida tutkimukseen liittyvät eettiset

Lisätiedot

Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003

Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003 Nimi Opiskelijanumero Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003 Normaalisti jakautuneiden yhdistyksessä on useita tuhansia jäseniä. Yhdistyksen sääntöjen mukaan sääntöihin tehtävää muutosta

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),

Lisätiedot

Tilastollisen tutkimuksen vaiheet

Tilastollisen tutkimuksen vaiheet Tilastollisen tutkimuksen vaiheet Jari Päkkilä Johdatus tilastotieteeseen Matemaattisten tieteiden laitos TILASTOLLISEN TUTKIMUKSEN TARKOITUS Muodostaa mahdollisimman hyvä mielikuva havaintoaineistosta,

Lisätiedot

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. 6.10.2016/1 MTTTP1, luento 6.10.2016 KERTAUSTA JA TÄYDENNYSTÄ Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla

Lisätiedot

2. TILASTOLLINEN TESTAAMINEN...

2. TILASTOLLINEN TESTAAMINEN... !" # 1. 1. JOHDANTO... 3 2. 2. TILASTOLLINEN TESTAAMINEN... 4 2.1. T-TESTI... 4 2.2. RANDOMISAATIOTESTI... 5 3. SIMULOINTI... 6 3.1. OTOSTEN POIMINTA... 6 3.2. TESTAUS... 7 3.3. TESTIEN TULOSTEN VERTAILU...

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas Ilman Ruotsia: r = 0.862 N Engl J Med 2012; 367:1562-1564. POIKKEAVAN HAVAINNON VAIKUTUS PAIRWISE VAI LISTWISE? Kun aineistossa on muuttujia, joilla

Lisätiedot

Mitä on näyttöön perustuva toiminta neuvolatyössä

Mitä on näyttöön perustuva toiminta neuvolatyössä Tiedosta hyvinvointia marja-leena.perala@stakes.fi 1 Mitä on näyttöön perustuva toiminta neuvolatyössä Marja-Leena Perälä, Tutkimusprofessori, Stakes VALTAKUNNALLISET NEUVOLAPÄIVÄT 10.5.2007 Dipoli, Espoo

Lisätiedot

Kuvittele, että olet Jyväskylän yliopiston tutkija Suomen Akatemia on julkaissut tutkimusohjelman, jossa myönnetään rahaa koululaisten terveyden

Kuvittele, että olet Jyväskylän yliopiston tutkija Suomen Akatemia on julkaissut tutkimusohjelman, jossa myönnetään rahaa koululaisten terveyden Terve!3 s.16-25 Kuvittele, että olet Jyväskylän yliopiston tutkija Suomen Akatemia on julkaissut tutkimusohjelman, jossa myönnetään rahaa koululaisten terveyden tutkimiseen Valitse itseäsi kiinnostava

Lisätiedot

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen)

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen) 1 MTTTP3 Luento 29.1.2015 Luku 6 Hypoteesien testaus Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? H 0 : µ = µ 0 H 1 : µ < µ 0 Nollahypoteesi Vaihtoehtoinen hypoteesi

Lisätiedot

Tietojen arviointi ja raportointi: (yksityiskohtaisen) tutkimustiivistelmän laatimisohjeet

Tietojen arviointi ja raportointi: (yksityiskohtaisen) tutkimustiivistelmän laatimisohjeet Tietojen arviointi ja raportointi: (yksityiskohtaisen) tutkimustiivistelmän laatimisohjeet Webinaari tietovaatimuksista 30. marraskuuta 2009 Kaikkien saatavilla olevien tietojen arviointi Vaihe 1: Tietojen

Lisätiedot

Lakisääteisen eettisen toimikunnan tehtävät alueellinen yhteistyö

Lakisääteisen eettisen toimikunnan tehtävät alueellinen yhteistyö Lakisääteisen eettisen toimikunnan tehtävät alueellinen yhteistyö Tapani Keränen Itä-Suomen yliopisto; Pohjois-Savon sairaanhoitopiiri, tutkimusyksikkö ja eettinen toimikunta 21.3.2012 1 Alueelliset eettiset

Lisätiedot

Terveydenhuollon näkökulmia siihen, ettei kokemus sukupuolesta ole joko-tai Aino Mattila, LT TRANS-poliklinikka, TAYS Terveystieteen laitos, TaY

Terveydenhuollon näkökulmia siihen, ettei kokemus sukupuolesta ole joko-tai Aino Mattila, LT TRANS-poliklinikka, TAYS Terveystieteen laitos, TaY Terveydenhuollon näkökulmia siihen, ettei kokemus sukupuolesta ole joko-tai Aino Mattila, LT TRANS-poliklinikka, TAYS Terveystieteen laitos, TaY Helsinki 24.4.2010 Enemmänkin kysymyksiä mistä kysymys?

Lisätiedot

Tilastolliset testit. Tilastolliset testit. Tilastolliset testit: Mitä opimme? 2/5. Tilastolliset testit: Mitä opimme? 1/5

Tilastolliset testit. Tilastolliset testit. Tilastolliset testit: Mitä opimme? 2/5. Tilastolliset testit: Mitä opimme? 1/5 TKK (c) Ilkka Mellin (4) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (4) : Mitä opimme? 1/5 Tilastollisessa tutkimuksessa tutkimuksen kohteena olevasta perusjoukosta esitetään tavallisesti väitteitä

Lisätiedot

Maahanmuuttajien terveys- ja hyvinvointitutkimus. Tutkimusprofessori Seppo Koskinen, THL

Maahanmuuttajien terveys- ja hyvinvointitutkimus. Tutkimusprofessori Seppo Koskinen, THL Maahanmuuttajien terveys- ja hyvinvointitutkimus Tutkimusprofessori Seppo Koskinen, THL Ulkomaalaistaustaisten suomalaisten määrä kasvaa nopeasti 1990 2011 Ulkomailla syntyneitä 65 000 266 000 (5 %) Vieraskielisiä

Lisätiedot

Masennus ja mielialaongelmien ehkäisy Timo Partonen

Masennus ja mielialaongelmien ehkäisy Timo Partonen Masennus ja mielialaongelmien ehkäisy Timo Partonen LT, psykiatrian dosentti, Helsingin yliopisto Ylilääkäri, yksikön päällikkö, Terveyden ja hyvinvoinnin laitos; Mielenterveys ja päihdepalvelut osasto;

Lisätiedot

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot