Luento 6 Mittausten suunnittelu II. erikoissovellukset

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Luento 6 Mittausten suunnittelu II. erikoissovellukset"

Transkriptio

1 Luento 6 Mittausten suunnittelu II 1

2 Aiheita Mittausongelman määrittely Tarkkuusluvut Suhteellinen tarkkuusluku Suhteellinen tarkkuus Tarkkuuden arvioiminen Kuvahavainnon keskivirhe Verkon rakennevakio q Sisäinen tarkkuus ja ulkoinen tarkkuus Quality Control or Process Control Tarkkuuden testaaminen 2

3 Lähteet Vanhan kurssin luento 2, Classification of 3-D measuring tasks Clive Fraser, 1989, Optimization of Networks in Non- Topographic Photogrammetry, teoksessa: Karara, H.M. (ed.), Non-Topographic Photogrammetry, 2nd Edition, ASPRS

4 Mittausongelman määrittely Aspects to be considered while defining closer the measuring problem Activity of the object Task of the measurements Dimensions of the measurements Size of the object Measuring principles Number of object points to be measured Site for the recordings Processing site Requirements concerning the measuring accuracy 4

5 Tarkka muotomittaus

6 Profiilimittaus 6

7 Pinnan kartoitus 7

8 Kappaleen mallinnus - =

9 Tarkkuusluvut Tarkkuusluvuilla ilmaistaan mm. kuvan erotuskykyyn, kuvahavaintojen keskivirheeseen ja verkon geometriaan perustuvia arvioita mittausjärjestelmän suorituskyvystä. Tarkkuusluvut voidaan ilmaista joko koordinaattien keskivirheinä tai suhteellisina tarkkuuslukuina. Kuvamittaussovellutuksissa on yhä yleisemmin ryhdytty käyttämään suhteellisia tarkkuuslukuja. Suhteellisilla tarkkuusluvuilla voidaan verrata vaihtoehtoisia mittaustilanteita ja -järjestelmiä suorituskykynsä puolesta toisiinsa. Suhteelliset tarkkuusluvut voidaan muuntaa koordinaattien keskivirheiksi, kun tunnetaan mittauskohteen koko. 9

10 Suhteellinen tarkkuusluku Proportional accuracy number Suhteellinen tarkkuusluku saadaan jakamalla kohteen päädimensio vastaavalla koordinaattikeskivirheellä. Suhteelliset tarkkuusluvut voidaan luokitella seuraavasti: < 2'000 moderate accuracy < 10'000 good accuracy < 50'000 high accuracy > 50'000 very high accuracy > 250'000 extreme accuracy 10

11 Suhteellinen tarkkuus I Proportional accuracy Suhteellinen tarkkuus on 1: [tarkkuusluku] Kuvalla suhteellinen tarkkuus voidaan arvioida, kun tunnetaan kuvahavainnon keskivirhe ja kuvan dimensio. 11

12 Proportional accuracy numbers 12

13 Proportional accuracy numbers (Fraser) Lähde: Fraser,

14 Suhteellinen tarkkuus II Taulukossa esitetyt luvut eivät ole välttämättä todellisia, vaan henkilökohtaisia 'mutu'-lukuja, mutta antavat käsityksen suhteellisen tarkkuuden suuruusluokista. Lukuja arvioitaessa on otettu huomioon myös ao. kuvauslaitteen käyttöön liityvä tavanomainen mittausmenettely, kun tehdään tarkkoja mittauksia pistemäisiin kohteisiin. Lukuihin sisältyy myös kunkin kuvauslaitteen käyttöön liittyviä tyypillisiä muita virhelähteitä, kuten kuvatason epätasomaisuus, filmin muodonmuutokset, elektroniset piirtovirheet, jne. 14

15 Suhteellinen tarkkuus III Suhteellinen tarkkuus kuvalla voidaan muuntaa likimäärin suhteelliseksi tarkkuudeksi kohteessa, kun verkon geometria tunnetaan. Sekä kohdekoordinaattien että kuvahavaintojen suhteellinen tarkkuus on samaa suuruusluokkaa silloin, kun kohteen mittaamiseen käytetään kahta kameraa tai kuvaa, kantasuhde on hyvä, luokkaa 1,5-2, ja mittauspisteet signaloidaan. 15

16 Tarkkuuden arvioiminen Likimääräinen arviointi 1: 100 / 500 / 2000 / / / / Simulointiin perustuva arviointi Testikenttäkalibrointi 16

17 Likimääräinen arviointi Perustuu 2-D kuvahavainnon keskivirheen muuntamiseen keskimääräiseksi 3-D pistekeskivirheeksi mallitilassa likimääräisellä kaavalla. [pistekeskivirhe] = q x [mittakaavaluku] x [kuvahavainnon keskivirhe] Verkon rakennevakio q arvioidaan kokemuksen perusteella. 17

18 Rakennevakio s c kohdekoordinaatin keskivirhe s mittakaavaluku s kuvakoordinaatin keskivirhe s a kulmamittauksen keskivirhe q kuvausgeometriasta riippuva kerroin vahvalle geometrialle, 1.5 tavalliselle, heikohkolle jne. d kohteen keskimääräinen etäisyys kamerasta c kameran polttoväli k kuvien lukumäärä/kamera 18

19 Parallaksikaavat: q =

20 Simulointiin perustuva arviointi Estimaatit pisteiden tarkkuuksille saadaan muodostamalla ratkaistuille parametreille varianssikovarianssimatriisi. Perustuu 2-D kuvahavainnon keskivirheiden projisioimiseen mallitilaan. Lasketaan pistekohtaisesti. Ottaa huomioon kaikkien havaintojen yhteisvaikutuksen. Tuottaa "oikean" kuvan pistevirheestä kaikissa suunnissa. Mittauksessa on tärkeintä, että pisteiden tarkkuus on riittävän hyvä. 20

21 Varianssit Yhtälössä C1 sisältää ulkoisen orientoinnin ja kameran parametrien varianssit, ja C2 mitattujen pisteiden varianssit. Mittausten suunnittelulla pyritään siis saamaan C2 halutunlaiseksi. 21

22 Tienpinnan profiilimittaus 22

23 Tuulilasin muotomittaus 23

24 Simulointi numeerisena 24

25 Simulointi graafisena 25

26 Kokemukseen perustuva arviointi Perustuu testikentillä tai esimerkkitöissä tehtyihin vertausmittauksiin ja niistä saatuihin kokemuksiin. Näillä saadaan parhaiten käsitys koko mittausprosessin suorituskyvystä. 26

27 Kuvahavainnon keskivirhe Kokemukseen perustuvina kuvahavainnon keskivirheen arvoina voidaan pitää: 1-5 mikronia tai 0,5-0,05 pikseliä, jos mitataan signaloituja kohteita, mikronia tai 1-2 pikseliä, jos mitataan luonnollisia kohteita. Kuvahavainnon keskivirheen sijaan voidaan käyttää parallaksihavainnon keskivirhettä, kun arvioidaan stereomittauksen koordinaattikeskivirhettä kuvaussuuntaan. Parallaksihavainnon keskivirhe on luokkaa 7-20 mikronia tai 0,2-1 pikseliä. 27

28 Verkon rakennevakio q Konvergenttikuvauksissa q = 1, kun käytetään kahta kameraa, jotka sijoitetaan toistensa suhteen konvergentisti, q = 0,7, kun käytetään neljää kameraa, jotka sijoitetaan toistensa suhteen neliöön siten, että kameraryhmän etäisyys kohteesta on likimain sama kuin neliön sivu, q = 0,5, kun käytetään kahdeksaa kameraa, jotka kaikki näkevät kohteen ja ovat hyvin sekä kohteen että toistensa suhteen sijoitettuja. Käytännössä likimääräistä arviontia ei ole mielekästä perustaa verkon rakennevakioiden arvoihin, jotka olisivat pienempiä kuin 0,5. 28

29 Rakennevakio stereokuvauksissa q = 1, kuvatason suuntaisille koordinaateille, yleensä XY-koordinaateille q = 1 / [kantasuhde], kuvaussuuntaan havaituille koordinaateille 29

30 Stereokuvaus Stereokuvauksen tärkein merkitys on siinä, että se mahdollistaa kuvien käytön kohteen stereoskooppiseen tulkintaan ja visualisointiin. Mittaustarkkuus on yleisesti ottaen hyvä. Etäisyyshavaintojen osalta on huomattava, että epätarkkuus kasvaa etäisyyden neliön suhteessa. Stereomittauksen kannalta kelvollisena mittausetäisyyden rajana voidaan pitää kantasuhdetta luokkaa 1 :

31 Ulkoinen tarkkuus: Accuracy Kalibroidun mittausjärjestelmän tarkkuus suhteessa mittanormaaleihin. Mittaustulosten epätarkkuus suhteessa "oikeisiin" tuloksiin. Muodostuu virheestä, joka on systemaattista ja deformoi mittaustulokset suhteessa referenssikoordinaatistoon. Virhe on mittausjärjestelmässä paikkariippuva eli samassa paikassa tehdyt mittaukset sisältävät saman vakiovirheen. Jos mittaustuloksia käytetään kappaleen muotopoikkeamien määrittämiseen (=> mitattu muoto - suunniteltu muoto) on tärkeää, että mittausjärjestelmän kalibrointi on mahdollisimman hyvä. Tulosten epätarkkuus sisältyy sellaisenaan laskettuun muotopoikkeamaan. 31

32 Sisäinen tarkkuus: Precision Mittausjärjestelmän toistotarkkuus Muodostuu havaintovirheistä, joiden oletetaan käyttäytyvän satunnaisesti. Mittaustuloksia käytetään kappaleen muotopoikkeamien määrittämiseen => muodonmuutos kahden mittauskerran välillä Hyvin itseään toistavissa mittaustilanteissa vakiovirhe eliminoituu muotopoikkeamia laskettaessa. Mittaustilanteen toistavuus edellyttää, että kummallakin mittauskerralla mittausjärjestelmä ja mitattava kappale ovat toistensa suhteen samassa asennossa mittauspisteet näkyvöitetään samoin, valaistusolosuhteet ovat mahdollisimman samanlaiset, jne. 32

33 Sisäinen ja ulkoinen tarkkuus 33

34 Quality Control or Process Control I QC-mittauksissa määritetään tuotettavan kappaleen muotopoikkeamia ennen tuotannon käynnistämistä, jotta voidaan varmistua siitä, että valmistettavat tuotteet ovat "oikean" muotoisia ja kokoisia. QC-mittauksissa mitataan näytekappaleet mahdollisimman täydellisesti, ja verrataan niiden muotoa CAD-malliin. 34

35 Quality Control or Process Control II PC-mittauksissa mitataan tuotannon aikaisia muotopoikkeamia, joilla tiedoilla säädetään prosessia. PC-mittauksissa mitataan kaikki kappaleet, mutta vain niiltä osin, mikä riittää muotopoikkeamien havaitsemiseen. Muotopoikkeamina laskettaessa verrataan kunkin kappaleen mittoja OC-vaiheessa tehtyihin vastaaviin mittoihin. PC-mittauksissa mittausaseman ulkoisen epätarkkuuden aiheuttama vakiovirhe eliminoituu, eikä näin ollen vaikuta havaittuun muotopoikkeamaan. Tämä edellyttää luonnollisesti sitä, että mittauskäytön aikana varmistutaan myös mittausjärjestelmän stabiiliudesta ulkoisen referenssikoordinaatiston suhteen. 35

36 Tarkkuuden testaaminen 36

37 Suunnittelun reunaehdot, kuvamittakaava Kuvamittakaava eteenpäinleikkauksen tarkkuus on suoraan verrannollinen kuvamittakaavaan polttovälin suhde kohteen ja kameran väliseen etäisyyteen tavoiteltaessa tiettyä tarkkuutta voidaan kameran maksimietäisyyttä kohteesta arvioida seuraavan kaavan avulla 37

38 Suunnittelun reunaehdot, erotuskyky Erotuskyky, resoluutio Erotuskyvyn pitää olla riittävä jotta kuvakoordinaattien mittaus on mahdollista halutulla tarkkuudella. Mitattavien kohteiden, tähysten tai muiden yksityiskohtien on oltava kooltaan sopivia. 38

39 Suunnittelun reunaehdot, tila Jos kuvaamiseen käytettävä tila on hyvin rajallinen, joudutaan turvautumaan laajakulmaiseen optiikkaan ja kamera-asemien lisäämiseen. 39

40 Suunnittelun reunaehdot, syvyysterävyys Tärkeä eteenkin ei-tasomaisissa kappaleissa kameran aukkoa pienentämällä saadaan lisää syvyysterävyyttä, mutta tällöin joudutaan pidentämään valotusaikaa tai lisäämään valaistusta 40

41 Suunnittelun reunaehdot, tähtäyskulma Tähtäyskulma, incidence angle esim. ristinmuotoisten tähysten keskipisteen määrittäminen saattaa olla vaikeaa, jos ne on kuvattu hyvin viistosta kulmasta retroheijastinten näkyvyys rajoittuu 41

42 Suunnittelun reunaehdot, pistemäärä Pisteiden määrä ja jakauma kuvilla sitä parempi mitä enemmän pisteitä ja mitä tasaisemmin ne ovat jakautuneet koko kuvan alueelle Tasainen jakautuminen on erityisen tärkeää, jos kameran kalibrointiparametrit määritetään kuvauksen yhteydessä (itsekalibrointi) 42

43 Suunnittelun reunaehdot, leikkauskulma Kuvasäteiden leikkauskulma optimaalinen n. 110 ± 30 Kuva: Luhmann, 2000 Kuva: Fraser,

44 Suunnittelun reunaehdot, kameran avauskulma Vaikuttaa kuvausetäisyyteen ja kuvien lukumäärään mittaus on sitä taloudellisempaa mitä suurempi osa kaikista pisteistä yksittäisillä kuvilla näkyy Kuva: Mapvision Ltd. 44

45 Suunnittelun reunaehdot, katveet Näkyvyys, katveet 45

46 Suunnittelun vaiheet E. Grafarend on jakanut geodeettisten verkkojen suunnittelun neljään vaiheeseen Zero-order design (ZOD) Datum First-order design (FOD) Konfiguraatio Second-order design (SOD) Painotus Third-order design (TOD) Tihennys Samaa jakoa on pyritty käyttämään myös fotogrammetriassa. Tosin TOD ei ole lähifotogrammetriassa kovinkaan oleellinen, ja sekä ZOD että SOD ovat myös huomattavasti yksinkertaisempia kuin geodeettisissa verkoissa. 46

47 Datumi ZOD 3D-pisteistöä voidaan siirtää, kiertää ja skaalata 7- parametrisella muunnoksella ilman, että sen muoto muuttuu nämä siirrot, kierrot ja mittakaava määrittävät pisteistön datumin ZOD tulee kysymykseen vain siinä tapauksessa, että datum on määritetty minimiehdoin kiinnitetään kaksi pistettä (X, Y ja Z) ja yksi korkeus Se seikka, mitkä pisteet on kiinnitetty vaikuttaa A-matriisiin, jolloin myös kovarianssimatriisi Cx muuttuu. ZOD tähtää sellaiseen datumiin, missä Cx on halutunlainen tarkkuus on tietyissä pisteissä mahdollisimman hyvä tarkkuus on mahdollisimman homogeeninen kaikissa pisteissä 47

48 Kuvausgeometria FOD I Kantasuhde kannan kasvattaminen parantaa syvyyssunnassa saavutettavaa tarkkuutta edullisemman leikkauskulman ansiosta Kamera-asemien lukumäärä kamera-asemien lisääminen parantaa tarkkuutta ja luotettavuuttavaikuttaa kuvausgeometrian suunnitteluun jos käytössä on m kameraa, on saavutettava tarkkuus m 1/2 parempi kuin kahta kameraa käyttämällä Kuvien lukumäärä / kamera-asema jos samasta kamera-asemasta otetaan k kuvaa, pienenee mitattujen pisteiden keskivirheet k -1/2 kertaisiksi tärkeä videokameroita käytettäessä (satunnaisten kuvavirheiden kompensointi) 48

49 Kuvausgeometria FOD II Pisteiden lukumäärä ja jakauma suunnittelun reunaehdot Kuvamittakaava ja polttoväli kuvamittakaavan ja mitattujen pisteiden tarkkuuden välillä on lineaarinen riippuvuus suunnittelun reunaehdot Kalibrointiparametrit yliparametrisointia varottava vankka geometria ja riittävä määrä pisteitä auttavat erottamaan tilastollisesti merkittävät ja merkityksettömät parametrit 49

50 Painotus SOD Fotogrammetrisissa mittauksissa kuvahavainnoilla on yleensä sama paino P=s -2 I Painoyksikön keskivirheeseen eli kuvamittauksen tarkkuuteen voi vaikuttaa tähysten valinnalla lisäämällä kuvien lukumäärää kuva-asemalla, eli keskiarvoistamalla resoluution lisäämisellä filmimittauksissa käyttämällä tarkempaa komparaattoria jne. 50

51 Tihennys TOD Fotogrammetrisissa mittauksissa TOD voidaan katsoa olevan osa FOD:ia. 51

52 Simulointi, Fraser 52

53 Lumikirkko Kuva: Ilkka Niini, TKK Kuva: Katri Koistinen, TKK 53

54 Optimaalinen geometria 54

Mittausten suunnittelu I

Mittausten suunnittelu I Mittausten suunnittelu I Eteenpäinleikkaukseen perustuvan mittauksen tarkkuus riippuu kahdesta asiasta (C.S. Fraser, 1996): 1) kuvaus-/tähtäyssäteen määritystarkkuudesta 2) kuvausgeometriasta Saavutettavaa

Lisätiedot

Luento 4 Georeferointi

Luento 4 Georeferointi Luento 4 Georeferointi 2008 Maa-57.1030 Fotogrammetrian perusteet 1 Sisältö Georeferointi käsitteenä Orientoinnit Stereokuvaparin mittaus Stereomallin ulkoinen orientointi (= absoluuttinen orientointi)

Lisätiedot

Luento 4 Georeferointi Maa Fotogrammetrian perusteet 1

Luento 4 Georeferointi Maa Fotogrammetrian perusteet 1 Luento 4 Georeferointi 2007 Maa-57.1030 Fotogrammetrian perusteet 1 Sisältö Georeferointi käsitteenä Orientoinnit Stereokuvaparin mittaus Stereomallin ulkoinen orientointi (= absoluuttinen orientointi)

Lisätiedot

Luento 7: Fotogrammetrinen mittausprosessi

Luento 7: Fotogrammetrinen mittausprosessi 7Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 (Alkuperäinen luento: Henrik Haggrén, 7.2.2003, Päivityksiä: Katri Koistinen, 5.2.2004 ) Luento 7: Fotogrammetrinen mittausprosessi

Lisätiedot

Luento 6: 3-D koordinaatit

Luento 6: 3-D koordinaatit Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 Luento 6: 3-D koordinaatit AIHEITA (Alkuperäinen luento: Henrik Haggrén, 16.2.2003, Päivityksiä: Katri Koistinen 5.2.2004

Lisätiedot

Maa-57.260. Kameran kalibrointi. TKK/Fotogrammetria/PP

Maa-57.260. Kameran kalibrointi. TKK/Fotogrammetria/PP Kameran kalibrointi Kameran kalibroinnilla tarkoitetaan sen kameravakion, pääpisteen paikan sekä optiikan aiheuttamien virheiden määrittämistä. Virheillä tarkoitetaan poikkeamaa ideaalisesta keskusprojektiokuvasta.

Lisätiedot

Luento 5 Mittakuva. fotogrammetriaan ja kaukokartoitukseen

Luento 5 Mittakuva. fotogrammetriaan ja kaukokartoitukseen Luento 5 Mittakuva 1 Aiheita Mittakuva Muunnokset informaatiokanavassa. Geometrisen tulkinnan vaihtoehdot. Stereokuva, konvergentti kuva. Koordinaatistot. Kuvien orientoinnit. Sisäinen orientointi. Ulkoinen

Lisätiedot

Luento 5 Mittakuva. fotogrammetriaan ja kaukokartoitukseen

Luento 5 Mittakuva. fotogrammetriaan ja kaukokartoitukseen Luento 5 Mittakuva 1 Aiheita Mittakuva Muunnokset informaatiokanavassa. Geometrisen tulkinnan vaihtoehdot. Stereokuva, konvergentti kuva. Koordinaatistot. Kuvien orientoinnit. Sisäinen orientointi. Ulkoinen

Lisätiedot

Luento 6 Mittakuva. fotogrammetriaan ja kaukokartoitukseen

Luento 6 Mittakuva. fotogrammetriaan ja kaukokartoitukseen Luento 6 Mittakuva 1 Aiheita Mittakuva Muunnokset informaatiokanavassa. Geometrisen tulkinnan vaihtoehdot. Stereokuva, konvergentti kuva. Koordinaatistot. Kuvien orientoinnit. Sisäinen orientointi. Ulkoinen

Lisätiedot

Luento 8: Kolmiointi AIHEITA. Kolmiointi. Maa-57.301 Fotogrammetrian yleiskurssi. Luento-ohjelma 1 2 3 4 5 6 7 8 9 10

Luento 8: Kolmiointi AIHEITA. Kolmiointi. Maa-57.301 Fotogrammetrian yleiskurssi. Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 Maa-57.301 Fotogrammetrian yleiskurssi Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 (P. Rönnholm / H. Haggrén, 12.10.2004) Luento 8: Kolmiointi AIHEITA Kolmiointi Nyrkkisääntöjä Kuvablokki Blokin pisteet Komparaattorit

Lisätiedot

Luento 5: Kuvakoordinaattien laskeminen ja eteenpäinleikkaus

Luento 5: Kuvakoordinaattien laskeminen ja eteenpäinleikkaus Maa-57.301 Fotogrammetrian yleiskurssi (P. Rönnholm / H. Haggrén, 27.9.2005) Luento 5: Kuvakoordinaattien laskeminen ja eteenpäinleikkaus Mitä pitäsi oppia? Nyt pitäisi viimeistään ymmärtää, miten kollineaarisuusyhtälöillä

Lisätiedot

Luento 9 3-D mittaus. fotogrammetriaan ja kaukokartoitukseen

Luento 9 3-D mittaus. fotogrammetriaan ja kaukokartoitukseen Luento 9 3-D mittaus 1 Luennot 2008 JOHDANTO Koko joukko kuvia! Kuvien moniulotteisuus. LUENNOT I. Kuvien ottaminen Mitä kuvia ja miten? Mitä kuvista nähdään? II. III. IV. Kuvien esikäsittely Miten kartoituskuvat

Lisätiedot

Luento 5: Stereoskooppinen mittaaminen

Luento 5: Stereoskooppinen mittaaminen Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 Luento 5: Stereoskooppinen mittaaminen AIHEITA Etäisyysmittaus stereokuvaparilla Esimerkki: "TKK" Esimerkki: "Ritarihuone"

Lisätiedot

Luento 11: Stereomallin ulkoinen orientointi

Luento 11: Stereomallin ulkoinen orientointi Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 (Alkuperäinen luento: Henrik Haggrén, 17.2.2003, Päivityksiä: Katri Koistinen, 23.2.2004 ) Luento 11: Stereomallin ulkoinen

Lisätiedot

TTY Mittausten koekenttä. Käyttö. Sijainti

TTY Mittausten koekenttä. Käyttö. Sijainti TTY Mittausten koekenttä Käyttö Tampereen teknillisen yliopiston mittausten koekenttä sijaitsee Tampereen teknillisen yliopiston välittömässä läheisyydessä. Koekenttä koostuu kuudesta pilaripisteestä (

Lisätiedot

Luento 3: Kuvahavainnot

Luento 3: Kuvahavainnot Maa-57.301 Fotogrammetrian yleiskurssi (P. Rönnholm / H. Haggrén, 22.9.2004) Luento 3: Kuvahavainnot Mitä pitäsi oppia? Viimeistään nyt pitäisi ymmärtää kuva-, komparaattori- ja kamerakoordinaatistojen

Lisätiedot

Luento 2 Stereokuvan laskeminen. 2008 Maa-57.1030 Fotogrammetrian perusteet 1

Luento 2 Stereokuvan laskeminen. 2008 Maa-57.1030 Fotogrammetrian perusteet 1 Luento 2 Stereokuvan laskeminen 2008 Maa-57.1030 Fotogrammetrian perusteet 1 Aiheet Stereokuvan laskeminen stereokuvan piirto synteettisen stereokuvaparin tuottaminen laskemalla stereoelokuva kollineaarisuusyhtälöt

Lisätiedot

Fotogrammetrian termistöä

Fotogrammetrian termistöä Fotogrammetrian termistöä Petri Rönnholm, Henrik Haggrén, 2015 Hei. Sain eilen valmiiksi mukavan mittausprojektin. Kiinnostaako kuulla yksityiskohtia? Totta kai! (Haluan tehdä vaikutuksen tähän kaveriin,

Lisätiedot

Luento 6: Stereo- ja jonomallin muodostaminen

Luento 6: Stereo- ja jonomallin muodostaminen Maa-57.301 Fotogrammetrian yleiskurssi Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 (P. Rönnholm / H. Haggrén, 5.10.2004) Luento 6: Stereo- ja jonomallin muodostaminen AIHEITA Keskinäinen orientointi Esimerkki

Lisätiedot

Luento Fotogrammetrian perusteet. Henrik Haggrén

Luento Fotogrammetrian perusteet. Henrik Haggrén Luento 8 6.5.2016 Fotogrammetrian perusteet Henrik Haggrén Sisältö Fotogrammetrinen kuvaaminen Avaruussuorat ja sädekimput Sisäinen ja ulkoinen orientointi Kollineaarisuusehto kohteen ja kuvan välillä

Lisätiedot

Luento 5. Stereomittauksen tarkkuus Maa Fotogrammetrian perusteet 1

Luento 5. Stereomittauksen tarkkuus Maa Fotogrammetrian perusteet 1 Luento 5 Stereomittauksen tarkkuus 2008 Maa-57.1030 Fotogrammetrian perusteet 1 Sisältö Stereokuvauksen * tarkkuuteen vaikuttavat asiat tarkkuuden arviointi, kuvauksen suunnittelu ja simulointi stereomallin

Lisätiedot

(Petri Rönnholm / Henrik Haggrén, ) Luento 1: Opintojakson järjestäytyminen. Motivointia. Kertausta. Kuvamittauksen vaihtoehdot.

(Petri Rönnholm / Henrik Haggrén, ) Luento 1: Opintojakson järjestäytyminen. Motivointia. Kertausta. Kuvamittauksen vaihtoehdot. Maa-57.301 Fotogrammetrian yleiskurssi (Petri Rönnholm / Henrik Haggrén, 12.9.2005) Luento 1: Opintojakson järjestäytyminen. Motivointia. Kertausta. Kuvamittauksen vaihtoehdot. Mitä pitäisi oppia? Palauttaa

Lisätiedot

Luento 7: Kuvan ulkoinen orientointi

Luento 7: Kuvan ulkoinen orientointi Maa-57.301 Fotogrammetrian yleiskurssi Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 (P. Rönnholm / H. Haggrén, 6.10.2004) Luento 7: Kuvan ulkoinen orientointi AIHEITA Ulkoinen orientointi Suora ratkaisu Epäsuora

Lisätiedot

Otannasta ja mittaamisesta

Otannasta ja mittaamisesta Otannasta ja mittaamisesta Tilastotiede käytännön tutkimuksessa - kurssi, kesä 2001 Reijo Sund Aineistot Kvantitatiivisen tutkimuksen aineistoksi kelpaa periaatteessa kaikki havaintoihin perustuva informaatio,

Lisätiedot

Maa-57.260 Fotogrammetrian erikoissovellutukset (Close-Range Photogrammetry)

Maa-57.260 Fotogrammetrian erikoissovellutukset (Close-Range Photogrammetry) Maa-57.260 Fotogrammetrian erikoissovellutukset (Close-Range Photogrammetry) -luennot: --ti 12-14 M5, to 12-14 M5 --Henrik Haggrén (HH), Petteri Pöntinen (PP) 1. Johdanto ja teoreettisia perusteita I,

Lisätiedot

Luento 4: Kiertomatriisi

Luento 4: Kiertomatriisi Maa-57.301 Fotogrammetrian yleiskurssi (P. Rönnholm / H. Haggrén, 28.9.2004) Luento 4: Kiertomatriisi Mitä pitäisi oppia? ymmärtää, että kiertomatriisilla voidaan kiertää koordinaatistoa ymmärtää, että

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

Mittausjärjestelmän kalibrointi ja mittausepävarmuus

Mittausjärjestelmän kalibrointi ja mittausepävarmuus Mittausjärjestelmän kalibrointi ja mittausepävarmuus Kalibrointi kalibroinnin merkitys kansainvälinen ja kansallinen mittanormaalijärjestelmä kalibroinnin määritelmä mittausjärjestelmän kalibrointivaihtoehdot

Lisätiedot

Mittaushavaintojen täsmällinen käsittelymenenetelmä

Mittaushavaintojen täsmällinen käsittelymenenetelmä Tasoituslaskun periaate Kun mittauksia on tehty enemmän kuin on toisistaan teoreettisesti riippumattomia suureita, niin tasoituslaskun tehtävänä ja päätarkoituksena on johtaa tuntemattomille sellaiset

Lisätiedot

Stereopaikannusjärjestelmän tarkkuus (3 op)

Stereopaikannusjärjestelmän tarkkuus (3 op) Teknillinen korkeakoulu AS 0.3200 Automaatio ja systeemitekniikan projektityöt Stereopaikannusjärjestelmän tarkkuus (3 op) 19.9.2008 14.01.2009 Työn ohjaaja: DI Matti Öhman Mikko Seppälä 1 Työn esittely

Lisätiedot

Mittaustulosten tilastollinen käsittely

Mittaustulosten tilastollinen käsittely Mittaustulosten tilastollinen käsittely n kertaa toistetun mittauksen tulos lasketaan aritmeettisena keskiarvona n 1 x = x i n i= 1 Mittaustuloksen hajonnasta aiheutuvaa epävarmuutta kuvaa keskiarvon keskivirhe

Lisätiedot

3D-kuvauksen tekniikat ja sovelluskohteet. Mikael Hornborg

3D-kuvauksen tekniikat ja sovelluskohteet. Mikael Hornborg 3D-kuvauksen tekniikat ja sovelluskohteet Mikael Hornborg Luennon sisältö 1. Optiset koordinaattimittauskoneet 2. 3D skannerit 3. Sovelluskohteet Johdanto Optiset mittaustekniikat perustuvat valoon ja

Lisätiedot

Tuulen nopeuden mittaaminen

Tuulen nopeuden mittaaminen KON C3004 Kone ja rakennustekniikan laboratoriotyöt Koesuunnitelma / ryhmä K Tuulen nopeuden mittaaminen Matias Kidron 429542 Toni Kokkonen 429678 Sakke Juvonen 429270 Kansikuva: http://www.stevennoble.com/main.php?g2_view=core.downloaditem&g2_itemid=12317&g2_serialnumber=2

Lisätiedot

Mittaustekniikka (3 op)

Mittaustekniikka (3 op) 530143 (3 op) Yleistä Luennoitsija: Ilkka Lassila Ilkka.lassila@helsinki.fi, huone C319 Assistentti: Ville Kananen Ville.kananen@helsinki.fi Luennot: ti 9-10, pe 12-14 sali E207 30.10.-14.12.2006 (21 tuntia)

Lisätiedot

Mittausepävarmuuden laskeminen

Mittausepävarmuuden laskeminen Mittausepävarmuuden laskeminen Mittausepävarmuuden laskemisesta on useita standardeja ja suosituksia Yleisimmin hyväksytty on International Organization for Standardization (ISO): Guide to the epression

Lisätiedot

Kojemeteorologia (53695) Laskuharjoitus 1

Kojemeteorologia (53695) Laskuharjoitus 1 Kojemeteorologia (53695) Laskuharjoitus 1 Risto Taipale 20.9.2013 1 Tehtävä 1 Erään lämpömittarin vertailu kalibrointistandardiin antoi keskimääräiseksi eroksi standardista 0,98 C ja eron keskihajonnaksi

Lisätiedot

Raidegeometrian geodeettiset mittaukset osana radan elinkaarta

Raidegeometrian geodeettiset mittaukset osana radan elinkaarta Raidegeometrian geodeettiset mittaukset osana radan elinkaarta Suunnittelija (Maanmittaus DI) 24.1.2018 Raidegeometrian geodeettisen mittaukset osana radan elinkaarta Raidegeometrian geodeettisilla mittauksilla

Lisätiedot

MAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5

Lisätiedot

JUHTA - Julkisen hallinnon tietohallinnon neuvottelukunta

JUHTA - Julkisen hallinnon tietohallinnon neuvottelukunta JHS 197 EUREF-FIN -koordinaattijärjestelmät, niihin liittyvät muunnokset ja karttalehtijako Liite 6: EUREF-FIN:n ja KKJ:n välinen kolmiulotteinen yhdenmuotoisuusmuunnos ja sen tarkkuus Versio: 1.0 / 3.2.2016

Lisätiedot

Kahden suoran leikkauspiste ja välinen kulma (suoraparvia)

Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Piste x 0, y 0 on suoralla, jos sen koordinaatit toteuttavat suoran yhtälön. Esimerkki Olkoon suora 2x + y + 8 = 0 y = 2x 8. Piste 5,2 ei ole

Lisätiedot

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta: LASKUHARJOITUS 1 VALAISIMIEN OPTIIKKA Tehtävä 1 Pistemäinen valonlähde (Φ = 1000 lm, valokappaleen luminanssi L = 2500 kcd/m 2 ) sijoitetaan 15 cm suuruisen pyörähdysparaboloidin muotoisen peiliheijastimen

Lisätiedot

Seuraavassa taulukossa on annettu mittojen määritelmät ja sijoitettu luvut. = 40% = 67% 6 = 0.06% = 99.92% 6+2 = 0.

Seuraavassa taulukossa on annettu mittojen määritelmät ja sijoitettu luvut. = 40% = 67% 6 = 0.06% = 99.92% 6+2 = 0. T-6.28 Luonnollisen kielen tilastollinen käsittely Vastaukset, ti 7.2.200, 8:30-0:00 Tiedon haku, Versio.0. Muutetaan tehtävässä annettu taulukko sellaiseen muotoon, joka paremmin sopii ensimmäisten mittojen

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)

Lisätiedot

Luento 10: Optinen 3-D mittaus ja laserkeilaus

Luento 10: Optinen 3-D mittaus ja laserkeilaus Maa-57.301 Fotogrammetrian yleiskurssi Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 (P. Rönnholm / H. Haggrén, 19.10.2004) Luento 10: Optinen 3-D mittaus ja laserkeilaus AIHEITA Optinen 3-D digitointi Etäisyydenmittaus

Lisätiedot

Radiotekniikan sovelluksia

Radiotekniikan sovelluksia Poutanen: GPS-paikanmääritys sivut 72 90 Kai Hahtokari 11.2.2002 Konventionaalinen inertiaalijärjestelmä (CIS) Järjestelmä, jossa z - akseli osoittaa maapallon impulssimomenttivektorin suuntaan standardiepookkina

Lisätiedot

Virhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus.

Virhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhearviointi Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhelajit A. Tilastolliset virheet= satunnaisvirheet, joita voi arvioida tilastollisin menetelmin B. Systemaattiset virheet = virheet, joita

Lisätiedot

Luento 4: Kuvien geometrinen tulkinta

Luento 4: Kuvien geometrinen tulkinta Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 Luento 4: Kuvien geometrinen tulkinta AIHEITA Muunnokset informaatiokanavassa Geometrisen tulkinnan vaihtoehdot Mittakaava

Lisätiedot

Moniulotteisia todennäköisyysjakaumia

Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

Ohjeita fysiikan ylioppilaskirjoituksiin

Ohjeita fysiikan ylioppilaskirjoituksiin Ohjeita fysiikan ylioppilaskirjoituksiin Kari Eloranta 2016 Jyväskylän Lyseon lukio 11. tammikuuta 2016 Kokeen rakenne Fysiikan kokeessa on 13 tehtävää, joista vastataan kahdeksaan. Tehtävät 12 ja 13 ovat

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Mittalaitteiden staattiset ominaisuudet Mittalaitteita kuvaavat tunnusluvut voidaan jakaa kahteen luokkaan Staattisiin

Lisätiedot

Luento 4 Kolmiulotteiset kuvat. fotogrammetriaan ja kaukokartoitukseen

Luento 4 Kolmiulotteiset kuvat. fotogrammetriaan ja kaukokartoitukseen Luento 4 Kolmiulotteiset kuvat 1 Kuvan kolmiulotteisuus 2 Stereokuva 3 Aiheita Parallaksi. Stereoskopia. Stereoskooppinen näkeminen. Stereomallin kokonaisplastiikka. Stereokuvaus. Dokumentointi stereodiakuvin.

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 4

Inversio-ongelmien laskennallinen peruskurssi Luento 4 Inversio-ongelmien laskennallinen peruskurssi Luento 4 Kevät 20 Regularisointi Eräs keino yrittää ratkaista (likimääräisesti) huonosti asetettuja ongelmia on regularisaatio. Regularisoinnissa ongelmaa

Lisätiedot

Harjoitus 7: NCSS - Tilastollinen analyysi

Harjoitus 7: NCSS - Tilastollinen analyysi Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen

Lisätiedot

Vastepintamenetelmä. Kuusinen/Heliövaara 1

Vastepintamenetelmä. Kuusinen/Heliövaara 1 Vastepintamenetelmä Kuusinen/Heliövaara 1 Vastepintamenetelmä Vastepintamenetelmässä pyritään vasteen riippuvuutta siihen vaikuttavista tekijöistä approksimoimaan tekijöiden polynomimuotoisella funktiolla,

Lisätiedot

Vanhankaupunginkosken ultraäänikuvaukset Simsonar Oy Pertti Paakkolanvaara

Vanhankaupunginkosken ultraäänikuvaukset Simsonar Oy Pertti Paakkolanvaara Vanhankaupunginkosken ultraäänikuvaukset 15.7. 14.11.2014 Simsonar Oy Pertti Paakkolanvaara Avaintulokset 2500 2000 Ylös vaellus pituusluokittain: 1500 1000 500 0 35-45 cm 45-60 cm 60-70 cm >70 cm 120

Lisätiedot

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011 1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan

Lisätiedot

Harha mallin arvioinnissa

Harha mallin arvioinnissa Esitelmä 12 Antti Toppila sivu 1/18 Optimointiopin seminaari Syksy 2010 Harha mallin arvioinnissa Antti Toppila 13.10.2010 Esitelmä 12 Antti Toppila sivu 2/18 Optimointiopin seminaari Syksy 2010 Sisältö

Lisätiedot

ja J r ovat vektoreita ja että niiden tulee olla otettu saman pyörimisakselin suhteen. Massapisteen hitausmomentti on

ja J r ovat vektoreita ja että niiden tulee olla otettu saman pyörimisakselin suhteen. Massapisteen hitausmomentti on FYSA210 / K1 HITAUSMOMENTTI Työn tavoitteena on opetella määrittämään kappaleen hitausmomentti kappaletta pyörittämällä ja samalla havainnollistaa kitkan vaikutusta. Massapisteinä toimivat keskipisteestään

Lisätiedot

JAKSO 2 KANTA JA KOORDINAATIT

JAKSO 2 KANTA JA KOORDINAATIT JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause

Lisätiedot

Erikoistekniikoita. Moiré - shadow-moiré - projection-moiré. Rasterifotogrammetria - yhden juovan menetelmä - monen juovan menetelmä

Erikoistekniikoita. Moiré - shadow-moiré - projection-moiré. Rasterifotogrammetria - yhden juovan menetelmä - monen juovan menetelmä Erikoistekniikoita Moiré - shadow-moiré - projection-moiré Rasterifotogrammetria - yhden juovan menetelmä - monen juovan menetelmä Tomografia - periaate Hologrammetria - periaate Motografia Moiré-tekniikka

Lisätiedot

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1 Työ 21 Valon käyttäytyminen rajapinnoilla Työvuoro 40 pari 1 Tero Marttila Joel Pirttimaa TLT 78949E EST 78997S Selostuksen laati Tero Marttila Mittaukset suoritettu 12.11.2012 Selostus palautettu 19.11.2012

Lisätiedot

Materiaali on lineaarinen, jos konstitutiiviset yhtälöt ovat jännitys- ja muodonmuutostilan suureiden välisiä lineaarisia yhtälöitä.

Materiaali on lineaarinen, jos konstitutiiviset yhtälöt ovat jännitys- ja muodonmuutostilan suureiden välisiä lineaarisia yhtälöitä. JÄNNITYS-JAMUODONMUUTOSTILANYHTYS Materiaalimalleista Jännitys- ja muodonmuutostila ovat kytkennässä toisiinsa ja kytkennän antavia yhtälöitä sanotaan materiaaliyhtälöiksi eli konstitutiivisiksi yhtälöiksi.

Lisätiedot

Työ 2324B 4h. VALON KULKU AINEESSA

Työ 2324B 4h. VALON KULKU AINEESSA TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/5 Työ 2324B 4h. VALON KULKU AINEESSA TYÖN TAVOITE Työssä perehdytään optisiin ilmiöihin tutkimalla valon kulkua linssisysteemeissä ja prismassa. Tavoitteena on saada

Lisätiedot

ASUINKERROSTALON ÄÄNITEKNISEN LAADUN ARVIOINTI. Mikko Kylliäinen

ASUINKERROSTALON ÄÄNITEKNISEN LAADUN ARVIOINTI. Mikko Kylliäinen ASUINKERROSTALON ÄÄNITEKNISEN LAADUN ARVIOINTI Mikko Kylliäinen Insinööritoimisto Heikki Helimäki Oy Dagmarinkatu 8 B 18, 00100 Helsinki kylliainen@kotiposti.net 1 JOHDANTO Suomen rakentamismääräyskokoelman

Lisätiedot

Luento 3 Kuvaus- ja mittauskalusto. erikoissovellukset

Luento 3 Kuvaus- ja mittauskalusto. erikoissovellukset Luento 3 Kuvaus- ja mittauskalusto 1 Aiheita Mittakamerat Digitaaliset kamerat Komparaattorit Ohjelmistot 2 Photogrammetry 1907 27 stations 111 photographs 7 geodetic control points 3 Photogrammetric documentation

Lisätiedot

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan

Lisätiedot

3.6 Su-estimaattorien asymptotiikka

3.6 Su-estimaattorien asymptotiikka 3.6 Su-estimaattorien asymptotiikka su-estimaattorit ovat usein olleet puutteellisia : ne ovat usein harhaisia ja eikä ne välttämättä ole täystehokkaita asymptoottisilta ominaisuuksiltaan ne ovat yleensä

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

Luento 3: 3D katselu. Sisältö

Luento 3: 3D katselu. Sisältö Tietokonegrafiikan perusteet T-.43 3 op Luento 3: 3D katselu Lauri Savioja Janne Kontkanen /27 3D katselu / Sisältö Kertaus: koordinaattimuunnokset ja homogeeniset koordinaatit Näkymänmuodostus Kameran

Lisätiedot

Suorakulmainen kolmio

Suorakulmainen kolmio Suorakulmainen kolmio 1. Määritä terävä kulma α, β ja γ, kun sinα = 0,5782, cos β = 0,745 ja tanγ = 1,222. π 2. Määritä trigonometristen funktioiden sini, kosini ja tangentti, kun kulma α = ja 3 β = 73,2

Lisätiedot

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme? TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia: Mitä

Lisätiedot

Deformoituvan metallirakenteen fotogrammetrinen muodonmuutosmittaus

Deformoituvan metallirakenteen fotogrammetrinen muodonmuutosmittaus Deformoituvan metallirakenteen fotogrammetrinen muodonmuutosmittaus Diplomityö, joka on jätetty opinnäytteenä tarkastettavaksi diplomi-insinöörin tutkintoa varten. Espoo, huhtikuu 2015 Tekniikan kandidaatti

Lisätiedot

Betonin suhteellisen kosteuden mittaus

Betonin suhteellisen kosteuden mittaus Betonin suhteellisen kosteuden mittaus 1. BETONIN SUHTEELLISEN KOSTEUDEN TARKOITUS 2. KOHTEEN LÄHTÖTIEDOT 3. MITTAUSSUUNNITELMA 4. LAITTEET 4.1 Mittalaite 4.2 Mittalaitteiden tarkastus ja kalibrointi 5.

Lisätiedot

Osoita, että kaikki paraabelit ovat yhdenmuotoisia etsimällä skaalauskuvaus, joka vie paraabelin y = ax 2 paraabelille y = bx 2. VASTAUS: , b = 2 2

Osoita, että kaikki paraabelit ovat yhdenmuotoisia etsimällä skaalauskuvaus, joka vie paraabelin y = ax 2 paraabelille y = bx 2. VASTAUS: , b = 2 2 8. Geometriset kuvaukset 8.1. Euklidiset kuvaukset 344. Esitä muodossa x = Ax + b se avaruuden E 3 peilauskuvaus, jonka symmetriatasona on x 1 3x + x 3 = 6. A = 1 3 6 6 3, b = 1 1 18. 3 6 6 345. Tason

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (005) 1 Moniulotteisia todennäköisyysjakaumia Multinomijakauma Kaksiulotteinen normaalijakauma TKK (c) Ilkka

Lisätiedot

Mekanismisynteesi. Kari Tammi, Tommi Lintilä (Janne Ojalan kalvojen pohjalta)

Mekanismisynteesi. Kari Tammi, Tommi Lintilä (Janne Ojalan kalvojen pohjalta) Mekanismisynteesi Kari Tammi, Tommi Lintilä (Janne Ojalan kalvojen pohjalta) 1 Sisältö Synteesin ja analyysin erot Mekanismisynteesin vaiheita Mekanismin konseptisuunnittelu Tietokoneavusteinen mitoitus

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

Maa-57.1030 Fotogrammetrian perusteet

Maa-57.1030 Fotogrammetrian perusteet Maa-57.1030 Fotogrammetrian perusteet Luento 8 Kartoitussovellukset Petri Rönnholm/Henrik Haggrén Mitä fotogrammetrisella kartoituksella tuotetaan? 3D koordinaatteja kohteesta Maaston korkeusmalli Topograafiset

Lisätiedot

Pieksämäen kaupunki, Euref-koordinaatistoon ja N2000 korkeusjärjestelmään siirtyminen

Pieksämäen kaupunki, Euref-koordinaatistoon ja N2000 korkeusjärjestelmään siirtyminen Pieksämäen kaupunki, Euref-koordinaatistoon ja N2000 korkeusjärjestelmään siirtyminen Mittausten laadun tarkastus ja muunnoskertoimien laskenta Kyösti Laamanen 2.0 4.10.2013 Prosito 1 (9) SISÄLTÖ 1 YLEISTÄ...

Lisätiedot

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Estimointi. Vilkkumaa / Kuusinen 1

Estimointi. Vilkkumaa / Kuusinen 1 Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman

Lisätiedot

Luento 4: Kolmiointihavainnot

Luento 4: Kolmiointihavainnot Maa-57.220 Fotogrammetrinen kartoitus Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 Luento 4: Kolmiointihavainnot Luento 4: Kolmiointihavainnot Reconstruction procedure Kuvahavainnot Kollineaarisuusyhtälö

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

Motocrosspyörien melupäästömittaukset

Motocrosspyörien melupäästömittaukset Suomen Moottoriliitto ry. Juha Korhonen Jussi Kurikka-Oja Meluselvitysraportti 30.9.2014 30.9.2014 1 (8) SISÄLTÖ 1 LÄHTÖKOHDAT... 2 2 MELUPÄÄSTÖMITTAUKSET... 2 2.1 Mittausteoriaa... 2 2.2 Mittaustoiminta...

Lisätiedot

7.4 Fotometria CCD kameralla

7.4 Fotometria CCD kameralla 7.4 Fotometria CCD kameralla Yleisin CCDn käyttötapa Yleensä CCDn edessä käytetään aina jotain suodatinta, jolloin kuvasta saadaan siistimpi valosaaste UV:n ja IR:n interferenssikuviot ilmakehän dispersion

Lisätiedot

Monikulmiot 1/5 Sisältö ESITIEDOT: kolmio

Monikulmiot 1/5 Sisältö ESITIEDOT: kolmio Monikulmiot 1/5 Sisältö Monikulmio Monikulmioksi kutsutaan tasokuviota, jota rajaa perättäisten janojen muodostama monikulmion piiri. Janat ovat monikulmion sivuja, niiden päätepisteet monikulmion kärkipisteitä.

Lisätiedot

Tilastollisen analyysin perusteet Luento 4: Testi suhteelliselle osuudelle

Tilastollisen analyysin perusteet Luento 4: Testi suhteelliselle osuudelle Tilastollisen analyysin perusteet Luento 4: Sisältö Testiä suhteelliselle voidaan käyttää esimerkiksi tilanteessa, jossa tarkastellaan viallisten tuotteiden osuutta tuotantoprosessissa. Tilanne palautuu

Lisätiedot

Leica ScanStation 2 Poikkeuksellisen nopea, uskomattoman joustava

Leica ScanStation 2 Poikkeuksellisen nopea, uskomattoman joustava Leica ScanStation 2 Poikkeuksellisen nopea, uskomattoman joustava Leica ScanStation 2 Laserkeilainten joustavuuden ja nopeuden uusi taso 10-kertainen maksimimittausnopeuden kasvu ja takymetreistä tuttu

Lisätiedot

Maanmittauspäivät 2014 Seinäjoki

Maanmittauspäivät 2014 Seinäjoki Maanmittauspäivät 2014 Seinäjoki Parempaa tarkkuutta satelliittimittauksille EUREF/N2000 - järjestelmissä Ympäristösi parhaat tekijät 2 EUREF koordinaattijärjestelmän käyttöön otto on Suomessa sujunut

Lisätiedot

Oikeanlaisten virtapihtien valinta Aloita vastaamalla seuraaviin kysymyksiin löytääksesi oikeantyyppiset virtapihdit haluamaasi käyttökohteeseen.

Oikeanlaisten virtapihtien valinta Aloita vastaamalla seuraaviin kysymyksiin löytääksesi oikeantyyppiset virtapihdit haluamaasi käyttökohteeseen. Oikeanlaisten virtapihtien valinta Aloita vastaamalla seuraaviin kysymyksiin löytääksesi oikeantyyppiset virtapihdit haluamaasi käyttökohteeseen. 1. Tuletko mittaamaan AC tai DC -virtaa? (DC -pihdit luokitellaan

Lisätiedot

Lauri Korhonen. Kärkihankkeen latvusmittaukset

Lauri Korhonen. Kärkihankkeen latvusmittaukset Lauri Korhonen Kärkihankkeen latvusmittaukset Latvuspeittävyys ( canopy cover ) Väljästi määriteltynä: prosenttiosuus jonka latvusto peittää maanpinnasta Tarkasti määritettynä*: se osuus määräalasta, jonka

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit. A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi Tähtitieteen perusteet, harjoitus 2 Yleisiä huomioita: Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi aurinkokunnan etäisyyksille kannattaa usein

Lisätiedot

Luento 2: Kuvakoordinaattien mittaus

Luento 2: Kuvakoordinaattien mittaus Maa-57.301 Fotogrammetrian yleiskurssi (P. Rönnholm / H. Haggrén, 14.9.2005) Luento 2: Kuvakoordinaattien mittaus Mitä pitäisi oppia? Muunnokset informaatiokanavassa (osin kertausta) Erotella kuvaan ja

Lisätiedot

ELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ

ELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ FYSP105 /1 ELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ 1 Johdanto Työssä tutkitaan elektronin liikettä homogeenisessa magneettikentässä ja määritetään elektronin ominaisvaraus e/m. Tulosten analyysissa tulee kiinnittää

Lisätiedot