Reaalianalyysin kehittyminen. Pro Gradu Miika Polso Matemaattisten tieteiden laitos Oulun yliopisto

Koko: px
Aloita esitys sivulta:

Download "Reaalianalyysin kehittyminen. Pro Gradu Miika Polso Matemaattisten tieteiden laitos Oulun yliopisto"

Transkriptio

1 Reaalianalyysin kehittyminen Pro Gradu Miika Polso Matemaattisten tieteiden laitos Oulun yliopisto 14. toukokuuta 2009

2 Sisällysluettelo 1 Johdanto 3 2 Varhaisen ajan analyysi Eudoksos Knidoslainen ja ekshaustiomenetelmä Arkhimedes Syrakusalainen Kehityksen taantuminen 12 4 Analyysin uusi nousu 1600-luvulla Bonaventura Cavalieri Pierre de Fermat Isaac Newton Gottfried Leibniz Valistusajan matematiikka 28 1

3 5.1 Leonhard Euler Analyysistä tulee täsmällistä 1800-luvulla Carl Friedrich Gauss Fourier-sarja Augustin-Louis Cauchy Bernhard Bolzano Riemannin integraali Karl Weierstrass Moderni reaalianalyysi Mitta- ja integraaliteoria

4 Luku 1 Johdanto Reaalianalyysin tutkimuskohteita ovat esimerkiksi reaaliarvoisten funktioiden derivaatat ja integraalit, raja-arvo, potenssisarjat ja mittateoria. Tässä matematiikan historiaa tutkivassa työssä käydään läpi keskeisiä ajanjaksoja, henkilöitä ja heidän saavutuksiaan, jotka liittyvät reaalianalyysin kehittymiseen kohti nykyistä formaalia muotoa. Useassa kohtaa tutkielmassa on historiallista aineistoa lähestytty modernein merkinnöin. Ei ole syitä palata aiemmin käytössä olleisiin merkintätapoihin, ja onkin tehokkaampaa esittää asiasisältö paremmin ymmärretyssä kieliasussa. Yleisesti ottaen taustatietojen ja yleisen juonen seuraamista on tutkittu lähteestä [1], ja tarkennuksia tehty tarvittaessa lähteestä [2]. Lauseiden todistuksissa on hyödynnetty molempien lähteiden [1] ja [2] tietoja, joskin nyt ensisijainen lähde on yleisesti ollut lähde [2]. Muut viittaukset löytyvät tekstin lomasta. 3

5 Luku 2 Varhaisen ajan analyysi Taustatilanne Kreikkalainen matematiikka syntyi joonialaisen ja pythagoralaisen koulukuntien ympärille. Näiden koulukuntien tärkeimmät edustajat, Thales ja Pythagoras vaikuttivat kuudennella vuosisadalla ennen ajanlaskumme alkua. Historiallisesti he ovat kiistanalaisia henkilöitä, legendoihin kiedottuja salaperäisiä hahmoja. Thales oli käytännön mies, mutta Pythagoras oli mystikon maineessa. Pythagoralaisten pidetäänkin käynnistäneen uudenlaiseen matematiikkaan painottavan kulttuurin. Heille matematiikka liittyi läheisemmin viisauden rakkauteen kuin käytännön elämän tarpeisiin. Tämä asenne on jatkunut muodossa tai toisessa aina nykyaikaamme asti. Vuonna 427 ekr syntyi filosofi Platon. Matemaattisia lähteitä ja asiakirjoja ei ole juuri säilynyt Platonia edeltävältä ajalta, ei siis Pythagoraankaan ajalta. Asiakirjojen sijaan pythagoralaisten ansiot ovat välittyneet perimätietona. Platon oli Sokrateen kuuluisin oppilas ja Aristoteleen opettaja. Vaikka Sokrateen vaikutus matematiikan kehittymiseen oli olematon, Platonista tuli 4

6 300-luvun ekr matematiikan innoittaja. Platon ei itse yltänyt suuriin matemaattisiin tuloksiin, mutta hänen työnsä merkitys tuli Ateenaan perustamansa akatemian kautta. 2.1 Eudoksos Knidoslainen ja ekshaustiomenetelmä Akatemian suurin matemaatikko Eudoksos Knidoslainen todisti lemman, joka tunnetaan nykyään myös jatkuvuusaksiooman nimellä, ja joka on kreikkalaisten integraalilaskennan vastineen, ekshaustiomenetelmän perusta. Määritelmä 2.1. (Jatkuvuusaksiooma). Kun kahdella annetulla suureella on suhde (eli molemmat ovat nollasta eriäviä), toisella on monikerta, joka on toista suurempi. Määritelmä 2.2. (Ekshaustio-ominaisuus). Jos annetusta suureesta vähennetään vähintään sen puolikas ja jäljelle jääneestä osasta vähennetään taas vähintään sen puolikas ja jos tätä vähennysprosessia jatketaan, päädytään lopulta suureeseen, joka on pienempi kuin mikä tahansa annettu samankaltainen suure. Modernisti määritelmä 2.2 voidaan esittää määritelmän 2.3 muodossa. Määritelmä 2.3. Olkoon M annettu suure, ɛ samanlainen ennalta määrätty luku ja suhteelle r on voimassa 1 r 1. Tällöin on olemassa sellainen 2 positiivinen kokonaisluku N, että M(1 r) n < ɛ kaikille positiivisille kokonaisluvuille n > N. Siis lim M(1 n r)n = 0. Kreikkalaiset käyttivät tätä ominaisuutta käyräviivaisten kuvioiden aloja ja tilavuuksia koskevien teoreemojen todistamiseen. Vaikka Eudoksoksen kaikki 5

7 työt ovat hävinneet aikojen saatossa, on olemassa viitteitä siitä, että juuri hän kehitti ekshaustiomenetelmän. Sen ansiosta Eudoksosta voidaan pitää integraalilaskennan käynnistäjänä. Lause 2.4. Ympyröiden alat suhtautuvat toisiinsa kuin niiden halkaisijoiden neliöt. Todistus. Olkoot ympyrät c ja C, niiden halkaisijat d ja D ja alat a ja A. On siis todistettava, että a = d2. Käytetään epäsuoraa todistusta ja osoitetaan, A D 2 että vaihtoehdot a < d2 ja a > d2 eivät ole tosia. A D 2 A D 2 Oletetaan aluksi, että a > d2. On olemassa sellainen luku a < a, että A D 2 a = d2. Olkoon a a ennalta annettu luku ɛ > 0. Ympyröiden c ja C sisään A D 2 piirretään säännölliset monikulmiot, joiden aloista käytetään merkintöjä p n ja P n, ja joiden sivujen lukumäärä n on yhtä suuri. Tutkitaan monikulmioiden ja ympyröiden väliin jääviä aloja (kuva 2.1). Kuva 2.1: Ympyrän sisällä olevat monikulmiot Jos sivujen lukumäärä kaksinkertaistetaan, on ilmeistä, että näistä näistä kuvioiden väliin jäävistä aloista on vähennettävä yli puolet. Tästä seuraa ekshaustio-ominaisuuden mukaan, että kuvioiden väliin jääviä aloja voidaan pienentää toistuvilla monikulmioiden sivujen lukumäärän kaksinkertaistuksilla (eli antamalla luvun n kasvaa) kunnes a p n < ɛ. Koska a a = ɛ, saadaan p n > a. Eudoksos tunsi tuloksen pn P n 6 = d2 D 2, joten oletuksestamme

8 a A = d2 D 2 saadaan, että pn P n = a. Koska olemme osoittaneet, että p A n > a, niin täytyy olla P n > A. Monikulmio P n on kuitenkin ympyrän sisällä, joten edellinen päätelmä ei voi päteä. Ristiriidasta seuraa, että mahdollisuus a > d2 ei A D 2 ole tosi. Vastaavalla tavalla nähdään, että mahdollisuus a < d2 ei myöskään A D 2 voi olla tosi. Ainoaksi mahdollisuudeksi jää siis a = d2. A D 2 Huomautus. Lauseen 2.4 väite voidaan esittää myös muodossa 4a d = 4A 2 D. (2.1) 2 Kaavassa (2.1) yhtälön molemmat puolet antavat lukuarvoksi luvun π, ja nykyään tiedämme ympyröitä koskevan tuloksen A = πr 2 = π( d 2 )2 = 1 4 πd2. Kreikkalaiset eivät kuitenkaan kyenneet tekemään tätä päätelmää, koska heille yhtälö (2.1) oli alojen suhde eikä numeerinen yhtälö. Siksi luku π ei esiinny tässä yhteydessä kreikkalaisessa matematiikassa. 2.2 Arkhimedes Syrakusalainen Vaikka Aleksandria oli hellenistisen kauden matemaattisen toiminnan keskus, Arkhimedes ei asunut siellä vaan Syrakusassa. Syrakusan joutuessa Rooman ja Karthagon valtataistelun kohteeksi ja vuosina ekr Rooman piirittämäksi, Arkhimedeen kerrotaan keksineen jatkuvasti nerokkaita laitteita vihollisen kukistamiseksi: katapultteja, väkipyöriä ja koukkuja roomalaisten laivojen merestä kohottamiseksi ja murskaamiseksi. Tämä kertoo Arkhimedeen luovasta ja soveltavasta toiminnasta, ja häntä pidetäänkin matemaattisen fysiikan perustajana. Arkhimedes ei kuitenkaan arvostanut mekaanisia laitteita yhtä paljoa kuin ajattelunsa tuotteita. Hän oli kiinnostuneempi yleisistä periaatteista kuin käytännön sovelluksista. Arkhimedeen kuuluisiin töihin kuuluu lukuisia geometrisiä tuloksia, vipulaki 7

9 ja lause hydrostaattisesta nosteperiaatteesta. Jälkimmäisen keksiessään hänen kerrotaan huudahtaneen Heureka (olen keksinyt sen) ja juosseen kylvystä kotiinsa. Seuraavassa käsitellään kuitenkin niitä tuloksia, jotka selkeästi johtavat differentiaali- ja integraalilaskennan piiriin. Määritelmä 2.5 (Arkhimedeen spiraali, käyrän tangentin määrääminen). Arkhimedeen spiraali on sellaisen tasopisteen ura, joka lähtee tasaisella nopeudella liikkeelle puolisuoran päätepisteestä, kun puolisuora pyörii päätepisteensä ympäri tasaisella kulmanopeudella. Liikkuvan pisteen napakoordinaatit ajan hetkellä t ovat r = vt ja θ = ωt, joten spiraalin yhtälö on napakoordinaatistossa r = aθ, missä a = v. ω Kuva 2.2: Arkhimedeen spiraali Ajattelemalla että spiraalilla r = aθ oleva piste on kahdessa samanaikaisessa liikkeessä, koordinaatiston origosta loittonevassa tasaisessa suoraviivaisessa liikkeessä ja tasaisessa origoa kiertävässä ympyräliikkeessä, Arkhimedes näyttää löytäneen liikkeen suunnan (joka on käyrän tangentti) siten, että hän piirsi liikkeen komponenttien resultantin. Tässä ensimmäistä kertaa määritettiin käyrälle tangentti. Määritelmä 2.6. Termi konoidi tarkoittaa paraabelin pyörähdyskappaleesta, paraboloidista, leikattua segmenttiä. Lauseessa 2.7 esitetään Arkhimedeen todistus, joka on menetelmältään erittäin lähellä nykyistä integraalilaskentaa. 8

10 Lause 2.7. Konoidin ympärille asetettu lieriö on tilavuudeltaan kaksi kertaa niin suuri kuin konoidin tilavuus. Todistus. Olkoon ABC paraboloidin segmentti ja CD sen akseli (poikkileikkaus segmentistä on esitetty kuvassa 2.3). Kappaleen ympäri piirretään ympyräpohjainen lieriö (johon kuuluu poikkileikkauskuvan pisteet A, B, F ja E), jonka akseli on myös CD. Akseli jaetaan yhtäsuuriin osiin siten, että osien lukumäärä on n ja pituus h. Jakopisteiden kautta piirretään kannan suuntaiset tasot. Tasojen paraboloidista leikkaamien ympyräpohjaisten osien sisään ja ympäri piirretään kuvassa näytetyllä tavalla lieriöt. Sisään mahtuu lieriöitä (n 1) kappaletta ja ympärillä olevien lieriöiden lukumäärä on n. Olkoot lieriöiden pohjan säteet r 1, r 2, r 3,..., r n, missä r n = R. Kuva 2.3: Poikkileikkaus segmentistä Verrataan sisään ja ympäri piirrettyjen kappaleiden tilavuuksia (joista käytetään merkintöjä V (S) ja V (Y )) ison lieriön ABF E tilavuuteen (josta käytetään merkintää V (L)). V (S) V (L) = hπr2 1 + hπr hπr hπr 2 n 1 nhπr 2 = n 1 i=1 r2 i nr 2. (2.2) Paraabelin yhtälöstä seuraa, että r2 i = ih = i. Siksi yhtälö (2.2) saadaan R 2 nh n aritmeettista summaa hyväksi käyttäen muotoon n 1 i=1 r2 i nr 2 = (n 1) n 2 = (n 1) 1+(n 1) 2 n 2 = n(n 1) 2 n 2 = n 2 <

11 Vastaavasti voidaan arvioida ympäri piirretyn kappaleen tilavuutta lieriön tilavuuteen: sillä n i=1 r2 i V (Y ) V (L) = hπ nhπr < n2 2n = + n 2 2 = n 2 = n n 2 > 1 2, n(n + 1) 2 n 2 = n n 2. Ulko- ja sisäpuolelle piirrettyjen kappaleiden tilavuuksien erotus on yhtä suuri kuin kuvion ympäri piirretyn sylinterin alimman viipaleen tilavuus: πh n n 1 ri 2 πh ri 2 = πhrn 2 = πhr 2. i=1 i=1 Tästä syystä voidaan päätellä, että jakotiheyttä n kasvatettaessa, eli viipaleiden ohentuessa, ympäri ja sisään piirrettyjen kappaleiden tilavuuksien erotus saadaan annettua lukua pienemmäksi. Tällöin epäyhtälöt todistavat väitteen. V (S) < 1 V (L) 2 V (Y ) > 1 V (L) 2 Huomautus. Lauseen 2.7 todistuksessa esitetty menetelmä eroaa modernista integroinnista siinä, että se ei käytä raja-arvon käsitettä. Antiikin matemaatikot olivat hyvin lähellä sitä, mutta kukaan heistä ei määritellyt raja-arvoa. Raja-arvon määritelmän puuttumisen lisäksi puuttuivat myös yleiset laskennalliset algoritmit, joilla olisi voitu laskea pinta-aloja ja tilavuuksia. Arkhimedes aloitti uudet laskut yleensä kokonaan alusta käyttämättä aikaisemmista ja vastaavista ongelmista saatuja ratkaisuja hyväkseen. 10

12 Varhaisen kreikkalaisen analyysin puutteisiin voidaan lukea myös tangettisuorien ajatteleminen pelkästään käyrää koskettavana suorana. Tämä oli riittämätön näkemys todistamaan muutosnopeus-esityksiä. Arkhimedeen työt antoivat sysäyksen vasta 1600-luvulla kehittyneelle differentiaali- ja integraalilaskennalle. Hänen edistymisensä matemaattisten työkalujen hyödyntämisessä teki hänestä suuren maamerkin matematiikan historiaan. 11

13 Luku 3 Kehityksen taantuminen Kreikkalaisen matematiikan kulta-ajan päättymisen jälkeen reaalianalyysin kehittymisessä tulee huomattavan pitkä tauko. Suuret teoriat tulevat esiin seuraavaksi lähinnä keskiajan loppuvaihella. Keskiajalla matematiikassa loistaneet kirjoittivat arabiaksi ja elivät islamilaisessa Afrikassa ja Aasiassa, kun taas uuden ajan johtavat matemaatikot kirjoittivat latinaksi ja asuivat kristillisessä Euroopassa. Voidaan tarkentaa, että viisi suurta kulttuuria keskiajalla olivat Kiina, Intia, Arabia, Itäinen valtakunta eli Bysantti ja Läntinen valtakunta eli Rooma. Useimmat kiinnostuksen kohteet liittyivät tuolloin algebraan ja lukuteoriaan. Modernimman matematiikan alkusoittoa oli, kun käytännön miehet Simon Stevinius, Johannes Kepler ja Galileo Galilei tarvitsivat Arkhimedeen menetelmiä 1500 ja 1600-lukujen taitteessa. He kuitenkin halusivat kiertää ekshaustiomenetelmän loogiset hienoudet, josta seurasi antiikin infinitesimaalisten menetelmien muuntautuminen differentiaali- ja integraalilaskentaan. Sata vuotta ennen Newtonin ja Leibnizin julkaisuja ilmestynyt Stevinuksen Statiikka vuodelta 1586 todistaa, että kolmion painopiste on sen mediaanilla. 12

14 Luku 4 Analyysin uusi nousu 1600-luvulla 4.1 Bonaventura Cavalieri Galilein oppilaasta Cavalieristä tuli Bolognan yliopiston matematiikan professori vuonna Hän tutki ajalleen tyypillisesti geometriaa, trigonometriaa, tähtitiedettä ja optiikkaa. Cavalieri keskittyi geometrian teemaan, joka vastaa nykyisin differentiaalija integraalilaskennan lausetta a 0 x n dx = an+1 n + 1. Lauseen ilmaiseminen poikkeaa kuitenkin olennaisesti nykyisestä muodostaan. Cavalieri vertasi suunnikkaan kanssa samansuuntaisten janojen pituuksien potensseja vastaaviin janojen pituuksien potensseihin jommassa kummassa kolmiossa, jotka suunnikkaan lävistäjä muodostaa. Jakakoon lävistäjä CF suunnikkaan AF DC kahdeksi kolmioksi ja jakakoon jana HE kolmion CDF siten, että se on samansuuntainen kuin kanta CD (Kuva 4.1). 13

15 Kuva 4.1: Cavalierin suunnikas Asetetaan piste B janalle AC siten, että janat BC ja F E ovat yhtä pitkiä. Piirtämällä jana BM samansuuntaiseksi kuin jana CD, voidaan todistaa, että jana BM on yhtä pitkä kuin jana HE. Niinpä kolmioon CDF piirretyt janat, jotka ovat kannan CD suuntaisia, voidaan asettaa pareittain yhteyteen kolmion ACF vastaavien janojen kanssa. Tästä seuraa, että kolmiot ovat yhtä suuret. Koska suunnikas on kahden kolmion kannan suuntaisten janojen summa summa, on selvää, että yhden kolmion janojen pituuksien ensimmäisten potenssien summa on puolet suunnikkaan janojen pituuksien ensimmäisten potenssien summasta. Toisin sanoen a 0 x dx = a2 2. Myöhemmin Cavalieri osoitti todistukset korkeammille potensseille ja esitti vuonna 1647 yleistyksen, jonka mukaan potenssille n suhde saa muodon 1. Vaikka Ranskassa matemaatikot tunsivat myöskin tämän tuloksen, avasi n+1 Cavalierin teoreema tien moniin differentiaali- ja integraalilaskennan algoritmeihin. 14

16 4.2 Pierre de Fermat Italialaiset matemaatikot Cavalieri ja Evangelista Torricelli kuolivat molemmat vuonna Matematiikan keskukseksi muodostui selkeästi Ranska 1600-luvun toisella kolmanneksella. Johtavat matemaatikot olivat René Descartes ( ) ja Pierre de Fermat ( ), mutta merkittäviin saavutuksiin ylsivät myös Gilles Persone de Roberval ( ), Girard Desargues ( ) sekä Blaise Pascal ( ). Tästä ajanjaksosta lähtien matematiikka alkoi kehittyä ennemminkin sisäisen logiikkansa kuin taloudellisten, sosiaalisten tai teknisten paineiden alaisena. Descartes oli luultavasti matemaattisilla taidoilla mitaten aikansa kyvykkäin ajattelija, mutta sydämeltään hän ei ollut matemaatikko. Hänen työnsä geometrian ja analyyttisen geometrian parissa oli ikään kuin vain elämän erään vaiheen tulos, jonka hän tieteelle omisti. Fermat oli Descartesin ainoa kilpailija matemaattisten taitojen suhteen, mutta hänkään ei ollut ammattimatemaatikko. Analyysin puolella Fermat kehitti muotoa y = f(x) oleville käyrille menetelmän, jolla löydetään pisteet, joissa funktio saavuttaa maksimi- tai minimiarvon. Päättelyn taustalla on geometriset oivallukset, ja formaalimpi määrittely sai odottaa vielä 1600-luvun loppupuolta. Myös Fermat n tangentteja koskeva tarkastelu vastaa oleellisesti sitä, että f(a + e) f(a) lim e 0 e on käyrän kaltevuus pisteessä x = a. Tätä menetelmäänsä Fermat ei kuitenkaan selittänyt tyydyttävästi, ja se saikin kritiikkiä etenkin Descartesilta. Fermat n saavutukset analyyttisessä geometriassa ja infinitesimaalisessa analyysissä olivat vain kaksi hänen tutkimustensa suuntausta, ja merkittävää työtä Fermat teki etenkin lukuteorian saralla. Tästä esimerkkinä olkoon kiehtova ja kuuluisaksi tullut Fermat n suuri lause, jonka todistuksen esitti eng- 15

17 lantilainen Andrew Wiles vasta vuonna 1995 [3]. Fermat n kuoltua löytyi hänen sivun marginaaliin kirjoittamansa toteamus, että hänellä on nerokas todistus teoreemaan. Todistusta ei ole kuitenkaan löydetty, ja monet uskovat sen olevan virheellinen. Fermat n maksimien ja minimien löytämisen menetelmä Verrataan tietyssä pisteessä olevaa funktion arvoa f(x) sen läheisessä pisteessä saamaan arvoon f(x + e). Tavallisesti nämä arvot poikkeavat toisistaan selvästi, mutta sileän käyrän laaksoissa ja huipuissa arvojen muutosta tuskin huomaa (kuvan 4.2 vasen puoli). Kun luku e pienenee, funktioiden arvot tulevat lähemmäksi todellista yhtäsuuruutta, toisin sanoen f(x+e) f(x) 0. Jos f(x) on polynomifunktio, voidaan suorittaa jakolasku f(x + e) f(x) e 0. Kuva 4.2: Fermat n maksimien ja minimien löytämisen menetelmä Fermat ei vaatinut, että luku e olisi pieni, eikä sanonut mitään raja-arvosta luvun e lähestyessä nollaa. Hän ajatteli termit x ja x + e algebrallisesti yhtälön f(x) = c juurina (kuvan 4.2 oikea puoli). Kirjoittamalla f(x + e) = f(x), jakamalla luvulla e ja vasta sen jälkeen merkitsemällä luvun e nollaksi, Fer- 16

18 mat sai ratkaisuksi, että kaksi juurta ovat yhtä suuret, kun c = f(x) on funktion f maksimiarvo. Fermat n ajatus antaa muuttujalla hieman toisistaan poikkeavat arvot on hänen ajoistaan lähtien ollut infinitesimaalisen analyysin olennaisin osa. Myöhemmin Laplacen mielestä Fermat oli differentiaalilaskennan todellinen keksijä. Fermat keksi myös menetelmän käyrän tangentin määräämiseksi. Määritelmä 4.1. Alitangentiksi sanotaan tangentin projektiota x-akselilla. Lause 4.2. Käyrän y = f(x) alitangentti s saadaan yhtälöstä s e f(x) f(x + e) f(x). Todistus. Fermat n menetelmässä approksimoidaan, että tangentin käyrän sivuamispisteen läheisyydessä käyrällä y = f(x) oleva piste on sekä käyrällä että tangentilla. Kuva 4.3: Käyrän tangentti Niin saadaan yhdenmuotoiset kolmiot (kuva 4.3), joista saadaan suhde s + e s = k f(x). (4.1) 17

19 Ratkaisemalla alitangentti s yhtälöstä (4.1) saadaan s = e f(x) k f(x), johon sijoittamalla k f(x + e) saadaan väite. Lause 4.3. Käyrän y = f(x) tangentti f (x) saadaan yhtälöstä missä s on alitangentti. f (x) = f(x) s, Todistus. Lausetta 4.2 muokkaamalla saadaan yhtälö s f(x) f(x+e) f(x) e Kun nyt otetaan nykymerkinnöin raja-arvo e 0, saadaan s = f(x) f (x), josta f (x) = f(x) s.. Esimerkki. Olkoon f(x) = x 2. Tällöin Siis s ex 2 (x + e) 2 x 2 = x2 2x + e x2 2x = x 2, kun e 0. f (x) = f(x) s = x2 x/2 = 2x. Fermat n integraalilaskenta Fermat lla ei ollut vain menetelmää muotoa y = x m olevien käyrien tangenttien määrittämiseksi, vaan vuoden 1629 jälkeen hän keksi myös käyrien rajoittamia aloja koskevan teoreeman, saman, jonka Cavalieri julkaisi vuosina 1635 ja

20 Lause 4.4. Pisteiden x = 0 ja x = a välissä oleva käyrä y = x n ja x-akseli rajoittavat pinta-alan an+1, missä n Z, n 1 ja n 1. n+1 Todistus. Jaetaan väli [0, a] äärettömän moneen osaan siten, että jakopisteinä ovat a, ae, ae 2, ae 3,..., missä 0 < e < 1. Piirretään näistä pisteistä käyrälle kuvan 4.4 mukaiset suorakulmiot ja lasketaan niiden avulla likiarvo pintaalalle. Kuva 4.4: Fermat n integrointi Suorakulmioiden alat suurimmasta lähtien ovat a n (a ae), a n e n (ae ae 2 ), a n e 2n (ae 2 ae 3 ),..., ja ne muodostavat geometrisen sarjan a n+1 [(1 e) + (e e 2 )e n + (e 2 e 3 )e 2n...]. Järjestelemällä hakasuluissa olevia termejä, saadaan a n+1 [1 + e n+1 + e 2(n+1) ( e (1 + e n+1 + e 2(n+1) +...))] = a n+1 [(1 e) (1 + e n+1 + e 2(n+1) +...)]. Geometrisen summan kaavalla sievennettynä lauseke tulee muotoon a n+1 (1 e) 1 (en+1 ) n 1 e n+1 = a n+1 1 e 1 e n+1 (1 (en+1 ) n ). 19

21 Kun n kasvaa rajatta, termi (1 (e n+1 ) n )) lähestyy arvoa 1. Olemme siis tilanteessa a n+1 (1 e) a n+1 eli 1 e n e + e e. n Kun suure e lähestyy arvoa 1, eli kun suorakulmiot kapenevat, niiden alojen summa lähestyy käyrän rajoittamaa alaa. Merkitsemällä suorakulmioiden alojen summaan e = 1 saadaan an+1 n+1. Huomautus. Jos modernein merkinnöin halutaan laskea integraalin b a arvo, riittää, että huomaamme tämän lausekkeen vastaavan integraaleja b 0 x n dx a 0 x n dx. xn dx Huomautus. Fermat n vanhempi aikalainen Gregorius St. Vincentläinen selvitti lauseessa 4.4 olevan ongelmatapauksen n = 1. Hän osoitti, että jos x-akselilla merkitään arvosta x = a lähtien pisteet, joiden välit kasvavat jatkuvassa geometrisessä suhteessa ja jos näistä pisteistä piirretään y-akselin suuntaiset suorat hyperbelille xy = 1, käyrän peräkkäisten y-akselin suuntaisten suorien ja x-akselin väliin jäävät alat ovat yhtäsuuret. Kun siis x- akselilla jakopisteiden arvot kasvavat geometrisesti, käyrän rajoittama ala kasvaa aritmeettisesti. Niinpä Gregorius tunsi kaavan b a x 1 dx = ln b ln a vastineen. 4.3 Isaac Newton Isaac Newton syntyi joulupäivänä Lahjakkaan pojan varttuessa hänen enonsa taivutteli Isaacin Cambridgeen Aluksi kemia näytti olevan Newtonin suurin mielenkiinnon kohde, mutta hän luki myös matemaattista kirjallisuutta ja kuunteli professori Lucas Barrownin luentoja, jotka ennakoivat uutta analyyttistä struktuuria. 20

22 1660-luvun puolivälin koittaessa Newton oli saavuttanut aikansa matemaattisen tietämyksen huipun. Tästä lähtien hän kehitti itsenäisesti analyysiä, ensimmäisinä keksintöinään funktioiden ilmoittaminen päättymättöminä sarjoina. Newtonin kiinnostuksen kohteena olivat erityisesti jatkuvasti muuttuvat suureet eli fluentit ja niiden muutosnopeudet eli fluksit. Trinity College Cambridgessä oli ruton takia suurimmaksi osaksi suljettuna vuosina Tällä välin Newton teki kotonaan ajatustyötään, mistä seurasi matematiikan historian hedelmällisimpänä tunnettu kausi. Newtonin neljä suurinta keksintöä näkivät päivänvalon ensikertaa: 1. binomilause 2. differentiaali- ja integraalilaskenta 3. gravitaatiolaki ja 4. värien luonne. Newtonin ensimmäinen painettu diffrentiaali- ja integraalilaskennan esitys Philosophiae naturalis principia mathematica ilmestyi vuonna Sen alussa määritellään raja-arvo seuraavalla tavalla. Määritelmä 4.5. Suureet, ja suureiden suhteet, jotka äärellisessä ajassa konvergoivat jatkuvasti toisiaan kohti, ja jotka ennen tämän ajan loppumista ovat lähempänä toisiaan kuin yksikään annettu ero, tulevat lopulta yhtä suuriksi. Newtonin menetelmä yhtälöiden likimääräiseksi ratkaisemiseksi Newtonin teoksista De analysi ja Methodus fluxionum et serierum infitorum löytyy tehokas algoritmi funktion nollakohtien likimääräiseen ratkaisuun. 21

23 Lause 4.6 (Newtonin menetelmä). Olkoon f(x) = 0 ratkaistava yhtälö ja f : [a, b] R C n -funktio. Jos tunnetaan arvo x n väliltä (a, b), saadaan ratkaisulle tarkempi likiarvo x n+1 = x n f(x n) f (x n ). Kuva 4.5: Newtonin menetelmä Todistus. Derivaatan määritelmän mukaan funktion derivaatta pisteessä x n on sama kuin funktiolle kohtaan x n piirretyn tangentin kulmakerroin. Siispä kuvan 4.5 mukaisesti kulmakertoimeksi tulee f (x n ) = 0 f(x n) x n+1 x n eli x n+1 = x n f(x n) f (x n ). Huomautus (1). Menetelmää voidaan käyttää toistuvasti, kunnes approksimaatio saavuttaa halutun tarkkuuden. Huomautus (2). Jos f(x) on polynomi, Newtonin menetelmä on olennaisesti sama kuin kiinalais-arabialainen approksimaatio, joka tunnetaan Hornerin nimellä. Newtonin menetelmän etu on siinä, että se soveltuu myös transsendenttifunktioita sisältäviin yhtälöihin. 22

24 Newtonin ja Leibnizin tulokset Newton ei derivoinut tai integroinut ensimmäisenä, mutta hän vakiinnutti kyseisen teorian yhdeksi algoritmiksi. Samoihin aikoihin Saksassa Gottfried Leibniz kehitti vastaavasti differentiaali- ja integraalilaskentaa, ja muodostui epäselvyys siitä, kenelle kuuluu kunnia teorian muodostamisessa. Leibnizilla on julkaisemisen prioriteetti, sillä hänen tuloksensa ilmestyivät kolme vuotta ennen Principiaa. Kuitenkin pidetään melko selvänä, että Newtonin keksinnöt tapahtuivat jo 10 vuotta aiemmin - ja toisaalta Leibniz teki keksintönsä Newtonista riippumatta. Epäselvyys asiasta johti kuitenkin avoimeen riitaan. Prioriteettikiista vieraannutti brittiläiset matematiikot manner-euroopan kehityksestä 1700-luvulla. Näin Englantilainen matematiikka jäi muusta eurooppalaisesta matematiikasta jälkeen. 4.4 Gottfried Leibniz Saksalainen Lebniz ( ) kirjoittautui Leipzigin yliopistoon ollessaan 15 vuotias. Hänen laajat opintonsa olivat poikkitieteellisiä ja hän onkin yksi viimeisimmistä henkilöistä, joka on yltänyt universaaliin tietämykseen. Leibnizistä tuli vaikutusvaltainen diplomaatti, joka matkusteli paljon. Differentiaalilaskenta Leibniz ymmärsi hyvien merkintätapojen tärkeyden ajattelun apuvälineenä, ja erityisesti differentiaali- ja integraalilaskennassa hän teki erittäin onnistuneita valintoja. Esimerkiksi merkintä y dx on jäänyt meidänkin käyttöömme Leibnizin perintönä. 23

25 Vuonna 1684 Leibniz julkaisi uuden menetelmänsä maksimien ja minimien sekä tangenttien määrittämiseksi. Siinä hän esitti esimerkiksi kaavat osamäärän ja potenssien derivaatoille: d x y = y dx x dy y 2 ja dx n = nx n 1. Tulon derivointikaavan hän perustelee lauseen 4.7 mukaisesti. Lause 4.7. Tarkastellaan muuttujia x ja y. Tällöin dxy = x dy + y dx. Todistus. Muuttujien x ja y pienimmät muutokset dx ja dy ovat äärettömän pieniä. Siksi tulo dx dy voidaan jättää huomiotta ja voidaan kirjoittaa tulon xy pienimmäksi muutokseksi dxy = (x + dx)(y + dy) xy = x dy + y dx. Leibnizin muunnoskaava Kuvassa 4.6 pisteet P (x, y) ja Q(x + dx, y + dy) ovat käyrällä y = f(x), x [a, b]. Leibniz määritteli kuvasta infinitesimaalisen kolmion OP Q. Infinitesimaalinen kaari ds kulkee käyrällä pisteiden P ja Q välillä ja määrittää tangenttisuoran, joka leikkaa y-akselin pisteessä T (0, z). Jana OS on tangentille piirretyllä origon kautta kulkevalla normaalilla ja sen pituus on p. Lause 4.8 (Leibnizin muunnoskaava). Välillä [a, b] määritellyille jatkuville funktioille y = f(x) ja z = g(x) on voimassa yhtälö b y dx = 1 ( b ) [xy] b a + z dx. (4.2) 2 a a Todistus. Kuvan 4.6 tangenttisuoralle pätee yhtälö y = x dy + z eli z = y xdy dx dx. (4.3) 24

26 Kuva 4.6: Infinitesimaalinen kolmio OP Q. Yhdenmuotoisten kolmioiden OST ja P RQ vastinsivujen suhteista saadaan verranto dx p = ds z p ds = z dx. Täten kolmion OP Q alaksi saadaan a(op Q) = 1p ds = 1 z dx. Jos lasketaan 2 2 yhteen kaikki ne alat, jotka muodostuvat vastaavalla tavalla määritetyistä infinitesimaalisista kolmioista käyrän pisteiden P ja Q välillä, saadaan integraali a(oab) = 1 2 b a z dx, (4.4) missä funktio z = g(x) on määritelty yhtälön 4.3 mukaisesti. Määritetään sitten integraali b y dx. Olkoon piste C = (a, 0) ja piste a 25

27 D = (b, 0). Kysytty integraali saadaan laskemalla yhteen kolmion OBD ja sektorin OAB alat ja vähentämällä tästä kolmion OBC ala. b a y dx = 1 2 bf(b) 1 2 af(a) + a(oab) = 1 2 [xy]b a + a(aob), johon sijoittamalla tulos 4.4 päädytään väitteeseen. Huomautus. Sijoittamalla muunnoskaavaan yhtälö 4.3 saadaan osittaisintegroinnin kaava b a y dx = [xy] b a f(b) f(a) x dy. Leibniz määritteli muunnoskaavan avulla päättymättömiä sarjoja. Seuraava kuuluisa esimerkki kantaa hänen nimeään. Esimerkki. Kuvan 4.7 a-kohdan yksikköympyrän y-akselin yläpuolinen osa noudattaa funktiota y = 2x x 2. Derivointi muuttujan x suhteen antaa tulokseksi joten nyt dy dx = z = y x 1 x y 1 x = 1 x, 2x x 2 y x = 2 x eli x = 2z2 1 + z 2. Nyt neljännesympyrän pinta-ala voidaan laskea muunnoskaavan avulla. 26

28 Kuva 4.7: Esimerkkitehtävä. 1 π 4 = y dx Käytetään muunnoskaavaa 0 = 1 ( [x 1 ) 2x x 2 2 ] z dx 0 = 1 [ ( 1 )] x dz (Kuva 4.7 b-kohta.) 2 = 1 = 1 = z 2 dz 1 + z 2 0 z 2 (1 z 2 + z 4...) dz [ 1 3 z3 1 5 z z7... = ]

29 Luku 5 Valistusajan matematiikka 1700-luvulla oli syytä selkeyttää differentiaali- ja integraalilaskennan teoriaa. Esimerkiksi ranskalainen matemaatikko Michel Rolle kuului Acadèmie des Sciencesin ryhmään, joka kritisoi differentiaali- ja integraalilaskennan teoriaa. Hän kuvasi differentiaali- ja integraalilaskennan nerokkaiden virheiden kokoelmaksi. Pierre Varignon oli Leibnizin kanssa kirjeenvaihdossa ja antoi vastauksen Rollelle. Keskeisimpiä ongelmakohtia oli differenssin ymmärtäminen hyvin pieneksi mutta kaikesta huolimatta vakiosuureeksi. Varignon selitti että differentiaali muuttuu eikä se ole vakio, ja että uuden analyysin perusta on oleellisesti aukoton. Vastustuksen romahdettua analyysi kehittyi nopeasti Manner-Euroopassa. Valistusajalla Bernoullien suvusta nousi esiin runsaasti lahjakkaita matemaatikkoja. Leibnizin seuraajiksi tulivat sveitsiläiset veljekset Jakob ja Johann Bernoulli. Heistä vanhempi, Jakob, ehdotti integraali -sanan käyttöä Leibnizille ja hän huomautti muun muassa, että derivaatta ei välttämättä häviä funktion maksimi- tai minimipisteessä, vaan se voi saada myös äärettömän arvon tai olla määrittämätöntä muotoa. 28

30 Johann Bernoulli opetti ranskalaiselle G. F. A. L Hospitalille Leibnizin kehittämän analyysin salaisuuksia. Markiisi L Hospital teki sopimuksen Bernoullin kanssa, jonka mukaan Johann Bernoulli lähettäisi hänelle säännöllistä palkkaa vastaan matemaattiset keksintönsä. Tästä johtuen eräs Bernoullin keskeisimmistä keksinnöistä kantaa nimeä L Hospitalin sääntö. Lause 5.1 (L Hospitalin sääntö). Olkoot funktiot f(x) ja g(x) differentioi- f tuvia pisteessä x = a. Jos f(a) = g(a) = 0 ja lim (x) x a g (x) niin f(x) lim x a g(x) = lim f (x) x a g (x). on olemassa, Todistus. Kun x a ja x on riittävän lähellä pistettä a, niin Cauchyn väliarvolauseen nojalla pisteiden a ja x välistä löytyy sellainen t x, että (g(x) g(a))f (t x ) = (f(x) f(a))g (t x ). f Koska lim (x) x a on määritelty, niin g (x) 0, kun x a ja x a on g (x) riittävän pieni. Erityisesti g (t x ) 0, kun erotus x a on riittävän pieni. Koska f(a) = g(a) = 0 ja g(x) 0, saadaan Kun x a, niin myös t x a ja siten f(x) g(x) = f (t x ) g (t x ). f(x) lim x a g(x) = lim f (t x ) x a g (t x ). Huomautus. L Hospitalin verbaalisen argumentoinnin seurauksena saadaan väite kun f(a) = g(a) = 0. [4] f(a + dx) g(a + dx) = f(a) + f (a)dx g(a) + g (a)dx = f (a)dx g (a)dx = f (a) g (a), 29

jakokulmassa x 4 x 8 x 3x

jakokulmassa x 4 x 8 x 3x Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:

Lisätiedot

Esimerkki kaikkialla jatkuvasta muttei missään derivoituvasta funktiosta

Esimerkki kaikkialla jatkuvasta muttei missään derivoituvasta funktiosta Esimerkki kaikkialla jatkuvasta muttei missään derivoituvasta funktiosta Seminaariaine Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2004 Matemaattista ja historiallista taustaa Tämän kappaleen

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y.

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y. ANALYYSIN TEORIA A Kaikki lauseet eivät ole muotoiltu samalla tavalla kuin luennolla. Ilmoita virheistä yms osoitteeseen mikko.kangasmaki@uta. (jos et ole varma, onko kyseessä virhe, niin ilmoita mieluummin).

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

Outoja funktioita. 0 < x x 0 < δ ε f(x) a < ε.

Outoja funktioita. 0 < x x 0 < δ ε f(x) a < ε. Outoja funktioita Differentiaalilaskentaa harjoitettiin miltei 200 vuotta ennen kuin sen perustana olevat reaaliluvut sekä funktio ja sen raja-arvo määriteltiin täsmällisesti turvautumatta geometriseen

Lisätiedot

Äärettömistä joukoista

Äärettömistä joukoista Äärettömistä joukoista Markku Halmetoja Mistä tietäisit, että sinulla on yhtä paljon sormia ja varpaita, jos et osaisi laskea niitä? Tiettyä voimisteluliikettä tehdessäsi huomaisit, että jokaista sormea

Lisätiedot

Kompleksiluvut 1/6 Sisältö ESITIEDOT: reaaliluvut

Kompleksiluvut 1/6 Sisältö ESITIEDOT: reaaliluvut Kompleksiluvut 1/6 Sisältö Kompleksitaso Lukukäsitteen vaiheittainen laajennus johtaa luonnollisista luvuista kokonaislukujen ja rationaalilukujen kautta reaalilukuihin. Jokaisessa vaiheessa ratkeavien

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA7 Derivaatta Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Derivaatta (MAA7) Pikatesti ja kertauskokeet Tehtävien ratkaisut Pikatesti

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

Kansainväliset matematiikkaolympialaiset 2008

Kansainväliset matematiikkaolympialaiset 2008 Kansainväliset matematiikkaolympialaiset 2008 Tehtävät ja ratkaisuhahmotelmat 1. Teräväkulmaisen kolmion ABC korkeusjanojen leikkauspiste on H. Pisteen H kautta kulkeva ympyrä, jonka keskipiste on sivun

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

Luentoesimerkki: Riemannin integraali

Luentoesimerkki: Riemannin integraali Luentoesimerkki: Riemannin integraali Heikki Apiola, "New perpectives "-esitykseen lievästi muokattu Kurssi: Informaatioverkostot, keväällä Tässä (4..) käytetään "worksheet-modea", uudempaa "document mode"

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,

Lisätiedot

2.2 Neliöjuuri ja sitä koskevat laskusäännöt

2.2 Neliöjuuri ja sitä koskevat laskusäännöt . Neliöjuuri ja sitä koskevat laskusäännöt MÄÄRITELMÄ 3: Lukua b sanotaan luvun a neliöjuureksi, merkitään a b, jos b täyttää kaksi ehtoa: 1o b > 0 o b a Esim.1 Määritä a) 64 b) 0 c) 36 a) Luvun 64 neliöjuuri

Lisätiedot

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13 Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.014 klo 10 13 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt: x + a) 3 x + 1 > 0 c) x x + 1 = 1 x 3 4 b) e x + e x 3

Lisätiedot

Funktion derivoituvuus pisteessä

Funktion derivoituvuus pisteessä Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Mielikuva: Funktio f on derivoituva x = a, jos sen kuvaaja (xy-tasossa) pisteen (a, f(a))

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella.

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella. Tasogeometria Tasogeometrian käsitteitä ja osia Suora on äärettömän pitkä. A ja B ovat suoralla olevia pisteitä. Piste P on suoran ulkopuolella. Jana on geometriassa kahden pisteen välinen suoran osuus.

Lisätiedot

1.1. Ympäristön ja raja-arvon käsite

1.1. Ympäristön ja raja-arvon käsite .. Ympäristön ja raja-arvon käsite Matematiikan opintojen tässä vaiheessa aletaan olla kiinnostavimpien sisältöjen laidassa. Tähänastiset pitkän matematiikan opinnot ovat olleet kuin valmistelua, jatkossa

Lisätiedot

10 %. Kuinka monta prosenttia arvo nousi yhteensä näiden muutosten jälkeen?

10 %. Kuinka monta prosenttia arvo nousi yhteensä näiden muutosten jälkeen? YLIOPPILASTUTKINTO- LAUTAKUNTA 3.3.0 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Kokeessa saa vastata enintään kymmeneen tehtävään. Tähdellä (*) merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä

Lisätiedot

1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo

1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo 1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo Olkoot a, b, c mielivaltaisesti valittuja reaalilukuja eli reaaliakselin pisteitä. Ne toteuttavat seuraavat laskulait (ns. kunta-aksioomat):

Lisätiedot

Matematiikka vuosiluokat 7 9

Matematiikka vuosiluokat 7 9 Matematiikka vuosiluokat 7 9 Matematiikan opetuksen ydintehtävänä on tarjota oppilaille mahdollisuus hankkia sellaiset matemaattiset taidot, jotka antavat valmiuksia selviytyä jokapäiväisissä toiminnoissa

Lisätiedot

Reaaliluvut 1/7 Sisältö ESITIEDOT:

Reaaliluvut 1/7 Sisältö ESITIEDOT: Reaaliluvut 1/7 Sisältö Reaalilukujoukko Reaalilukujoukkoa voidaan luonnollisimmin ajatella lukusuorana, molemmissa suunnissa äärettömyyteen ulottuvana suorana, jonka pisteet ja reaaliluvut vastaavat toisiaan:

Lisätiedot

Monikulmiot 1/5 Sisältö ESITIEDOT: kolmio

Monikulmiot 1/5 Sisältö ESITIEDOT: kolmio Monikulmiot 1/5 Sisältö Monikulmio Monikulmioksi kutsutaan tasokuviota, jota rajaa perättäisten janojen muodostama monikulmion piiri. Janat ovat monikulmion sivuja, niiden päätepisteet monikulmion kärkipisteitä.

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää

Lisätiedot

1.4 Funktion jatkuvuus

1.4 Funktion jatkuvuus 1.4 Funktion jatkuvuus Kun arkikielessä puhutaan jonkin asian jatkuvuudesta, mielletään asiassa olevan jonkinlaista yhtäjaksoisuutta, katkeamattomuutta. Tässä ei kuitenkaan käsitellä työasioita eikä ihmissuhteita,

Lisätiedot

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan.

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan. VUOSILUOKAT 6 9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on syventää matemaattisten käsitteiden ymmärtämistä ja tarjota riittävät perusvalmiudet. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio Olkoon a 1 = a 2 = 5 ja a n+1 = a n + 6a n 1 kun n 2. Todista induktiolla, että a n = 3 n ( 2) n, kun n on positiivinen

Lisätiedot

Trigonometriset funktiot 1/7 Sisältö ESITIEDOT: reaalifunktiot

Trigonometriset funktiot 1/7 Sisältö ESITIEDOT: reaalifunktiot Trigonometriset funktiot 1/7 Sisältö Trigonometriset funktiot suorakulmaisessa kolmiossa a c b Olkoon suorakulmaisen kolmion terävä kulma, a tämän vastainen kateetti, b viereinen kateetti ja c kolmion

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

nyky-ymmärryksemme mukaan hajaantuvaan sarjaan luvun 1 2 kun n > N Huom! Määritelmä on aivan sama C:ssä ja R:ssä. (Kuva vain on erilainen.

nyky-ymmärryksemme mukaan hajaantuvaan sarjaan luvun 1 2 kun n > N Huom! Määritelmä on aivan sama C:ssä ja R:ssä. (Kuva vain on erilainen. Sarjaoppia Käsitellään kompleksi- ja reaalisarjat yhdessä. Reaalilukujen ominaisuuksista (kuten järjestys) riippuvat asiat tulevat lisämausteena mukaan. Kirjallisuutta: 1. [KRE] Kreyszig: Advanced Engineering

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2

Lisätiedot

MATEMATIIKKA MATEMATIIKAN PITKÄ OPPIMÄÄRÄ. Oppimäärän vaihtaminen

MATEMATIIKKA MATEMATIIKAN PITKÄ OPPIMÄÄRÄ. Oppimäärän vaihtaminen MATEMATIIKKA Oppimäärän vaihtaminen Opiskelijan siirtyessä matematiikan pitkästä oppimäärästä lyhyempään hänen suorittamansa pitkän oppimäärän opinnot luetaan hyväksi lyhyemmässä oppimäärässä siinä määrin

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

MAA7 HARJOITUSTEHTÄVIÄ

MAA7 HARJOITUSTEHTÄVIÄ MAA7 HARJOITUSTEHTÄVIÄ Selvitä, mitä -akselin väliä tarkoittavat merkinnät: a) < b) U(, ) c) 4 < 0 0 Ilmoita väli a) 4 < < b) ] 5, 765[ tavalla 7 tehtävän a)-kohdan mukaisella kana, kana 0 Palautetaan

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.

Lisätiedot

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0 1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota

Lisätiedot

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut KOMPLEKSILUVUT C Luonnolliset luvut N Kokonaisluvut Z Rationaaliluvut Q Reaaliluvut R Kompleksi luvut C Negat kokonaisluvut Murtoluvut Irrationaaliluvut Imaginaariluvut Erilaisten yhtälöiden ratkaiseminen

Lisätiedot

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta

Lisätiedot

Numeeriset menetelmät Pekka Vienonen

Numeeriset menetelmät Pekka Vienonen Numeeriset menetelmät Pekka Vienonen 1. Funktion nollakohta Newtonin menetelmällä 2. Määrätty integraali puolisuunnikassäännöllä 3. Määrätty integraali Simpsonin menetelmällä Newtonin menetelmä Newtonin

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

Reaalifunktioista 1 / 17. Reaalifunktioista

Reaalifunktioista 1 / 17. Reaalifunktioista säilyy 1 / 17 säilyy Jos A, B R, niin funktiota f : A B sanotaan (yhden muuttujan) reaalifunktioksi. Tällöin karteesinen tulo A B on (aiempia esimerkkejä luonnollisemmalla tavalla) xy-tason osajoukko,

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 8..05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Eukleidinen geometria aksiomaattisena systeeminä

Eukleidinen geometria aksiomaattisena systeeminä Eukleidinen geometria aksiomaattisena systeeminä Harri Mäkinen Kreikkalaisen Eukleides Aleksandrialaisen noin 300 vuotta ennen ajanlaskun alkua kirjoittama Alkeet (kreikaksi Stoikheia, latinaksi Elementa),

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

Kommentteja Markku Halmetojan ops-ehdotuksesta

Kommentteja Markku Halmetojan ops-ehdotuksesta Jorma Merikoski 10.1.2015 Kommentteja Markku Halmetojan ops-ehdotuksesta Markku Halmetoja on laatinut ehdotuksen lukion pitkän matematiikan uudeksi opetussuunnitelmaksi. Hän esittelee sitä matematiikan

Lisätiedot

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32 1 / 32 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki 4B.2 Esimerkki 4B.3 Esimerkki 4C.1 Esimerkki 4C.2 Esimerkki 4C.3 2 / 32 Esimerkki 4A.1 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki

Lisätiedot

ANALYYSI 2. Camilla Hollanti. Tampereen yliopisto 2010. x 3. a x 1. x 4 x 11. x 2

ANALYYSI 2. Camilla Hollanti. Tampereen yliopisto 2010. x 3. a x 1. x 4 x 11. x 2 ANALYYSI 2 Camilla Hollanti _ M M a x x 2 x 3 x 4 x b Tampereen yliopisto 200 Sisältö. Preliminäärejä 3 2. Riemann-integraali 5 2.. Pinta-alat ja porrasfunktiot....................... 5 2... Pinta-ala

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 1 Matemaattisesta päättelystä Matemaattisen analyysin kurssin (kuten minkä tahansa matematiikan kurssin) seuraamista helpottaa huomattavasti, jos opiskelija ymmärtää

Lisätiedot

Avainsanat: matematiikan historia, geometria, trigonometria

Avainsanat: matematiikan historia, geometria, trigonometria Tero Suokas OuLUMA sivu 1 Arkhimedes Syrakusalainen Avainsanat: matematiikan historia geometria trigonometria Luokkataso: 9 lk ja lukio Välineet: kynä paperia viivain harppi laskin Tavoitteet: Tehtävässä

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi TKK (c) Ilkka Mellin (2007) 1 Joukko-oppi >> Joukko-opin peruskäsitteet Joukko-opin perusoperaatiot Joukko-opin laskusäännöt Funktiot Tulojoukot

Lisätiedot

Talousmatematiikan perusteet ORMS.1030

Talousmatematiikan perusteet ORMS.1030 kevät 2014 Talousmatematiikan perusteet Matti Laaksonen, (Matemaattiset tieteet / Vaasan yliopisto) Vastaanotto to 11-12 huone D110/Tervahovi Sähköposti: matti.laaksonen@uva.fi Opettajan kotisivu: http://lipas.uwasa.fi/

Lisätiedot

Kappaleiden tilavuus. Suorakulmainensärmiö.

Kappaleiden tilavuus. Suorakulmainensärmiö. Kappaleiden tilavuus Suorakulmainensärmiö. Tilavuus (volyymi) V = pohjan ala kertaa korkeus. Tankomaisista kappaleista puhuttaessa nimitetään korkeutta tangon pituudeksi. Pohjan ala A = b x h Korkeus (pituus)

Lisätiedot

Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa

Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa Matematiikka Sakke Suomalainen Helsingin matematiikkalukio Ohjaaja: Ville Tilvis 29. marraskuuta 2010 Tiivistelmä Harppi ja viivain

Lisätiedot

Talousmatematiikan perusteet ORMS.1030

Talousmatematiikan perusteet ORMS.1030 orms.1030 Vaasan yliopisto / kevät 2015 Talousmatematiikan perusteet Matti Laaksonen Matemaattiset tieteet, Vaasan yliopisto Vastaanotto to 11-12 huone D110/Tervahovi Sähköposti: matti.laaksonen@uva.fi

Lisätiedot

Talousmatematiikan perusteet ORMS.1030

Talousmatematiikan perusteet ORMS.1030 orms.1030 Vaasan avoin yliopisto / kevät 2013 1 Talousmatematiikan perusteet Matti Laaksonen Matemaattiset tieteet Vaasan yliopisto Vastaanotto to 11-12 huone D110/Tervahovi Sähköposti: matti.laaksonen@uva.fi

Lisätiedot

MAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon.

MAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon. MAA4 - HARJOITUKSIA 1. Esitä lauseke 3 + 4 ilman itseisarvomerkkejä.. Ratkaise yhtälö a ) 5 9 = 6 b) 6 9 = 0 c) 7 9 + 6 = 0 3. Ratkaise yhtälö 7 3 + 4 = (yksi ratkaisu, eräs neg. kokon. luku) 4. Ratkaise

Lisätiedot

kartiopinta kartio. kartion pohja, suora ympyräkartio vino pyramidiksi

kartiopinta kartio. kartion pohja, suora ympyräkartio vino pyramidiksi 5.3 Kartio Kun suora liikkuu avaruudessa niin, että yksi sen piste pysyy paikoillaan ja suoran jokin toinen piste kiertää jossakin tasossa jonkin suljetun käyrän palaten lähtöpaikkaansa, syntyy kaksiosainen

Lisätiedot

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi) Kenguru 2012 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

a b c d + + + + + + + + +

a b c d + + + + + + + + + 28. 10. 2010!"$#&%(')'+*(#-,.*/1032/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + + + 2. 3. 4. 5. 6. + + + + + + + + + + P1. Valitaan kannaksi sivu, jonka pituus on 4. Koska toinen jäljelle jäävistä sivuista

Lisätiedot

Sarjat ja differentiaaliyhtälöt

Sarjat ja differentiaaliyhtälöt Sarjat ja differentiaaliyhtälöt Johdanto Tämä luentomoniste on tarkoitettu korvaamaan luentomuistiinpanoja Sarjat ja differentiaaliyhtälöt-kurssilla. Tämä ei kuitenkaan ole oppikirja, mikä tarkoittaa sitä,

Lisätiedot

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita Helsingin seitsemäsluokkalaisten matematiikkakilpailu..013 Ratkaisuita 1. Eräs kirjakauppa myy pokkareita yhdeksällä eurolla kappale, ja siellä on meneillään mainoskampanja, jossa seitsemän sellaista ostettuaan

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät: MAA3 Geometria Koe 5.2.2016 Jussi Tyni Lue ohjeet ja tee tehtävät huolellisesti! Tee tarvittavat välivaiheet, vaikka laskimesta voikin ottaa tuloksia. Välivaiheet perustelevat vastauksesi. Tee pisteytysruudukko

Lisätiedot

Integraalilaskenta. Markus Hähkiöniemi Satu Juhala Petri Juutinen Sari Louhikallio-Fomin Erkki Luoma-aho Terhi Raittila Tommi Tikka

Integraalilaskenta. Markus Hähkiöniemi Satu Juhala Petri Juutinen Sari Louhikallio-Fomin Erkki Luoma-aho Terhi Raittila Tommi Tikka Integraalilaskenta 9 Markus Hähkiöniemi Satu Juhala Petri Juutinen Sari Louhikallio-Fomin Erkki Luoma-aho Terhi Raittila Tommi Tikka Helsingissä Kustannusosakeyhtiö Otava Kirjan rakenne Aiemmin opiskeltua

Lisätiedot

27. 10. joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja.

27. 10. joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. ÄÙ ÓÒÑ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒÔ ÖÙ Ö Tehtäviä on kahdella sivulla; kuusi ensimmäistä tehtävää on monivalintatehtäviä, joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. 1. Hiiri juoksee tasaisella

Lisätiedot

Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein:

Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein: 9.8. MATEMATIIKKA Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein: AK 1 = Ihmisenä kasvaminen AK 2 = Kulttuuri-identiteetti

Lisätiedot

YLIOPPILASTUTKINTO 22. 3. 2000 MATEMATIIKAN KOE - PITKÄ OPPIMÄÄRÄ

YLIOPPILASTUTKINTO 22. 3. 2000 MATEMATIIKAN KOE - PITKÄ OPPIMÄÄRÄ INTERNETIX Ylioppilaskirjoitusten tehtävät Page YLIOPPILSTUTINTO MTEMTIIN OE PITÄ OPPIMÄÄRÄ okeessa saa vastata enintään kymmeneen tehtävään Eräät tehtävät sisältävät useita osia [merkittynä a), b) jne],

Lisätiedot

Cantorin joukko. Heikki Valve. Helsinki, 25. marraskuuta 2012 Pro Gradu Helsingin yliopisto Matematiikan ja tilastotieteen laitos

Cantorin joukko. Heikki Valve. Helsinki, 25. marraskuuta 2012 Pro Gradu Helsingin yliopisto Matematiikan ja tilastotieteen laitos Cantorin joukko Heikki Valve Helsinki, 25. marraskuuta 2012 Pro Gradu Helsingin yliopisto Matematiikan ja tilastotieteen laitos HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Vastaavuus puolestaan on erikoistapaus relaatiosta.

Lisätiedot

1 Aritmeettiset ja geometriset jonot

1 Aritmeettiset ja geometriset jonot 1 Aritmeettiset ja geometriset jonot Johdatus Johdatteleva esimerkki 1 Kasvutulille talletetaan vuoden jokaisen kuukauden alussa tammikuusta alkaen 100 euroa. Tilin nettokorkokanta on 6%. Korko lisätään

Lisätiedot

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa

Lisätiedot

kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen 60-järjestelmään kellonaikojen avulla

kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen 60-järjestelmään kellonaikojen avulla 7.6.1 MATEMATIIKKA VUOSILUOKAT 3 5 Vuosiluokkien 3 5 matematiikan opetuksen ydintehtävinä ovat matemaattisen ajattelun kehittäminen, matemaattisten ajattelumallien oppimisen pohjustaminen, lukukäsitteen

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 2011 Maarit Järvenpää 1 Todistamisesta Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.

Lisätiedot

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO OSA : YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen ja Pekka Vaaraniemi Alkupala Kolme kaverusta, Olli, Pekka

Lisätiedot

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0. Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 23.9.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 23.9.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 3.9.05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Matematiikan pitkä oppimäärä

Matematiikan pitkä oppimäärä Matematiikan pitkä oppimäärä Matematiikan pitkän oppimäärän opetuksen tehtävänä on antaa opiskelijalle matemaattiset valmiudet, joita tarvitaan ammatillisissa opinnoissa ja korkeakouluopinnoissa. Pitkän

Lisätiedot

LAUSEKKEET JA NIIDEN MUUNTAMINEN

LAUSEKKEET JA NIIDEN MUUNTAMINEN LAUSEKKEET JA NIIDEN MUUNTAMINEN 1 LUKULAUSEKKEITA Ratkaise seuraava tehtävä: Retkeilijät ajoivat kahden tunnin ajan polkupyörällä maantietä pitkin 16 km/h nopeudella, ja sitten vielä kävelivät metsäpolkua

Lisätiedot

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2 .3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. Toisen asteen yhtälön a + b + c 0 ratkaisukaavassa neliöjuuren alla olevaa lauseketta b b 4ac + a b b 4ac a D b 4 ac sanotaan yhtälön

Lisätiedot

EHDOTUS. EHDOTUS Matematiikan opetussuunnitelmien perusteiden oppiainekohtaiset osat

EHDOTUS. EHDOTUS Matematiikan opetussuunnitelmien perusteiden oppiainekohtaiset osat EHDOTUS Matemaattisten aineiden opettajien liitto MAOL ry 12.2.2015 Asemamiehenkatu 4 00520 HELSINKI Opetushallitus Hakaniemenranta 6 00530 Helsinki EHDOTUS Matematiikan opetussuunnitelmien perusteiden

Lisätiedot

Harjoituksia MAA4 - HARJOITUKSIA. 6. Merkitse lukusuoralle ne luvut, jotka toteuttavat epäyhtälön x 2 < ½.

Harjoituksia MAA4 - HARJOITUKSIA. 6. Merkitse lukusuoralle ne luvut, jotka toteuttavat epäyhtälön x 2 < ½. MAA4 - HARJOITUKSIA 1 Esitä lauseke 3 x + x 4 ilman itseisarvomerkkejä Ratkaise yhtälö a ) 5x 9 = 6 b) 6x 9 = 0 c) 7x 9 + 6 = 0 3 Ratkaise yhtälö x 7 3 + 4x = 4 Ratkaise yhtälö 5x + = 3x 4 5 Ratkaise yhtälö

Lisätiedot

Koontitehtäviä luvuista 1 9

Koontitehtäviä luvuista 1 9 11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:

Lisätiedot

2 x 5 4x + x 2, [ 100,2].

2 x 5 4x + x 2, [ 100,2]. 7. Derivaatan sovellutuksia 7.1. Derivaatta tangentin kulmakertoimena 6. Määritä a, b ja c siten, että käyrät y = x + ax + b ja y = cx x sivuavat toisiaan pisteessä (1,). a = 0, b =, c = 4. 6. Määritä

Lisätiedot

5. Numeerisesta derivoinnista

5. Numeerisesta derivoinnista Funktion derivaatta ilmaisee riippumattoman muuttujan muutosnopeuden riippuvan muuttujan suteen. Esimerkiksi paikan derivaatta ajan suteen (paikan ensimmäinen aikaderivaatta) on nopeus, joka ilmaistaan

Lisätiedot

4.1 Kaksi pistettä määrää suoran

4.1 Kaksi pistettä määrää suoran 4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,

Lisätiedot

Käyrien välinen dualiteetti (projektiivisessa) tasossa

Käyrien välinen dualiteetti (projektiivisessa) tasossa Solmu 3/2008 1 Käyrien välinen dualiteetti (projektiivisessa) tasossa Georg Metsalo georg.metsalo@tkk.fi Tämä kirjoitus on yhteenveto kaksiosaisesta esitelmästä Maunulan yhteiskoulun matematiikkapäivänä

Lisätiedot