6. Stokastiset prosessit

Koko: px
Aloita esitys sivulta:

Download "6. Stokastiset prosessit"

Transkriptio

1 luento6.ppt S Lkenneteoran perusteet - Kevät Ssältö Peruskästtetä Posson-prosess Markov-prosesst Syntymä-kuolema-prosesst

2 Stokastset prosesst () Tarkastellaan otakn (lkenneteoran kannalta ta stten muuten) knnostavaa ärestelmää kuvaavaa suuretta Tyypllsest se kehttyy aan myötä satunnasest Esm.. varattuen kanaven lkm puhelnverkon lnkssä hetkellä t ta n:nnen asakkaan saapuessa Esm.. paketten lkm tlastollsen kanavontlatteen puskurssa hetkellä t ta n:nnen asakkaan saapuessa Stokastnen prosess kuvaa tällasta aan myötä satunnasest tapahtuvaa kehtystä Mllä tahansa yksttäsellä hetkellä t (ta n) ärestelmää kuvaa yksttänen satunnasmuuttua Nän ollen stokastnen prosess vodaan määrtellä kokoelmaks satunnasmuuttua 3 Stokastset prosesst () Määr. Reaalarvonen stokastnen prosess X (X t t I) (stochastc process) on kokoelma satunnasmuuttua X t, otka saavat arvoa ossakn reaallukuen osaoukossa S, X t (ω) S, a ota ndekso reaalarvonen (akaa kuvaava) parametr t I. Stokastsa prosessea kutsutaan oskus myös satunnasprosesseks (random process) ta lyhyest prosesseks Indeksoukkoa I Rsanotaan prosessn parametravaruudeks (parameter space) Arvooukkoa S Rtaas sanotaan prosessn tla-avaruudeks (state space) Huom. Monast merknnällä X t tarkotetaan koko prosessa (ekä pelkästään yksttästä, ohonkn tettyyn aanhetkeen t lttyvää satunnasmuuttuaa) 4

3 Stokastset prosesst (3) Jokanen yksttänen satunnasmuuttua X t on kuvaus otosavaruudelta Ω reaallukuen oukkoon R: X : Ω R, ω X ( ω) t Stokastsen prosessn X vodaan nän ollen aatella olevan kuvauksen otosavaruudelta Ω reaalarvosten funktoden oukkoon R I (argumenttnaan parametr t I): I X : Ω R, ω X ( ω) Jokaseen alkestapaukseen ω Ω lttyy reaalarvonen funkto X(ω). Funktota X(ω) kutsutaan prosessn reaalsatoks (realzaton) [el poluks (path) el traektorks (traectory)]. t 5 Yhteenveto Annetulla alkestapauksella ω Ω X(ω) (X t (ω) t I) on reaalarvonen funkto (argumenttnaan t I) Annetulla aanhetkellä t I, X t (X t (ω) ω Ω) on satunnasmuuttua (kun ω Ω) Annetulla alkestapauksella ω Ω a aanhetkellä t I, X t (ω) on reaalluku 6

4 Esmerkk Tarkastellaan lkenneprosessa X (X t t [,T]) kahden puhelnkeskuksen välsellä lnkllä ollakn akavälllä [,T] X t kertoo varattuen kanaven lkm:n hetkellä t Alkestapaus ω Ω lmasee mkä on varattuen kanaven lkm X hetkellä, mtkä ovat näden X :n puhelun älelläolevat ptoaat, mllä aanhetkllä saapuu uusa kutsua, a mtkä ovat näden uusen kutsuen ptoaat. Näden tetoen perusteella on mahdollsta konstruoda lkenneprosessn X reaalsaato X(ω) Alkestapaus ω ss ssältää kaken prosessn kulkuun vakuttavan satunnasuuden Annetulla alkestapauksella ω prosessn reaalsaato X(ω) on van determnstnen reaalarvonen funkto 7 Lkenneprosess kanavat kanavakohtanen mehtystla kutsun ptoaka kanaven lkm kutsuen saapumshetket estynyt kutsu varattuen kanaven lkm aka aka 8

5 Prosessen luokttelusta Palautetaan meln: Parametravaruus ndeksoukko I (t I) Tla-avaruus arvooukko S (X t (ω) S) Luokttelua: Parametravaruuden tyyppn perustuva: Dskreettakaset prosesst: parametravaruus dskreett Jatkuva-akaset processes: parametravaruus atkuva Tla-avaruuden tyyppn perustuva: Dskreetttlaset prosesst: tla-avaruus dskreett Jatkuvatlaset prosesst: tla-avaruus atkuva Tällä kursslla kesktymme dskreetttlasn prosessehn (otka ss vovat olla dskreett- ta atkuva-akasa) Tyypllnen prosess kuvaa asakkaden lkm:ää ossakn onosysteemssä (ollon tla-avaruudeks tulee S {,,,...}) 9 Esmerkkeä Dskreettakasa a dskreetttlasa prosessea Esm.. varattuen kanaven lkm puhelnverkon lnkssä n:nnen kutsun saapuessa, n,,... Esm.. paketten lkm tlastollsen kanavontlatteen puskurssa n:nnen paketn saapuessa, n,,... Jatkuva-akasa a dskreetttlasa prosessea Esm. 3. varattuen kanaven lkm puhelnverkon lnkssä hetkellä t > Esm. 4. paketten lkm tlastollsen kanavontlatteen puskurssa hetkellä t >

6 Merkntöä Dskreettakaselle prosesslle parametravaruus on tyypllsest kakken postvsten kokonaslukuen oukko, I {,, } ndeks t korvataan tällön (usen) ndeksllä n: X n, X n (ω) Jatkuva-akaselle prosesslle parametravaruus on tyypllsest oko okn äärellnen väl, I [, T], ta stten kakken e-negatvsten reaallukuen oukko, I [, ) ndeks t krotetaan tällön (usen) prosessa kuvaavan symboln älkeen sulkuhn (ekä alandeksks): X(t), X (t;ω) Jakauma Stokastsen prosessn akauman (dstrbuton) määräävät sen äärellsulotteset akaumat (fnte-dmensonal dstrbutons) P{ X x,, X t t x n n mssä t,, t n I, x,, x n S a n,,... Yleensä näden äärellsulottestenkaan akaumen määräämnen e ole helppoa satunnasmuuttuen X t välsten rppuvuuksen vuoks }

7 Rppuvuus Kakken yksnkertasn (mutta e kovnkaan knnostava) esmerkk stokastsesta prosesssta saadaan ottamalla oukko täydellsest rppumattoma satunnasmuuttua X t. Tällön P{ Xt x,..., Xt xn} P{ Xt x} P{ X n tn n Yksnkertasn e-trvaal esmerkk on Markov-prosess. Tällön P{ X x,..., X x } P t tn n { Xt x} P{ X } { t x X t x P X t xn Xt x n n n Tämä lttyy ns. Markov-omnasuuteen: Jos Markov-prosessn nykytla tunnetaan, prosessn tulevasuus e mtenkään rpu prosessn aemmasta mennesyydestä (el stä, mten nykytlaan on tultu). x } 3 } Statonaarsuus Määr. Stokastnen prosess X on statonaarnen (statonary), os kakk äärellsulotteset akaumat ovat aan srron suhteen nvaranttea, ts. P { Xt,, } {,, + x Xt xn P Xt x X t x n + n n kaklla, n, t,, t n a x,, x n Seuraus: Valnnalla n nähdään, että statonaarsen prosessn kakk yksttäset satunnasmuuttuat X t ovat samon akautuneta, ts. P{ X t x} F( x) kaklla t I. Ko. akaumaa sanotaan prosessn statonaarseks akaumaks (statonary dstrbuton). } 4

8 Stokastset prosesst lkenneteorassa Tällä kursslla (a lkenneteorassa ylesemmnkn) stokastslla prosesslla kuvataan saapumsprosessa (arrval process), so. asakkaden saapumsta ohonkn ärestelmään tlaprosessa (state process), so. ko. ärestelmän tlaa Huom. Jälkmmäsestä käytetään myös nmtystä lkenneprosess (traffc process) 5 Saapumsprosess Saapumsprosess vodaan kuvata oko psteprosessna (τ n n,,...), mssä τ n kertoo n:nnen asakkaan saapumshetken (dskreettakanen, atkuvatlanen) kasvava: τ n+ τ n kaklla n nän ollen epästatonaarnen! yleensä oletetaan, että saapumsten välset välaat τ n - τ n- ovat rppumattoma a samon akautuneta (IID) uusutumsprosess tällön rttää määrtellä välakoen akauma eksponentaalsest akautuneet välaat Posson-prosess talaskurprosessna (A(t) t ), mssä A(t) kertoo hetkeen t mennessä saapuneden asakkaden lkm:n (atkuva-akanen, dskreetttlanen) kasvava: A(t+ ) A(t) kaklla t, nän ollen epästatonaarnen! rppumattomat lsäykset, mssä A(t+ ) A(t) noudattaa Posson( )- akaumaa Posson-prosess 6

9 Tlaprosess Yksnkertasessa tapauksessa systeemn tlaa kuvaa pelkkä kokonasluku esm. asakkaden lkm X(t) hetkellä t Monmutkasemmassa tapauksessa systeemn tlana on kokonaslukuarvonen vektor esm. esto- a onoverkkomallt Tyypllsest ollaan knnostuneta, onko tlaprosesslla statonaarsta akaumaa a os on, mkä se on Huom. Vakka systeemn tla e noudattaskaan alkuhetkellä statonaarsta akaumaa, monessa tapauksessa tlaakauma lähestyy stä, kun t 7 Ssältö Peruskästtetä Posson-prosess Markov-prosesst Syntymä-kuolema-prosesst 8

10 Bernoull-prosess Määr. Bernoull-prosess (X n n,,...) onnstumstodennäkösyytenään p on sara rppumattoma Bernoull-tostokoketa (ossa kakssa onnstumstodennäkösyys on vako p) Kyseessä on selvästkn dskreettakanen a dskreetttlanen prosess Parametravaruus: I {,, } Tla-avaruus: S {,} Äärellsulotteset akaumat (huom. X n :t ovat IID): P{ X x,..., X n xn} P{ X x} P{ X n p x ( p) x p Bernoull-prosess on statonaarnen (stat. ak.: Bernoull(p)-akauma) x ( p) n x n x n } 9 Posson-prosess () Bernoull-prosessn atkuva-akanen vastne on Posson-prosess kyseessä on psteprosess (τ n n,,...), mssä τ n kertoo n:nnen tapahtuman (esm. asakkaan saapumnen) tapahtumahetken Bernoull-prosessn epäonnstumsta vastaa ss asakkaan saapumnen Määr.. Psteprosessa (τ n n,,...) sanotaan Possonprosessks ntensteettnään, os lyhyellä akavälllä (t, t+h] saapuu uus asakas tn:llä h + o(h) (musta akavälestä rppumatta) o(h) vttaa sellaseen funktoon, olle o(h)/h, kunh uusa asakkata saapuu vakontensteetllä : (h + o(h))/h tn, että vällle (t, t+h] e satu saapumsta on h + o(h) Nän määrteltynä Posson-prosess on dskreettakanen a atkuvatlanen parametravaruus: I {,, } tla-avaruus: S (, )

11 Posson-prosess () Tarkastellaan kahden saapumsen välakaa τ n τ n- (merk. τ ) Koska saapumsntensteett pysyy vakona, välaan päättymnen lyhyellä akavälllä (t, t+h], kun se on o kestänyt aan t, e rput:stä (ekä musta aemmsta saapumssta) Nän ollen saapumsten välaat ovat rppumattoma a lsäks nllä on ns. unohtavasuusomnasuus, mkä omnasuus atkuvsta akaumsta on van eksponenttakaumalla Määr.. Psteprosessa (τ n n,,...) sanotaan Possonprosessks ntensteettnään, os saapumsten välaat τ n τ n- ovat rppumattoma a samon akautuneta (IID) yhtesenä akaumanaan Exp() Posson-prosess (3) Tarkastellaan lopuks välllä [,t] saapuneden asakkaden lkm:ää A(t) Bernoull-prosessssa knteällä akavälllä sattuneden epäonnstumsten lkm noudattaa bnomakaumaa. Kun akavälä lyhennetään, saadaan raatapauksena Posson-akauma. Huom. A() Määr. 3. Laskurprosessa (A(t) t ) sanotaan Posson-prosessks ntensteettnään, os ko. prosessn lsäykset yhtespsteettömllä välellä ovat rppumattoma a noudattavat Posson-akaumaa seuraavast: A( t + ) A( t) Posson( ) Nän määrteltynä Posson-prosess on atkuva-akanen a dskreetttlanen parametravaruus: I [, ) tla-avaruus: S {,,, }

12 Posson-prosess (4) Yksulottenen akauma: A(t) Posson(t) E[A(t)] t, D [A(t)] t Äärellsulotteset akaumat (er välen rppumattomuuden noalla): P{ A( t) x,..., A( tn) xn} P{ A( t) x} P{ A( t) A( t) x P{ A( t ) A( t ) x x } n n n } Huom. Laskurprosessna määrtelty Posson-prosess e ole statonaarnen, mutta sllä on statonaarset lsäykset e ss statonaarsta akaumaakaan vaan samon akautuneet lsäykset n x 3 Kolme er tapaa luonnehta Posson-prosessa Vodaan osottaa, että kakk kolme Posson-prosessn määrtelmää ovat yhtäptävä A(t) τ 4 τ 3 τ τ τ 3 τ 4 e saapumsta tn:llä h+o(h) saapumnen tn:llä h+o(h) 4

13 Posson-prosessn omnasuuksa () Omnasuus (Summa): Olkoot A (t) a A (t) rppumattoma Possonprosessea ntensteeten a. Tällön nden summaprosess (el ns. superposto) A (t) + A (t) on Posson-prosess ntensteetllä +. Tod. Tarkastellaan lyhyttä akavälä (t, t+h]: tn, ette ko. vällle satu saapumsa kummassakaan prosessssa, on ( h + o( h))( h + o( h)) ( + ) h + o( h) tosaalta, täsmälleen yhden saapumsen tn on ( h + o( h))( h + o( h)) + ( h + o( h))( h + o( h)) ( + ) h + o( ) h + 5 Posson-prosessn omnasuuksa () Omnasuus (Satunnaspomnta): Olkoon τ n Posson-prosess ntensteettnään. Merk. σ n :llä osaprosessa, ohon on valttu psteet alkuperäsestä prosesssta τ n satunnasest a rppumattomast pommalla (tn:llä p). Tällön σ n on Posson-prosess ntensteetllä p. Tod. Tarkastellaan lyhyttä akavälä (t, t+h]: tn, ette ko. välllä ole saapumsa satunnaspomnnan älkeen, on ( h + o( h)) + ( p)( h + o( h)) ph + o( h) tosaalta, täsmälleen yhden saapumsen tn on p p ( h + o( h)) ph + o( h) 6

14 Posson-prosessn omnasuuksa (3) Omnasuus 3 (Satunnaslattelu): Olkoon τ n Posson-prosess ntensteettnään. Merk. σ n () :llä osaprosessa, ohon on valttu psteet alkuperäsestä prosesssta τ n satunnasest a rppumattomast pommalla (tn:llä p), a σ n () :llä älelle äävstä pstestä muodostettua osaprosessa. Tällön σ n () a σn () ovat rppumattoma Possonprosessea ntensteetellä p a ( p). Tod. Omnasuuden noalla rttäs osottaa, että prosesst ovat rppumattoma. Todstus kutenkn svuutetaan tällä kursslla. p (-p) 7 Posson-prosessn omnasuuksa (4) Omnasuus 4 (PASTA): Tarkastellaan (stabla) ärestelmää, ohon saapuu uusa asakkata Posson-prosessn mukasest. Merktään X(t):llä systeemn tlaa hetkellä t (atkuva-akanen prosess) a Y n :llä systeemn tlaa n:nnen asakkaan saapumshetkellä (dskreettakanen prosess). Nällä kahdella prosesslla on täsmälleen sama statonaarnen akauma. Vodaan ss sanoa, että saapuva asakas näkee systeemn tasapanotlassa PASTA Posson Arrvals See Tme Average Huom. PASTA-omnasuus on Posson-prosessn ertysomnasuus ekä se ss ole vomassa mulle saapumsprosesselle Tarkastellaan esm. systeemä, ossa on van yks on-off-tyyppnen asakas ( oma PC ). Postuttuaan systeemstä, sama asakas palaa snne satunnasen aan kuluttua. Tällanen asakas näkee systeemn ana tyhänä snne saapuessaan. Sen saan atkuvassa aassa tarkasteltuna ko. systeem on van aottan tyhänä. 8

15 Ssältö Peruskästtetä Posson-prosess Markov-prosesst Syntymä-kuolema-prosesst 9 Markov-prosess Tark. atkuva-akasta a dskreetttlasta stokaststa prosessa X(t) oko tla-avaruudella S {,,,N} ta S {,,...} Määr. Prosess X(t) on Markov-prosess, os P{ X ( tn+ ) xn+ X ( t) x,, X ( tn) xn} P X ( t ) x X ( t ) x } { n+ n+ n n kaklla n, t < <t n+ a x,, x n + Tätä ehtoa sanotaan Markov-omnasuudeks Jos Markov-prosessn nykytla tunnetaan, prosessn tulevasuus e mtenkään rpu prosessn aemmasta mennesyydestä (el stä, mten nykytlaan on tultu) Nykytla ss ssältää kaken atkon kannalta tarpeellsen nformaaton 3

16 Esmerkk Rppumattomen lsäysten prosess X(t) on ana Markov-prosess: X ( tn) X ( tn) + ( X ( tn) X ( tn)) Seuraus: Posson-prosess on Markov-prosess Määrtelmän 3 mukaan Posson-prosessn lsäykset ovat rppumattoma 3 Akahomogeensuus Määr. Markov-prosess X(t) on akahomogeennen, os P { X ( t + ) y X ( t) x} P{ X ( ) y X () x} kaklla t, a x, y S Tn:t P{X(t + )y X(t) x} evät ss rpu t:stä 3

17 Tlasrtymäntensteett Tarkastellaan akahomogeensta Markov-prosessa X(t) Tlasrtymäntensteett q (state transton rate), mssä, S, määrtellään seuraavast: q lm P{ X ( h) X () : h h Tlatn:t P{X(t)}, S, määräytyvät ykskästtesest srtymäntensteetestä q, kunhan ns. alkuakauma (ntal dstrbuton) el tn:t P{X() }, S, on annettu } Huom. Jatkossa raotamme tarkastelumme pelkästään akahomogeensn Markov-prosessehn 33 Eksponentaalsest akautuneet tlassaoloaat Oletetaan, että Markov-prosess on tlassa hetkellä t. Lyhyellä akavälllä (t, t+h] prosess srtyy uuteen tlaan tn:llä q h + o(h) (rppumatta stä, mtä tapahtu ennen hetkeä t) Merktään q :llä kokonasntensteettä srtyä pos tlasta, ts. q : Lyhyellä akavälllä (t, t+h] prosess srtyy pos tlasta tn:llä q h + o(h) (rppumatta stä, mtä tapahtu ennen hetkeä t) Kyseessä on selvästkn ns. unohtavasuusomnasuus Tlassa vetetty aka noudattaa ss eksponenttakaumaa ntensteettnään q q 34

18 Tlasrtymätodennäkösyydet Merktään T :llä oloakaa tlassa a T :llä sellasta (potentaalsta) oloakaa tlassa, oka päättyy srtymään tlaan : T Exp( q Exp( q Sm T vodaan aatella rppumattomen a eksponentaalsest akautuneden sm:en T mnmks (ks. luennon 5 kalvo 44): ), T ) T mnt Merk. p :llä tn:ttä, että toteutunut srtymä on tlasta tlaan. Ko. tlasrtymätodennäkösyydet (state transton probabltes) saadaan kaavalla q p P{ T T} q 35 Tlasrtymäkaavo Akahomogeennen Markov-prosess estetään usen ns. tlasrtymäkaavon (state transton dagram) avulla. Kyseessä on suunnattu verkko, onka solmut vastaavat prosessn tloa a ykssuuntaset lnkt vastaavat mahdollsa tlasrtymä lnkk tlasta tlaan q > Esm. Kolmtlanen Markov-prosess (S {,,}): Q q q q q 36

19 Pelkstymättömyys Määr. Tlasta pääsee tlaan ( ), os tlasrtymäkaavosta löytyy suunnattu polku :stä :hn Jos nän on, nn lähdettäessä tlasta tlassa käydään (oskus tulevasuudessa) postvsella tn:llä Määr. Tlat a kommunkovat ( ), os a Määr. Markov-prosess on pelkstymätön (rreducble), os kakk tlat kommunkovat keskenään Esmerkks edellsellä kalvolla estetty Markov-prosess on pelkstymätön 37 Tasapanoakauma a globaalt tasapanoyhtälöt Tark. pelkstymätöntä Markov-prosessa X(t) srtymäntensteeten q Määr. Olkoon (, S) tla-avaruudessa S määrtelty akauma, ts. se toteuttaa ns. normeerausehdon S (N) Jakauma on prosessn X(t) tasapanoakauma (equlbrum dstrbuton), os seuraavat globaalt tasapanoehdot (global balance equatons) ovat vomassa kaklla S: q q (GBE) On mahdollsta, ette prosesslla ole tasapanoakaumaa. Kutenkn, os esm. tla-avaruus on äärellnen, tasapanoakauma on ana olemassa. Valtsemalla tasapanoakauma alkuakaumaks (ts. P{X() } ), ko. Markov-prosesssta tulee statonaarnen (statonaarsena akaumanaan ) 38

20 Esmerkk Q + + (N) + ( + ) +, 3+, (GBE) 39 Lokaalt tasapanoyhtälöt a kääntyvyys Tarkastellaan edelleen pelkstymätöntä Markov-prosessa X(t) srtymäntensteeten q Väte. Olkoon (, S) tla-avaruudessa S määrtelty akauma, ts. S (N) Jos seuraavat lokaalt tasapanoehdot (local balance equatons) ovat vomassa kaklla, S: q q nn on prosessn tasapanoakauma. Tod. (GBE):t seuravat (LBE):stä summaamalla Tässä tapauksessa ko. Markov-prosessa sanotaan kääntyväks (reversble) (LBE) 4

21 Ssältö Peruskästtetä Posson-prosess Markov-prosesst Syntymä-kuolema-prosesst 4 Syntymä-kuolema-prosess Tark. atkuva-akasta a dskreetttlasta Markov-prosessa X(t) oko tla-avaruudella S {,,,N} ta S {,,...} Määr. Markov-prosess X(t) on syntymä-kuolema-prosess (brthdeath process), os tlasrtymät ovat mahdollsa van verekkästen tloen välllä, ts. Tässä tapauksessa merktään > q q :, q :, + Huom. a N (kun N < ) 4

22 Pelkstymättömyys Väte: Syntymä-kuolema-prosess on pelkstymätön, os a van os >kaklla S\{N} a >kaklla S\{} Ääretöntlasen pelkstymättömän sk-prosessn tlasrtymäkaavo: 3 Äärellstlasen pelkstymättömän sk-prosessn tlasrtymäkaavo: N- N N- N- N- N 43 Tasapanoakauma () Tarkastellaan pelkstymätöntä syntymä-kuolema-prosessa X(t) Tarkotus on ohtaa tasapanoakauma ( S), mkäl sellanen on olemassa Lokaalt tasapanoyhtälöt: Nän ollen Jakaumaehto el normeerausehto: S S (LBE) (N) 44

23 45, + Tasapanoakauma () Tasapanoakauma on ss olemassa täsmälleen sllon, kun Äärellnen tla-avaruus: Ko. summa on ana äärellnen. Tasapanoakaumaks tulee Ääretön tla-avaruus: Jos ko. summa on äärellnen, nn tasapanoakaumaks tulee < S, + N Esmerkk Q (N) ) ( ρ ρ ρ ρ ρ (LBE) ) / : ( + + ρ ρ ρ

24 Puhdas syntymäprosess Määr. Syntymä-kuolema-prosess on puhdas syntymäprosess, os kaklla S Ääretöntlasen syntymäprosessn tlasrtymäkaavo: Äärellstlasen syntymäprosessn tlasrtymäkaavo: N- N- N- N Esmerkks Posson-prosess on ääretöntlanen puhdas syntymäprosess (ntensteeten kaklla S {,, }) Huom. Puhdas syntymäprosess e ole koskaan pelkstymätön (saat stten statonaarnen). 47 THE END 48

ABTEKNILLINEN KORKEAKOULU

ABTEKNILLINEN KORKEAKOULU ABTEKNILLINEN KORKEAKOULU Tetoverkkolaboratoro 6. Stokastset prosesst () Luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 5 6. Stokastset prosesst () Ssältö Markov-prosesst Syntymä-kuolema-prosesst

Lisätiedot

6. Stokastiset prosessit (2)

6. Stokastiset prosessit (2) Ssältö Markov-prosesst Syntymä-kuolema-prosesst luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 6 Markov-prosess Esmerkk Tark. atkuva-akasta a dskreetttlasta stokaststa prosessa X(t) oko tla-avaruudella

Lisätiedot

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut)

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut) J. Vrtamo Lkenneteora a lkenteenhallnta / Markov-prosesst 1 Markov-prosesst (Jatkuva-akaset Markov-ketut) Tarkastellaan (statonaarsa) Markov-prosessea, oden parametravaruus on atkuva (yleensä aka). Srtymät

Lisätiedot

3.5 Generoivat funktiot ja momentit

3.5 Generoivat funktiot ja momentit 3.5. Generovat funktot ja momentt 83 3.5 Generovat funktot ja momentt 3.5.1 Momentt Eräs tapa luonnehta satunnasmuuttujan jakaumaa, on laskea jakauman momentt. Ne määrtellään odotusarvon avulla. Määrtelmä

Lisätiedot

AB TEKNILLINEN KORKEAKOULU

AB TEKNILLINEN KORKEAKOULU B TEKNILLINEN KORKEKOULU Tetoverkkolaboratoro luento05.ppt S-38.45 - Lkenneteoran perusteet - Kevät 00 Ssältö eruskästteet Dskreett satunnasmuuttujat Dskreett jakaumat lkm-jakaumat Jatkuvat satunnasmuuttujat

Lisätiedot

9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli

9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli lueto9.ppt S-38.45 Lkeeteora perusteet Kevät 5 Ykskertae lkeeteoreette mall Puhdas jakojärjestelmä Asakkata saapuu keskmäär opeudella asakasta per akayks. / keskmääräe asakkade välaka Asakkata palvellaa

Lisätiedot

9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli

9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli Ssältö Kertausta: ykskertae lkeeteoreette mall M/M/-PS asakasta palvelja asakaspakkaa M/M/-PS asakasta palveljaa asakaspakkaa Sovellus elastse datalketee malltamsee vuotasolla M/M//k/k-PS k asakasta palvelja

Lisätiedot

1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä

1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä Johdatus dskreettn matematkkaan Harjotus 3, 30.9.2015 1. Luvut 1, 10 on latettu ympyrän kehälle. Osota, että löytyy kolme verekkästä lukua, joden summa on vähntään 17. Ratkasu. Tällasa kolmkkoja on 10

Lisätiedot

ABTEKNILLINEN KORKEAKOULU

ABTEKNILLINEN KORKEAKOULU ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio Sisältö Peruskäsitteitä Poisson-prosessi Luento05.ppt S-38.45 - Liikenneteorian perusteet - Kevät 2005 2 Stokastiset prosessit () Stokastiset prosessit

Lisätiedot

5. Stokastiset prosessit (1)

5. Stokastiset prosessit (1) luento05.ppt S-38.45 - Liikenneteorian perusteet - Kevät 2006 Sisältö Peruskäsitteitä Poisson-prosessi 2 Stokastiset prosessit () Tarkastellaan jotakin (liikenneteorian kannalta tai sitten muuten) kiinnostavaa

Lisätiedot

7. Modulit Modulit ja lineaarikuvaukset.

7. Modulit Modulit ja lineaarikuvaukset. 7. Modult Vektoravaruudet ovat vahdannasa ryhmä, jossa on määrtelty jonkn kunnan skalaartomnta. Hyväksymällä kerronrakenteeks kunnan sjaan rengas saadaan rakenne nmeltä modul. Moduln käste on ss vektoravaruuden

Lisätiedot

1, x < 0 tai x > 2a.

1, x < 0 tai x > 2a. PHYS-C020 Kvanttmekankka Laskuharotus 2, vkko 45 Tarkastellaan ptkn x-aksela lkkuvaa hukkasta, onka tlafunkto on (x, t) Ae x e!t, mssä A, a! ovat reaalsa a postvsa vakota a) Määrtä vako A sten, että tlafunkto

Lisätiedot

Monte Carlo -menetelmä

Monte Carlo -menetelmä Monte Carlo -menetelmä Helumn perustlan elektron-elektron vuorovakutuksen laskemnen parametrsodulla yrteaaltofunktolla. Menetelmän käyttökohde Monen elektronn systeemen elektronkorrelaato oteuttamnen mulla

Lisätiedot

Luento 6 Luotettavuus Koherentit järjestelmät

Luento 6 Luotettavuus Koherentit järjestelmät Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lueto 6 Luotettavuus Koherett ärestelmät Aht Salo Systeemaalyys laboratoro Matematka a systeemaalyys latos Aalto-ylosto erustetede korkeakoulu

Lisätiedot

Kokonaislukuoptimointi

Kokonaislukuoptimointi Kokonaslukuotmont Robust dskreett otmont ysteemanalyysn Laboratoro Teknllnen korkeakoulu Ar-Pekka Perkkö ovelletun matematkan tutkasemnaar Kevät 28 sältö Robustn lneaarsen kokonasluku- sekä sekalukuotmontongelman

Lisätiedot

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut Harjotus, esmerkkratkasut K 1. Olkoon f : C C, f(z) z z. Tutk, mssä pstessä f on dervotuva. Ratkasu 1. Jotta funkto on dervotuva, on sen erotusosamäärän f(z + ) f(z) raja-arvon 0 oltava olemassa ja ss

Lisätiedot

ER-kaaviot. Ohjelmien analysointi. Tilakaaviot. UML-kaaviot (luokkakaavio) Tietohakemisto. UML-kaaviot (sekvenssikaavio) Kirjasto

ER-kaaviot. Ohjelmien analysointi. Tilakaaviot. UML-kaaviot (luokkakaavio) Tietohakemisto. UML-kaaviot (sekvenssikaavio) Kirjasto Ohelmen analsont Ohelmen kuvaamnen kaavolla ohelmen mmärtämnen kaavoden avulla kaavoden tuottamnen ohelmasta Erlasa kaavotppeä: ER-kaavot, tlakaavot, UML-kaavot tetohakemsto vuokaavot (tarkemmn) Vuoanals

Lisätiedot

7. Menetysjärjestelmät

7. Menetysjärjestelmät lueto7.ppt S-38.45 Leeteora perusteet Kevät 25 Ssältö Kertausta: ysertae leeteoreette mall Posso-mall asaata, palvelota Sovellus vrtaava dataletee malltamsee vuotasolla Erlag-mall asaata, palvelota < Sovellus

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.4 Lneaarnen ohelmont 8..7 Luento 6 Duaaltehtävä (kra 4.-4.4) S ysteemanalyysn Lneaarnen ohelmont - Syksy 7 / Luentorunko Motvont Duaaltehtävä Duaalteoreemat Hekko duaalsuus Vahva duaalsuus Täydentyvyysehdot

Lisätiedot

HASSEN-WEILIN LAUSE. Kertausta

HASSEN-WEILIN LAUSE. Kertausta HASSEN-WEILIN LAUSE Kertausta Käytetään seuraava merkntjä F = F/F q on sukua g oleva funktokunta Z F (t = L F (t (1 t(1 qt on funktokunnan F/F q Z-funkto. α 1, α 2,..., α 2g ovat polynomn L F (t nollakohten

Lisätiedot

Jaksolliset ja toistuvat suoritukset

Jaksolliset ja toistuvat suoritukset Jaksollset ja tostuvat suortukset Korkojakson välen tostuva suortuksa kutsutaan jaksollsks suortuksks. Tarkastelemme tässä myös ylesempä tlanteta jossa samansuurunen talletus tehdään tasavälen mutta e

Lisätiedot

Kanoniset muunnokset

Kanoniset muunnokset Kanonset muunnokset Koordnaatstomuunnokset Lagrangen formalsmssa pstemuunnoksa: Q = Q (q, t) nopeudet saadaan nästä dervomalla Kanonnen formalsm: p:t ja q:t samanarvosa 2n-ulottesen faasavaruuden muuttuja

Lisätiedot

4. Stokastiset prosessit. lect4.tex 1. Sisältö. Peruskäsitteitä. Poisson-prosessi. Markov-prosessit. Syntymä-kuolema-prosessit

4. Stokastiset prosessit. lect4.tex 1. Sisältö. Peruskäsitteitä. Poisson-prosessi. Markov-prosessit. Syntymä-kuolema-prosessit 4. Stokastiset prosessit lect4.tex 1 Sisältö Peruskäsitteitä Poisson-prosessi Markov-prosessit Syntymä-kuolema-prosessit 2 Stokastinen prosessi Tarkasteltavana oleva järjestelmä kehittyy ajan mukana ja

Lisätiedot

Painotetun metriikan ja NBI menetelmä

Painotetun metriikan ja NBI menetelmä Panotetun metrkan ja NBI menetelmä Optmontopn semnaar - Kevät / 1 Estelmän ssältö Paretopsteden generont panotetussa metrkossa Panotettu L p -metrkka Panotettu L -metrkka el panotettu Tchebycheff -metrkka

Lisätiedot

Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä

Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä Tavotteet skaalaavan funkton lähestymstapa el referensspste menetelmä Optmontopn semnaar - Kevät 2000 / 1 Estelmän ssältö Panotetun metrkan ongelmen havatsemnen Referensspste menetelmän dean esttely Referensspste

Lisätiedot

Tilastollisen fysiikan luennot

Tilastollisen fysiikan luennot Tlastollsen fyskan luennot Tvstelmät luvuttan I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ Lämpö on systeemen mkroskooppsten osen satunnasta lkettä Lämpöenerga vrtaa kuumemmasta kappaleesta kylmempään Jos kaks kappaletta

Lisätiedot

Eräs Vaikutuskaavioiden ratkaisumenetelmä

Eräs Vaikutuskaavioiden ratkaisumenetelmä Mat-2.142 Optmontopn semnaar, s-99 28.9. 1999 Semnaarestelmän referaatt Joun Ikonen Lähde: Ross D. Schachter: Evaluatng nfluence dagrams, Operatons Research, Vol 34, No 6, 1986 Eräs Vakutuskaavoden ratkasumenetelmä

Lisätiedot

3 Tilayhtälöiden numeerinen integrointi

3 Tilayhtälöiden numeerinen integrointi 3 Tlayhtälöden numeernen ntegront Alkuarvotehtävässä halutaan ratkasta lopputla xt f ) sten, että tlayhtälöt ẋ = fx,u, t) toteutuvat, kun alkutla x 0 on annettu Tlayhtälöden numeernen ntegront vodaan suorttaa

Lisätiedot

d L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ

d L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ TTKK/Fyskan latos FYS-1640 Klassnen mekankka syksy 2009 Laskuharjotus 5, 16102009 1 Ertysessä suhteellsuusteorassa Lagrangen funkto vodaan krjottaa muodossa v L = m 2 u t 1! ṙ 2 V (r) Osota, että tämä

Lisätiedot

Tchebycheff-menetelmä ja STEM

Tchebycheff-menetelmä ja STEM Tchebycheff-menetelmä ja STEM Optmontopn semnaar - Kevät 2000 / 1 1. Johdanto Tchebycheff- ja STEM-menetelmät ovat vuorovakuttesa menetelmä evät perustu arvofunkton käyttämseen pyrkvät shen, että vahtoehdot

Lisätiedot

Äärellisten ryhmien hajotelmat suoriksi tuloiksi

Äärellisten ryhmien hajotelmat suoriksi tuloiksi TAMPEREEN YLIOPISTO Pro gradu -tutkelma Vel-Matt Nemnen Äärellsten ryhmen hajotelmat suorks tuloks Informaatoteteden ykskkö Matematkka Kesäkuu 2016 Tampereen ylopsto Informaatoteteden ykskkö NIEMINEN,

Lisätiedot

Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa

Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa Mttausteknkan perusteet / luento 6 Mttausepävarmuus ja shen lttyvää termnologaa Mttausepävarmuus = mttaustulokseen lttyvä parametr, joka kuvaa mttaussuureen arvojen odotettua vahtelua Mttauksn lttyvä kästtetä

Lisätiedot

Yrityksen teoria ja sopimukset

Yrityksen teoria ja sopimukset Yrtyksen teora a sopmukset Mat-2.4142 Optmontopn semnaar Ilkka Leppänen 22.4.2008 Teemoa Yrtyksen teora: tee va osta? -kysymys Yrtys kannustnsysteemnä: ylenen mall Työsuhde vs. urakkasopmus -analyysä Perustuu

Lisätiedot

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT COUOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT SISÄTÖ: Coulombn voma Sähkökenttä Coulombn voman a sähkökentän laskemnen pstevaaukslle Jatkuvan vaauksen palottelemnen pstevaauksks

Lisätiedot

r i m i v i = L i = vakio, (2)

r i m i v i = L i = vakio, (2) 4 TÖRMÄYKSET ILMATYYNYPÖYDÄLLÄ 41 Erstetyn systeemn sälymslat Kun kaks kappaletta törmää tosnsa ne vuorovakuttavat keskenään tetyn ajan Vuorovakutuksella tarkotetaan stä että kappaleet vahtavat keskenään

Lisätiedot

13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit

13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit 68 3. Leaarset esmmäse kertaluvu dfferetaalsysteemt Tarkastelemme systeemejä () x () t = A() t x() t + b () t, jossa matrs A kertomet ja b ovat välllä I jatkuva. Jatkuve vektorarvoste fuktode avaruutta

Lisätiedot

Pro gradu -tutkielma. Whitneyn upotuslause. Teemu Saksala

Pro gradu -tutkielma. Whitneyn upotuslause. Teemu Saksala Pro gradu -tutkelma Whtneyn upotuslause Teemu Saksala Helsngn ylopsto Matematkan ja tlastoteteen latos 5. maalskuuta 2013 0.1 Johdanto Topologset monstot ovat melenkntosa, koska ne ovat määrtelmänsä nojalla

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-2.204 Tlastollsen analyysn perusteet, kevät 2007 5. luento: Tlastollnen rppuvuus ja korrelaato Ka Vrtanen Muuttujen välsten rppuvuuksen analysont Tlastollsssa analyysessä tutktaan usen muuttujen välsä

Lisätiedot

BL20A0600 Sähkönsiirtotekniikka

BL20A0600 Sähkönsiirtotekniikka BLA6 Sähkönsrtoteknkka Tehonaon laskenta Jarmo Partanen LT Energy Electrcty Energy Envronment Srtoverkkoen laskenta Verkon tehonaon laskemnen srron hävöt ännteolosuhteet ohtoen kuormttumnen verkon käyttäytymnen

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-2.340 Lneaarnen ohjelmont 3.9.2007 Luento Johdanto (krja.-.4) S ysteemanalyysn Laboratoro eknllnen korkeakoulu Eeva Vlkkumaa Lneaarnen ohjelmont - Syksy 2007 / Luentorunko Hstoraa Lneaarnen optmonttehtävä

Lisätiedot

1 0 2 x 1 a. x 1 2x c b 2a c a. Alimmalta riviltä nähdään että yhtälöyhmällä on ratkaisu jos ja vain jos b 3a + c = 0.

1 0 2 x 1 a. x 1 2x c b 2a c a. Alimmalta riviltä nähdään että yhtälöyhmällä on ratkaisu jos ja vain jos b 3a + c = 0. BM20A5800 - Funktot, lneaaralgebra, vektort Tentt, 26.0.206. (a) Krjota yhtälöryhmä x + 2x 3 = a 2x + x 2 + 5x 3 = b x x 2 + x 3 = c matrsmuodossa Ax = b ja ratkase x snä erkostapauksessa kun b = 0. Mllä

Lisätiedot

7. Menetysjärjestelmät

7. Menetysjärjestelmät Ssältö Kertust: ykskerte lkeeteoreette mll Posso-mll (skkt, plvelot ) Sovellus vrtv dtlketee mlltmsee vuotsoll Erlg-mll (skkt, plvelot < ) Sovellus puhellketee mlltmsee rukoverkoss Bommll (skkt k

Lisätiedot

Taustaa. Sekventiaalinen vaikutuskaavio. Päätöspuista ja vaikutuskaavioista. Esimerkki: Reaktoriongelma. Johdantoa sekventiaalikaavioon

Taustaa. Sekventiaalinen vaikutuskaavio. Päätöspuista ja vaikutuskaavioista. Esimerkki: Reaktoriongelma. Johdantoa sekventiaalikaavioon Taustaa Sekventaalnen vakutuskaavo Sekventaalnen päätöskaavo on 1995 ovalun ja Olven esttämä menetelmä päätösongelmen mallntamseen, fomulontn ja atkasemseen. Päätöspuun omnasuukssta Hyvää: Esttää eksplsttsest

Lisätiedot

Ilmari Juva. Jalkapallo-ottelun lopputuloksen stokastinen mallintaminen

Ilmari Juva. Jalkapallo-ottelun lopputuloksen stokastinen mallintaminen Ilmar Juva 45727R Mat-2.108 Sovelletun matematkan erkostyö Jalkaallo-ottelun loutuloksen stokastnen mallntamnen 1 Johdanto Jalkaallo-ottelun loutuloksen mallntamsesta tlastollsn ja todennäkösyyslaskun

Lisätiedot

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIMUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oppa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttauspöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

Kollektiivinen korvausvastuu

Kollektiivinen korvausvastuu Kollektvnen korvausvastuu Sar Ropponen 4.9.00 pävtetty 3..03 Ssällysluettelo JOHDANTO... KORVAUSVASTUUSEEN LIITTYVÄT KÄSITTEET VAHINKOVAKUUTUKSESSA... 3. MERKINNÄT... 3. VAHINGON SELVIÄMINEN JA KORVAUSVASTUU...

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemaalyys laboratoro Mat-.9 Sovellettu todeäkösyyslasku A Nordlud Harjotus 8 (vko 45/3) (Ahe: Raja-arvolauseta, otostuuslukuja, johdatusta estmot, Lae luvut 9.5,.-.6). Olkoo X ~ p(λ), mssä λ

Lisätiedot

Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio?

Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio? Mttausteknkan perusteet / luento 7 Mttausepävarmuus Mttausepävarmuus Mttaustulos e ole koskaan täysn oken Mttaustulos on arvo mtattavasta arvosta Mttaustuloksen ja mtattavan arvon ero on mttausvrhe Mkäl

Lisätiedot

Todennäköisyyden aksioomat. Todennäköisyyden aksioomat. Todennäköisyyden aksioomat: Mitä opimme? 2/2. Todennäköisyyden aksioomat: Mitä opimme?

Todennäköisyyden aksioomat. Todennäköisyyden aksioomat. Todennäköisyyden aksioomat: Mitä opimme? 2/2. Todennäköisyyden aksioomat: Mitä opimme? TKK () Ilkka Mell (2004) 1 Todeäkösyyde aksoomat Suhteelle rekvess, klasse todeäkösyys ja ehdolle todeäkösyys Johdatus todeäkösyyslasketaa Todeäkösyyde aksoomat TKK () Ilkka Mell (2004) 2 Todeäkösyyde

Lisätiedot

1. (Monisteen teht. 5.16) Eräiden kuulalaakereiden kestoa (miljoonaa kierrosta) on totuttu kuvaamaan Weibull-jakaumalla, jonka tiheysfunktio on

1. (Monisteen teht. 5.16) Eräiden kuulalaakereiden kestoa (miljoonaa kierrosta) on totuttu kuvaamaan Weibull-jakaumalla, jonka tiheysfunktio on HY MTO / Matemaattste tetede kadohjelma Tlastolle päättely II kevät 019 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I 1 Mostee teht 516 Eräde kuulalaakerede kestoa mljooaa kerrosta o totuttu kuvaamaa Webull-jakaumalla

Lisätiedot

Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4

Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4 TKK (c) lkka Melln (005) Koesuunnttelu TKK (c) lkka Melln (005) : Mtä opmme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Mten varanssanalyysssa tutktaan yhden tekän vakutusta vastemuuttujaan, kun

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 7B Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 7B Ratkaisuehdotuksia. HY, MTO / Matemaattste tetede kadohjelma Tlastolle päättely II, kevät 208 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I Olkoo Y, Y rppumato otos Pareto jakaumasta, fy; θ θc θ y θ+ { y > c } tuetulla vakolla

Lisätiedot

Usean muuttujan funktioiden integraalilaskentaa

Usean muuttujan funktioiden integraalilaskentaa Usean muuttujan funktoden ntegraallaskentaa Pntantegraaln määrtelmä Yhden muuttujan tapaus (kertausta) Olkoon f() : [a, b] R jatkuva funkto Oletetaan tässä ksnkertasuuden vuoks, että f() Remann-ntegraal

Lisätiedot

Johdatus tekoälyn taustalla olevaan matematiikkaan

Johdatus tekoälyn taustalla olevaan matematiikkaan Johdatus tekoälyn taustalla olevaan matematkkaan Informaatoteknologan tedekunta Jyväskylän ylopsto 4. luento 24.11.2017 Neuroverkon opettamnen - gradenttmenetelmä Neuroverkkoa opetetaan syöte-tavote-parella

Lisätiedot

VERKKOJEN MITOITUKSESTA

VERKKOJEN MITOITUKSESTA J. Vrtamo 38.3141 Telelkenneteora / Verkon mtotus 1 VERKKOJEN MITOITUKSESTA 1. Prkytkentäset verkot Lnkken kapasteetten (johtoja/lnkk) määräämnen sten, että verkon kokonaskustannukset mnmotuvat, kun päästä-päähän

Lisätiedot

Satunnaismuuttujat ja todennäköisyysjakaumat

Satunnaismuuttujat ja todennäköisyysjakaumat Satuasmuuttujat ja todeäkösyysjakaumat Todeäkösyyslasketa: Satuasmuuttujat ja todeäkösyysjakaumat 9. Satuasmuuttujat ja todeäkösyysjakaumat 0. Kertymäfukto. Jakaume tuusluvut. Moulotteset satuasmuuttujat

Lisätiedot

Geneettiset algoritmit ja luonnossa tapahtuva mikroevoluutio

Geneettiset algoritmit ja luonnossa tapahtuva mikroevoluutio Mat-2.108 Sovelletun matematkan erkostyöt Geneettset algortmt ja luonnossa tapahtuva mkroevoluuto 11.5.2005 Teknllnen korkeakoulu Systeemanalyysn laboratoro Oll Stenlund 47068f 1 Johdanto 3 2 Geneettset

Lisätiedot

4. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman

4. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman 4. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 7..008 Thomas Hackman 4. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus Akasarja-anals 4. Tähtteteellsten

Lisätiedot

Taustaa KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka

Taustaa KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka IMA- Exurso: Kompleksluvu ja radosgnaal / KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT Tausaa IMA- Exurso: Kompleksluvu ja radosgnaal / Kakk langaon vesnä ja radoeolkenne (makapuhelme, WLAN, ylesrado

Lisätiedot

T p = 0. λ n i T i B = Käytetään kohdan (i) identiteetin todistamiseen induktiotodistusta. : Oletetaan, että väite on totta, kun n = k.

T p = 0. λ n i T i B = Käytetään kohdan (i) identiteetin todistamiseen induktiotodistusta. : Oletetaan, että väite on totta, kun n = k. Olkoot A R n n ja T R n n sten, että on olemassa ndeks p N jolle T p = Tällästä matrsa kutsutaa nlpotentks Näytä, että () () () Olkoot Määrtä matrs B n (λi + A) n = (λi + T ) n = B = n mn n,p ( ) n λ n

Lisätiedot

FDS-OHJELMAN UUSIA OMINAISUUKSIA

FDS-OHJELMAN UUSIA OMINAISUUKSIA FDS-OHJELMAN UUSIA OMINAISUUKSIA Smo Hostkka VTT PL 1000, 02044 VTT Tvstelmä Fre Dynamcs Smulator (FDS) ohjelman vdes verso tuo mukanaan joukon muutoksa, jotka vakuttavat ohjelman käyttöön ja käytettävyyteen.

Lisätiedot

5. KVANTTIMEKANIIKKAA

5. KVANTTIMEKANIIKKAA 5. KVANTTIMEKANIIKKAA Bohrn atommallsta samme jonknlasen kuvan atomn rakenteesta. Kutenkaan Bohrn atommall e pysty selttämään kakka kokeellsa havantoja spektrestä: Mks osa spektren vvosta on tosa vomakkaampa

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä. MS-A0205/MS-A0206 Dfferentaal- ja ntegraallaskenta 2 Luento 7: Lagrangen kertojat. Penmmän nelösumman menetelmä. Jarmo Malnen Matematkan ja systeemanalyysn latos 1 Aalto-ylopsto Kevät 2016 1 Perustuu Antt

Lisätiedot

FYSA220/2 (FYS222/2) VALON POLARISAATIO

FYSA220/2 (FYS222/2) VALON POLARISAATIO FYSA220/2 (FYS222/2) VALON POLARSAATO Työssä tutktaan valoaallon tulotason suuntasen ja stä vastaan kohtsuoran komponentn hejastumsta lasn pnnasta. Havannosta lasketaan Brewstern lan perusteella lasn tatekerron

Lisätiedot

A = B = T = Merkkijonon A osamerkkijono A[i..j]: n merkkiä pitkä merkkijono A:

A = B = T = Merkkijonon A osamerkkijono A[i..j]: n merkkiä pitkä merkkijono A: Merkkjonot (strngs) n merkkä ptkä merkkjono : T T T G T n = 18 kukn merkk [], mssä 0 < n, kuuluu aakkostoon Σ, jonka koko on Σ esm. bttjonot: Σ = {0,1} ja Σ = 2, DN: Σ = {,T,,G} ja Σ = 4 tetokoneen aakkosto

Lisätiedot

Yksikköoperaatiot ja teolliset prosessit

Yksikköoperaatiot ja teolliset prosessit Ykskköoperaatot ja teollset prosesst 1 Ylestä... 2 2 Faasen välnen tasapano... 3 2.1 Neste/höyry-tasapano... 4 2.1.1 Puhtaan komponentn höyrynpane... 4 2.1.2 Ideaalnen seos... 5 2.1.3 Epädeaalnen nestefaas...

Lisätiedot

SU/Vakuutusmatemaattinen yksikkö (5)

SU/Vakuutusmatemaattinen yksikkö (5) SU/Vakuutusmatemaattnen ykskkö 0..06 (5) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan täydennyskertomen,

Lisätiedot

= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2

= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2 HY / Matematka ja tlastotetee latos Tlastolle päättely II, kevät 28 Harjotus 3A Ratkasuehdotuksa Tehtäväsarja I Olkoot Y,, Y ja Nθ, ) Osota, että T T Y) Y 2 o parametr gθ) θ 2 harhato estmaattor Laske

Lisätiedot

3. Datan käsittely lyhyt katsaus

3. Datan käsittely lyhyt katsaus 3. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento..0 Thomas Hackman HTTPK I, kevät 0, luento 3 3. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus

Lisätiedot

Galerkin in menetelmä

Galerkin in menetelmä hum.9.3 Galerkn n menetelmä Galerknn menetelmän soveltamnen e ole rajottunut van ongelmn, jotka vodaan pukea sellaseen varaatomuotoon, joka on seurauksena funktonaaln mnmomsesta, kuten potentaalenergan

Lisätiedot

Mat Tilastollinen päättely 7. harjoitukset / Tehtävät. Hypoteesien testaus. Avainsanat:

Mat Tilastollinen päättely 7. harjoitukset / Tehtävät. Hypoteesien testaus. Avainsanat: Mat-.36 Tlastollnen päättely 7. harjotukset Mat-.36 Tlastollnen päättely 7. harjotukset / Tehtävät Aheet: Avansanat: ypoteesen testaus. lajn vrhe,. lajn vrhe, arhaton test, ylkäysalue, ylkäysvrhe, ypotees,

Lisätiedot

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttausöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

Tilastollinen mekaniikka. Peruskäsitteitä Mikro- ja makrotilat Maxwell-Boltzmann jakauma Bose-Einstein jakauma Fermi-Dirac jakauma Jakaumafunktiot

Tilastollinen mekaniikka. Peruskäsitteitä Mikro- ja makrotilat Maxwell-Boltzmann jakauma Bose-Einstein jakauma Fermi-Dirac jakauma Jakaumafunktiot Tlastollnen mekankka Peruskästtetä Mkro- ja makrotlat Maxwell-Boltzmann jakauma Bose-Ensten jakauma Ferm-Drac jakauma Jakaumafunktot Tlastollnen mekankka Teora on stä vakuttavamp, mtä yksnkertasemmat ovat

Lisätiedot

Ilmanvaihdon lämmöntalteenotto lämpöhäviöiden tasauslaskennassa

Ilmanvaihdon lämmöntalteenotto lämpöhäviöiden tasauslaskennassa Y m ä r s t ö m n s t e r ö n m o n s t e 122 Ilmanvahdon lämmöntalteenotto lämöhävöden tasauslaskennassa HELINKI 2003 Ymärstömnsterön monste 122 Ymärstömnsterö Asunto- ja rakennusosasto Tatto: Lela Haavasoja

Lisätiedot

Matematiikan ja tilastotieteen laitos Johdatus diskreettiin matematiikkaan (Syksy 2008) 4. harjoitus Ratkaisuja (Jussi Martin)

Matematiikan ja tilastotieteen laitos Johdatus diskreettiin matematiikkaan (Syksy 2008) 4. harjoitus Ratkaisuja (Jussi Martin) Matematan ja tlastoteteen latos Johdatus dsreettn matemataan (Sysy 28 4. harjotus Ratasuja (Juss Martn 1. Kertomus Hotell Kosmosesta jatuu: Hotellyhtymän johdolta tul määräys laata luettelo asta mahdollssta

Lisätiedot

Epätäydelliset sopimukset

Epätäydelliset sopimukset Eätäydellset somukset Matt Rantanen 15.4.008 ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 16 Matt Rantanen Otmonton semnaar - Kevät 008 Estelmän ssältö Eätäydellset somukset ja omstusokeus alanén

Lisätiedot

Työssä tutustutaan harmonisen mekaanisen värähdysliikkeen ominaisuuksiin seuraavissa

Työssä tutustutaan harmonisen mekaanisen värähdysliikkeen ominaisuuksiin seuraavissa URUN AMMAIKORKEAKOULU YÖOHJE (7) FYSIIKAN LABORAORIO V.2 2.2 38E. MEKAANISEN VÄRÄHELYN UKIMINEN. yön tavote 2. eoraa yössä tutustutaan harmonsen mekaansen värähdyslkkeen omnasuuksn seuraavssa tapauksssa:

Lisätiedot

SU/Vakuutusmatemaattinen yksikkö (6)

SU/Vakuutusmatemaattinen yksikkö (6) SU/Vakuutusmatemaattnen ykskkö 28.0.206 (6) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV 2. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan

Lisätiedot

Uuden eläkelaitoslain vaikutus allokaatiovalintaan

Uuden eläkelaitoslain vaikutus allokaatiovalintaan TEKNILLINEN KORKEAKOULU Systeemanalyysn laboratoro Mat-2.108 Sovelletun matematkan erkostyö Uuden eläkelatoslan vakutus allokaatovalntaan Tmo Salmnen 58100V Espoo, 14. Toukokuuta 2007 Ssällysluettelo Johdanto...

Lisätiedot

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut)

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut) J. Virtamo 38.3143 Jonoteoria / Markov-prosessit 1 Markov-prosessit (Jatkuva-aikaiset Markov-ketut) Tarkastellaan (stationaarisia) Markov-prosessea, oiden parametriavaruus on atkuva (yleensä aika). Siirtymät

Lisätiedot

KUVIEN LAADUN ANALYSOINTI

KUVIEN LAADUN ANALYSOINTI KUVIEN LAADUN ANALYSOINTI Lasse Makkonen 1.7.2003 Joensuun Ylopsto Tetojenkästtelytede Pro gradu tutkelma Tvstelmä Tutkelmassa luodaan katsaus krjallsuudessa esntyvn dgtaalsten kuven laadullsen analysonnn

Lisätiedot

Demonstraatiot Luento 7 D7/1 D7/2 D7/3

Demonstraatiot Luento 7 D7/1 D7/2 D7/3 TEKNILLINEN KORKEAKOULU Tietoliikenne- ja tietoverkkotekniikan laitos S-8.45 Liikenneteorian perusteet, Kevät 2008 Demonstraatiot Luento 7 7.2.2008 D7/ Tarkastellaan piirikytkentäisen järjestelmän n-kanavaista

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekankan jatkokurss Fys102 Syksy 2009 Jukka Maalamp LUENTO 2 Alkuverryttelyä Vääntömomentt Oletus: Vomat tasossa, joka on kohtsuorassa pyörmsaksela vastaan. Oven kääntämseen tarvtaan er suurunen voma

Lisätiedot

10.5 Jaksolliset suoritukset

10.5 Jaksolliset suoritukset 4.5 Jaksollset suortukset Tarkastellaa tlaetta, jossa asakas tallettaa pakktllle tostuvast yhtäsuure rahasumma k aa korkojakso lopussa. Asakas suorttaa talletukse kertaa. Lasketaa tlllä oleva pääoma :e

Lisätiedot

Konvergenssikäsitteet ja raja-arvolauseet. Konvergenssikäsitteet ja raja-arvolauseet. Konvergenssikäsitteet ja raja-arvolauseet: Mitä opimme?

Konvergenssikäsitteet ja raja-arvolauseet. Konvergenssikäsitteet ja raja-arvolauseet. Konvergenssikäsitteet ja raja-arvolauseet: Mitä opimme? TKK (c) Ilkka Mell (004) Kovergesskästteet ja raja-arvolauseet Kovergesskästtetä Suurte lukuje lat Keskee raja-arvolause Keskese raja-arvolausee seurauksa Johdatus todeäkösyyslasketaa Kovergesskästteet

Lisätiedot

S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon

S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon S-11435, FYSIIKKA III (ES), Syksy 00, LH 4, Loppuvkko 39 LH4-1* Käyttän Maxwll-Boltzmann-jakauman parttofunktota määrtä a) nrgan nlön kskarvo (E ) skä b) nrgan nlöllnn kskpokkama kskarvosta l nrgan varanss,

Lisätiedot

Mat Koesuunnittelu ja tilastolliset mallit. Yhden selittäjän lineaarinen regressiomalli. Avainsanat:

Mat Koesuunnittelu ja tilastolliset mallit. Yhden selittäjän lineaarinen regressiomalli. Avainsanat: Mat-.3 Koesuuttelu ja tlastollset mallt 4. harjotukset Mat-.3 Koesuuttelu ja tlastollset mallt 4. harjotukset / Ratkasut Aheet: Avasaat: Yhde selttäjä leaare regressomall Artmeette keskarvo, Estmaatt,

Lisätiedot

Rahastoonsiirtovelvoitteeseen ja perustekorkoon liittyvät laskentakaavat. Soveltaminen

Rahastoonsiirtovelvoitteeseen ja perustekorkoon liittyvät laskentakaavat. Soveltaminen SU/Vakuutusmatemaattnen ykskkö 0.4.05 Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä perusteta sovelletaan täydennyskertomen,

Lisätiedot

Rahastoonsiirtovelvoitteeseen, perustekorkoon ja vakuutusmaksukorkoon liittyvät laskentakaavat ja periaatteet

Rahastoonsiirtovelvoitteeseen, perustekorkoon ja vakuutusmaksukorkoon liittyvät laskentakaavat ja periaatteet SU/Vakuutusmatemaattnen ykskkö 3..209 (7) Rahastoonsrtovelvotteeseen, perustekorkoon ja vakuutusmaksukorkoon lttyvät laskentakaavat ja peraatteet Soveltamnen. Rahastosrtovelvote RSV 2. Täydennyskerron

Lisätiedot

Tietojen laskentahetki λ α per ,15 0,18 per ,15 0,18 per tai myöhempi 0,20 0,18

Tietojen laskentahetki λ α per ,15 0,18 per ,15 0,18 per tai myöhempi 0,20 0,18 SU/Vakuutusmatemaattnen ykskkö 6.3.07 (6) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan täydennyskertomen,

Lisätiedot

Ilkka Mellin. Sovellettu todennäköisyyslasku: Kaavat ja taulukot

Ilkka Mellin. Sovellettu todennäköisyyslasku: Kaavat ja taulukot Mat-.09 Sovellettu todeäkösyyslasku Systeemaalyys laboratoro Teklle korkeakoulu SYKSY 00 Ilkka Mell Sovellettu todeäkösyyslasku: Kaavat ja taulukot f XY x X x X y Y ( x, y) exp XY ( XY ) XY XY X X Y Tomttaut

Lisätiedot

JYVÄSKYLÄN YLIOPISTO Taloustieteiden tiedekunta

JYVÄSKYLÄN YLIOPISTO Taloustieteiden tiedekunta JYVÄSKYLÄN YLIOPISTO Talousteteden tedekunta AIKA- IKÄ- JA KOHORTTIVAIKUTUKSET KOTITALOUKSIEN RAHOITUSVARALLISUUDEN RAKENTEISIIN SUOMESSA VUOSINA 1994 2004 Kansantaloustede Pro gradu -tutkelma Maalskuu

Lisätiedot

Työllistääkö aktivointi?

Työllistääkö aktivointi? Jyväskylän ylopsto Matemaatts-luonnonteteellnen tedekunta Työllstääkö aktvont? Vakuttavuusanalyys havannovassa tutkmuksessa Elna Kokkonen tlastoteteen pro gradu tutkelma 31. elokuuta 2007 Tlastoteteen

Lisätiedot

Tilastollinen päättely. 2. Datan redusoinnin periaatteet Tyhjentävyys Uskottavuus

Tilastollinen päättely. 2. Datan redusoinnin periaatteet Tyhjentävyys Uskottavuus Mat.36 Tlastolle päättely. Data reduso peraatteet Tlastolle päättely. Data reduso peraatteet.. Tyhjetävyys Asllaarsuus, Basu teoreema, Data redusot, Faktorotteoreema, Iformaato, Mmaale tyhjetävyys, Otos,

Lisätiedot

TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat Sovelletun matematiikan erikoistyö. Ei-normaalisten tuottojakaumien mallintaminen

TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat Sovelletun matematiikan erikoistyö. Ei-normaalisten tuottojakaumien mallintaminen TKNLLNN KOKKOULU Systeemanalyysn laboratoro Mat-.18 Sovelletun matematkan erkostyö -normaalsten tuottoakaumen mallntamnen Tmo Salmnen 581V soo, 1. Toukokuuta 7 1 Ssällysluettelo Ssällysluettelo... Johdanto...

Lisätiedot

Reaaliarvoinen funktio f : on differentioituva pisteessä x, jos f:lle on siinä voimassa kehitelmä. h h. eli. Silloin

Reaaliarvoinen funktio f : on differentioituva pisteessä x, jos f:lle on siinä voimassa kehitelmä. h h. eli. Silloin MAT-3440 LAAJA MATEMATIIKKA 4 Tampereen teknllnen ylopsto Rsto Slvennonen Kevät 00 4. Vektorfunkton dervaatta. Ketjusääntö.. Reaalarvosen funkton dervaatta Tässä luvussa estetään dervaattakäste ensn reaalarvoselle

Lisätiedot

on määritelty tarkemmin kohdassa 2.3 ja pi kohdassa 2.2.

on määritelty tarkemmin kohdassa 2.3 ja pi kohdassa 2.2. SU/Vakuutusmatemaattnen ykskkö 7.8.08 (7) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan täydennyskertomen,

Lisätiedot

Jäykän kappaleen liike

Jäykän kappaleen liike aananta 9.9.014 1/17 Jäykän kappaleen lke Tähän ast tarkasteltu massapstemekankkaa : m, r, v Okeast fyskaalset systeemt ovat äärellsen kokosa, esm. jäykät kappaleet r r j = c j =vako, j elastset kappaleet

Lisätiedot

11. Vektorifunktion derivaatta. Ketjusääntö

11. Vektorifunktion derivaatta. Ketjusääntö 7 Vektorfunkton dervaatta Ketjusääntö Täydennämme ja kertaamme seuraavassa dfferentaallaskennan teoraa kursslta Laaja matematkka Palautetaan meln dervaatan määrtelmä reaalfunktolle: Funkton f : R R dervaatta

Lisätiedot

Moraalinen uhkapeli: N:n agentin tapaus eli moraalinen uhkapeli tiimeissä

Moraalinen uhkapeli: N:n agentin tapaus eli moraalinen uhkapeli tiimeissä Moraalnen uhkapel: N:n agentn tapaus el moraalnen uhkapel tmessä Mat-2.4142 Optmontopn semnaar Ismo Räsänen 4.3.2008 S ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 11 - Ismo Räsänen Optmontopn

Lisätiedot