INVESTOINTILASKENTAMENETELMIEN SOVELTUVUUS LÄMMITYSENERGIANSÄÄSTÖÖN KOHDISTUVASSA INVESTOINNISSA

Koko: px
Aloita esitys sivulta:

Download "INVESTOINTILASKENTAMENETELMIEN SOVELTUVUUS LÄMMITYSENERGIANSÄÄSTÖÖN KOHDISTUVASSA INVESTOINNISSA"

Transkriptio

1 TOMMI GÖÖS INVESTOINTILASKENTAMENETELMIEN SOVELTUVUUS LÄMMITYSENERGIANSÄÄSTÖÖN KOHDISTUVASSA INVESTOINNISSA Diplomityö Prof. Petri Suomala hyväksytty tarkastajaksi teknis-taloudellisen tiedekunnan kokouksessa

2 i TIIVISTELMÄ TAMPEREEN TEKNILLINEN YLIOPISTO Tuotantotalouden koulutusohjelma GÖÖS, TOMMI: Investointilaskentamenetelmien soveltuvuus lämmitysenergiansäästöön kohdistuvassa investoinnissa Diplomityö, 93 sivua, 10 liitettä (13 sivua) Marraskuu 2012 Pääaine: teollisuustalous Tarkastaja: professori Petri Suomala Avainsanat: Energiansäästö, lämmityskustannukset, kannattavuus Tämän tutkimuksen tavoitteena oli selvittää takaisinmaksuajan menetelmän lisäksi muiden investointilaskentamenetelmien soveltuvuutta energiansäästöinvestoinnin laskentaan. Investointina toimi Ekonor Oy:n Lämmönvahti -menetelmä. Kirjallisuuskatsauksessa selvitettiin kiinteistöjen lämmitysjärjestelmää, menetelmän toimintaperiaatetta sekä tarkasteltiin energiansäästöön tehdyn investoinnin kannattavuuden laskentamenetelmiä. Tutkimuksen aineistona oli lämmitysenergiankulutustiedot yhteensä 19 kiinteistöstä, joihin menetelmä oli asennettu. Kohteet oli asennettu välillä Kaikissa tarkastetuissa kohteissa lämmitysenergian kulutus oli pudonnut tarkastelujaksolla. Energiankulutuksen muutos vaihteli välillä -0, ,5 ja perusmaksun muutos asennuksen jälkeen tehdyissä tarkistusmittauksissa vaihteli välillä -10, ,7. Näiden yhteisvaikutuksena energiakustannuksen muutos vaihteli eri kohteissa välillä - 5, ,0. Tulokset eivät ole aivan tarkkoja, sillä helmikuun 2012 kulutus ei pidä kohteilla paikkaansa, ja suuressa osassa kohteita tarkasteluaika asennuksen jälkeen on vain vuosi tai alle sen. Jos helmikuun kulutukset otetaan tuloksista pois, energiankulutuksen lasku on huomattavasti suurempi. Tarkemman tuloksen saamiseksi tarkasteluaika pitäisi olla pidempi ja kohteita enemmän. Menetelmän vaikutusta tilausvesivirran muutokseen ei lisäksi pystytty tarkasti määrittelemään. Menetelmän voidaan todeta laskevan kiinteistöjen energiakustannuksia, mutta tarkkaa lukua ei voida antaa. Investoinnin laskentamenetelmänä suositellaan käytettäväksi perinteisen takaisinmaksuajan menetelmän lisäksi nettonykyarvoa. Lyhyen takaisinmaksuajan ja pitkän pitoajan investoinneissa voidaan sisäistä korkokantaa ja nettonykyarvoa pitää varmasti positiivisina, joten pelkkä takaisinmaksuajan menetelmäkin voi olla riittävä. Tutkimuksessa sisäinen korkokanta antoi samanlaisen kannattavuusjärjestyksen kuin takaisinmaksuajan menetelmä. Nettonykyarvo puolestaan antoi hieman erilaisen järjestyksen, joten sen avulla saadaan investoinnista lisätietoa. Energiakustannusten laskun ollessa yli 10 takaisinmaksuaika tarkasteltavalle menetelmälle on alle 2 vuotta ja investointi on tällöin hyvin kannattava.

3 ii ABSTRACT TAMPERE UNIVERSITY OF TECHNOLOGY Master s Degree Programme in Industrial Engineering and Management GÖÖS, TOMMI: Suitability of Investment Calculation Methods for Energy Saving Investments Master of Science Thesis, 93 pages, 10 appendices (13 pages) November 2012 Major: Industrial Engineering and Management Examiner: Professor Petri Suomala Keywords: Energy saving, heating cost, profitability The aim of this study was to investigate the calculation methods suitable for estimating energy savings investments, in addition to the return on investment of energy savings. In this research the energy savings investment studied was Ekonor Oy s Lämmönvahti method. The literature reviewed studied the buildings heating system, the operation principle of the method and energy savings investment calculation methods. The research material consists mainly of the energy consumption data of 19 buildings on which the method was installed. Test methods were installed between The income of the investment is the change in heating energy costs. Heating energy costs consist of energy charge which depends on energy consumption and basic charge which is a fixed charge. Heating energy consumption had decreased in all buildings where the method was installed and this change varied between 0, ,5. Basic charge varied between - 10, ,7 and the total heating energy costs varied between -5, ,0. Results were not quite accurate because the buildings energy consumption in February 2012 was not correct. In addition, time after installing the method in many cases is only a year or less. The decrease in consumption is much higher if February consumptions were taken from the results. In order to obtain more accurate results the reviewed period should have been longer. Basic charge had also decreased but it is difficult to determine the effects of the method for that change. In addition to the traditional payback method, it is recommended to use the net present value method when calculating energy savings investment profitability. When investments have a short payback and a long life span the net present value and internal rate of return are always positive and a simple payback method may be sufficient alone. In this research the internal rate of return gave similar order of investments profitability as payback method. Net present values gave a slightly different order so it would give more information about the investments. When energy costs decrease more than 10, the payback time is less than two years and investments are highly profitable.

4 iii ALKUSANAT Haluan kiittää Ekonor Oy:tä mahdollisuudesta tehdä tämä työ. Kiitän Ekonor Oy:n johtoa hyvästä tuesta, kannustamisesta ja hyvistä neuvoista. Kiitokset kuuluvat myös Ekonor Oy:n koko henkilöstölle mukavasta työilmapiiristä. Erityisesti haluan kiittää työni tarkastajaa, professori Petri Suomalaa, tärkeistä palautteista ja ohjeista, jotka ohjasivat työtäni oikeaan suuntaan varsinkin sen loppuvaiheessa. Lisäksi haluan kiittää perhettäni ja ystäviäni, jotka olette olleet tukemassa ja kannustamassa koko opiskeluaikani. Turussa Tommi Göös

5 iv SISÄLLYS TIIVISTELMÄ... i ABSTRACT... ii ALKUSANAT... iii SISÄLLYS... iv 1. JOHDANTO Tutkimuksen tausta Tutkimusongelma ja näkökulma Tutkimusote Tutkimuksen rakenne KAUKOLÄMPÖ JA SEN HINNOITTELU Kaukolämpö Kaukolämmön hinnoittelukäytännöt Energiamaksu Perusmaksu Perusmaksun tarkistus Tilaustehon laskenta Tilausvesivirran laskenta RAKENNUKSEN LÄMMITYKSESTÄ Vesikiertoinen keskuslämmitysjärjestelmä Toiminta... 14

6 v Tärkeimmät osa-alueet Lämmitysverkoston tasapainotus Ongelmia Rakennuksen energiatase Energiansäästöinvestointien taloudellisia vaikutuksia Energiankorjaustoimenpiteet Säätötoimenpiteet Paine-erokompensointimenetelmän toiminta Menetelmä Menetelmän toiminta Asennuksessa tehtävät oleelliset toimenpiteet Syyt kulutuksen mahdolliseen pienentymiseen Ylilämmittämisen välttäminen Ilmaislämmön parempi hyödyntäminen Häviöiden pieneneminen Yhteenveto investointitilanteesta ENERGIASÄÄSTÖHANKKEEN INVESTOINNIN TEOREETTISET PERUSTEET Investointien suunnittelu ja päätöksenteko Investoinnin lähtötiedot Investointilaskelmat Perinteinen ja diskontattu takaisinmaksuajan menetelmä Sisäisen korkokannan menetelmä Nettonykyarvo... 41

7 vi Takaisinmaksukerrat pitoaikana Kustannus/energiansäästö Herkkyysanalyysi ja arvotekijät TUTKIMUSAINEISTO JA MENETELMÄT Kohdeyritys Tutkimusmenetelmät MENETELMÄN VAIKUTUS ENERGIANKULUTUKSEEN JA TILAUSVESIVIRTAAN Vaikutus energiankulutukseen Saman kiinteistön kulutus ennen ja jälkeen asennuksen Kahden samanlaisen kohteen kulutustiedot Yhteenveto Seuranta-ajan vaikutus tuloksiin Vaikutus tilausvesivirtaan Jäähtymän muutos Tilausvesivirran muutos Yhteenveto Kulutus keväällä ja syksyllä LÄMMITYSKUSTANNUKSET Menetelmän vaikutus energiamaksuun Menetelmän vaikutus perusmaksuun Yhteisvaikutus Yhteenveto INVESTOINTILASKELMAT... 74

8 vii 8.1. Erityispiirteitä Investoinnin laskentamenetelmiä Paine-erokompensointimenetelmän kannattavuus Investointilaskentamenetelmät Herkkyysanalyysi Investoinnin kannattavuus eri energian hinnoilla PÄÄTELMÄT Johtopäätökset Lämmitysenergiankulutuksen muutos Lämmityskustannukset Investoinnin laskentamenetelmien soveltuvuus Tutkimuksen tarkastelu Suositukset sekä kohdeyritykselle että tiedeyhteisölle LÄHTEET... 90

9 1 1. JOHDANTO 1.1. Tutkimuksen tausta Energianhinnan jatkuva nousu tekee energiansäästöstä yhä järkevämpää ja kannattavampaa. Esimerkiksi rakennuksien yleisimmän lämmitysmuodon, kaukolämmön, hinta on noin kaksinkertaistunut 2000-luvulla (Energiateollisuus 2012, Kaukolämmön hintakehitys). Rakennukset ovat erittäin suuria energian kuluttajia ja kuluttavatkin noin 31 kaikesta Suomesta käytetystä energiasta. Asuinkiinteistöjen käytetystä energiasta huonetilojen lämmitykseen kuluu noin 40, ilmanvaihdon lämmitykseen 35 ja käyttöveden lämmitykseen 25 vuodessa (Energiateollisuus ry 2006). Huonetilojen lämmitys ja ilmanvaihdon lämmitys kattaa siis suuren osan kulutetusta lämpöenergiasta. Niihin vaikuttamalla on mahdollisuus saada aikaan isoja energiansäästöjä ja sitä kautta kustannussäästöjä. Suurimmat vaikutukset rakennusten lämmitysenergiankulutukseen tehdään jo rakennusten suunnitteluvaiheessa, jolloin määritellään esimerkiksi eristeiden paksuus. (VTT 2007, s.153) Suomen rakennuskanta uudistuu hitaasti, noin yhden prosentin vuosivauhdilla. (Tekes 2010) Poistuma puolestaan vähentää vuosittain rakennuskantaa keskimäärin hieman alle prosentin. Hitaan poistuman vuoksi vuoksi on kannattavaa keskittyä myös jo rakennettujen kiinteistöjen energiankulutuksen parantamiseen. On arvioitu, että kiinteistöjen oikealla käytöllä ja ylläpidolla on saavutettavissa yhtä suuri energiansäästö kuin uudisrakentamisella tai korjausrakentamisella. (Työ- ja elinkeinoministeriö 2009, s.31 34) Rakennusten loppukäyttäjillä eli asukkailla on mahdollisuus energiankulutuksen laskuun esimerkiksi laskemalla rakennusten sisälämpötilaa. Kerrostalojen lämmitys on hyvin vaikea toteuttaa siten, että jokaisessa huoneessa olisi tasainen lämpö ja että lämmitysenergiaa ei menisi hukkaan. Oikeanlaisilla säädöillä ja lämmityksestä huolehtimalla on mahdollisuus energiasäästöön. Energiansäästöön liittyviä mahdollisuuksia ja keinoja on tutkittu, ja on esitetty arvioita lämmitysenergian kulutuksen muutoksesta sekä mahdollisista takaisinmaksuajoista. Muun muassa useat diplomityöt, yliopistojen ja VTT:n tutkimukset ovat keskittyneet mahdollisiin arvioihin muutoksien suuruuksista. Huomattavasti vähemmälle tarkastelulle on jäänyt investointien toteutuneet muutokset ja sitä kautta tehdyt päätelmät investointien kannattavuuksista. Toteutuneista muutoksista lämmitysenergian kulutuksessa kertovat lähinnä kaupalliset yritykset, jotka mainostavat omien toimiensa vaikutuksia.

10 2 Tämä diplomityö on tehty Ekonor Oy:lle kesän 2011 ja sitä seuraavan syksyn aikana. Työ keskittyy selvittämään Ekonor Oy:n tarjoaman menetelmän jälkeisiä lämmitysenergian kulutuksen muutoksia, menetelmään investoinnin kannattavuutta sekä erilaisten investointilaskentamenetelmien soveltuvuutta. Ekonor Oy tarjoaa energiasäästöpalveluja kiinteistöille, ja heidän tarjoamassaan energiansäästöpalvelussa pyritään poistamaan rakennusten ylilämmittäminen asentamalla rakennusten lämmönjakohuoneeseen Lämmonvahti -laite sekä tekemällä asennukseen liittyvät säädöt. Menetelmä soveltuu vesikiertoisiin järjestelmiin, joissa lämmitys tapahtuu pääosin pattereiden avulla. Myöhemmin tässä työssä käytetään termiä tarkasteltava menetelmä kuvaamaan koko periaatetta. Kempeleessä päätoimipaikkaansa pitävä Ekonor Oy on vuonna 2002 perustettu yritys. Vuoden 2012 lokakuun loppuun mennessä laite oli asennettu noin 600 kohteeseen ympäri Suomen. Ekonor Oy:n omien laskelmien mukaan menetelmän asentamisen jälkeen kiinteistöjen lämmityskustannukset ovat laskeneet keskimäärin 17, ja investointi maksaa itsensä takaisin keskimäärin alle kahdessa vuodessa (Ekonor Oy 2012) Tutkimusongelma ja näkökulma Tämän työn tutkimusongelma on selvittää erilaisten investoinnin laskentamenetelmien soveltuvuutta lämmitysenergiansäästöinvestoinnin kannattavuuden arviointiin. Usein energiasäästöinvestointeja tutkiessa menetelmänä käytetään ainoastaan takaisinmaksuajan menetelmää, jota myös Ekonor Oy käyttää. Tässä tutkimuksessa selvitetään tuovatko muut mittarit lisäarvoa kannattavuuden arviointiin. Investointina käytetään Ekonor Oy:n tarjoamaa menetelmää. Tutkimuksen näkökulmana on Ekonor Oy:n asiakkaiden näkökulma. Asiakkaita ovat kiinteistöjen omistajat. Ongelma voidaan esittää myös kysymyksen muodossa. Siihen pyritään löytämään vastauksia ja ratkaisuja tutkimuksen aikana. Tämän työn tutkimuskysymys on seuraava: Mitkä investoinnin laskentamenetelmät soveltuvat parhaiten energiansäästöinvestoinnin kannattavuuden arvioimiseen? Jotta investoinnin kannattavuus voidaan saada selville, täytyy eritellä Ekonor Oy:n tarjoaman menetelmän todellinen vaikutus energiankulutukseen ja sen avulla määrittää muutoksen taloudelliset vaikutukset kiinteistölle. Edelliset seikat ovat myös tutkimuksen tavoitteet. Tärkeimpänä aineistona tutkimuksessa käytetään kiinteistöjen kulutustietoja, jotka sisältävät tiedon muun muassa lämmitysenergian kulutuksesta. Tarkasteltavina kiinteistöinä on pääosin 19 kohdetta, joihin menetelmä on asennettu välillä Menetelmän vaikutus energiankulutukseen pyritään saamaan selville tutustumalla kiinteistöjen energiankulutukseen ennen ja jälkeen menetelmän asennuksen. Tämän jälkeen tarkastellaan

11 3 investoinnin kannattavuutta lämmityskustannusten muutoksen ja erilaisten investointilaskelmien ja kannattavuusmittareiden kautta. Tarkasteltaviksi kiinteistöiksi otettiin mukaan vain sellaisia kiinteistöjä, joihin ei ollut menetelmän asennusta edeltävinä vuosina tehty mitään muita lämmitysenergiankulutukseen vaikuttavia toimenpiteitä. Työssä tutkittiin, onko lämmitysenergiankulutus pudonnut menetelmän asentamisen jälkeen, mutta ei selvitetty syitä siihen, miksi toiset kiinteistöt säästivät enemmän kuin toiset. Edelliset seikat ovat työn rajaukset Tutkimusote Tutkimusstrategiat voidaan jakaa kolmeen perinteiseen ryhmään: kokeelliseen, surveyja tapaustutkimukseen. Tämän tutkimuksen tutkimusstrategia on tapaustutkimus. Toimintaympäristönä on Ekonor Oy ja tutkimuskohteena kiinteistöjä, joihin on asennettu tarkasteltava menetelmä. Tapaustutkimuksessa eli case-tutkimuksessa kerätään yksityiskohtaista tietoa yksittäisestä tapauksesta tai pienestä joukosta toisiinsa suhteessa olevista tapauksista, joita sen jälkeen pyritään analysoimaan. Jos tutkitaan useampaa tapausta, tuloksia voidaan pyrkiä yleistämään. (Hirsjärvi et al. 2007, s. 130) Myös yksittäisen tapauksen havaintoja voidaan yleistää, jos sillä pyritään teorian vahvistamiseen tai kumoamiseen. Tällöin on tärkeää tehdä yleistys teoreettisen ymmärryksen perusteella. (Yin 2003, s.10) Tapaustutkimus pyrkii vastamaan kysymyksiin miksi, mitä ja miten. Aineistonkeruumenetelmiä voi olla useita, kuten haastattelut, havainnoinnit tai dokumenttipohjainen analyysi. (Saunders et al. 2009, s ) Tässä tutkimuksessa aineistonkeruumenetelmänä on dokumenttipohjainen analyysi, jossa aineistona käytetään yksittäisten kiinteistöjen energiankulutustietoja. Saunders et al. (2009, s ) jakavat tutkimuksen yleiset tavoitteet kolmeen luokkaan: Tutkimus voi olla kartoittava, kuvaileva tai selittävä. Kartoittavassa tutkimuksessa pyritään selventämään asioita tai löytämään asioihin uusia näkökulmia. Tavoitteena voi myös olla selvittää vähän tunnettuja asioita. Kuvailevassa tutkimuksessa puolestaan tarkoitus on luoda selkeä kuva ilmiöstä tai tapauksesta. Tutkimukset, jotka hyödyntävät kuvailua, ovat usein tutkimuksissaan edeltäjiä selittävään tutkimukseen. Tällaiset tutkimukset ovat eräänlaisia yhdistelmiä kuvailevasta ja selittävästä tutkimuksesta. Selittävässä tutkimuksessa tarkoitus on löytää tilanteelle tai ongelmalle selitys. Tällöin yritetään etsiä ja tunnistaa syy-seuraussuhteita. Tämä tutkimus on lähinnä kuvaileva tutkimus, sillä tarkoitus on luoda selkeä kuva menetelmän toiminnasta selittämättä tilannetta kuitenkaan kovin tarkasti. Tapaustutkimuksella pyritään kuvaamaan menetelmän vaikutuksia rakennusten lämmityskustannusten muutoksiin ja sitä kautta myös arvioimaan investoinnin kannattavuutta.

12 4 Tutkimuksessa esitetään myös tarkka kuvaus menetelmästä ja sen toiminnasta. Tutkimus on lajiltaan monitapaustutkimus, jossa tutkittavia kiinteistöjä on useita. Kiinteistöjä tarkemmassa tarkastelussa on yhteensä 19. Kiinteistöjen lämmityskustannusten suuruuteen vaikuttaa kaukolämpökohteissa energiankulutuksen lisäksi myös kiinteä maksu, jota kutsutaan nimellä perusmaksu. Energiamaksun muutosta tutkitaan vertaamalla kiinteistöjen lämmitysenergian kulutuksen muutosta ennen ja jälkeen menetelmän asennuksen. Kiinteän maksun muutosta tutkitaan vertaamalla maksun muutokseen vaikuttavan tarkistusmittausten tuloksia menetelmän asentamisen jälkeen. Lämmityskustannusten muutokset ovat menetelmään tehtävän investoinnin tuotto. Kun investoinnin hinta ja tuotto tiedetään, voidaan laskea menetelmään tehtävän investoinnin kannattavuus Tutkimuksen rakenne Kirjallisuusosuus aloitetaan käsittelemällä kaukolämpöä ja sen hinnan muodostumista. Teoriaosan toinen luku käsittelee vesikiertoisen keskuslämmitysjärjestelmän toimintaa, rakennuksen energiatasetta sekä tarkasteltavan menetelmän toimintaperiaatetta. Teoriaosan viimeisessä luvussa käydään läpi energiansäästöhankkeiden investoinnin teoreettista perustaa. Empiriaosan aluksi eli viidennessä luvussa esitellään kohdeyritys, kerrotaan työn taustaa ja esitellään tutkimusmenetelmät. Toisessa empirialuvussa tutkitaan, miten menetelmän asennuksen jälkeen energiankulutus on muuttunut. Seitsemännessä luvussa lasketaan muutoksen vaikutuksia lämmityksen kokonaiskustannuksiin. Kahdeksannessa luvussa lasketaan investoinnin kannattavuuslaskelmia, ja lopuksi esitellään työn johtopäätökset.

13 5 2. KAUKOLÄMPÖ JA SEN HINNOITTELU 2.1. Kaukolämpö Kaukolämpö on Suomen yleisin lämmitysmuoto, sillä noin 2,6 miljoona suomalaista asuu kaukolämpötaloissa. Kerrostaloista noin 95 ja valtaosa julkisista liikerakennuksista lämpiävät kaukolämmöllä. Kokonaisuudessaan kaukolämmön markkinaosuus lämmityksessä on noin 50. Seuraavina ovat sähkö (18 ) ja kevyt polttoöljy (12 ). (Energiateollisuus ry 2012) Kaukolämpöä pidetään yleisesti erittäin hyvänä lämmitysmuotona, koska sen toimitusvarmuus on hyvää ja sen tuottama lämpö tasalaatuista. Tekniikan kehittyessä kaukolämmöstä saadaan yhä enemmän lämmitystehoa irti (Taloyhtio.net 2012). Suurin osa kaukolämmöstä tuotetaan yhteistuotantolaitoksissa (CHP), jotka tuottavat sekä sähköä että lämpöä. Kaukolämpöä tuotettiin vuonna 2010 noin 60 prosenttisesti fossiilisilla polttoaineilla eli lähinnä öljyllä, hiilellä ja maakaasulla. Tästä osuudesta puolet tuotettiin maakaasulla. Turpeella ja uusiutuvilla polttoaineilla tuotettiin kaukolämpöä 19 prosenttia. (Suomen virallinen tilasto 2010) Kaukolämpö toimii siten, että voimalaitoksessa lämmitetään vettä, josta vesi johdetaan putkia pitkin taloyhtiön lämmönjakokeskukseen ja sieltä takaisin voimalaitokseen. Lämmönjakohuoneessa kuumasta kaukolämpövedestä otetaan lämpöä lämmönsiirtimien avulla taloyhtiön lämmitysverkostoon, ja jäähtynyt kaukolämpövesi tulee lämmönjakohuoneesta ulos. Tämän vedestä otetun lämmön avulla saadaan rakennuksen käyttövesi sekä huoneistot lämmitettyä. Mitä suurempi on lämpötilaero kaukolämmön meno- ja paluuveden välillä, sitä suurempi on siirtynyt lämpöteho. Jos meno- ja paluuveden lämpötilaero eli jäähtymä on suuri, veden virtausnopeutta voidaan laskea ja sitä kautta kaukolämpöveden pumppauskustannuksissa syntyy säästöä. Tämä vaikuttaa myös asiakkaan ostaman energian hintaan. (VTT Rakennus- ja yhdyskuntatekniikka 2003) Kaukolämpö on edullinen lämmitysmuoto verrattuna muihin lämmitysmuotoihin (kuva 2.1). Suora sähkölämmitys on kertainvestointina halvin, mutta käyttökulut ovat niin suuret, että sähkölämmitys on pitkällä aikavälillä kokonaiskustannuksiltaan öljylämmityksen jälkeen toiseksi kallein.

14 6 Lämmön hinta eri lämmitysmuodoilla, /MWh Poistoilmalämpöpumppu Kaukolämpö Maalämpöpumppu Ilmavesilämpöpumppu Pellettilämmitys Suora sähkölämmitys Öljylämmitys Investointikulut Käyttökulut Kuva 2.1. Lämmön hinta eri lämmitysmuodoilla (mukaillen Metsäntutkimuslaitos 2010) Kuva kertoo hinnan pientaloille, joilla on useita eri vaihtoehtoja lämmitykseen. Kerrostaloilla kaukolämpö on usein ainoa todellinen vaihtoehto. Jos kerrostalo tai rivitalo on liittynyt kaukolämpöön, siitä eroaminen on hankalaa, sillä investointikustannukset toiseen lämmitysjärjestelmään nousevat yleensä todella korkeaksi. Jos kaukolämmön hinta jatkaa nousuaan, muut vaihtoehdot tulevat silloin yhä kannattavammiksi, varsinkin jos edessä on lämmitysjärjestelmän peruskorjaus. Näin kävi Nokialla, jossa kolme kerrostaloa vaihtoi maalämmöstä kaukolämpöön vuonna Takaisinmaksuajaksi investoinnille arvioitiin seitsemän vuotta. (CO2-raportti 2010) Uusissa kohteissa ilmalämpöpumppu ja maalämpöpumppu ovat mahdollisia ja kustannuksiltaan jo lähellä kaukolämpöä, mutta kaukolämpö valitaan useimmiten lämmitysmuodoksi myös silloin sen helppouden ja pienemmän riskin vuoksi. Kaukolämmön hinta on kasvanut viime vuosina hyvin paljon verrattuna elinkustannusindeksiin. Kaukolämmön hinta on noussut siis enemmän kuin keskimäärin muut kustannukset Suomessa. Selvä nousu verrattuna elinkustannusindeksiin on tapahtunut 2000-luvun alkupuolella. (Energiateollisuus 2012, Kaukolämmön hinnan kehitys) Kaukolämmön hinnan nousu johtuu pitkälti lämmöntuotannossa käytettävien polttoaineiden hinnan kallistumisesta. Esimerkiksi maakaasun hinta on viimeisen kymmenen vuoden aikana noussut yli 2,5-kertaiseksi. (Energiamarkkinavirasto 2012) Myös muiden polttoaineiden hinnat ovat kallistuneet huomattavasti. Lisäksi verotus on nostanut hintaa. (Energiateollisuus 2012, Kaukolämmön hinnan kehitys) 2.2. Kaukolämmön hinnoittelukäytännöt Ohjaavana tekijänä kaukolämmön hinnoittelussa on kilpailulainsäädäntö, jonka mukaan hinnan on pääasiallisesti vastattava lämmöntuotannon kustannuksia ja samanlaisia asi-

15 7 akkaita on kohdeltava tasapuolisesti. Kilpailuvirasto tutki kaukolämmön hintaa ja päätyi siihen, että kaukolämpöä ei ole hinnoiteltu kohtuuttomasti. Tosin kilpailuviraston mukaan kaukolämpöyhtiöiden keskimääräinen hintataso on korkea, jos otetaan huomioon riskitaso ja liiketoiminnan kannattavuus. Selvityksen mukaan kaukolämmön hinnan sääntelylle saattaa olla tulevaisuudessa aihetta. (Kilpailuvirasto 2012) Kiinteistön omistaja on kaukolämpöyrityksen asiakas. Käytetty lämpöenergia mitataan asiakaskohtaisesti, ja syntyneet lämmityskustannukset jaetaan asukkaiden kesken yhtiöjärjestyksen määrittelemällä tavalla, mikä yleensä tarkoittaa kustannusten jakamista asuntopinta-alan mukaisesti. (Energiateollisuus 2012, Kaukolämmitys) Kaukolämmön hinta jakaantuu kolmeen eri osaan, liittymismaksuun, perusmaksuun ja energiamaksuun (kuva 2.2). Kuva 2.2. Kaukolämmön hinnan muodostuminen (mukaillen Energiateollisuus 2011) Liittymismaksu on maksu, jonka asiakas maksaa liittymisestään kaukolämpöön. Maksun suuruus määräytyy sen mukaan, kuinka paljon lämmöntuotannon ja lämpöverkon kapasiteetista on varattu kyseiselle asiakkaalle. Liittymismaksu on kertaluonteinen maksu, kun taas energiamaksu ja perusmaksu ovat jatkuvia maksuja Energiamaksu Energiamaksu määräytyy käytetyn lämpöenergian perusteella. Energiankulutusta mitataan lämpöenergiamittarilla, joka asennetaan asiakkaan kaukolämpölaitteiden yhteyteen. Mittari laskee kaukolämpöverkostosta tulevan veden sekä verkostoon palaavan veden lämpötilan sekä kaukolämpöveden virtaaman. Näiden tietojen sekä veden ominaislämpökapasiteetin avulla lasketaan asiakkaan kuluttama energia. (Energiateollisuus ry 2011), (2.1)

16 8 jossa Q = siirtynyt lämpöenergia, c p = veden ominaislämpökapasiteetti, q m = virtausanturin läpi virtaava veden massavirta, ΔT = veden lämpötilaero kaukolämmön tulo- ja paluuputkessa, t o = ajan alkuhetki ja t 1 = on ajan loppuhetki Energiankulutukseen voidaan vaikuttaa veden massavirtaan eli virtamaan ja veden lämpötilaeroon eli jäähtymään vaikuttamalla. Energiamaksun suuruus saadaan, kun kulutettu energia kerrotaan sen hinnalla Perusmaksu Perusmaksu määräytyy asiakkaan tarvitseman tehon mukaan. Perusmaksu on sidottu joko tilaustehoon tai tilausvesivirtaan. (Energiateollisuus ry 2011) Tilausteho tarkoittaa asiakkaan käyttöön varattua suurinta tuntista lämpötehoa, jonka mittayksikkö on kw. Tilausvesivirta puolestaan tarkoittaa asiakaan käyttöön varattua suurinta tuntista kaukolämpöveden virtausta. Sen mittayksikkö m 3 /h. (Suomen Kaukolämpö ry 1998) Suurimmalla osalla kaukolämpöyhtiöistä perusmaksu on sidottu tilausvesivirtaan. Maksu on vuosittainen kiinteä maksu. Se määräytyy suurimman tehon perusteella, sillä kaukolämpöyhtiö joutuu mitoittamaan toimintansa siten, että asiakas saa tarvittaessa laitteistostaan rakennukselle suunnitellun ja kaukolämpösopimuksessa mainitun maksimilämmitystehon. Tätä tehoa saatetaan tarvita talviaikaan kovilla pakkasilla. Perusmaksun perusteena käytetään tunnin ajanjaksoa. Näiden arvojen tulee vastata todellista tarvetta, ja arvot lasketaan ensimmäisen kerran, kun asiakas liittyy kaukolämpöverkostoon. Tilausteho lasketaan lämmityksen ja ilmastoinnin suurimman tehon sekä käyttöveden ja siihen liitettyjen lisälaitteiden vaatiman tuntikeskitehon mukaan. Tilausvesivirta määritetään käyttövesipiiriin kytkettyjen laitteiden, lämmityksen ja ilmanvaihdon laitteiden suurimman lämmitystehon ja mitoitustilannetta vastaavan kaukolämpöveden meno- ja paluulämpötilan eli jäähtymän perusteella. (Suomen Kaukolämpö ry 1998) Kaukolämpöä tuottaville voimalaitoksille kaukolämmön hyvästä jäähtymästä on hyötyä, joten jäähtymä vaikuttaa suoraan tilausvesivirran arvoon ja sitä kautta perusmaksuun. Useimmiten perusmaksu määräytyy seuraavanlaisen kaavan mukaan: ( ) (2.2) jossa k,a,b = energialaitoksen määrittelemiä vakioita ja V = tilausvesivirta (m 3 /h) (Laaksonen 2001, s. 438) Energialaitoksen määrittelemät vakioiden suuruudet vaihtelevat. Esimerkiksi Oulun Energian kertoimien arvot, kun tilausvesivirta on välillä 0,21 5,0 m 3 /h, ovat k = 2,28, a = 34 ja b = 520. Helsingin Energia on puolestaan määritellyt sopimusvesivirran arvon porrastetusti riippuen sopimusvesivirran arvosta.

17 Perusmaksun tarkistus Perusmaksu voi olla jopa kiinteistön vuotuisesta lämmityslaskusta (Laaksonen 2001, s.438). Toisaalta kuvan 2.2 mukaan perusmaksun osuus on keskimäärin 16 lämmityskustannuksista. Laaksosen (2001) mukaan tilausvesivirta arvioidaan kokemusperäisesti, kun kiinteistö liittyy kaukolämpöön. On hyvin mahdollista, että se arvioidaan joko liian suureksi tai liian pieneksi. (Laaksonen 2001, s.438) Toisaalta Suomen Kaukolämpöyhtiön suositusten (K15/98) mukaan tilausteho ja tilausvesivirta määritellään alun perin laskennallisesti perustuen LVI-suunnitelmiin. Alkuperäinen lukema tilaustehosta tai tilausvesivirrasta ei siis perustu mittauksiin, vaan arvioon lämmitystehon tarpeesta, joten arvo ei välttämättä ole oikea. Tilaustehon tai tilausvesivirran tarkistusta voidaan pyytää, jos on tarvetta epäillä sen oikeellisuutta tai jos kiinteistöön on asennettu jokin laite, joka mahdollisesti alentaa kyseisiä arvoja. Periaatteet tarkistuksen toteuttamisessa vaihtelevat, sillä energiayhtiöiden suostuminen tarkistusmittauksiin vaihtelevat. Tilaustehon / -vesivirran tarkistus voidaan tehdä luotettavasti vain mittauksiin perustuen. (Suomen Kaukolämpö ry 1998) Arvoja verrataan aina maksimitilaustehoon / -tilausvirtaan, joten redusoimalla luvut Suomen Kaukolämpö ry:n periaatteen mukaisesti saadaan tulokset eri lämpötiloilla vertailukelpoisiksi. Tilausteho ja -vesivirta voidaan määritellä sitä luotettavammin, mitä lähempänä mittaustilanteen olosuhteet ja kohteen toimintatila ovat mitoitustilannetta, joten tarkistusmittauksia voidaan suorittaa vain talvella. Arvojen tarkistamisen suorittaa kaukolämpöyhtiö ja mittauksien perusteella se päättää, onko aihetta perusmaksun muutokseen. Yksi mahdollisuus suorittaa tarkistusmittaus tilaustehon oikeellisuudesta on tehdä katselmusmittaus, jossa selvitetään mittaustilanteen lämmitystehot ja toimintalämpötilat, ja näiden tietojen avulla saadaan tilausteho ja tilausvesivirta laskettua Tilaustehon laskenta Tilaustehon laskentaperiaatteet esitellään seuraavassa esimerkin avulla. Määrittelyperusteena käytetään liukuvan tunnin ajanjaksoa. Esimerkkirakennuksena on kohde Oulun seudulla, ja mittaukset on tehty talven aikana. Mittauksia voidaan suorittaa esimerkiksi viikon ajan, ja suurimmaksi tuntitehoksi otetaan se lukema, jolloin ulkolämpötila on mahdollisimman alhainen. Seuraavassa on mittaustilanteen mitatut lämmitystehot ja toimintalämpötilat. Suurin tuntinen teho Kaukolämmön tulolämpötila Kaukolämmön paluulämpötila Ulkolämpötila mittaushetkellä

18 10 Seuraavat tekijät on annettu, jotta mitatut arvot voidaan redusoida mitoituslämpötilaan. Pitkän aikavälin säätietojen perusteella on maan eri osiin valittu mitoitettu alin ulkolämpötila, joka on valittu siten, että ulkolämpötila menee tätä alemmas vain hyvin harvoin (Kaukolämmön käsikirja 2006, s.61). Jos ulkolämpötila menee sen alle, on hyväksyttävää, että sisälämpötila voi pudota 1-2 astetta. Seuraavat mitoitustilanteet ovat Oulun seudulta. Mitoitusulkolämpötila Kaukolämpöveden tulolämpötila mitoitusulkolämpötilassa Sisälämpötila Mitoitusulkolämpötilassa asiakkaan käyttöön varattu suurimman tuntisen lämpötehon pitäisi siis pitää sisälämpötila +20 asteessa. Edellisten tietojen avulla saadaan tilausteho laskettua. Aluksi lasketaan suurin tuntinen lämmitysteho, joka saadaan, kun mitatusta tuntisesta tehosta poistetaan lämpimän käyttöveden tuntinen osuus. Lämpimän käyttöveden tuntinen osuus liitetään myöhemmin arvoon, mutta aluksi se pitää poistaa, koska ulkolämpötilalla ei ole merkittävää vaikutusta lämpimän käyttöveden vaatimaan tehoon. Muuhun tarvittavaan lämmitykseen ulkolämpötilalla on merkittävä vaikutus. Lämpimän käyttöveden tuntinen teho saadaan Energiateollisuuden suosituksen K13/1998 liitteistä, ja se perustuu rakennuksessa olevien asuntojen lukumäärään. Tätä lukua käytetään, ellei tarkempaa tietoa ole saatavilla. Tässä tapauksessa tarkempaa tietoa ei ole saatavilla, joten määrittelyperusteena käytetään asuntojen määrää. Tässä kohteessa asuntojen määrä oli 49 kappaletta, ja lämpimän käyttöveden tuntiseksi tehoksi saadaan Näin saadaan suurin tuntinen lämmitysteho Seuraavaksi tehdään lineaarinen redusointi mitoitusulkolämpötilaan. (2.3) (2.4) Lämmitettävien tilojen sisälämpötilana t s käytetään yleisesti +20 C. Laskennallinen tilausteho saadaan, kun tähän lukemaan lisätään lämpimän käyttöveden tuntinen teho, joka oli määritelty jo aikaisemmin. (2.5)

19 11 Näin tilausteho on määritelty. Seuraavassa on vielä tilaustehon laskenta koottuna neljään vaiheeseen: 1. Mitataan suurin tuntinen teho ja ulkolämpötila mittaushetkellä 2. Lasketaan suurin tuntinen lämmitysteho = Suurin tuntinen teho - lämpimän käyttöveden tuntinen teho 3. Redusoidaan suurin tuntinen lämmitysteho mitoitusulkolämpötilaan 4. Lasketaan tilausteho = Redusoitu suurin tuntinen lämmitysteho + lämpimän käyttöveden tuntinen teho Tilausteho on yksinkertainen, helppo laskea ja helppo ymmärtää, mikä ei kuitenkaan kannusta esimerkiksi jäähtymän parantamiseen, koska jäähtymä parantuminen ei vaikuta tilaustehoon eikä sitä kautta perusmaksun suuruuteen. Tämä on selvä tilaustehoperusteisen maksun heikkous. Jäähtymän parantumisella on suuria hyötyjä kaukolämpöyhtiöille. Esimerkiksi kaikille kaukolämpöverkoille paluuveden lämpötilan alentaminen laskee kaukolämmön pumppauskustannuksia, verkoston lämpöhäviöitä sekä antaa mahdollisuuden pienempiin kaukolämpöputkiin. (Pöyry 2010) Tilausvesivirran laskenta Tilausvesivirran arvoa käytetään tavallisimmin pohjana perusmaksun määräytymiseen. Tilausvesivirran arvo perustuu tilaustehoon, mutta sen lisäksi huomioidaan jäähtymä. Mittauksiin perustuvan tilausvesivirran arvo saadaan seuraavaa kaavaa käyttämällä ( ) (2.6) jossa = laskennallinen tilausvesivirta [dm 3 /s], = laskennallinen teho [kw], c p = veden ominaislämpö tulo- ja paluuveden keskilämpötilassa [kj/kg C], = veden tiheys paluuveden lämpötilassa [kg/dm 3 ], t klt,mit = kaukolämpöveden tulolämpötila [ C] ja t kip,red = redusoitu kaukolämpöveden paluulämpötila [ C] Lasketaan saman kohteen tilausvesivirta kuin tilaustehon tapauksessa. Redusoitu paluulämpötila saadaan laskettua samalla tavalla kuin tilaustehon tapauksessa. Muut tiedot on määritetty aikaisemmin. (2.7) Seuraavaksi voidaan laskea laskennallinen tilausvesivirta.

20 12 ( ) ( ) Näin on laskennallinen tilausvesivirta määritetty. Tätä arvoa verrataan aikaisemmin määriteltyyn ja muutetaan tarvittaessa. Seuraavassa on tilausvesivirran laskenta koottuna neljään vaiheeseen 1. Mitataan suurin tuntinen lämmitysteho, kaukolämpöveden meno- ja paluulämpötilat sekä ulkolämpötila 2. Lasketaan tilausteho 3. Redusoidaan kaukolämpöveden paluulämpötila 4. Lasketaan tilausvesivirta = Tilausteho / (veden ominaislämpökapasiteetti x tiheys x kaukolämpöveden jäähtymä) Tilausvesivirta ottaa tilaustehon lisäksi huomioon myös jäähtymän ja on tämän vuoksi parempi peruste perusmaksun määräytymiselle. Veden tiheys ja ominaislämpö muuttuvat hieman lämpötilojen muuttuessa, mutta ne eivät vaikuta merkittävästi tilausvesivirran arvoon. Jäähtymän parantamisella voi puolestaan olla vaikutuksia perusmaksun hintaan. Esimerkiksi Oulun Energian perusmaksun laskentakaava on seuraava, jos tilausvesivirta on välillä 0,21-5,0 m 3 /h. energia 2012) ( ) ( ) ( ) (Oulun Jäähtymä vaikuttaa kääntäen verrannollisesti vesivirtaan, eli jäähtymän kasvaessa tarvittava vesivirta pienenee. Esimerkiksi oletetaan, että alkuperäinen jäähtymä on 70 astetta (menovesi 115 C ja tulovesi 45 C). Jos jäähtymä jostain syystä laskee 50 asteeseen ja muut arvot pysyvät vakiona, vesivirta nousee 1,4-kertaiseksi. Toisaalta jos jäähtymä nousee 80-asteiseksi, vesivirta laskee 0,88-kertaiseksi. Seuraavassa on taulukoituna erilaisia jäähtymän arvoja ja sitä kautta saatuja tilausvesivirran arvoja sekä perusmaksun hintoja. Tilaustehon on oletettu pysyvän vakiona. (Taulukko 2.1) Oulun Energian tekemissä tarkistuslaskennoissa redusoitu jäähtymä oli vaihdellut välillä C, joten taulukon arvot alkavat 50 asteesta. Tässä kerrotut jäähtymän arvot ovat siis redusoituja jäähtymiä mitoituslämpötilassa. Yleensä näin korkeisiin jäähtymiin ei muissa lämpötiloissa päästä.

21 13 Taulukko 2.1. Jäähtymän vaikutus perusmaksuun Oulun Energian hinnoin Redusoitu jäähtymä ( C) Tilausvesivirta (m^3/h) Perusmaksu ( /vuosi) Ero alkuperäiseen ( /vuosi) Ero () 50 2, , , , , , Suhde ei ole lineaarinen, joten yhden asteen parannuksen rahamääräinen arvo riippuu siitä, mikä on ollut aikaisempi jäähtymä. Yhden asteen parannus jäähtymässä laskee tilausvesivirran arvoa noin vuodessa, kun oletetaan, että mikään muu arvo ei muutu.

22 14 3. RAKENNUKSEN LÄMMITYKSESTÄ 3.1. Vesikiertoinen keskuslämmitysjärjestelmä Keskuslämmityksellä tarkoitetaan rakennuksen useiden tai kaikkien tilojen lämmitystä keskitetysti lämmönsiirtoainetta käyttäen. Lämmönsiirtoaineena voidaan käyttää vettä, höyryä tai ilmaa. Näistä aineista vesi on yleisin hyvän lämmönsiirtokykynsä vuoksi. (Seppänen 1995, s.119) Vesikiertoinen lämmitysjärjestelmä on hyvin yleinen järjestelmä, ja se sopii hyvin niin kerrostaloihin, rivitaloihin kuin omakotitaloihin. Toiminnan perusidea ja -toiminta on sama riippumatta rakennustyypistä tai lämmitysmuodosta. Tilojen lämmitykseen käytettävää vettä täytyy lämmittää. Lämmitystapoja ovat muun muassa kaukolämpö, öljy, puu, turve ja hake. Lämmitysverkoston tavoitteena on viedä jokaiseen huoneeseen tarvittava lämpöteho. Tarvittava lämpötehon määrä saadaan lämmöntarvelaskelmien perusteella Toiminta Lämmitysjärjestelmä sisältää lämmönlähteen, lämmönsiirtoverkoston ja lämmönluovuttimet, esimerkiksi patterit (Seppänen 1995, s.119). Kaukolämpökohteissa on lämmönjakokeskus, joka huolehtii rakennuksen lämmitysverkoston veden ja käyttöveden lämmityksestä. Lämmönjakokeskus on nykyisin tehdasvalmisteinen kokonaisuus, johon kuuluvat lämmönsiirtimet, säätölaitteet, kiertovesipumput, paisunta- ja varolaitteet, lämpöja painemittarit sekä sulkuventtiilit (kuva 3.1). (Motiva Oy 2012) Yleensä ulkolämpötila-anturin tiedon perusteella säätökeskus määrittelee lämmitysverkostoon menevän veden lämpötilan.

23 15 Kuva 3.1. Lämmönjakokeskuksen osat (mukaillen Lappeenrannan Energia Oy 2012) Lämmönjakokeskuksen tehtävänä on huolehtia veden lämmittämisestä sekä sen siirtämisestä verkostoon. Kuvassa 3.2 on esitettynä kerrostalon vesikeskuslämmityksen periaatekuva. Vesi lämpenee lämmönsiirtimessä. Pumppu kierrättää lämmintä vettä siten, että vesi jakautuu eri nousulinjoille ja sieltä edelleen patteriventtiilin kautta patterin yläosaan ja poistuu patterin alaosasta. Vesi luovuttaa lämpönsä huoneilmaan, ja lämmennyt huoneilma nousee ylös. Liikkeessä oleva ilma jäähtyy ja putoaa alaspäin lattiatasoon, josta se taas siirtyy patterille ja lämpiää uudestaan. Kuva 3.2. Vesikeskuslämmityksen periaatekaavio (mukaillen Laaksonen 2001, s.516)

24 16 Vesi on luovuttanut lämpöä patterille, joten se palaa jäähtyneenä linjasäätöventtiilin kautta lämmönsiirtimelle. Lämmönsiirtimellä vesi lämpenee ja siirtyy edelleen kiertopumpulle ja uudestaan pattereille. Vesi kiertää siellä, missä on pienimmät virtausvastukset. Linjasäädöillä saadaan eri linjalle menevät vesimäärät säädettyä oikeaksi. (Taloyhtio.net 2012, Laaksonen 2001, s.516) Tärkeimmät osa-alueet Pumppu Pumpun avulla vesi saadaan kiertämään patteriverkostossa. Kiertovesipumppu on keskipakopumppu, jonka koko riippuu rakennuksen lämmöntarpeesta ja verkoston mitoituksesta. Pumpun koolla tarkoitetaan kahta asiaa: paine-eroa, jonka pumppu pystyy ylittämään sekä tilavuusvirtaa, jonka pumppu pystyy tuottamaan. (Taloyhtio.net 2012) Pumpun energiankulutuksesta valtaosa riippuu sen nostokorkeudesta ja virtaamasta. (Korhonen 2009) Pumpun tuottokäyrä (QH-käyrä) osoittaa pumpun ominaisuudet ja näyttää sen tuottaman virtauksen tietyllä paineella (kuva 3.3) (ITT Building Services 2012). Kuva 3.3. Pumpun tuottokäyrä (mukaillen ITT Building Services 2012) Mitä suurempi on virtausnopeus, sitä pienemmän paineen noston pumppu saa aikaan. Erilaisilla pumpuilla on eri tuottokäyrät, joten kiinteistöihin voidaan valita niihin parhaiten sopiva pumppu vertaamalla eri pumppujen käyriä rakennuksen mitoituslaskelmiin. Lämmönluovuttimet Lämmönluovuttimilla tarkoitetaan laitteita, jotka luovuttavat lämpöä. Rakennuksissa patterit ovat yleisin menetelmä, jolla putkistoissa kiertävän veden lämmöstä osa siirretään lämmittämään huoneistoa. Yleisin tapa kytkeä patterit lämmönsiirtoverkostoon on rinnankytkentä, jolloin puhutaan kaksiputkikytkennästä. Tällöin kaikkiin pattereihin tulee saman lämpöistä vettä. Yksiputkijärjestelmä on harvinaisempi. Se tarkoittaa sitä, että patterit on kytketty peräkkäin yhteen nousujohtoon, ja sen vuoksi linjan alkupäässä ole-

25 17 viin pattereihin tulee lämpimämpää vettä kuin loppupään pattereihin. (Seppänen 1995, s ) Lämmön siirtyminen pois huonetilasta on jatkuva prosessi ja niin on myös sinne tulevan lämmön laita. Lämpö siirtyy joko säteilemällä tai johtumalla lämpimämmästä tilasta kylmempään. Näin tilalle tulevaa korvaavaa ilmaa täytyy lämmittää, jotta huoneen lämpötila pysyisi vakiona. Huoneen lämpöhäviöt selvitetään suunnitteluvaiheessa ja niiden perusteella tehdään oikean kokoisten pattereiden valinta. Samalla lasketaan myös pattereiden tarvitseman kiertoveden määrä. (Korhonen 2009) Ulkoilma vaihtelee jatkuvasti, ja se vaikuttaa suurelta osin rakennusten lämmöntarpeeseen. Patterin lämmönluovutusta on erittäin hankala säätää pelkästään sen virtausta säätämällä, joten myös pattereihin menevän veden lämpötilaa säädetään tarpeen mukaiseksi. (Seppänen 1995, s.182) Veden lämpötilan säätö tapahtuu yleensä ulkolämpötilan perusteella. Tämän avulla on tarkoituksena teorian mukaan saada pattereissa kiertämään aina samansuuruinen vesivirta (Korhonen 2009). Patterin lämmönluovutukseen vaikuttaa suurelta osin sen pintalämpötila, johon taas vaikuttaa veden kierto. Jos vesi kiertää hitaasti, patterin keskimääräinen pintalämpötila on alhainen verrattuna meno- ja paluuveden lämpötiloihin. Patterin vesivirran pienentyessä paluuveden lämpötila laskee, ja samalla laskee patterin keskilämpötila ja sitä kautta sen luovuttama teho. (Seppänen 1995, s ) Termostaattinen patteriventtiili Yksi erittäin tärkeä tekijä lämmitysverkostossa on termostaattiset patteriventtiilit. Niitä käytetään huonekohtaisen lämpötilan säätöön. Patteriventtiili vaikuttaa patterin läpi kulkevaan vesivirtaan muuttamalla patterin lämpötilaa. Jos huoneen lämpötila kasvaa, venttiili menee pienemmälle ja pienentää näin vesivirtaa patterissa. Vesivirralla vaikutetaan patterin keskilämpötilaan ja sitä kautta patterin lämmönluovutukseen ja huonelämpötilaan. (Seppänen 1995, s.194) Venttiilin tarkoituksena on pitää huoneiden lämpötila mahdollisimman tasaisena. Kun huoneen lämpötila ylittää termostaatin asetusarvon, termostaatti sulkee veden virtauksen patterissa (Laaksonen 2001, s. 517). Termostaattiventtiilien valmistajat käyttävät venttiileiden mitoitusarvona yleensä niin sanottua dt 2K arvoa, ja venttiilin esisäätökäyrästö on laadittu sen mukaan. Tämä määrite tarkoittaa sellaista venttiiliaukon kokoa, mikä saavutetaan kahden asteen lämpötilaerolla. Tästä käytetään myös nimeä suhdealue. Esimerkiksi, jos termostaatti on asetettu pitämään lämpötilaa +20 C, ja huoneen lämpötila on +22 C, patteriventtiili on kiinni. Kun lämpötila laskee alle +22 C, venttiili alkaa hieman aueta, ja kun lämpötila on laskenut termostaatin asetusarvoon +20 C,

26 18 virtausaukko on kasvanut niin paljon, että venttiili saa mitoitusvirtaamansa. Mitoitusvirtaama tarkoittaa sitä virtaamaa, missä patteri pystyy tuottamaan laskettuja lämpöhäviöitä vastaavan lämpömäärän. Huoneiden lämpötilan ei periaatteessa pitäisi laskea alle tämän mitoituslämpötilan, jos lämpöhäviöt on laskettu oikein. (Korhonen 2009) Säätökäyrä Pattereihin menevän veden lämpötilan säätö tapahtuu säätökäyrän avulla. Säätökäyrä asetetaan ulkolämpötilan mukaan, eli mitä kylmempää ulkona on, sitä lämpimämpää vettä menee verkostoon (kuva 3.5). Säätökäyrä voidaan säätää manuaalisesti, joten käyttäjä voi muuttaa käyrää siten, että se sopii paremmin juuri tietylle kiinteistölle. (VTT Rakennus- ja yhdyskuntatekniikka 2003) Kuva 3.5. Säätökäyrän säätäminen ulkolämpötilan mukaan (mukaillen VTT Rakennusja yhdyskuntatekniikka 2003) Säätökäyrän asetuksilla voi olla suuri vaikutus huoneistojen lämpöön (kuva 3.6). Jokainen rakennus on hieman erilainen, joten samat säätökäyrän arvot eivät käy kaikille. Sopiva säätökäyrän muoto löytyy yleensä kokeilemalla. Optimitilanteessa huonelämpötila pysyy tasaisena joka säässä. Optimitilanteen saavuttaminen on vaikeaa, sillä lämmitysverkostot eivät välttämättä ole tasapainossa, ja ilmaisenergioita, esimerkiksi auringon säteily ja ihmisten luovuttama lämpö, on vaikea hyödyntää optimaalisesti.

27 19 Kuva 3.6. Säätökäyrän valinnan vaikutus huonelämpötilaan (mukaillen VTT Rakennusja yhdyskuntatekniikka 2003) Säätökeskus on lämmönjakokeskuksen yhteyteen asennettu automaatiolaite, jolla säädellään lämmitystä ja käyttövettä. Ohjaus tapahtuu säätöventtiilin avulla, jolla säädellään kaukolämpöveden virtausta lämmönjakohuoneeseen. (VTT Rakennus- ja yhdyskuntatekniikka 2003) Lämmönsiirtimen avulla patteriverkon vesi ja käyttövesi saadaan lämmitettyä kaukolämpövedestä. Kaukolämpövesi virtaa rakennuksessa olevan lämmönsiirtimen läpi, mutta se ei sekoitu rakennuksen sisäisiin vesiin. (Taloyhtio.net 2012) Lämmitysverkoston tasapainotus Patteriverkoston tasapainotuksella tarkoitetaan tilannetta, jossa patteriverkostoa säädetään niin, että pattereiden lämmönluovutus vastaa huoneen lämmöntarvetta. (Seppänen, 1995 s.172) Energiateollisuuden raportin (2007) mukaan lämmitysverkon tasapaino on hyvin toimivan lämmityksen perusta. Perussäädöllä on tarkoitus varmistaa, että kaikissa huoneissa on suunnitelmien mukainen huonelämpötila, jotta ei tuhlata suotta energiaa turhaan lämmittämiseen. Tasapainotuksessa säädetään patteriventtiilien esisäätöarvot

28 20 sekä tarvittaessa myös linjasäätöventtiilit sekä mitoitetaan lämmityspumpulle oikeat toiminta-arvot. (Energiateollisuus ry 2007) Motiva Oy & Oras Oy:n (2002) mukaan arviolta 75 suomalaisesta rakennuskannasta on puutteellisesti perussäädetty. Tämä tarkoittaa, että samassa kiinteistössä huonelämpötilojen ero voi olla suuri. Keskimäärin sen arvioidaan olevan reilu 3 astetta, mutta pahimmillaan se voi olla jopa kuusi astetta. Motiva suosittelee tekemään tasapainotuksen, jos huoneistojen välinen lämpötilaero on yli kaksi astetta Ongelmia Kerrostalojen lämmitys on vaikea toteuttaa siten, että jokaisessa huoneessa olisi tasainen lämpö ja että lämmitysenergiaa ei menisi hukkaan. Monesti verkostoon menee tilanteeseen nähden liian kuumaa vettä ja huoneiden lämpötilat nousevat. Tällöin termostaattiset patteriventtiilit menevät kiinni, mikä nostaa verkoston paine-eroa. Jos paine-ero nousee hyvin korkeaksi, patteriventtiilin säätöominaisuudet huononevat ja venttiili saattaa pitää häiritsevää ääntä. Painesäätöä voidaan helpottaa esimerkiksi sillä, että pumppua säädetään verkoston paine-eron mukaan, joten paine-ero ei pääse nousemaan kovin suureksi. Painesäätöä voidaan suorittaa myös paluuputken säätöventtiilin tai ylivirtausventtiilin avulla. (Seppänen 1995, s ) Jos rakennuksen lämmityksen tasapainotus ei ole kunnossa, eri huoneistossa voi olla hyvin erilaiset lämpötilat (Motiva Oy & Oras Oy 2002). Tämä johtuu siitä, että rakennus ei ole tyydyttävästi säädettävissä säätökäyrän avulla (SKY 1995). Kylmänä aikana alemmat kerrokset ovat liian kuumia ja yläkerrokset kylmiä. Usein siihen reagoidaan nostamalla menoveden lämpötilaa eli muokkaamalla säätökäyrää. Tämä toimenpide aiheuttaa sen, että ylempien kerrosten lämpötila nousee sopivaksi, mutta samalla alempien kerrosten lämpötila nousee yhä korkeammaksi. Tällöin ylimääräinen lämpö poistetaan tuulettamalla, ja energiaa menee hukkaan. (TA Hydronics 2011) Yleisesti kiinteistöjä lämmitetään kylmimpien huoneiden mukaan, jolloin muut tilat ovat liian lämpimiä. (mm. SKY 1995, Lappalainen 1983, s.108) Yöpudotus tarkoittaa sitä, että säätökäyrää on mahdollista laskea esimerkiksi kaksi astetta yön ajaksi, jolloin lämmityksen tarve on pienempi. Näin pystytään säästämään lämmityskuluissa. Yöpudotuksen jälkeen useimmat termostaattiset patteriventtiilit ovat täysin auki, koska huoneistoissa on hieman tavanomaista viileämpää. Vaikka kaikki termostaatit ovat täysin auki, osa piireistä on kuitenkin aina helpommin saavutettavissa kuin toiset. Tällöin suurempi osa vedestä kiertää siellä, missä se helpommin onnistuu. Näin helpompien kiertopiirien termostaatit eivät ala kuristaa virtausta ennen kuin oikea huonelämpötila on saavutettu. Tästä syystä kiertopiirien lämmitys käynnistyy epätasaisesti ja huoneistot lämpiävät epätasaisesti. (TA Hydronics 2012)

29 21 Jos vesi on tilanteeseen nähden liian lämmintä, termostaatit ovat silloin usein joko täysin kiinni tai vain hieman auki, jolloin lämmin vesi makaa paikallaan patterilinjoissa ja luovuttaa lämpöä ympäristöön. Kerrostaloissa nousulinjat sijaitsevat seinien vierellä, jonka vuoksi lämpöä siirtyy myös suoraan seinien läpi ulos. Jos liian lämmintä vettä ajetaan jatkuvasti verkostoon, kaikki termostaattiset patteriventtiilit sulkeutuvat ja kiertovesipumppu alkaa jauhaa tyhjää. Tämä saattaa jopa hajottaa pumpun, kun pumppu ei pysty kierrättämään nestettä. (Patenttiasiakirja, Hyvärinen 2002) Ulkoilma otetaan asuntoihin korvausilmaventtiilien kautta. Korvausilmalaitteita ovat seinäventtiilit, ikkunoiden rakoventtiilit sekä lämpöpatterin taakse asennettavat korvausilmaventtiilit. Patterit pyritään laittamaan mahdollisuuksien mukaan ikkunan ja raitisilmaventtiilin alle, jolloin ikkunan ja raitisilmaventtiilin kautta tuleva kylmä ulkoilma sekoittuu patterilta nousevaan lämpimään ilmaan ja kulkeutuu kattoa pitkin sekoittuen huoneilmaan. Patterien asentamisella ikkunan ja raitisilmaventtiilin alle pyritään estämään kylmän ilman aiheuttama vedon tunne. Vedon tunne syntyy lämmön siirtymisestä iholta, eli kun kehosta poistuu enemmän lämpöä kuin elintoiminnot tuottavat. Ilmavirtaus vie lämpöä pois paljailta alueilta ja aiheuttaa vedon tunnetta. Ilman lämpötila vaikuttaa vedon tunteeseen. (Laaksonen 2001, s.410) Jos verkostoon tulee tilanteeseen nähden liian lämmintä vettä, termostaattinen patteriventtiili sulkee ja katkoo patterille tulevaa nestevirtaa, eikä patteri pääse lämpenemään koko pinta-alaltaan. Tällöin patteri ei lämmitä ilmaa jatkuvasti, eikä kylmä ilma sekoitu. Kylmä ilma laskeutuu suoraan lattialle, mikä lisää vedon tunnetta. (Patenttiasiakirja, Hyvärinen 2002) 3.2. Rakennuksen energiatase Rakennuksen sisälle tulevien (tuotettujen) ja ulos menevien (kulutettujen) energioiden jakaantumista voidaan havainnollistaa lämpöenergiataseella. Rakennukseen tuotavaa energiaa ovat lämmitysjärjestelmällä tuotettu lämmitysenergia, sähkölaitteista saatava talousenergia sekä niin sanotut ilmaisenergiat eli ihmisten luovuttama lämpöenergia ja auringon säteilyenergia. Rakennuksesta poistuvaa energiaa ovat puolestaan ikkunoiden, ovien ja ulkoseinien kautta johtumalla siirtyvä energia, ilmanvaihtoilman mukana poistuva energia ja lämpimän veden mukana poistuva energia (kuva 3.7). (Energiakäsikirja 1983, s.49)

30 22 Kuva 3.7. Rakennuksen lämpöenergiatase (mukaillen Virta & Pylsy 2011, s.19) Asuinkerrostaloissa suurimmat häviöiden aiheuttajat ovat ilmanvaihto, lämmin käyttövesi ja ikkunat. Myös rivitaloissa ilmanvaihdon kautta häviää eniten lämpöä, mutta rivitaloissa ala- ja yläpohjan vaikutus on lähes yhtä suuri kuin ikkunoiden vaikutus häviöön. (Virta & Pylsy 2011, s.19 20) Pitkän aikavälin tarkastelussa rakennukseen tuotava energia on yhtä suuri kuin sieltä poistuva energia. Eri osatekijöiden suuruudet riippuvat hyvin paljon rakennustyypistä sekä kulutustottumuksista. Ilmaislämpöä on mahdollista hyödyntää, jos samanaikaisesti on tarvetta lämmölle ja jos säätölaitteet vähentävät samalla muun lämmön tuottoa vastaavalla määrällä. (Energiakäsikirja 1983, s.49 51) Jos halutaan säästää energiaa, täytyy kuvassa 3.7 oleviin energiavirtoihin pystyä vaikuttamaan. Osaan häviöistä on helppo tehdä korjauksia ja parantaa näin energiatehokkuutta, mutta investointien hinta voi olla suuri. Taulukossa 3.1 ovat kerrottu tekijöitä, jotka vaikuttavat eri osien häviöihin. Kaikkiin tekijöihin, lukuun ottamatta rakenteiden pinta-alaan, pystytään vaikuttamaan erilaisilla toimenpiteillä.

31 23 Taulukko 3.1. Kerrostalon energiahäviöihin vaikuttavat tekijät (mukaillen Ympäristöministeriö 2000, s.9) Ulkoseinät, ikkunat, ulko-ovet, yläpohja, alapohja Ilmanvaihto Lämmin käyttövesi Lämmön tuotanto- ja siirtohäviöt Energiahäviöihin vaikuttavat tekijät Rakenteiden pinta-alat U-arvot Vallitsevat lämpötilaerot Lämpötilaerojen vaikutusajat Ilmavuodot Ilmavirtojen suuruus Vallitseva lämpötilaero Ilmanvaihtolaitteiden käyttöaika Poistoilman lämmöntalteenotto Hanojen virtaamat Virtaamien käyttöajat Ammeet Veden lämpötila Putkiston lämpöhäviöt Järjestelmän vuodot Kaukolämmön lämmönjakohuoneen laitteiden ja putkistojen lämpöhäviöt Maassa, kellareissa, kanaaleissa jne. kulkevien putkistojen lämpöhäviöt VTT on arvioinut eri teknologioiden ja toimenpiteiden energiansäästöpotentiaalia kehitysarvioissaan. Talotekniikan energiatehokkuuden energiansäästöpotentiaali korjausrakentamisen yhteydessä on VTT:n skenaarioiden mukaan vuoteen 2020 mennessä Yleisesti energiatehokkuutta parantavien toimenpiteiden vaikutukset eivät näy kovin nopeasti, sillä rakennuskanta uudistuu hyvin hitaasti (uudisrakentaminen 1-1,5 /a ja korjausrakentaminen 3,5 /a). (VTT Energiapolut , s ) 3.3. Energiansäästöinvestointien taloudellisia vaikutuksia Holopainen et al. (2007) sanovat raportissaan, että raportin tekoajan energianhinnoilla pelkästään energiansäästön vuoksi tehtävät korjaukset eivät ole kannattavia. Energian hinta tosin nousee koko ajan, joten myös suuret energiakorjausinvestoinnit saattavat tulevaisuudessa tulla kannattavaksi pelkästään energiansäästöä ajatellen. Energiansäästöinvestoinnit voidaan jakaa kahteen luokkaan. 1. Energiankorjaustoimenpiteet 2. Säätötoimenpiteet

32 24 Energiankorjaustoimenpiteessä kerrostalon peruskorjauksen yhteydessä tehdään investointeja, jotka säästävät energiaa. Investoinnit saattavat olla hyvinkin isoja ja takaisinmaksuajat melko pitkiä. Säätötoimenpiteillä tarkoitetaan joko ilmaisia tai pieniä investointeja, joilla yritetään muuttaa energiankulutusta Energiankorjaustoimenpiteet Energiakorjauksiin ei yleensä ryhdytä energiatalouden parantamisen vuoksi, vaan taustalla on korjaustarve, joka mahdollistaa samalla energiatehokkuuden parantamisen. Korjausten kannattavuutta on siksi vaikea laskea investointikustannusten periaattein. Jos takaisinmaksuaika halutaan laskea, investoinnin kustannuksiksi lasketaan vain ne kustannukset, jotka johtuvat energiatalouden parantamisesta. (Holopainen et al. 2007, s.92 93) Kerrostalojen säästöpotentiaali riippuu hyvin paljon siitä, milloin kerrostalo on rakennettu. Rakennusmääräykset ovat muuttuneet vuosien varrella huomattavasti, ja nykyisin rakennettavissa kerrostaloissa säästöpotentiaali on huomattavasti pienempi kuin aikaisemmissa. (Holopainen et al s ) Esimerkki säästöpotentiaalin hankalasta arvioinnista ja kannattavuudesta on energiatehokkaiden ikkunoiden asennus. Niiden asentamisen säästöpotentiaali on riippuen siitä, missä kunnossa lämmöneristävyys aikaisemmin on ollut ja kuinka korkeana huonelämpötiloja on huonojen ikkunarakenteiden aiheuttaman vedon vuoksi pidetty. Säästöpotentiaalin saavuttamiseksi huonelämpötilat pitäisi laskea ikkunoiden asentamisen jälkeen lähelle ohjearvoa 21 C. Vaikka energiatehokkaat ikkunat säästävät energiaa arviolta 10 15, ikkunoita ei kannata vaihtaa ilman hyvää syytä. Energiatehokkaiden ikkunoiden asentaminen voisi tulla kannattavaksi, jos esimerkiksi ikkunat olisi vaihdettava muutenkin tai ääneneristävyys parantuisi samalla. (Ympäristöministeriö 2000, s.41) Investointikustannusten kohdistaminen tässä tilanteessa on hankalaa, vaikka siihen on olemassa Energiateollisuuden ohje (Energiateollisuus 2009, liite 9). Heljo & Nippala (2007) ovat tutkimuksissaan selvittäneet kuntien hallinnoimien tai omistamien vuokra-asuinkerrostalojen energiakorjausten energiansäästövaikutuksia. Toimenpiteinä olivat muun muassa ikkunoiden vaihto, seinän lisäeristys, lämmitysverkoston perussäätö sekä ilmanvaihdon perussäätö. Eri korjaustoimenpiteiden jälkeiset energiankulutuksen muutokset vaihtelivat välillä -12,2 - +2,2 ja keskiarvona oli - 5,7. (Heljo & Nippala 2007, s.44) Säätötoimenpiteet Säätötoimenpiteet ovat yleensä investointeina kohtuullisen pieniä, ja niillä saa aikaan yleensä välittömiä toimenpiteitä. Tarkasteltava menetelmä kuuluu investoinnin suuruuden puolesta tähän ryhmään. Heljo & Viholan tutkimuksissa (2011) arvioitiin, että säätötoimenpiteillä ja vedenkulutuksen mittauksella on mahdollisuus säästää noin 4,5 lämmitysenergiasta. Säätötoimenpiteitä voivat olla muun muassa lämmityksen säätö-

33 25 käyrän tarkentaminen, sisälämpötilan pudottaminen ja vesiverkoston virtaaman ja paineen alentaminen. (Heljo & Vihola 2011, s.5) Seppälän (2011) haastattelema Lemminkäisen aluepäällikkö kertoi, että joissakin kiinteistöissä pelkällä talotekniikan optimoinnilla voidaan säästää yli 30, mutta normaalisti optimoinnilla voidaan päästä noin kymmenen prosentin säästöihin. Motiva tekee energiakatselmuksia, joista se on kerännyt tietoa vuodesta 1992 lähtien. Motivan katselmuksissa tehdään analyysi kiinteistön kokonaisenergiankäytöstä, selvitetään energiansäästöpotentiaali sekä esitetään säästötoimenpiteitä kannattavuuslaskelmineen. Vuosina kunnallisella palvelusektorilla aloitetussa 556 katselmuskohteessa energiansäästöpotentiaaliksi oli saatu lämmön osalta keskimäärin 14, sähkön osalta 5 ja veden osalta 7. Keskimääräinen takaisinmaksuaika oli ollut noin 1,8 vuotta. (Motiva 2012) Esimerkiksi Helsingin kaupungin julkisissa palvelukiinteistöissä keskimääräinen säästöpotentiaali lämpöenergian osalta oli 13, sähköenergian osalta 9 ja veden osalta 6. Investointien takaisinmaksuaika oli noin 1,3 vuotta. (Hämeenlinnan kaupungin energiansäästöstrategia 2009) Pitää muistaa, että luvut ovat arvioita säästöpotentiaalista. Kaikkia toimenpiteitä ei toteuteta, eivätkä arvioidut potentiaalit aina toteudu. Esimerkiksi kunta-alalta toteutettujen toimenpiteiden säästö lämmön osalta on ollut 9, vaikka säästöpotentiaali oli 14. (Suomi 2011) Motivan ohjeessa lämmitysverkoston tasapainotuksen sanotaan säästävän lämmityskustannuksista (Motiva Oy & Oras Oy 2002). Ympäristöministeriön mukaan patteriverkoston perussäädöllä voidaan säästää Motivan arvioita hieman vähemmän, eli (Ympäristöministeriö 2000, s.51) Tainio (2010) tutki diplomityössään kolmen kunnan kiinteistöjen energiansäästöpotentiaalia. Diplomityössä laskettiin erilaisten toimenpiteiden mahdollisia säästöpotentiaaleja, investoinnin suuruutta, takaisinmaksuaikaa ja sisäistä korkokantaa. Yhden kunnan toimenpiteiden tarkastelussa alle investoinneissa viiden parhaan toimenpiteen arvioidut takaisinmaksuajat olivat välillä 0,7-2,1 vuotta ja arviot sisäisestä korkokannasta vaihtelivat välillä 135,10-45,90. (Tainio 2010, s ) Toimenpiteistä neljä oli lamppujen vaihtoja ja yksi oli ilmalämpöpumpun asentaminen. Nämä säästöt olivat siis kouluille ja kunnan rakennuksille, joten niitä ei voida suoraan kohdistaa asuinrakennuksiin. Lisäksi tulokset olivat arviointeja investointien kannattavuudesta, eikä toteutuneita tuloksia ole saatavilla. Selvää yhteneväistä linjaa eri toimenpiteistä on todella vaikea löytää. Lisäksi tietoa investoinnin kannattavuudesta oli huonosti saatavilla. Voidaan kuitenkin todeta, että lämpöenergian säästö riippuu hyvin paljon siitä, millä tavalla säästöasiat hoidetaan eri kiinteistöissä. Sama toimenpide voi toisessa kiinteistössä saada aikaan paljon suuremman säästön kuin toisessa. Hyvissä energiansäästöinvestoinneissa on kuitenkin mahdollisuus noin vuoden takaisinmaksuaikoihin ja yli sadan prosentin sisäiseen korkokantaan.

34 Paine-erokompensointimenetelmän toiminta Menetelmä Ekonor Oy:n tarjoaman menetelmän tarkoituksena on pystyä mahdollisimman hyvin hyödyntämään huoneeseen tuleva ilmaisenergia, jota on esimerkiksi auringonpaiste, koneet ja ihmiset. Tällöin pystytään alentamaan patterin tuottamaa tehoa, ja se tapahtuu laskemalla lämmitysverkostoon menevän veden lämpötilaa. Tarkoituksena on pyrkiä lämmitysenergian säästöön. Menetelmään sisältyy kaksi osa-aluetta: tarkasteltava laite sekä muut asennuksen aikana tehtävät toimenpiteet. Näitä toimenpiteitä voivat olla tilanteesta riippuen esimerkiksi pumpun säätäminen vakiokierrokselle tai lämmityksen säätökäyrän optimoiminen Menetelmän toiminta Tarkasteltavan menetelmän toimintaperiaate on varsin selkeä. Tarkasteltava laite mittaa vesikiertoisessa patteriverkostossa tapahtuvaa paine-eron muutosta. Laite asennetaan kiinteistön lämmönjakohuoneeseen patteriverkoston meno- ja paluuputken väliin. Tarkasteltava menetelmä lähettää säätöautomatiikalle paine-erosta tiedon, jonka avulla säätöautomatiikka säätää pattereille menevän veden lämpötilaa. Menetelmässä verkoston pumppu asennetaan vakiokierroksille, joten ainoa tekijä, joka vaikuttaaa verkoston paine-eroon, on termostaattisten patteriventtiilien liike. Kun huoneen lämpötila nousee, termostaattiset patteriventtiilit menevät pienemmälle ja pattereille menevä vesivirta pienenee. Vesivirran pienentyessä pumpun tuottama paine kasvaa. Samalla muun verkoston osan painehäviö pienenee vesivirran toiseen potenssiin. Nämä tekijät kasvattavat termostaattisen patteriventtiilin paine-eroa. (Seppänen 1995, s. 197). Tarkasteltava menetelmä ei mittaa yksittäisen patteriventtiilin paine-eroa, vaan koko verkoston paine-eroa, ja tuloksena saatu paine-erotieto ohjataan lämmityksen säätökeskukseen. Säätökeskus puolestaan säätää saadun tiedon perusteella lämmitysverkoston menoveden lämpötilaa. Menetelmän tietojen avulla kompensoidaan siis perinteistä säätökäyrää. Erilaisten mittausten ja kokeilujen avulla on muodostettu kompensointisuora, jossa kompensoitava astemäärä normaaliin säätökäyrään riippuu painehäviön suuruudesta (kuva 3.8). Kompensaation avulla on tavoitteena saada huoneen lämpötila pysymään noin +22 asteessa. Kun menetelmää otetaan käyttöön, mitataan verkoston senhetkinen painehäviö, ja tämän tiedon avulla kompensoidaan menoveden lämpötilaa 0-10 astetta verrattuna normaaliin säätökäyrään.

35 27 Kuva 3.8. Esimerkki kompensointikäyrästä Esimerkiksi yhden huoneen lämpötila ajanhetkellä t 0 = 22 C. Oletetaan, että patteritermostaatit ovat puolittain auki ja pattereihin saapuvan veden lämpötila on 54 C. Kevätaurinko alkaa paistaa huoneeseen, auringon lämmitysteho alkaa lämmittää huonetta ja ajan hetkellä t 1 lämpötila on 23 astetta. Auringon aiheuttaa sen, että aurinkoisen puolen termostaattiset patteriventtiilit menevät hieman enemmän kiinni ja verkostossa huomataan paine-eron kasvu. Tarkasteltava laite lukee paine-eron ja lähettää tiedon säätökeskukselle. Paine-eron suuruus aiheuttaa kompensoinnissa kolmen asteen vähennyksen. Säätökeskus kompensoi tiedon perusteella menoveden lämpötilaa kolme astetta 51 asteeseen. Näin 51-asteista vettä tulee huoneeseen patteritermostaattien kautta ajan hetkellä t 2, jolloin huoneen lämpötila on noussut jo 23,5 asteeseen. Hieman viileämpi vesi kompensoi auringon aiheuttaman tehon tarpeen vähennyksen, joten lämpötila huoneistossa alkaa hitaasti laskea, ja ajassa t 3 huoneen lämpötila on taas 22 astetta. Uusi lämpötila taas vaikuttaa termostaatteihin, jotka menevät hieman suuremmalle ja paine-ero verkostossa muuttuu. Esimerkki ei ole täysin totuudenmukainen, mutta antaa oikean kuvan toiminnasta ja on helposti ymmärrettävissä. Tarkoituksena on havainnollistaa toimintaperiaatetta. Tarkasteltava menetelmä mittaa paine-eroa jatkuvasti, ja pienikin lämpötilan muutos havaitaan paine-eron muutoksena ja menoveden lämpötilaa muutetaan. Toisaalta termostaatit ovat kohtuullisen hitaita reagoimaan, joten lämmönsäätö ei tapahdu täysin reaaliaikaisesti. Seuraavassa kuvassa on erään kiinteistön mittausdataa (kuva 3.9). Kiinteistöön on asennettu tutkimuksessa tarkasteltava menetelmä. Punaisella näkyvä käyrä on menetelmän mittaama verkoston paine-ero, ja vihreä käyrä on säätökäyrän mukainen menovesi. Violetti käyrä kertoo kompensoinnin jälkeen tapahtuneen todellisen menoveden lämpötilan.

36 28 Kompensointi tapahtuu normaaliin säätökäyrään. Kompensointi on vaihdellut kyseisen päivän aikana 0-7 asteen välillä. Kyseisenä päivänä kello ulkolämpötila oli -8,4 C. Lämpötila lähti nousemaan, ja kello lämpötila oli +4,5 C. Kuvassa punaisessa laatikossa näkyy, miten ulkolämpötilan nousu näkyy paine-eron kasvuna. Mitä suurempi on paine-ero, sitä isompi on ero perinteisen säätökäyrän ja kompensoidun säätökäyrän välillä. Kuva 3.9. Menetelmän vaikutus menoveden lämpötilaan Menetelmän avulla pystytään säätämään menoveden lämpötilaa ja estämään turhan kuuman nesteen ajaminen lämmitysverkkoon. Menovesi on keskimäärin hieman viileämpää kuin aikaisemmin, ja termostaatit ovat enemmän auki. Virtaama on näin tasaisempi ja lämpöpatterit lämpiävät tasaisemmin, jolloin huoneistojen lämpötilojen pitäisi olla tasaisempia. Lisäksi pystytään estämään vedon tunnetta ja suuremmasta verkoston paine-erosta aiheutuneet ääniongelmat. (Patenttiasiakirja, Hyvärinen 2002) Menetelmä tasaa lämmön myös silloin, kun jokin osa-alue kiinteistöstä on lämpimämpi kuin toinen. Kun keväällä aurinko alkaa lämmittää kiinteistön toista puolta, lämpötila auringon puoleisten huoneistojen sisällä nousee ja termostaattiset patteriventtiilit menevät kiinni. Tämä aiheuttaa verkostossa paine-eron kasvun, joten säätökeskus pienentää menoveden lämpötilaa. Kiinteistön varjoisalla puolella termostaattiset patteriventtiilit ovat nyt enemmän auki kuin aurinkoisella puolella. Vakiokierroksinen pumppu kierrättää vettä edelleen saman määrän, mutta nyt varjon puolella kiertää enemmän vettä, joka alentuneesta lämpötilasta huolimatta riittää pitämään huoneiden lämmön tasaisena. (Patenttiasiakirja, Hyvärinen 2002) Pumpun sähkönkulutus voi hieman kasvaa, jos pumppu on ennen ollut taajuusmuuttajapumppu. Pumppujen teho on kuitenkin yleensä niin pieni, noin 300 W, ettei niistä synny kovin isoja kustannusvaikutuksia.

37 Asennuksessa tehtävät oleelliset toimenpiteet Tarkasteltava menetelmä asennetaan lämmönjakohuoneeseen. Menetelmän mekaanisessa asentamisessa laitteessa olevat kapillaariputket asennetaan niin, että niiden väliin jää sekä pumppu että lämmönsiirrin (kuva 3.10). Menetelmän sisällä oleva paine-erolähetin mittaa paine-eroa ja lähettää siitä tiedon automatiikalle. Kuva Menetelmän asennuspaikka lämmönjakohuoneessa Asennuksen aikana tehdään virtaaman optimointi, joka tarkoittaa sitä, että verkoston virtaama ja nostokorkeus tarkistetaan ja niitä verrataan LVI-suunnitelmaan. Jos arvot eivät ole kunnossa, säädetään pumppua niin, että arvot saadaan suunnitelmien mukaisiksi. Lisäksi suoritetaan viritys eli kompensointisuoran (kuva 3.8) luominen. Lisäksi jos pumppu on taajuusmuuttajapumppu eli sen pyörimisnopeus muuttuu, säädetään pumppu toimimaan vakiokierroksella Syyt kulutuksen mahdolliseen pienentymiseen Ylilämmittämisen välttäminen Hyvin monessa yhteydessä esitetään väittämä, että yhden asteen matalampi lämpötila säästää energiaa viisi prosenttia. Tämä väittämä perustuu pelkästään lämpöhäviöihin. Lämmityskauden keskimääräinen ulkoilman lämpötila vaihtelee asteen välillä riippuen sijainnista. Esimerkiksi Helsingissä lämmityskauden keskilämpötila on +1 astetta ja Oulussa -1 astetta. (Ympäristöministeriö 2007) Jos keskilämpötila on nolla astetta, huoneen lämmittäminen 19 C:een 20 C:n sijasta säästää 1/20 eli noin 5 vuodessa. Menetelmän asentamisen ja virittämisen jälkeen huoneistojen lämpötilat ovat oletuksen mukaan keskimäärin hieman viileämpiä. Jos huoneistojen keskilämpötila laskee, tarkoittaa se automaattisesti säästöä energiankulutuksessa. Lisäksi huoneistojen lämpötilat pitäisivät olla tasaisempia. Käyttöönoton jälkeen saattaa kiinteistössä esiintyä muutamia kylmiä huoneistoja, joiden lämpötilat saadaan korjattua yleensä normaaleiksi termostaatteja tai linjasäätöventtiilejä säätämällä.

Näytesivut. Kaukolämmityksen automaatio. 5.1 Kaukolämmityskiinteistön lämmönjako

Näytesivut. Kaukolämmityksen automaatio. 5.1 Kaukolämmityskiinteistön lämmönjako 5 Kaukolämmityksen automaatio 5.1 Kaukolämmityskiinteistön lämmönjako Kaukolämmityksen toiminta perustuu keskitettyyn lämpimän veden tuottamiseen kaukolämpölaitoksella. Sieltä lämmin vesi pumpataan kaukolämpöputkistoa

Lisätiedot

LÄMMITÄ, MUTTA ÄLÄ ILMASTOA. TUNNETKO KAUKOLÄMMÖN EDUT?

LÄMMITÄ, MUTTA ÄLÄ ILMASTOA. TUNNETKO KAUKOLÄMMÖN EDUT? LÄMMITÄ, MUTTA ÄLÄ ILMASTOA. TUNNETKO KAUKOLÄMMÖN EDUT? HYVÄN OLON ENERGIAA Kaukolämmitys merkitsee asumismukavuutta ja hyvinvointia. Se on turvallinen, toimitusvarma ja helppokäyttöinen. Kaukolämmön asiakkaana

Lisätiedot

Kiinteistöhuolto taloyhtiössä ja säästötoimenpiteet

Kiinteistöhuolto taloyhtiössä ja säästötoimenpiteet Kiinteistöhuolto taloyhtiössä ja säästötoimenpiteet 12.04.2012 Pakkalasali Pekka Seppänen LVI- Insinööri Kuntoarvioija, PKA energiatodistuksen antajan pätevyys, PETA Tyypilliset ongelmat -Tilausvesivirta

Lisätiedot

Energia- ilta 01.02.2012. Pakkalan sali

Energia- ilta 01.02.2012. Pakkalan sali Energia- ilta 01.02.2012 Pakkalan sali Pekka Seppänen LVI- Insinööri Kuntoarvioija, PKA energiatodistuksen antajan pätevyys, PETA Tyypilliset ongelmat -Tilausvesivirta liian suuri (kaukolämpökiinteistöt)

Lisätiedot

KauKolämpö on KaiKKien etu...myös sinun.

KauKolämpö on KaiKKien etu...myös sinun. KauKolämpö on KaiKKien etu...myös sinun. Hyvän olon energiaa Kaukolämmitys merkitsee asumismukavuutta ja hyvinvointia. Se on turvallinen, toimitusvarma ja helppokäyttöinen. Se takaa tasaisen lämmön ja

Lisätiedot

KAUKOLÄMPÖ ON KAIKKIEN ETU...MYÖS SINUN.

KAUKOLÄMPÖ ON KAIKKIEN ETU...MYÖS SINUN. KAUKOLÄMPÖ ON KAIKKIEN ETU...MYÖS SINUN. HYVÄN OLON ENERGIAA Kaukolämmitys merkitsee asumismukavuutta ja hyvinvointia. Se on turvallinen, toimitusvarma ja helppokäyttöinen. Se takaa tasaisen lämmön ja

Lisätiedot

Kaukolämpölaskun muodostuminen ja siihen vaikuttavat tekijät OULUN ENERGIA

Kaukolämpölaskun muodostuminen ja siihen vaikuttavat tekijät OULUN ENERGIA Kaukolämpölaskun muodostuminen ja siihen vaikuttavat tekijät Rakennusten lämmitystekniikka Perusvaatimukset Rakennusten lämmitys suunnitellaan ja toteutetaan siten, että: saavutetaan hyvä sisäilmasto ja

Lisätiedot

Taksan määräytymisen perusteet

Taksan määräytymisen perusteet Kunnanhallitus 25 24.02.2004 Kunnanhallitus 30 16.03.2004 ALUELÄMPÖLAITOKSEN TAKSA 16/03/031/2004 419/53/2002 KH 25 Kj:n ehdotus: Päätös: Kunnanhallitukselle jaetaan aluelämpölaitoksen taksan määräytymisperusteet

Lisätiedot

Taloyhtiön energiankulutus hallintaan

Taloyhtiön energiankulutus hallintaan Taloyhtiön energiankulutus hallintaan 01.02.2012, Oulun kaupunginkirjaston Pakkalan Sali DI Petri Pylsy Suomen Kiinteistöliitto ry Tarjolla tänään Arkitodellisuus taloyhtiöissä Suunnitelmallinen energiatehokkuuden

Lisätiedot

Kiinteistötekniikkaratkaisut

Kiinteistötekniikkaratkaisut Kiinteistötekniikkaratkaisut SmartFinn AUTOMAATIO SmartFinn Automaatio on aidosti helppokäyttöinen järjestelmä, joka tarjoaa kaikki automaatiotoiminnot yhden yhteisen käyttöliittymän kautta. Kattavat asuntokohtaiset

Lisätiedot

Taloyhtiön energiansäästö

Taloyhtiön energiansäästö Taloyhtiön energiansäästö Hallitusforum 19.03.2011 Messukeskus, Helsinki Petri Pylsy, Kiinteistöliitto Suomen Kiinteistöliitto ry Mitä rakennusten energiatehokkuus on Energiatehokkuus paranee, kun Pienemmällä

Lisätiedot

Rakennusmääräykset. Mikko Roininen Uponor Suomi Oy

Rakennusmääräykset. Mikko Roininen Uponor Suomi Oy Talotekniikka ja uudet Rakennusmääräykset Mikko Roininen Uponor Suomi Oy Sisäilmastonhallinta MUKAVUUS ILMANVAIHTO ERISTÄVYYS TIIVEYS LÄMMITYS ENERGIA VIILENNYS KÄYTTÖVESI April 2009 Uponor 2 ULKOISET

Lisätiedot

KAUKOLÄMMITYSJÄRJESTELMIEN KEVENTÄMISMAHDOLLISUUDET MATALAN ENERGIAN KULUTUKSEN ALUEILLA TUTKIMUS

KAUKOLÄMMITYSJÄRJESTELMIEN KEVENTÄMISMAHDOLLISUUDET MATALAN ENERGIAN KULUTUKSEN ALUEILLA TUTKIMUS KAUKOLÄMMITYSJÄRJESTELMIEN KEVENTÄMISMAHDOLLISUUDET MATALAN ENERGIAN KULUTUKSEN ALUEILLA TUTKIMUS ESITTELY JA ALUSTAVIA TULOKSIA 16ENN0271-W0001 Harri Muukkonen TAUSTAA Uusiutuvan energian hyödyntämiseen

Lisätiedot

Rakennusten kaukolämmitys, määräykset ja ohjeet, julkaisu K1/2013 keskeiset uudistukset

Rakennusten kaukolämmitys, määräykset ja ohjeet, julkaisu K1/2013 keskeiset uudistukset Rakennusten kaukolämmitys, määräykset ja ohjeet, julkaisu K1/2013 keskeiset uudistukset Julkaisu K1/2013 Rakennusten kaukolämmitys, määräykset ja ohjeet edellinen julkaisu vuodelta 2003 päivitetty versio

Lisätiedot

Uudet energiatehokkuusmääräykset, E- luku

Uudet energiatehokkuusmääräykset, E- luku Tietoa uusiutuvasta energiasta lämmitysmuodon vaihtajille ja uudisrakentajille 31.1.2013/ Dunkel Harry, Savonia AMK Uudet energiatehokkuusmääräykset, E- luku TAUSTAA Euroopan unionin ilmasto- ja energiapolitiikan

Lisätiedot

Toteutettavissa olevat energiansäästömahdollisuudet Tampereen asuinrakennuksissa. Energiaremontti

Toteutettavissa olevat energiansäästömahdollisuudet Tampereen asuinrakennuksissa. Energiaremontti Toteutettavissa olevat energiansäästömahdollisuudet Tampereen asuinrakennuksissa 1 Energiaremontti Miten päästään 20 % energiansäästöön vuoteen 2020 mennessä Tampereen asuinrakennuskannassa Energiaeksperttikoulutus

Lisätiedot

Lämmitysjärjestelmät. Säätö ja säätötarpeen tunnistaminen

Lämmitysjärjestelmät. Säätö ja säätötarpeen tunnistaminen Lämmitysjärjestelmät Säätö ja säätötarpeen tunnistaminen Mitä säädöllä voidaan saavuttaa? Tasainen huonelämpötila kaikille Hiljainen lämmitysjärjestelmä Säästöä lämmityskustannuksissa Säätötarpeen tunnistaminen

Lisätiedot

Suomen lämpöpumppuyhdistys. SULPU ry.

Suomen lämpöpumppuyhdistys. SULPU ry. . Petri Koivula toiminnanjohtaja DI 1 Energia Asteikot ja energia -Miten pakkasesta saa energiaa? Celsius-asteikko on valittu ihmisen mittapuun mukaan, ei lämpöenergian. Atomien liike pysähtyy vasta absoluuttisen

Lisätiedot

LÄMMITYSENERGIA- JA KUSTANNUSANALYYSI 2014 AS OY PUUTARHAKATU 11-13

LÄMMITYSENERGIA- JA KUSTANNUSANALYYSI 2014 AS OY PUUTARHAKATU 11-13 LÄMMITYSENERGIA- JA KUSTANNUSANALYYSI 2014 AS OY PUUTARHAKATU 11-13 2 LÄMMITYSENERGIA- JA KUSTANNUSANALYYSI 2014 Yhtiössä otettiin käyttöön lämmön talteenottojärjestelmä (LTO) vuoden 2013 aikana. LTO-järjestelmää

Lisätiedot

Energiatehokkuuden parantaminen taloyhtiöissä

Energiatehokkuuden parantaminen taloyhtiöissä Energiatehokkuuden parantaminen taloyhtiöissä Energiaekspertin peruskurssi osa 1: lämpö & vesi 17.03.2014, Tampere DI Petri Pylsy Ekspertti ei kuitenkaan koske säätöihin, sen tekee aina kiinteistönhoitaja

Lisätiedot

Suomen lämpöpumppuyhdistys. SULPU ry.

Suomen lämpöpumppuyhdistys. SULPU ry. . Petri Koivula toiminnanjohtaja DI 1 Palkittua työtä Suomen hyväksi Ministeri Mauri Pekkarinen luovutti SULPUlle Vuoden 2009 energia teko- palkinnon SULPUlle. Palkinnon vastaanottivat SULPUn hallituksen

Lisätiedot

Ulkovaipan lämpötalouteen vaikuttavat korjaustoimenpiteet käytännössä

Ulkovaipan lämpötalouteen vaikuttavat korjaustoimenpiteet käytännössä Ulkovaipan lämpötalouteen vaikuttavat korjaustoimenpiteet käytännössä Julkisivuyhdistys ry:n syyskokous 19.11.2009 Diana-auditorio, Helsinki Stina Linne Tekn yo. Esityksen sisältö Tutkimuksen taustat ja

Lisätiedot

Minne energia kuluu taloyhtiössä? Energiaeksperttikoulutus 6.10.2015 Ilari Rautanen

Minne energia kuluu taloyhtiössä? Energiaeksperttikoulutus 6.10.2015 Ilari Rautanen Minne energia kuluu taloyhtiössä? Energiaeksperttikoulutus 6.10.2015 Ilari Rautanen 7.10.2015 Lauri Penttinen 2 Miksi energiaa kannattaa säästää? Energia yhä kalliimpaa ja ympäristövaikutuksia täytyy vähentää

Lisätiedot

Oulun kaupungin päiväkotien energiakisa 2014 / Schneider Electric Buildings Finland Oy Energiankäyttö. 04.09.2014 Pekka Karppanen

Oulun kaupungin päiväkotien energiakisa 2014 / Schneider Electric Buildings Finland Oy Energiankäyttö. 04.09.2014 Pekka Karppanen Oulun kaupungin päiväkotien energiakisa 2014 / Schneider Electric Buildings Finland Oy Energiankäyttö 04.09.2014 Pekka Karppanen Valaistuksen- ja vedenkäyttö Valaisimien sammuttaminen Yleispätevä ohje

Lisätiedot

Lämpöilta taloyhtiöille. Tarmo. 30.9. 2013 Wivi Lönn Sali. Lämmitysjärjestelmien ja energiaremonttien taloustarkastelut

Lämpöilta taloyhtiöille. Tarmo. 30.9. 2013 Wivi Lönn Sali. Lämmitysjärjestelmien ja energiaremonttien taloustarkastelut Lämpöilta taloyhtiöille Tarmo 30.9. 2013 Wivi Lönn Sali Lämmitysjärjestelmien ja energiaremonttien taloustarkastelut Juhani Heljo Tampereen teknillinen yliopisto Talon koon (energiankulutuksen määrän)

Lisätiedot

www.scanoffice.fi Teollisuusrakennus Salon Meriniityn teollisuusalueella, (Teollisuuskatu, Örninkatu 15)

www.scanoffice.fi Teollisuusrakennus Salon Meriniityn teollisuusalueella, (Teollisuuskatu, Örninkatu 15) Teollisuusrakennus Salon Meriniityn teollisuusalueella, (Teollisuuskatu, Örninkatu 15) - Rakennus on kytketty kaukolämpöverkkoon - Lämmitettävän tilan pinta-ala on n. 2000 m 2 ja tilavuus n. 10 000 m 3

Lisätiedot

Energiatehokkuuden optimointi Mahdollisuudet ja työkalut yrityksille. Salo 9.10.2014 Juha-Pekka Paavola Finess Energy Oy

Energiatehokkuuden optimointi Mahdollisuudet ja työkalut yrityksille. Salo 9.10.2014 Juha-Pekka Paavola Finess Energy Oy Energiatehokkuuden optimointi Mahdollisuudet ja työkalut yrityksille Salo 9.10.2014 Juha-Pekka Paavola Finess Energy Oy ENERGIANSÄÄSTÖ? ENERGIATEHOKKUUS! ENERGIATEHOKKUUS Energian tehokas hyödyntäminen

Lisätiedot

SiMAP lämmityksen säätö. SiMAP säätää - Sinä säästät

SiMAP lämmityksen säätö. SiMAP säätää - Sinä säästät SiMAP lämmityksen säätö SiMAP säätää - Sinä säästät Rappukäytävään asennettava reititin vahvistaa antureiden signaalia säätimelle. Mikä SiMAP Säätö? SiMAP Säätö on täysin uudenlainen kiinteistön lämmityksen

Lisätiedot

TOTEUTUSKUVAUS EEMONTTI - REMONTISTA

TOTEUTUSKUVAUS EEMONTTI - REMONTISTA TOTEUTUSKUVAUS EEMONTTI - REMONTISTA Kohdekiinteistö 3: 2000-luvun omakotitalo Kiinteistön lähtötilanne ennen remonttia EEMontti kohdekiinteistö 3 on vuonna 2006 rakennettu kaksikerroksinen omakotitalokiinteistö,

Lisätiedot

Esimerkkejä energiatehokkaista korjausratkaisuista

Esimerkkejä energiatehokkaista korjausratkaisuista Esimerkkejä energiatehokkaista korjausratkaisuista DI Petri Pylsy, Suomen Kiinteistöliitto Tee parannus!-aluekiertue Turku 18.01.2010 Tarjolla tänään Energiatehokkaita korjausratkaisuja: Ilmanvaihdon parantaminen

Lisätiedot

PARGAS FJÄRRVÄRME AB - LÄMPÖTARIFFI 1.1.2014 PARAISTEN KAUKOLÄMPÖ OY Rantatie 28 21600 PARAINEN 1(5)

PARGAS FJÄRRVÄRME AB - LÄMPÖTARIFFI 1.1.2014 PARAISTEN KAUKOLÄMPÖ OY Rantatie 28 21600 PARAINEN 1(5) 21600 PARAINEN 1(5) YLEISTÄ Paraisten Kaukolämpö Oy:n hinnoittelu perustuu kolmeen tariffipohjaiseen maksuun: Liittymismaksu Perusmaksu Energiamaksu on kertaluonteinen maksu, jonka asiakas maksaa liittyessään

Lisätiedot

Parantaako lisälämmöneristäminen energiatehokkuutta korjausrakentamisessa?

Parantaako lisälämmöneristäminen energiatehokkuutta korjausrakentamisessa? Tutkimus: Ulkovaipan lämpötalouteen vaikuttavat korjaustoimenpiteet käytännössä Parantaako lisälämmöneristäminen energiatehokkuutta korjausrakentamisessa? Stina Linne Tekn. yo betoni visioi -seminaari

Lisätiedot

Energiatehokas korjausrakentaminen

Energiatehokas korjausrakentaminen Energiatehokas korjausrakentaminen Case poistoilmalämpöpumppu Teijo Aaltonen, Alfa Laval Nordic oy Energiatehokkuus mistä löytyy? Parantamalla kiinteistön rakenteita - lisäeristys, ikkunoiden uusinta =>

Lisätiedot

Parantaako lisälämmöneristäminen energiatehokkuutta korjausrakentamisessa?

Parantaako lisälämmöneristäminen energiatehokkuutta korjausrakentamisessa? Tutkimus: Ulkovaipan lämpötalouteen vaikuttavat korjaustoimenpiteet käytännössä Stina Linne Tekn. yo Parantaako lisälämmöneristäminen energiatehokkuutta korjausrakentamisessa? betoni visioi -seminaari

Lisätiedot

Rakennusten energiatehokkuus. Tulikivi Oyj 8.6.2011 Helsinki Mikko Saari VTT Expert Services Oy

Rakennusten energiatehokkuus. Tulikivi Oyj 8.6.2011 Helsinki Mikko Saari VTT Expert Services Oy Rakennusten energiatehokkuus Tulikivi Oyj 8.6.2011 Helsinki Mikko Saari VTT Expert Services Oy 6.6.2011 2 Mitä on rakennusten energiatehokkuus Mitä saadaan (= hyvä talo) Energiatehokkuus = ----------------------------------------------

Lisätiedot

Esimerkkejä energiatehokkaista korjausratkaisuista

Esimerkkejä energiatehokkaista korjausratkaisuista Esimerkkejä energiatehokkaista korjausratkaisuista DI Petri Pylsy, Suomen Kiinteistöliitto Tee parannus!-aluekiertue Järvenpää 24.11.2009 Tarjolla tänään Energiatehokkaita korjausratkaisuja: Ulkorakenteiden

Lisätiedot

Suomen Energiainsinöörit

Suomen Energiainsinöörit Suomen Energiainsinöörit Petri Koivula 8.4.2014 Petri.koivula@energiainsinoorit.fi Puh. +358 400 8388018 Suomen energiainsinöörit Oy Energiainsinöörit on vuonna 2012 perustettu yhtiö. Olemme laitetoimittajista

Lisätiedot

HYVÄ SUUNNITTELU PAREMPI LOPPUTULOS SUUNNITTELUN MERKITYS ENERGIAREMONTEISSA

HYVÄ SUUNNITTELU PAREMPI LOPPUTULOS SUUNNITTELUN MERKITYS ENERGIAREMONTEISSA HYVÄ SUUNNITTELU PAREMPI LOPPUTULOS SUUNNITTELUN MERKITYS ENERGIAREMONTEISSA AJOISSA LIIKKEELLE Selvitykset tarpeista ja vaihtoehdoista ajoissa ennen päätöksiä Ei kalliita kiirekorjauksia tai vahinkojen

Lisätiedot

Kirsi-Maaria Forssell, Motiva Oy

Kirsi-Maaria Forssell, Motiva Oy Kiinteistöjen energiatehokkuus ja hyvät sisäolosuhteet Ajankohtaista tietoa patteriverkoston perussäädöstä sekä ilmanvaihto- ja ilmastointijärjestelmien energiatehokkuudesta Kirsi-Maaria Forssell, Motiva

Lisätiedot

ENERGIATODISTUS. Mäkkylänpolku 4 02650, ESPOO. Uudisrakennusten määräystaso 2012. Rakennuksen laskennallinen kokonaisenergiankulutus (E-luku)

ENERGIATODISTUS. Mäkkylänpolku 4 02650, ESPOO. Uudisrakennusten määräystaso 2012. Rakennuksen laskennallinen kokonaisenergiankulutus (E-luku) ENERGIATODISTUS Rakennuksen nimi ja osoite: Asunto Oy Aurinkomäki Espoo_Luhtikerrostalo Mäkkylänpolku 4 0650, ESPOO Rakennustunnus: Rak _Luhtikerrostalo Rakennuksen valmistumisvuosi: 96 Rakennuksen käyttötarkoitusluokka:

Lisätiedot

Lämmitysjärjestelmät vanhassa rakennuksessa 1

Lämmitysjärjestelmät vanhassa rakennuksessa 1 Lämmitysjärjestelmät vanhassa rakennuksessa 1 Erilaiset lämmitysjärjestelmät pientaloille ja vastaaville: Puulämmitys- sovellus/puukeskuslämmitys takkasydän Savumax - Aurinkolämmitys - pellettilämmitys

Lisätiedot

Säästöäenergiankäyttöä tehostamalla. TimoKuusiola Ilmastotreffit 4.11.2014

Säästöäenergiankäyttöä tehostamalla. TimoKuusiola Ilmastotreffit 4.11.2014 Säästöäenergiankäyttöä tehostamalla TimoKuusiola Ilmastotreffit 4.11.2014 Sisällys Mihinenergiaajavettäkuluu Mihinkiinnittäähuomiotaasumisenarjessa Ilmanvaihtojärjestelmäntoiminta Lämmönjakojärjestelmäntoiminta

Lisätiedot

Mikä ihmeen E-luku? Energianeuvoja Heikki Rantula. ENEMMÄN ENERGIASTA I Kuluttajien energianeuvonta I eneuvonta.fi

Mikä ihmeen E-luku? Energianeuvoja Heikki Rantula. ENEMMÄN ENERGIASTA I Kuluttajien energianeuvonta I eneuvonta.fi Mikä ihmeen E-luku? Energianeuvoja Heikki Rantula ENEMMÄN ENERGIASTA I Kuluttajien energianeuvonta I eneuvonta.fi Kymenlaakson energianeuvonta 2012- Energianeuvoja Heikki Rantula 020 615 7449 heikki.rantula@kouvola.fi

Lisätiedot

Teknologiapolut 2050 - Rakennussektori. TkT Pekka Tuomaala 12.2.2008

Teknologiapolut 2050 - Rakennussektori. TkT Pekka Tuomaala 12.2.2008 Teknologiapolut 2050 - Rakennussektori TkT Pekka Tuomaala 12.2.2008 Kiinteistöjen ja rakennusten osuus Suomen energian loppukäytöstä on lähes 40 % 2 RAKENNUSTEN KÄYTTÄMÄN LÄMMITYSENERGIAN LÄHTEET [PJ/a]

Lisätiedot

Energiaekspertti. Tietoa taloyhtiön ja asukkaiden energiankäytöstä

Energiaekspertti. Tietoa taloyhtiön ja asukkaiden energiankäytöstä Energiaekspertti Tietoa taloyhtiön ja asukkaiden energiankäytöstä Sisällys Mihin energiaa ja vettä kuluu Mihin kiinnittää huomiota asumisen arjessa Mihin kiinnittää taloyhtiön toiminnassa Lämmitysjärjestelmä

Lisätiedot

Rakennusten kaukolämmitys, määräykset ja ohjeet, julkaisu K1/2013 keskeiset uudistukset (päivitetty 9.5.2014)

Rakennusten kaukolämmitys, määräykset ja ohjeet, julkaisu K1/2013 keskeiset uudistukset (päivitetty 9.5.2014) Rakennusten kaukolämmitys, määräykset ja ohjeet, julkaisu K1/2013 keskeiset uudistukset (päivitetty ) Julkaisu K1/2013 Rakennusten kaukolämmitys, määräykset ja ohjeet edellinen julkaisu vuodelta 2003 päivitetty

Lisätiedot

AURINKOLÄMMÖN LIIKETOIMINTAMAHDOLLISUUDET KAUKOLÄMMÖN YHTEYDESSÄ SUOMESSA

AURINKOLÄMMÖN LIIKETOIMINTAMAHDOLLISUUDET KAUKOLÄMMÖN YHTEYDESSÄ SUOMESSA AURINKOLÄMMÖN LIIKETOIMINTAMAHDOLLISUUDET KAUKOLÄMMÖN YHTEYDESSÄ SUOMESSA KAUKOLÄMPÖPÄIVÄT 28-29.8.2013 KUOPIO PERTTU LAHTINEN AURINKOLÄMMÖN LIIKETOIMINTAMAHDOLLISUUDET SUOMESSA SELVITYS (10/2012-05/2013)

Lisätiedot

http://www.motiva.fi/greenenergycases/fi

http://www.motiva.fi/greenenergycases/fi http://www.motiva.fi/greenenergycases/fi Green Energy Cases: Energiatehokkuusinvestoinnilla 10-15% tuotto ja kymmenien tuhansien eurojen säästö vuodessa Poistoilman lämmön talteenotolla Aamiaisinfotilaisuus

Lisätiedot

Kiinteistöjen lämmitystapamuutosselvitykset

Kiinteistöjen lämmitystapamuutosselvitykset Kiinteistöjen lämmitystapamuutosselvitykset -yhteenveto Etelä-Kymenlaakson Uusiutuvan energian kuntakatselmus - projekti 12/2014 Koonneet: Hannu Sarvelainen Erja Tuliniemi Johdanto Selvitystyöt lämmitystapamuutoksista

Lisätiedot

7.1 Vaihtoehtoja lämmityksen säätöön

7.1 Vaihtoehtoja lämmityksen säätöön 7 Lämmityksen automaatio Lämmitysjärjestelmien automatiikka on hyvin monipuolinen osa-alue, ja eri järjestelmien säätö-, ohjaus- sekä mittaustoiminnot poikkeavat joskus huomattavastikin toisistaan. Suurin

Lisätiedot

TUTKIMUS IKI-KIUKAAN ENERGIASÄÄSTÖISTÄ YHTEISKÄYTTÖSAUNOISSA

TUTKIMUS IKI-KIUKAAN ENERGIASÄÄSTÖISTÄ YHTEISKÄYTTÖSAUNOISSA TUTKIMUS IKI-KIUKAAN ENERGIASÄÄSTÖISTÄ YHTEISKÄYTTÖSAUNOISSA IKI-Kiuas Oy teetti tämän tutkimuksen saatuaan taloyhtiöiltä positiivista palautetta kiukaistaan. Asiakkaat havaitsivat sähkölaskujensa pienentyneen,

Lisätiedot

Julkisivun energiakorjaus. JSY Kevätkokous 8.5.2012 Stina Linne

Julkisivun energiakorjaus. JSY Kevätkokous 8.5.2012 Stina Linne Julkisivun energiakorjaus JSY Kevätkokous 8.5.2012 Stina Linne Esityksen sisältö Korjausrakentamisen osuus energiansäästötalkoissa Rakennusten lämpöenergian kulutus Julkisivun energiakorjaukset Korjausten

Lisätiedot

Esimerkkikuvia ja vinkkejä mittaukseen

Esimerkkikuvia ja vinkkejä mittaukseen Esimerkkikuvia ja vinkkejä mittaukseen Tässä on esitetty esimerkkinä paikkoja ja tapauksia, joissa lämpövuotoja voi esiintyä. Tietyissä tapauksissa on ihan luonnollista, että vuotoa esiintyy esim. ilmanvaihtoventtiilin

Lisätiedot

Hirsirakenteisten kesämökkien kuivanapitolämmitys

Hirsirakenteisten kesämökkien kuivanapitolämmitys 1 Hirsirakenteisten kesämökkien kuivanapitolämmitys Puupäivä 11.11.2010 Jarkko Piironen Tutkija, dipl.ins. Tampereen teknillinen yliopisto Rakennustekniikan laitos Esityksen sisältö 2 1. Taustaa ja EREL

Lisätiedot

ENERGIATEHOKAAN TALON LÄMMITYSRATKAISUT PEP Promotion of European Passive Houses Intelligent Energy Europe seminaari 23.11.

ENERGIATEHOKAAN TALON LÄMMITYSRATKAISUT PEP Promotion of European Passive Houses Intelligent Energy Europe seminaari 23.11. ENERGIATEHOKAAN TALON LÄMMITYSRATKAISUT PEP Promotion of European Passive Houses Intelligent Energy Europe seminaari 23.11.26 Espoo Mikko Saari, VTT 24.11.26 1 Energiatehokas kerrostalo kuluttaa 7 % vähemmän

Lisätiedot

Vuores Koukkujärvi Energiavaihtoehtojen tarkastelu. Jyri Nieminen Ismo Heimonen VTT

Vuores Koukkujärvi Energiavaihtoehtojen tarkastelu. Jyri Nieminen Ismo Heimonen VTT Vuores Koukkujärvi Energiavaihtoehtojen tarkastelu Jyri Nieminen Ismo Heimonen VTT Sisältö Tausta ja lähtötiedot Tavoiteltavat tasot; matalaenergiatalojen ja passiivitalojen määrittelyt Mahdolliset järjestelmävariaatiot

Lisätiedot

Energiaeksperttikoulutus 6.10.2015. Mistä tietoa saa? Energiatodistus, -selvitys,

Energiaeksperttikoulutus 6.10.2015. Mistä tietoa saa? Energiatodistus, -selvitys, Energiaeksperttikoulutus 6.10.2015 Mistä tietoa saa? Energiatodistus, -selvitys, Energialuokitus perustuu rakennuksen E-lukuun, joka koostuu rakennuksen laskennallisesta vuotuisesta energiankulutuksesta

Lisätiedot

Naavatar - järjestelmällä säästöjä kerrostalojen ja muiden kiinteistöjen lämmityskuluihin

Naavatar - järjestelmällä säästöjä kerrostalojen ja muiden kiinteistöjen lämmityskuluihin Naavatar - järjestelmällä säästöjä kerrostalojen ja muiden kiinteistöjen lämmityskuluihin Hydrocell Oy Energiansäästön, lämmönsiirron ja lämmöntalteenoton asiantuntija www.hydrocell.fi NAAVATAR järjestelmä

Lisätiedot

Maalämpö sopii asunto-osakeyhtiöihinkin

Maalämpö sopii asunto-osakeyhtiöihinkin Maalämpö sopii asunto-osakeyhtiöihinkin Maalämpöä on pidetty omakotitalojen lämmitystapana. Maailma kehittyy ja paineet sen pelastamiseksi myös. Jatkuva ilmastonmuutos sekä kestävä kehitys vaativat lämmittäjiä

Lisätiedot

Scanvarm SCS-sarjan lämpöpumppumallisto ratkaisu pieniin ja suuriin kiinteistöihin

Scanvarm SCS-sarjan lämpöpumppumallisto ratkaisu pieniin ja suuriin kiinteistöihin Scanvarm SCS-sarjan lämpöpumppumallisto ratkaisu pieniin ja suuriin kiinteistöihin 05/2013 SCS10-15 SCS21-31 SCS40-120 SCS10-31 Scanvarm SCS-mallisto on joustava ratkaisu erityyppisiin maaenergiajärjestelmiin.

Lisätiedot

Naavatar yhteistyössä

Naavatar yhteistyössä Naavatar yhteistyössä Tuotekehitys ja tutkimus Lämmönsiirtimet Talteenoton keruuyksiköt ja puhaltimet Lämpöpumput ja varaajat Kiertovesipumput Myynti, toteutus, automaatio ja käyttöpalvelut Schneider Electric

Lisätiedot

Tulevaisuuden kaukolämpöasuinalueen energiaratkaisut (TUKALEN) Loppuseminaari 16.10.2014

Tulevaisuuden kaukolämpöasuinalueen energiaratkaisut (TUKALEN) Loppuseminaari 16.10.2014 Tulevaisuuden kaukolämpöasuinalueen energiaratkaisut (TUKALEN) Loppuseminaari 16.10.2014 Kaukolämpökytkennät Jorma Heikkinen Sisältö Uusiutuvan energian kytkennät Tarkasteltu pientalon aurinkolämpökytkentä

Lisätiedot

MITEN KERROS- JA RIVITALOT PYSTYVÄT VASTAAMAAN KORJAUSRAKENTAMISEN MÄÄRÄYKSIIN? Kimmo Rautiainen, Pientaloteollisuus

MITEN KERROS- JA RIVITALOT PYSTYVÄT VASTAAMAAN KORJAUSRAKENTAMISEN MÄÄRÄYKSIIN? Kimmo Rautiainen, Pientaloteollisuus MITEN KERROS- JA RIVITALOT PYSTYVÄT VASTAAMAAN KORJAUSRAKENTAMISEN MÄÄRÄYKSIIN? Kimmo Rautiainen, Pientaloteollisuus 1 Tarjolla tänään Määräysten huomioon ottaminen korjaushankkeen eri vaiheissa Esimerkkirakennukset

Lisätiedot

Edullisin tie energiatehokkuuteen

Edullisin tie energiatehokkuuteen Edullisin tie energiatehokkuuteen Kiinteistöpalvelut Maalämpöjärjestelmät IVT Turku LTO-järjestelmät Kaukolämmönvaihtimet Säätölaitteet IVT Turku - maalämpö Älä polta rahaa Asunto Oy Inkoistenrinne Ostettavan

Lisätiedot

Energiatehokas koti - seminaari 25.3.2010

Energiatehokas koti - seminaari 25.3.2010 Energiatehokas koti - seminaari 25.3.2010 Kokemuksia ja kulutustietoja matalaenergia- ja passiivitaloista Pekka Haikonen 1 EU:n energiatehokkuusstrategia 2 Rakentamisen määräykset 3 4 Kokemuksia matalaenergiarakentamisesta

Lisätiedot

Yhteenveto kaukolämmön ja maalämmön lämmitysjärjestelmävertailusta ONE1 Oy 6.5.2015

Yhteenveto kaukolämmön ja maalämmön lämmitysjärjestelmävertailusta ONE1 Oy 6.5.2015 Yhteenveto kaukolämmön ja maalämmön lämmitysjärjestelmävertailusta ONE1 Oy 6.5.215 Sisällys 1. Johdanto... 1 2. Tyyppirakennukset... 1 3. Laskenta... 2 4.1 Uusi pientalo... 3 4.2 Vanha pientalo... 4 4.3

Lisätiedot

Tehokas lämmitys. TARMOn lämpöilta taloyhtiöille. Petri Jaarto. 30.9.2013 Jäävuorenhuippu Oy

Tehokas lämmitys. TARMOn lämpöilta taloyhtiöille. Petri Jaarto. 30.9.2013 Jäävuorenhuippu Oy Tehokas lämmitys TARMOn lämpöilta taloyhtiöille Petri Jaarto 30.9.2013 Jäävuorenhuippu Oy 1 Tekninen kunto Ohjaavana tekijänä tekninen käyttöikä KH 90 00403 Olosuhteilla ja kunnossapidolla suuri merkitys

Lisätiedot

ECO-järjestelmä: Ilmanvaihdon lämmöntalteenotto kerrostalossa ja saneerauskohteissa 1 2008-11-24

ECO-järjestelmä: Ilmanvaihdon lämmöntalteenotto kerrostalossa ja saneerauskohteissa 1 2008-11-24 ECO-järjestelmä: Ilmanvaihdon lämmöntalteenotto kerrostalossa ja saneerauskohteissa 1 2008-11-24 ECO-järjestelmän taustaa: ECO järjestelmää lähdettiin kehittämään 2004, tarkoituksena saada pelkällä poistojärjestelmällä

Lisätiedot

Ei hukata rahaa lämmittämällä harakoille

Ei hukata rahaa lämmittämällä harakoille Ei hukata rahaa lämmittämällä harakoille Tammelan korttelikehittämisen yleisötilaisuus 22.05.2013, Tammelakeskus DI Petri Pylsy Tarjolla tänään Mihin se energia ja eurot katoaa? Kuinka toimia suunnitelmallisesti?

Lisätiedot

Taloyhtiön energiatehokas ylläpito

Taloyhtiön energiatehokas ylläpito Taloyhtiön energiatehokas ylläpito Taloyhtiöiden energiailta 07.10.2015, Jyväskylän kaupunginkirjasto DI Petri Pylsy, Kiinteistöliitto Tarjolla tänään Lähtötilanteen haltuun otto Arkisia, mutta tärkeitä

Lisätiedot

Talotekniikan järjestelmiä. RAK-C3004 Rakentamisen tekniikat 08.10.2015 Jouko Pakanen

Talotekniikan järjestelmiä. RAK-C3004 Rakentamisen tekniikat 08.10.2015 Jouko Pakanen Talotekniikan järjestelmiä RAK-C3004 Rakentamisen tekniikat 0 Jouko Pakanen Pientalon energiajärjestelmiä Oilon Home http://oilon.com/media/taloanimaatio.html Sähköinen lattialämmitys (1) Suoraa sähköistä

Lisätiedot

Oulun kaupunki / Schneider Electric Buildings Finland Oy Energiatehokas kiinteistö. Pekka Karppanen

Oulun kaupunki / Schneider Electric Buildings Finland Oy Energiatehokas kiinteistö. Pekka Karppanen Oulun kaupunki / Schneider Electric Buildings Finland Oy Energiatehokas kiinteistö Pekka Karppanen Valaistus Valaisimien sammuttaminen Yleispätevä ohje valaisimien sammuttamisesta tiloissa on, että jos

Lisätiedot

60- ja 70-luvun kerrostalojen energiavirtoja

60- ja 70-luvun kerrostalojen energiavirtoja Energiakorjaukset: ega ojau taote talotekniikkaa 1950-luvun jälkeen uusiin lähiöihin rakennettu suuri kerrostalokanta Tyypillisiä korjauksia käytännössä putkiremontit ja julkisivuremontit varsinkin nykyiset

Lisätiedot

24.5.2012 Gasum Petri Nikkanen 1

24.5.2012 Gasum Petri Nikkanen 1 24.5.2012 Gasum Petri Nikkanen 1 UUSIA OHJEITA, OPPAITA JA STANDARDEJA KAASULÄMMITYS JA UUSIUTUVA ENERGIA JOKO KAASULÄMPÖPUMPPU TULEE? 24.5.2012 Gasum Petri Nikkanen 2 Ajankohtaista: Ympäristöministeriö:

Lisätiedot

5/13 Ympäristöministeriön asetus

5/13 Ympäristöministeriön asetus 5/13 Ympäristöministeriön asetus rakennusten energiatehokkuudesta annetun ympäristöministeriön asetuksen muuttamisesta Annettu Helsingissä 27 päivänä helmikuuta 2013 Ympäristöministeriön päätöksen mukaisesti

Lisätiedot

ENERGIATODISTUS. Pentintie 3 62200 Kauhava. 2312-123-12-123-T 1987 Kahden asunnon talot. Rakennuksen laskennallinen kokonaisenergiankulutus (E-luku)

ENERGIATODISTUS. Pentintie 3 62200 Kauhava. 2312-123-12-123-T 1987 Kahden asunnon talot. Rakennuksen laskennallinen kokonaisenergiankulutus (E-luku) ENERGIATODISTUS Rakennuksen nimi ja osoite: Pentintie 600 Kauhava Rakennustunnus: Valmistumisvuosi: Rakennuksen käyttötarkoitusluokka: Todistustunnus: T 987 Kahden asunnon talot Rakennuksen laskennallinen

Lisätiedot

ENERGIAMUODON VALINTA UUDIS- JA KORJAUSKOHTEISSA. Pentti Kuurola, LVI-insinööri

ENERGIAMUODON VALINTA UUDIS- JA KORJAUSKOHTEISSA. Pentti Kuurola, LVI-insinööri ENERGIAMUODON VALINTA UUDIS- JA KORJAUSKOHTEISSA Pentti Kuurola, LVI-insinööri Tavoitteet ja termejä Tavoite Ylläpitää rakennuksessa terveellinen ja viihtyisä sisäilmasto Lämmitysjärjestelmän mitoitetaan

Lisätiedot

Energiansäästö ja niihin liittyvät investoinnit taloyhtiöissä

Energiansäästö ja niihin liittyvät investoinnit taloyhtiöissä Energiansäästö ja niihin liittyvät investoinnit taloyhtiöissä Valkeakosken Kiinteistöpisteen taloyhtiöilta 29.05.2013 DI Petri Pylsy Tarjolla tänään Mihin se energia ja eurot katoaa? Kuinka toimia suunnitelmallisesti?

Lisätiedot

Pirkanmaalaisten pientalojen lämmitysenergian kulutus

Pirkanmaalaisten pientalojen lämmitysenergian kulutus Pirkanmaalaisten pientalojen lämmitysenergian kulutus Jari Lehtinen Lämpövinkki Oy 18.6.2012 Johdanto Kädessäsi on tiivistelmä Lämpövinkin tekemästä tutkimuksesta Pirkanmaalaisten pientalojen lämmitysenergian

Lisätiedot

ENERGIATODISTUS. Korkeakoulunkatu 10 33720, TAMPERE. Uudisrakennusten määräystaso 2012. Rakennuksen laskennallinen kokonaisenergiankulutus (E-luku)

ENERGIATODISTUS. Korkeakoulunkatu 10 33720, TAMPERE. Uudisrakennusten määräystaso 2012. Rakennuksen laskennallinen kokonaisenergiankulutus (E-luku) ENERGIATODISTUS Rakennuksen nimi ja osoite: Kampusareena, toimistorakennusosa Korkeakoulunkatu 0 70, TAMPERE Rakennustunnus: - Rakennuksen valmistumisvuosi: 05 Rakennuksen käyttötarkoitusluokka: Toimistorakennukset

Lisätiedot

ÖLJYSTÄ VAPAAKSI BIOENERGIA ÖLJYLÄMMITYKSEN VAIHTOEHTONA 14.4.2011 1

ÖLJYSTÄ VAPAAKSI BIOENERGIA ÖLJYLÄMMITYKSEN VAIHTOEHTONA 14.4.2011 1 ÖLJYSTÄ VAPAAKSI BIOENERGIA ÖLJYLÄMMITYKSEN VAIHTOEHTONA 14.4.2011 1 ENERGIAN KÄYTTÖ KESKI-SUOMESSA Tyypillisen asuinkiinteistön energiankäyttö 100 vrk ei tarvita lämmitystä lämpimän käyttöveden lisäksi

Lisätiedot

Mecoren casetapaukset: Päiväkoti Saana Vartiokylän yläaste. Kestävän korjausrakentamisen tutkimusseminaari 20.4.2012 Riikka Holopainen, VTT

Mecoren casetapaukset: Päiväkoti Saana Vartiokylän yläaste. Kestävän korjausrakentamisen tutkimusseminaari 20.4.2012 Riikka Holopainen, VTT Mecoren casetapaukset: Päiväkoti Saana Vartiokylän yläaste Kestävän korjausrakentamisen tutkimusseminaari 20.4.2012 Riikka Holopainen, VTT 2 Case-tapaus: Päiväkoti Saana Lpk Saana, rakennusvuosi 1963,

Lisätiedot

Kaukolämpöä kotiisi. Opas vanhan ja uuden pientalon liittämisestä kaukolämpöverkkoon

Kaukolämpöä kotiisi. Opas vanhan ja uuden pientalon liittämisestä kaukolämpöverkkoon Kaukolämpöä kotiisi Opas vanhan ja uuden pientalon liittämisestä kaukolämpöverkkoon Luotettava, helppo ja huoleton lämmitysmuoto Kaukolämpö on luotettava ja vaivaton tapa huolehtia kotisi lämmöstä ja

Lisätiedot

Näytesivut. 3.2 Toimisto- ja liiketilojen. Ilmastointijärjestelmät 57

Näytesivut. 3.2 Toimisto- ja liiketilojen. Ilmastointijärjestelmät 57 3.2 Toimisto- ja liiketilojen ilmastointijärjestelmät Toimisto- ja liiketilojen tärkeimpiä ilmastointijärjestelmiä ovat 30 yksivyöhykejärjestelmä (I) monivyöhykejärjestelmä (I) jälkilämmitysjärjestelmä

Lisätiedot

Aurinkolämpö Kerros- ja rivitaloihin 15.2.2012. Anssi Laine Tuotepäällikkö Riihimäen Metallikaluste Oy

Aurinkolämpö Kerros- ja rivitaloihin 15.2.2012. Anssi Laine Tuotepäällikkö Riihimäen Metallikaluste Oy Aurinkolämpö Kerros- ja rivitaloihin 15.2.2012 Anssi Laine Tuotepäällikkö Riihimäen Metallikaluste Oy Riihimäen Metallikaluste Oy Perustettu 1988 Suomalainen omistus 35 Henkilöä Liikevaihto 5,7M v.2011/10kk

Lisätiedot

Lämmityskustannukset kuriin viihtyvyydestä tinkimättä

Lämmityskustannukset kuriin viihtyvyydestä tinkimättä Lämmityskustannukset kuriin viihtyvyydestä tinkimättä Nykyaikainen kaukolämpö on maailman huipputasoa. Kaukolämpö on saanut kansainvälisesti mittavaa tunnustusta energiatehokkuutensa ansiosta. Kaukolämpöasiakkaalle

Lisätiedot

Uusiutuvan energian yhdistäminen kaasulämmitykseen

Uusiutuvan energian yhdistäminen kaasulämmitykseen Aurinko Maalämpö Kaasu Lämpöpumput Uusiutuvan energian yhdistäminen kaasulämmitykseen Kaasulämmityksessä voidaan hyödyntää uusiutuvaa energiaa käyttämällä biokaasua tai yhdistämällä lämmitysjärjestelmään

Lisätiedot

Rakennuskannan energiatehokkuuden kehittyminen

Rakennuskannan energiatehokkuuden kehittyminen ASIANTUNTIJASEMINAARI: ENERGIATEHOKKUUS JA ENERGIAN SÄÄSTÖ PITKÄN AIKAVÄLIN ILMASTO- JA ENERGIASTRATEGIAN POLITIIKKASKENAARIOSSA Rakennuskannan energiatehokkuuden kehittyminen 19.12.27 Juhani Heljo Tampereen

Lisätiedot

Maalämpöpumput suurissa kiinteistöissä mitoitus, soveltuvuus, toiminta Finlandia-talo 14.12.2011. Sami Seuna Motiva Oy

Maalämpöpumput suurissa kiinteistöissä mitoitus, soveltuvuus, toiminta Finlandia-talo 14.12.2011. Sami Seuna Motiva Oy Maalämpöpumput suurissa kiinteistöissä mitoitus, soveltuvuus, toiminta Finlandia-talo 14.12.2011 Sami Seuna Motiva Oy Lämpöpumpun toimintaperiaate Höyry puristetaan kompressorilla korkeampaan paineeseen

Lisätiedot

Miika Pitkälä PAINE-EROKOMPENSOINTIMENETELMÄN SOVELTUVUUS KIINTEISTÖIHIN

Miika Pitkälä PAINE-EROKOMPENSOINTIMENETELMÄN SOVELTUVUUS KIINTEISTÖIHIN Miika Pitkälä PAINE-EROKOMPENSOINTIMENETELMÄN SOVELTUVUUS KIINTEISTÖIHIN PAINE-EROKOMPENSOINTIMENETELMÄN SOVELTUVUUS KIINTEISTÖIHIN Miika Pitkälä Opinnäytetyö Kevät 2013 Talotekniikan koulutusohjelma Oulun

Lisätiedot

Maakylmä Technibel Konvektorit

Maakylmä Technibel Konvektorit Maakylmä Maakylmä on järkevä ja todella edullinen tapa hyödyntää kylmää kallion ja pintamaan ilmaisenergiaa. Omakotitaloa voidaan jäähdyttää joko maalämpöpumpun avulla porakaivosta tai hyödyntämällä maakeruuputkiston

Lisätiedot