Suurteholaskenta-algoritmien hyödyntämien suurten kohteiden tutkavasteen laskennassa

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Suurteholaskenta-algoritmien hyödyntämien suurten kohteiden tutkavasteen laskennassa"

Transkriptio

1 Suurteholaskenta-algoritmien hyödyntämien suurten kohteiden tutkavasteen laskennassa Pasi Ylä-Oijala, Pasi Koivumäki ja Seppo Järvenpää Radiotieteen ja -tekniikan laitos, Aalto-yliopisto MATINE Seminaari Myönnetty rahoitus euroa

2 Sisältö 1. Taustaa ja tavoitteet 2. Menetelmät ja haasteet 3. Tuloksia 4. Yhteenveto ja johtopäätökset 5. Jatkotutkimusaiheita

3 Taustaa ja tavoitteet Tutkapoikkiponta (tutkavaste) on keskeinen suure tutka- ja häivetekniikassa Kohteen tutkavasteen avulla voidaan esim. pyrkiä tunnistamaan kohde tai tekemään se mahdollisimman huonosti havaittavaksi Tutkimuksen tavoitteena oli kehittää tehokkaita laskenta-algoritmeja tutkapoikkinnan määrittämiseen sähköisesti suurille kohteille.25 σ (dbms) H plane. Frequency 5 GHz. MLFMA PO MLFMA PO MLFMA PO θ (x π)

4 Menetelmät ja haasteet Kokoaallon (full-wave) menetelmät: Esim. FDTD, FEM ja momenttimenetelmä (MoM) Perustuvat fysikaalisiin yhtälöihin ja ovat siten periaatteessa tarkkoja Vaadittava tietokonekapasiteetti kasvaa nopeasti kohteen koon tai taajuuden kasvaessa Tarkkoja mutta hitaita Asymptoottiset menetelmät: Esim. GTD ja fysikaalinen optiikka (PO) Approksimatiivisia menetelmiä joiden tarkkuutta voi olla vaikea arvioida ja parantaa Nopeita ja toimivat yleensä sitä paremmin mitä korkeampi taajuus Nopeita mutta epätarkkoja

5 Menetelmät Momenttimenetelmä: Pintavirta haetaan siten, että Maxwellin yhtälöt toteutuvat Mallintaa moninkertaiset heijastukset ja diffraktion Matriisiyhtälön ratkaiseminen Nopeutusmenetelmät (multilevel fast multipole algorithm, MLFMA) välttämättömiä Fysikaalinen optiikka: Pintavirta suoraan herättävästä kentästä Ei mallinna moninkertaisia heijastuksia eikä diffraktiota Ei matriisiyhtälöä

6 Hybridimenetelmä Tutkimusaiheita 1. Paikallistetaan PO menetelmän kriittiset kohdat 2. Toteutetaan yhdistetty MLFMA-PO menetelmä 3. Tutkitaan tarkkuutta erilaisilla PO ja MLFMA aluejaoilla 4. Yleistys pintaimpedanssiehdolle (ei-ideaalijohteet, pinnoitteet) Kuva: Punainen: MLFMA, Sininen: PO varjoalue, Vihreä: PO valaistu alue.

7 Tuloksia Ympyrä levy, d = 2 m, f = 1 GHz 25 E plane. Frequency 1 GHz σ (dbms) MLFMA PO MLFMA PO MLFMA PO θ (x π) Särmät aiheuttavat jonkin verran virhettä PO menetelmään

8 Tuloksia Levy ja kuutio, d = 2 m, f = 1 GHz 28 E plane. Frequency 1 GHz σ (dbms) MLFMA PO MLFMA PO MLFMA PO θ (x π) Lähekkäin olevat kohteet aiheuttavat virhettä PO menetelmään erityisesti varjoalueelle

9 Tuloksia Avoin laatikko, d =.2 m, f = 7.4 GHz 3 E plane. Frequency 7.4 GHz. 2 1 σ (dbms) MLFMA PO MLFMA PO MLFMA PO θ (x π) Resonoivat rakenteet näyttäisivät olevan erityisen suuri haaste PO menetelmälle

10 Tuloksia UAV f = 5 GHz 5 4 H plane. Frequency 5 GHz. MLFMA PO MLFMA PO MLFMA PO 2 3 σ (dbms) θ (x π) Mutkikkaampien kohteiden tapauksessa virhelähteiden arviointi on haastavampaa

11 Tuloksia Pintaimpedanssi, pallo r =.5m,.5GHz Z s = R s +ix s Virhetarkastelu pallolle pintaimpedanssin suhteen Sekä MoM:in että PO:n virhe kasvaa kun pintaimpedanssia kasvatetaan

12 Tuloksia Avoin laatikko, d =.2m, f = 3.46GHz, Z s =.1 +.1i real( JIBC MOM) real( JIBC PO) 3 x x y z x.1.5 y x.1.5 Resonoivat kohteet na ytta isiva t olevan PO:lle haaste myo s pintaimpedanssin tapauksessa 3 x 1 8 z z real( JIBC MOMPO) 3 x 1 8 y

13 Tuloksia UAV f = 1 GHz, Z S = i 35 3 E plane RCS, frequency 1 GHz MLFMA PO1 PO σ (dbms) θ (x π) PO ja MLFMA ratkaisujen vertailu impedanssireunaehdolle

14 Tuloksia Pintaimpedanssin vaikutus tutkapoikkipintaan 3 E plane RCS, frequency 7.4 GHz 25 E plane RCS, frequency 1 GHz σ (dbms) 1 2 σ (dbms) PEC i.5+.18i i 1+.18i θ (x π) 5 PEC i.5+.18i i 1+.18i θ (x π) Tutkapoikkipinta eri pintaimpedanssin arvoilla (MLFMA ratkaisu), vasemmalla avoin laatikko ja oikealla UAV

15 Yhteenveto tutkimuksesta Paikallistettiin PO menetelmät kriittiset kohdat Toteutettiin yhdistetty MLFMA-PO menetelmä ideaalijohteille Tutkittiin yhdistetyn menetelmän tarkkuutta erilaisilla PO ja MLFMA aluejaoilla PO, MLFMA ja yhdistetty MoM-PO yleistettiin pintaimpedanssiehdolle (ei-ideaalijohteet, pinnoitteet) Tutkittiin menetelmien tarkkuutta eri pintaimpedanssin arvoilla Tarkasteltiin pintaimpedanssin vaikutusta tutkapoikkipintaan

16 Yhteenveto tuloksista PO menetelmän tarkkuus ongelmallinen: varjoalueella ( korkeampi taajuus) terävissä särmissä ( sileät pinnat, korjaustermit) lähekkäin oleville rakenteille ( moninkertaiset heijastukset) resonoiville rakenteille korkealle pintaimpedanssille Yhdistetty MLFMA-PO parantaa merkittävästi PO ratkaisua mutta kasvattaa laskenta-aikaa ja muistin kulutusta Optimaalisen PO ja MLFMA aluejaon toteuttamien automaattisesti haastavaa Laskentaverkon muodostaminen muodostui pullonkaulaksi useissa realistisissa tilanteissa

17 Johtopäätökset MLFMA: PO: Terävät särmät, nurkat, lähekkäin olevat kohteet, resonoivat rakenteet, PO varjoalueen reuna, korkea pintaimpedanssi,... Pidetään riittävän pienenä jotta on ratkaistavissa yhdessä laskentanoodissa ilman hajautettua rinnakkaislaskentaa Suuret ja sileät pinnat (riittävän korkea taajuus) Tarkkuutta voidaan parantaa ottamalla huomioon useita peräkkäisiä heijastuksia ja käyttämällä korjaustermejä Hajautettu rinnakkaislaskenta suoraviivaista

18 Jatkotutkimusaiheita 1. Toteutus käyttäen hajautettua rinnakkaislaskentaa 2. CAD mallista aiheutuvien epäjatkuvien laskentaverkkojen käsittely MLFMA:ssa 3. Yleistys paikastariippuvalle ja/tai anisotrooppiselle ja/tai korkeamman asteen pintaimpedanssille 4. Laajentaminen yleisille materiaalirakenteille (dielektriset puoliläpäisevät pinnat)

TIIVISTELMÄRAPORTTI (SUMMARY REPORT) Suurteholaskenta-algoritmien hyödyntäminen suurten kohteiden tutkavasteen laskennassa

TIIVISTELMÄRAPORTTI (SUMMARY REPORT) Suurteholaskenta-algoritmien hyödyntäminen suurten kohteiden tutkavasteen laskennassa 2015/2500M-0025 ISSN 1797-3457 (verkkojulkaisu) ISBN 978-951-25-2747-2 (PDF) TIIVISTELMÄRAPORTTI (SUMMARY REPORT) Suurteholaskenta-algoritmien hyödyntäminen suurten kohteiden tutkavasteen laskennassa Pasi

Lisätiedot

AKUSTISIA SIMULAATIOITA PÄÄ- JA TORSOMALLILLA. Tomi Huttunen, Timo Avikainen, John Cozens. Kuava Oy Microkatu 1, 70210 Kuopio tomi.huttunen@uku.

AKUSTISIA SIMULAATIOITA PÄÄ- JA TORSOMALLILLA. Tomi Huttunen, Timo Avikainen, John Cozens. Kuava Oy Microkatu 1, 70210 Kuopio tomi.huttunen@uku. AKUSTISIA SIMULAATIOITA PÄÄ- JA TORSOMALLILLA Tomi Huttunen, Timo Avikainen, John Cozens Kuava Oy Microkatu 1, 70210 Kuopio tomi.huttunen@uku.fi Nokia Corporation Itämerenkatu 11-13, 00180 Helsinki timo.avikainen@nokia.com

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 21. marraskuuta 2016 Tasoaaltojen heijastus ja läpäisy (Ulaby 8.1 8.5) Kohtisuora heijastus ja läpäisy Tehon heijastus ja läpäisy Snellin laki

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén Luentoviikko 5 / versio 7. lokakuuta 2016 Luentoviikko 5 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy

Lisätiedot

Korkean resoluution ja suuren kuva-alueen SAR

Korkean resoluution ja suuren kuva-alueen SAR Korkean resoluution ja suuren kuva-alueen SAR Risto Vehmas, Juha Jylhä, Minna Väilä ja prof. Ari Visa Tampereen teknillinen yliopisto Signaalinkäsittelyn laitos Myönnetty rahoitus: 50 000 euroa Esityksen

Lisätiedot

Algoritmit 2. Luento 1 Ti Timo Männikkö

Algoritmit 2. Luento 1 Ti Timo Männikkö Algoritmit 2 Luento 1 Ti 14.3.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin valinta Algoritmin analysointi Algoritmin suoritusaika Peruskertaluokkia Kertaluokkamerkinnät Kertaluokkien ominaisuuksia

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 9 Tavoitteet Valon luonne ja eteneminen Dispersio Lähde: https: //www.flickr.com/photos/fastlizard4/5427856900/in/set-72157626537669172,

Lisätiedot

Spektri- ja signaalianalysaattorit

Spektri- ja signaalianalysaattorit Spektri- ja signaalianalysaattorit Pyyhkäisevät spektrianalysaattorit Suora pyyhkäisevä Superheterodyne Reaaliaika-analysaattorit Suora analoginen analysaattori FFT-spektrianalysaattori DFT FFT Analysaattoreiden

Lisätiedot

Kaksintaistelun approksimatiivinen mallintaminen (valmiin työn esittely)

Kaksintaistelun approksimatiivinen mallintaminen (valmiin työn esittely) Kaksintaistelun approksimatiivinen mallintaminen (valmiin työn esittely) Juho Roponen 10.06.2013 Ohjaaja: Esa Lappi Valvoja: Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.

Lisätiedot

ÄÄNEKKÄÄMMÄN KANTELEEN MALLINTAMINEN ELEMENTTIME- NETELMÄLLÄ

ÄÄNEKKÄÄMMÄN KANTELEEN MALLINTAMINEN ELEMENTTIME- NETELMÄLLÄ ÄÄNEKKÄÄMMÄN KANTELEEN MALLINTAMINEN ELEMENTTIME- NETELMÄLLÄ Henna Tahvanainen 1, Jyrki Pölkki 2, Henri Penttinen 1, Vesa Välimäki 1 1 Signaalinkäsittelyn ja akustiikan laitos Aalto-yliopiston sähkötekniikan

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 6 / versio 14. lokakuuta 2015 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset

Lisätiedot

Korkean resoluution ja suuren kuva-alueen SAR

Korkean resoluution ja suuren kuva-alueen SAR Korkean resoluution ja suuren kuva-alueen SAR MATINE tutkimusseminaari 17.11.2016 Risto Vehmas, Juha Jylhä, Minna Väilä, Ari Visa Tampereen teknillinen yliopisto Signaalinkäsittelyn laitos Hankkeelle myönnetty

Lisätiedot

Miehittämättömän lennokin ottamien ilmakuvien käyttö energiakäyttöön soveltuvien biomassojen määrän nopeassa arvioinnissa

Miehittämättömän lennokin ottamien ilmakuvien käyttö energiakäyttöön soveltuvien biomassojen määrän nopeassa arvioinnissa Miehittämättömän lennokin ottamien ilmakuvien käyttö energiakäyttöön soveltuvien biomassojen määrän nopeassa arvioinnissa Anna Lopatina, Itä-Suomen yliopisto, Metsätieteiden osasto, Anna.lopatina@uef.fi

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 8. marraskuuta 2016 Tasoaallot, osa 1 (Ulaby 7.1, 7.2, 7.4) Kenttäosoittimet Aikaharmoniset Maxwellin yhtälöt Tasoaaltoratkaisu Tasoaaltoyhtälöt

Lisätiedot

AV-muotojen migraatiotyöpaja - ääni. KDK-pitkäaikaissäilytys 2013 -seminaari 6.5.2013 / Juha Lehtonen

AV-muotojen migraatiotyöpaja - ääni. KDK-pitkäaikaissäilytys 2013 -seminaari 6.5.2013 / Juha Lehtonen AV-muotojen migraatiotyöpaja - ääni KDK-pitkäaikaissäilytys 2013 -seminaari 6.5.2013 / Juha Lehtonen Äänimuodot Ääneen vaikuttavia asioita Taajuudet Äänen voimakkuus Kanavien määrä Näytteistys Bittisyvyys

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 9 / versio 9. marraskuuta 2015 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori

Lisätiedot

kappaleiden ominaisuuksien ja suhteiden vertailuun Kognitiivinen taso: IR: Ominaisuuksien ja suhteiden vertailu Tavoiteltava toiminta:

kappaleiden ominaisuuksien ja suhteiden vertailuun Kognitiivinen taso: IR: Ominaisuuksien ja suhteiden vertailu Tavoiteltava toiminta: Harjoite 2: VERTAILUN PERUSTEET Tavoiteltava toiminta: Materiaalit: Kognitiivinen taso: IR: Ominaisuuksien ja suhteiden vertailu Toiminnallinen taso: Havainnointiin perustuva vertailu Opetuskortit (ks.

Lisätiedot

Aaltoputket. 11. helmikuuta 2008

Aaltoputket. 11. helmikuuta 2008 Aaltoputket TEM-aaltojen lisäk si aaltojoh d oissa v oi ed etä m y ös m u ita aaltom u otoja, tark em m in sanottu na TE- ja TM-aaltom u otoja. A ik aisem m in on tod ettu, että TEM-aalto etenee v ain

Lisätiedot

OPTIMAALINEN INVESTOINTIPÄÄTÖS

OPTIMAALINEN INVESTOINTIPÄÄTÖS OPTIMAALINEN INESTOINTIPÄÄTÖS Keskiarvoon palautuvalle prosessille ja Poissonin hyppyprosessille Optimointiopin seminaari - Syksy 000 / 1 I. KESKIAROON PALAUTUA PROSESSI Investoinnin kohde-etuuden arvo

Lisätiedot

INDUKTIIVISEN PÄÄTTELYN HARJOITUSPAKETTI TOISELLE LUOKALLE

INDUKTIIVISEN PÄÄTTELYN HARJOITUSPAKETTI TOISELLE LUOKALLE INDUKTIIVISEN PÄÄTTELYN HARJOITUSPAKETTI TOISELLE LUOKALLE Induktiivisen päättelyn tehtävät Tehtävät 1 5 Suhteet: Vastaavuus eli analogia Mikä kuvio sopii tyhjään ruutuun? 1. VASTAAVUUSTAULUKKO? 2. VASTAAVUUSTAULUKKO?

Lisätiedot

Sirontaluento 4. Keskiviikko , kello 10-12

Sirontaluento 4. Keskiviikko , kello 10-12 Sirontaluento 4 Keskiviikko 9.2.2011, kello 10-12 sisältöä aaltoyhtälö pintaintegraaliyhtälö tilavuusintegraaliyhtälö singulariteetti diskretointi iterointi tilavuuselementit vektoripalloharmoniset Fourier-sarja

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti

Lisätiedot

Aaltoputket ja mikroliuska rakenteet

Aaltoputket ja mikroliuska rakenteet Aaltoputket ja mikroliuska rakenteet Luku 3 Suorat aaltojohdot Aaltojohdot voidaan jakaa kahteen pääryhmääm, TEM ja TE/TM sen mukaan millaiset kentät niissä etenevät. TEM-aallot voivat edetä vain sellaisissa

Lisätiedot

Parempaa äänenvaimennusta simuloinnilla ja optimoinnilla

Parempaa äänenvaimennusta simuloinnilla ja optimoinnilla Parempaa äänenvaimennusta simuloinnilla ja optimoinnilla Erkki Heikkola Numerola Oy, Jyväskylä Laskennallisten tieteiden päivä 29.9.2010, Itä-Suomen yliopisto, Kuopio Putkistojen äänenvaimentimien suunnittelu

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt QR-hajotelma ja pienimmän neliösumman menetelmä Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto PNS-ongelma PNS-ongelma

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma

Lisätiedot

Ito-prosessit. Määritelmä Geometrinen Brownin liike Keskiarvoon palautuvat prosessit Iton lemma. S ysteemianalyysin. Laboratorio

Ito-prosessit. Määritelmä Geometrinen Brownin liike Keskiarvoon palautuvat prosessit Iton lemma. S ysteemianalyysin. Laboratorio Ito-prosessit Määritelmä Geometrinen Brownin liike Keskiarvoon palautuvat prosessit Iton lemma Optimointiopin seminaari - Syksy 2000 / 1 Ito-prosessit Brownin liikkeen yleistys (Ito prosessi) x(t) : dx

Lisätiedot

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos

Lisätiedot

Partikkelit pallon pinnalla

Partikkelit pallon pinnalla Simo K. Kivelä, 14.7.2004 Partikkelit pallon pinnalla Tehtävänä on sijoittaa annettu määrä keskenään identtisiä partikkeleita mahdollisimman tasaisesti pallon pinnalle ja piirtää kuvio syntyvästä partikkelikonfiguraatiosta.

Lisätiedot

INDUKTIIVISEN PÄÄTTELYN HARJOITUSPAKETTI ENSIMMÄISELLE LUOKALLE

INDUKTIIVISEN PÄÄTTELYN HARJOITUSPAKETTI ENSIMMÄISELLE LUOKALLE INDUKTIIVISEN PÄÄTTELYN HARJOITUSPAKETTI ENSIMMÄISELLE LUOKALLE Induktiivisen päättelyn opetuskuvakortit Tehtävät 1 ja 2 Ryhmän muodostaminen ja ryhmän laajentaminen 1. Jaa palikat kahteen ryhmään. Ryhmän

Lisätiedot

RADIOTIETOLIIKENNEKANAVAT

RADIOTIETOLIIKENNEKANAVAT 1 RADIOTIETOLIIKENNEKANAVAT Millaisia stokastisia ilmiöitä kanavassa tapahtuu? ONGELMAT: MONITIE-ETENEMINEN & KOHINA 2 Monitie-eteneminen aiheuttaa destruktiivista interferenssia eri reittejä edenneiden

Lisätiedot

THM-MALLIN NUMERIIKKA. Antti Niemistö, Janne Martikainen Numerola oy

THM-MALLIN NUMERIIKKA. Antti Niemistö, Janne Martikainen Numerola oy THM-MALLIN NUMERIIKKA Antti Niemistö, Janne Martikainen Numerola oy 1 THM-mallin Numerrin-toteutus pohjana Petri Jussilan väitöstyössä esitetty THM-malli 3D toteutus Numerrin4 mallinnusalustalle numeerisen

Lisätiedot

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 51384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 1. Tutkitaan mikroliuskajohtoa, jonka substraattina on kvartsi (ε r 3,8) ja jonka paksuus (h) on,15 mm. a) Mikä on liuskan leveyden w oltava, jotta ominaisimpedanssi

Lisätiedot

Siltaaminen: Piaget Matematiikka Inductive Reasoning OPS Liikennemerkit, Eläinten luokittelu

Siltaaminen: Piaget Matematiikka Inductive Reasoning OPS Liikennemerkit, Eläinten luokittelu Harjoite 2 Tavoiteltava toiminta: Materiaalit: Eteneminen: TUTUSTUTAAN OMINAISUUS- JA Toiminnan tavoite ja kuvaus: SUHDETEHTÄVIEN TUNNISTAMISEEN Kognitiivinen taso: IR: Toiminnallinen taso: Sosiaalinen

Lisätiedot

Toiminnallinen taso: Havainnointiin perustuva vertailu. Yhdessä

Toiminnallinen taso: Havainnointiin perustuva vertailu. Yhdessä Harjoite 3: TUTUSTUTAAN OMINAISUUS- JA SUHDETEHTÄVIIN Tavoiteltava toiminta: Materiaalit: Kognitiivinen taso: IR: Ominaisuudet ja suhteet, vertailu Opetuskortit, rakennuspalikat ja käsikirja Toiminnallinen

Lisätiedot

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n))

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n)) Määritelmä: on O(g(n)), jos on olemassa vakioarvot n 0 > 0 ja c > 0 siten, että c g(n) kun n > n 0 O eli iso-o tai ordo ilmaisee asymptoottisen ylärajan resurssivaatimusten kasvun suuruusluokalle Samankaltaisia

Lisätiedot

Ryhmäteoreettinen näkökulma Rubikin kuutioon Harjoitus 6, ratkaisuehdotus (5 sivua)

Ryhmäteoreettinen näkökulma Rubikin kuutioon Harjoitus 6, ratkaisuehdotus (5 sivua) Ryhmäteoreettinen näkökulma Rubikin kuutioon Harjoitus 6, ratkaisuehdotus (5 sivua) 10.12.2012 Tehtävä 1. Osoita, että tuloryhmän R np R sp indeksi Rubikin paikkaryhmässä R p on täsmälleen kaksi. (Tarkkaan

Lisätiedot

PILVILASKENTA AKUSTISESSA MALLINNUKSESSA 1 JOHDANTO. Tomi Huttunen 1), Antti Vanne 1), Timo Avikainen 2), Leo Kärkkäinen 2)

PILVILASKENTA AKUSTISESSA MALLINNUKSESSA 1 JOHDANTO. Tomi Huttunen 1), Antti Vanne 1), Timo Avikainen 2), Leo Kärkkäinen 2) Tomi Huttunen ), Antti Vanne ), Timo Avikainen ), Leo Kärkkäinen ) ) Kuava Oy PL 88, 7 Kuopio tomi.huttunen@kuava.fi ) Nokia Oy Itämerenkatu - 8 Helsinki JOHDANTO Pilvilaskennalla (Cloud computing) tarkoitetaan

Lisätiedot

Monitavoitteiseen optimointiin soveltuvan evoluutioalgoritmin tarkastelu

Monitavoitteiseen optimointiin soveltuvan evoluutioalgoritmin tarkastelu Monitavoitteiseen optimointiin soveltuvan evoluutioalgoritmin tarkastelu (Valmiin työn esittely) 11.4.2011 Ohjaaja: Ville Mattila Valvoja: Raimo Hämäläinen Työn tavoite Tutkia evoluutioalgoritmia (Lee

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016) Tavoitteet (teoria): Ymmärtää kausivaihtelun käsite ja sen yhteys otoshetkiin. Oppia käsittelemään periodogrammia.. Tavoitteet (R): Periodogrammin,

Lisätiedot

Perusteet 6, lisää pintamallinnusta

Perusteet 6, lisää pintamallinnusta Perusteet 6, lisää pintamallinnusta Tuula Höök Tampereen teknillinen yliopisto Hae piirustus fin_basic_6_2.pdf. Käytä piirustukseen merkittyjä mittoja ja mallinna kappale pinta ja tilavuusmallinnustyökaluja

Lisätiedot

Parametrin estimointi ja bootstrap-otanta

Parametrin estimointi ja bootstrap-otanta Parametrin estimointi ja bootstrap-otanta Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Parametrin estimointi ja bootstrap-otanta 1/27 Kevät 2003 Käytännön asioista

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 28.1.2009 T-106.1208 Ohjelmoinnin perusteet Y 28.1.2009 1 / 28 Esimerkki: murtoluvun sieventäminen Kirjoitetaan ohjelma, joka sieventää käyttäjän antaman murtoluvun.

Lisätiedot

Hämeenlinnan kaupunki Asiakastyytyväisyys 2013 Ikäihmisten palvelut kotihoidon palvelut

Hämeenlinnan kaupunki Asiakastyytyväisyys 2013 Ikäihmisten palvelut kotihoidon palvelut Hämeenlinnan kaupunki Asiakastyytyväisyys 2013 Ikäihmisten palvelut kotihoidon palvelut 4.2.2014 Mikko Kesä Minna Joutsen Ari Kurlin 1. Yleistä tutkimuksesta 2. Tutkimuksen keskeisiä tuloksia 3. Vastaajien

Lisätiedot

RAKENTAMISEN TEKNIIKAT AKUSTIIKKA AKUSTIIKKA

RAKENTAMISEN TEKNIIKAT AKUSTIIKKA AKUSTIIKKA RAKENTAMISEN TEKNIIKAT ÄÄNEN ETENEMINEN ULKONA Pistelähde vaimenee vapaassa ympäristössä käänteisen neliölain mukaan eli 6 db etäisyyden kaksinkertaistuessa Viivalähde (liikennemelu) puolestaan 3 db Ääniaallot

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu Antti Rasilan luentomonisteeseen

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Sähkömagneettiset aallot Aikaharmoniset kentät

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi

Lisätiedot

POSITIIVISEN LINSSIN POLTTOVÄLI

POSITIIVISEN LINSSIN POLTTOVÄLI S-108110 OPTIIKKA 1/6 POSITIIVISEN LINSSIN POLTTOVÄLI Laboratoriotyö S-108110 OPTIIKKA /6 SISÄLLYSLUETTELO 1 Poitiivien linin polttoväli 3 11 Teoria 3 1 Mittauken uoritu 5 LIITE 1 6 Mittaupöytäkirja 6

Lisätiedot

Trimmitysongelman LP-relaksaation ratkaiseminen sarakkeita generoivalla algoritmilla ja brute-force-menetelmällä

Trimmitysongelman LP-relaksaation ratkaiseminen sarakkeita generoivalla algoritmilla ja brute-force-menetelmällä Trimmitysongelman LP-relaksaation ratkaiseminen sarakkeita generoivalla algoritmilla ja brute-force-menetelmällä Vesa Husgafvel 19.11.2012 Ohjaaja: DI Mirko Ruokokoski Valvoja: Prof. Harri Ehtamo Työn

Lisätiedot

Tilayhtälötekniikasta

Tilayhtälötekniikasta Tilayhtälötekniikasta Tilayhtälöesityksessä it ä useamman kertaluvun differentiaaliyhtälö esitetään ensimmäisen kertaluvun differentiaaliyhtälöryhmänä. Jokainen ensimmäisen kertaluvun differentiaaliyhtälö

Lisätiedot

Numeerinen integrointi

Numeerinen integrointi Numeerinen integrointi Analyyttisesti derivointi triviaalia, integrointi vaikeaa. Numeerisesti laskettaessa tilanne on päinvastainen. Integrointi on yhteenlaskua, joka on tasoittava operaatio: lähtötietojen

Lisätiedot

Tietokoneet täh++eteessä

Tietokoneet täh++eteessä Tietokoneet täh++eteessä Peter Johansson Fysiikan laitos, Helsingin yliopisto PC- käy:äjät ry kevätkokous 2014 Helsinki 23.3.2014 1. Miksi +etokoneita tarvitaan täh++eteessä ja mikä on niiden rooli modernissa

Lisätiedot

521365S Tietoliikenteen simuloinnit ja työkalut HFSS MARKO SONKKI 10.5.2006. Sisältö:

521365S Tietoliikenteen simuloinnit ja työkalut HFSS MARKO SONKKI 10.5.2006. Sisältö: 521365S Tietoliikenteen simuloinnit ja työkalut HFSS MARKO SONKKI 10.5.2006 10.5.2006 1 Sisältö: 1. Johdanto 2. Mihin HFSS:ää käytetään 3. Yleisimmät HFSS sovelluskohteet 4. Ratkaistu data ja sen soveltaminen

Lisätiedot

Aaltoputket ja resonanssikaviteetit

Aaltoputket ja resonanssikaviteetit Luku 13 Aaltoputket ja resonanssikaviteetit Kerrataan ensin ajasta riippuvan sähkömagneettisen kentän käyttäytyminen ideaalijohteessa ja sen pinnalla. Äärettömän hyvän johteen sisällä ei ole sähkökenttää,

Lisätiedot

MIKROAALTOUUNI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Tuomas Karri i78953 Jussi Luopajärvi i80712 Juhani Tammi o83312

MIKROAALTOUUNI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Tuomas Karri i78953 Jussi Luopajärvi i80712 Juhani Tammi o83312 VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Tuomas Karri i78953 Jussi Luopajärvi i80712 Juhani Tammi o83312 SATE.2010 Dynaaminen kenttäteoria MIKROAALTOUUNI Sivumäärä: 12 Jätetty tarkastettavaksi:

Lisätiedot

Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä Olkoot γ : [a, b] R m paloittain C 1 -polku välin [a, b] jaon

Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä Olkoot γ : [a, b] R m paloittain C 1 -polku välin [a, b] jaon Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä 4.1.3. Olkoot : [a, b] R m paloittain C 1 -polku välin [a, b] jaon P = {a = t 1 < < t k = b} ja joukko D R m sellainen, että ([a, b])

Lisätiedot

= = = 1 3.

= = = 1 3. 9. 10. 2008!"$#&%(')'*,#.-/* P1. lkuperäisen punaisen kuution pinta koostuu kuudesta 3 3-neliöstä, joten sen ala on 6 3 2 = 54. Koska 3 3 =, kuutio jakautuu leikatessa yksikkökuutioksi, joiden kokonaispinta-ala

Lisätiedot

Jakopinnat ja liikkuvan keernan pinnat 1, keerna jakopinnan tasalla

Jakopinnat ja liikkuvan keernan pinnat 1, keerna jakopinnan tasalla Jakopinnat ja liikkuvan keernan pinnat 1, keerna jakopinnan tasalla Tuula Höök, Tampereen teknillinen yliopisto Teoriatausta Muotin perusrakenne Ruisku tai painevalukappaleen rakenteen perusasiat: päästö,

Lisätiedot

KOLMIULOTTEISEN TILAN AKUSTIIKAN MALLINTAMINEN KAKSIULOTTEISIA AALTOJOHTOVERKKOJA KÄYTTÄEN

KOLMIULOTTEISEN TILAN AKUSTIIKAN MALLINTAMINEN KAKSIULOTTEISIA AALTOJOHTOVERKKOJA KÄYTTÄEN KOLMIULOTTEISEN TILAN AKUSTIIKAN MALLINTAMINEN KAKSIULOTTEISIA AALTOJOHTOVERKKOJA KÄYTTÄEN Antti Kelloniemi 1, Vesa Välimäki 2 1 Tietoliikenneohjelmistojen ja multimedian laboratorio, PL 5, 15 TKK, antti.kelloniemi@tkk.fi

Lisätiedot

Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6

Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6 Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto.

Lisätiedot

Lisäksi seuraavat kaavat ovat kommutaattoreita käsiteltäessä hyödyllisiä:

Lisäksi seuraavat kaavat ovat kommutaattoreita käsiteltäessä hyödyllisiä: 6 Kommutaattorit Ryhmässä kahden alkion kommutaattori on kolmas alkio, joka mittaa alkuperäisten alkioiden vaihdannaisuutta. Jos alkiot kommutoivat keskenään, niiden kommutaattori on neutraalialkio. Kommutaattorit

Lisätiedot

x n e x dx = n( e x ) nx n 1 ( e x ) = x n e x + ni n 1 x 4 e x dx = x 4 e x +4( x 3 e x +3( x 2 e x +2( xe x e x ))) = e x

x n e x dx = n( e x ) nx n 1 ( e x ) = x n e x + ni n 1 x 4 e x dx = x 4 e x +4( x 3 e x +3( x 2 e x +2( xe x e x ))) = e x Osittaisintegrointia käyttäen osoita integraalille I n x n e x dx oikeaksi reduktiokaava I n x n e x + ni n ja laske sen avulla mitä on I 4 kun x. x n e x dx n( e x ) nx n ( e x ) x n e x + ni n x 4 e

Lisätiedot

Valon sironta - ilmiöt ja mallinnus. Jouni Mäkitalo Fysiikan seminaari 2014

Valon sironta - ilmiöt ja mallinnus. Jouni Mäkitalo Fysiikan seminaari 2014 Valon sironta - ilmiöt ja mallinnus Jouni Mäkitalo Fysiikan seminaari 2014 Sisältö Johdanto Sironnan sähkömagneettinen mallinnus Analyyttinen sirontateoria Sironta ei-pallomaisista hiukkasista Johdanto

Lisätiedot

Harjoitus 1. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa [a), b)] ja laske c) kohdan tehtävä.

Harjoitus 1. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa [a), b)] ja laske c) kohdan tehtävä. Kotitehtävät palautetaan viimeistään keskiviikkona 2.3. ennen luentojen alkua eli klo 14:00 mennessä puiseen kyyhkyslakkaan, jonka numero on 9. Arvostellut kotitehtäväpaperit palautetaan laskutuvassa.

Lisätiedot

1. a) Laske lukujen 1, 1 ja keskiarvo. arvo. b) Laske lausekkeen. c) Laske integraalin ( x xdx ) arvo. MATEMATIIKAN MALLIKOE PITKÄ OPPIMÄÄRÄ

1. a) Laske lukujen 1, 1 ja keskiarvo. arvo. b) Laske lausekkeen. c) Laske integraalin ( x xdx ) arvo. MATEMATIIKAN MALLIKOE PITKÄ OPPIMÄÄRÄ 1 YLIOPPILASTUTKINTO- LAUTAKUNTA 13..015 MATEMATIIKAN MALLIKOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän

Lisätiedot

Paavo Kyyrönen & Janne Raassina

Paavo Kyyrönen & Janne Raassina Paavo Kyyrönen & Janne Raassina 1. Johdanto 2. Historia 3. David Deutsch 4. Kvanttilaskenta ja superpositio 5. Ongelmat 6. Tutkimus 7. Esimerkkejä käyttökohteista 8. Mistä näitä saa? 9. Potentiaali 10.

Lisätiedot

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x Seuraavaksi tarkastellaan C 1 -sileiden pintojen eräitä ominaisuuksia. Lemma 2.7.1. Olkoon S R m sellainen C 1 -sileä pinta, että S on C 1 -funktion F : R m R eräs tasa-arvojoukko. Tällöin S on avaruuden

Lisätiedot

Investointimahdollisuudet ja investointien ajoittaminen

Investointimahdollisuudet ja investointien ajoittaminen Investointimahdollisuudet ja investointien ajoittaminen Optimaalisen investointistrategian ominaispiirteitä eli parametrien vaikutus ratkaisuun Optimointiopin seminaari - Syksy 000 / Optimointiopin seminaari

Lisätiedot

KULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta

Lisätiedot

Maximum likelihood-estimointi Alkeet

Maximum likelihood-estimointi Alkeet Maximum likelihood-estimointi Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Maximum likelihood-estimointi p.1/20 Maximum Likelihood-estimointi satunnaismuuttujan X

Lisätiedot

peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko.

peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko. Esimerkki 4.3.9. a) Piste on nollajoukko. Suoran rajoitetut osajoukot ovat avaruuden R m, m 2, nollajoukkoja. Samoin suorakaiteiden reunat koostuvat suoran kompakteista osajoukoista. b) Joukko = Q m [0,

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 27.1.2010 T-106.1208 Ohjelmoinnin perusteet Y 27.1.2010 1 / 37 If-käsky toistokäskyn sisällä def main(): HELLERAJA = 25.0 print "Anna lampotiloja, lopeta -300:lla."

Lisätiedot

Perusteet 6, lisää pintamallinnusta

Perusteet 6, lisää pintamallinnusta Perusteet 6, lisää pintamallinnusta Juho Taipale, Tuula Höök Tampereen teknillinen yliopisto Ota piirustus fin_basic_6_3.pdf. Käytä piirustuksessa annettuja mittoja ja mallinna kappale pääasiassa pintamallinnustyökaluin.

Lisätiedot

Pieni silmukka-antenni duaalisuus. Ratkaistaan pienen silmukka-antennin kentät v ielä käy ttämällä d uaalisuud en periaatetta.

Pieni silmukka-antenni duaalisuus. Ratkaistaan pienen silmukka-antennin kentät v ielä käy ttämällä d uaalisuud en periaatetta. Pieni silmukka-antenni duaalisuus Ratkaistaan pienen silmukka-antennin kentät v ielä käy ttämällä d uaalisuud en periaatetta. S amalla saamme my ö s silmukan läh ikentät. Käy tämme h y v äksi sitä, että

Lisätiedot

Joku Muu. Vielä Yksi

Joku Muu. Vielä Yksi Työ N.M Työn nimi Anni Järvenpää Joku Muu Kolmas Jäbä Vielä Yksi 30. joulukuuta 2015 Tiivistelmä Tyrkkää tänne tiivis tiivistelmä tuloksista. L A TEXsaattaa tuntua aluksi hankalalta. Valmiin pohjan käyttäminen

Lisätiedot

Scanned by CamScanner

Scanned by CamScanner Scanned by CamScanner ELEC-C414 Kenttäteoria ESIMERKKIRATKAISUT 2. välikoe: 13.12.216 4. (a) Ominaisimpedanssi (merkitään Z ) on siirtojohdon ominaisuus. Se on siis eri asia kuin tasoaaltojen yhteydessä

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 15. syyskuuta 2016 Johdanto (Ulaby 1.2 1.3) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Vektorit ja koordinaatistot

Lisätiedot

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen) Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,

Lisätiedot

THE audio feature: MFCC. Mel Frequency Cepstral Coefficients

THE audio feature: MFCC. Mel Frequency Cepstral Coefficients THE audio feature: MFCC Mel Frequency Cepstral Coefficients Ihmiskuulo MFCC- kertoimien tarkoituksena on mallintaa ihmiskorvan toimintaa yleisellä tasolla. Näin on todettu myös tapahtuvan, sillä MFCC:t

Lisätiedot

MAGNEETTITEKNOLOGIAKESKUS. Ajan myötä tapahtuvat häviöt sintratuissa NdFeB magneeteissa

MAGNEETTITEKNOLOGIAKESKUS. Ajan myötä tapahtuvat häviöt sintratuissa NdFeB magneeteissa Ajan myötä tapahtuvat häviöt sintratuissa NdFeB magneeteissa Minna Haavisto 19.1.21 Losses [%] MAGNEETTITEKNOLOGIAKESKUS Ensimmäinen julkaisu Temperature Stability and Flux Losses Over Time in Sintered

Lisätiedot

Differentiaaliyhtälöryhmä

Differentiaaliyhtälöryhmä Differentiaaliyhtälöryhmä Ensimmäisen kertaluvun differentiaaliyhtälöryhmä vaikkapa korkeamman kertaluvun yhtälöä vastaava normaaliryhmä voidaan ratkaista numeerisesti täsmälleen samanlaisilla kaavoilla

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 11. Kirsi Valjus. Jyväskylän yliopisto. Luento 11 () Numeeriset menetelmät / 37

Numeeriset menetelmät TIEA381. Luento 11. Kirsi Valjus. Jyväskylän yliopisto. Luento 11 () Numeeriset menetelmät / 37 Numeeriset menetelmät TIEA381 Luento 11 Kirsi Valjus Jyväskylän yliopisto Luento 11 () Numeeriset menetelmät 24.4.2013 1 / 37 Luennon 11 sisältö Numeerisesta integroinnista ja derivoinnista Adaptiiviset

Lisätiedot

Johdannaisanalyysi. Contingent Claims Analysis Juha Leino S ysteemianalyysin. Laboratorio

Johdannaisanalyysi. Contingent Claims Analysis Juha Leino S ysteemianalyysin. Laboratorio Johdannaisanalyysi Contingent Claims Analysis Juha Leino 11.10.2000 Optimointiopin seminaari - Syksy 2000 / 1 Oletukset Yritys tuottaa tuotetta, jonka hinta on x x noudattaa geometrista Brownin liikettä

Lisätiedot

1. Piirrä kompleksitasoon seuraavat matemaattiset objektit/alueet.

1. Piirrä kompleksitasoon seuraavat matemaattiset objektit/alueet. BM0A5700 - Integraalimuunnokset Harjoitus 1 1. Piirrä kompleksitasoon seuraavat matemaattiset objektit/alueet. a Piste z 1 i. Ympyrä z 1 i. Avoin kiekko z 1 i

Lisätiedot

ELEKTRONISET TOIMINNOT

ELEKTRONISET TOIMINNOT LUENTO 2 ALUKSI OLI... EHKÄ MIELENKIINTOISIN SUUNNITTELIJAN TEHTÄVÄ ON TOTEUTTAA LAITE (JA EHKÄ MENETELMÄKIN) JONKIN ONGELMAN RATKAISEMISEEN PUHTAALTA PÖYDÄLTÄ EI (AINAKAAN SAMALLA PERIAATTEELLA) VALMIITA

Lisätiedot

XFYS4336 Havaitseva tähtitiede II

XFYS4336 Havaitseva tähtitiede II XFYS4336 Havaitseva tähtitiede II Silja Pohjolainen Kaj Wiik Tuorlan observatorio Kevät 2014 Osa kuvista on lainattu kirjasta Wilson, Rohlfs, Hüttemeister: Tools of Radio astronomy XFYS4336 Havaitseva

Lisätiedot

TIIVISTELMÄRAPORTTI (SUMMARY REPORT)

TIIVISTELMÄRAPORTTI (SUMMARY REPORT) 2012/MAT814 ISSN 1797-3457 (vekkojulkaisu) ISBN (PDF) 978-951-25-2408-2 TIIVISTELMÄRAPORTTI (SUMMARY REPORT) Vaiheistettu heijastipita valemaalia Joha Ste, Päivi Koivisto, Ato Hujae, Tommi Dufva, VTT,

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 1 / versio 8. syyskuuta 2015 Johdanto (ti) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Aallot ja osoittimet

Lisätiedot

MATERIAALI. Leveys (W)

MATERIAALI. Leveys (W) Johdinsiteet RFID-sirulla T50RFID - ow Frequency (F) ja High Frequency (HF) Johdinsiteet RFID-sirulla tarjoavat innovatiivisen ratkaisun mm. tuotteiden, työkalujen, mittalaitteiden ja varastojen turvalliseen

Lisätiedot

S-114.2720 Havaitseminen ja toiminta

S-114.2720 Havaitseminen ja toiminta S-114.2720 Havaitseminen ja toiminta Heikki Hyyti 60451P Harjoitustyö 2 visuaalinen prosessointi Treismanin FIT Kuva 1. Kuvassa on Treismanin kokeen ensimmäinen osio, jossa piti etsiä vihreätä T kirjainta.

Lisätiedot

SIGNAALITEORIAN KERTAUSTA 1

SIGNAALITEORIAN KERTAUSTA 1 SIGNAALITEORIAN KERTAUSTA 1 1 (26) Fourier-muunnos ja jatkuva spektri Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka esittäminen graafisesti edellyttää 3D-kuvaajan piirtämisen. Yleensä

Lisätiedot

x = ( θ θ ia y = ( ) x.

x = ( θ θ ia y = ( ) x. Aalto-yliopiston Perustieteiden korkeakoulu Matematiikan systeemianalyysin laitos Mat-2429 Systeemien Identifiointi 5 harjoituksen ratkaisut Esitetään ensin systeemi tilayhtälömuodossa Tiloiksi valitaan

Lisätiedot

Flash AD-muunnin. Ominaisuudet. +nopea -> voidaan käyttää korkeataajuuksisen signaalin muuntamiseen (GHz) +yksinkertainen

Flash AD-muunnin. Ominaisuudet. +nopea -> voidaan käyttää korkeataajuuksisen signaalin muuntamiseen (GHz) +yksinkertainen Flash AD-muunnin Koostuu vastusverkosta ja komparaattoreista. Komparaattorit vertailevat vastuksien jännitteitä referenssiin. Tilanteesta riippuen kompraattori antaa ykkösen tai nollan ja näistä kootaan

Lisätiedot

Miten tunnistetaan maisemallisesti herkät talousmetsäalueet?

Miten tunnistetaan maisemallisesti herkät talousmetsäalueet? Miten tunnistetaan maisemallisesti herkät talousmetsäalueet? Metsämaiseman herkkyysluokitus Kainuun ja Kuusamon vaaramaan alueella Ron Store ja Eeva Karjalainen Metsäntutkimuslaitos Maisema, virkistyskäyttö

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 12 1 Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan

Lisätiedot

VIITOT S SA KÄYTETTÄ VAT TUTKAHEIJASTIMET

VIITOT S SA KÄYTETTÄ VAT TUTKAHEIJASTIMET Merenkulkulaitoksen sisäisiä julkaisuja 8/2004 VIITOT S SA KÄYTETTÄ VAT TUTKAHEIJASTIMET Tutkavasteiden laskenta ja analysointi Helsinki 2004 ISSN 1456-9442 Julkaisija KUVAILU LEHTI Julkaisun päivämäärä

Lisätiedot