kaikki ratkaisut. cos 2 x yleinen ratkaisu.

Koko: px
Aloita esitys sivulta:

Download "kaikki ratkaisut. cos 2 x yleinen ratkaisu."

Transkriptio

1 Harjoitukset Jatkuu Määrää differentiaaliyhtälön y = 1 cos 2 x kaikki ratkaisut. 2. Olkoot D = {(x, y) R 2 y > 0} ja f : D R, f(x, y) = y. Osoita, että jokaiselle (x 0, y 0 ) D alkuarvotehtävällä y = f(x, y), y(x 0 ) = y 0, on yksi ja vain yksi ratkaisu y : R R. 3. Olkoon f : R 2 R, f(x, y) = y. Osoita, että jokaiselle x 0 R alkuarvotehtävällä y = f(x, y), y(x 0 ) = 0, on ainakin kolme eri ratkaisua ratkaisua y : R R. 4. Määrää jokaiselle (x 0, y 0 ) R 2 alkuarvotehtävän y = y 2, y(x 0 ) = y 0, maksimaalinen ratkaisu. 5. Määrää yhtälön y = 1 + y2 yleinen ratkaisu. 1 + x2 6. Määrää alkuarvotehtävän y = 1 y2 1 x 2, y(x 0) = y 0, ratkaisu, kun x 0 < 1 ja y 0 < Olkoon h: R R jatkuvasti derivoituva funktio. Oletetaan, että h:lla on nollakohdat y 1 < y 2. Osoita, että jos y : R on alkuarvotehtävän y = h(y), y(0) = y 0, ratkaisu ja y 1 < y 0 < y 2, niin y 1 < y(x) < y 2 kaikille x. 8. Olkoot a ja b positiivisia vakioita. a) Osoita, että yhtälön y = ay by 2 ratkaisulle y = y(x) on voimassa log y(x) log a by(x) = ax + C, missä C on integroismisvakio (log = ln = log e ). b) Olkoot 0 < y 0 < a/b ja y = y(x) se yhtälön y = ay by 2 ratkaisu, jolle y(0) = y 0. Osoita, että 0 < y(x) < a/b kaikille x > 0. c) Määrää b-kohdan ratkaisulle raja-arvo lim x y(x). (Tämä populaatioiden kasvua kuvaava yhtälö, ns. logistinen yhtälö, ja on peräisin hollantilaiselta matemaatikko-biologi Pierre François Verhulstilta ) Tähdellä * merkityt tehtävät ovat ylimääräisiä, eikä niitä oteta huomioon laskuharjoitushyvityksiä määrättäessä. 1 Yksinkertaisempi populaation kasvua kuvaava yhtälö y = ay on peräisin englantilaiselta pastori Thomas James Malthusilta 1798 (An Essay on the Principles of Population as It Affects the Future Improvement of Society).

2 Jatkuu 2 *9. Kertaa/täydennä tietojasi hyperbolisista funktioista (esimerkiksi Courantin ja Johnin kirjassa 2 kohdat 3.5 (s ), (s ; useita kohtia)). *10. Osoita, että yhtälön y = 1 y2 yksikköneliössä x < 1, y < 1, sijaitsevalle ratkaisulle y = y(x) on voimassa ar tanh y = ar tanh x + C, missä C on integroimisvakio. 1 x2 b 2 *11. Tutki yhtälön y y 2 = k ratkaisujen käyttäytymistä. Tässä k, a ja b ovat annettuja positiivisia vakioita. Huomaa, että yhtälön ratkaisukäyrä voi sijaita vain jossakin a 2 x2 viidestä alueesta: x < a ja y < b (yksi suorakaide) tai x > a ja y > b (neljä rajoittamatonta nurkka-aluetta). (Yhtälön varsin perusteellinen analyysi löytyy Lindelöfin vanhasta kirjasta 3, Luku I, 2, No ) ratkaisujen käyttäytymistä. Tässä k, a ja b ovat an- b 2 *12. Tutki yhtälön y + y 2 = k a 2 + x 2 nettuja positiivisia vakioita. *13. Kreikan kielen aakkosto a:sta o:hon. Iso ja pieni kirjain sekä nimi (suluissa mahdollinen vaihtoehtoinen muoto): A α alfa, B β beeta, Γ γ gamma, δ delta, E ε (tai ɛ) epsilon, Z ζ dzeeta, H η eeta, Θ θ (tai ϑ) theeta, I ι joota, K κ (tai κ) kappa, Λ λ lambda, M µ myy, N ν nyy, Ξ ξ ksii, O o omikron, Π π (tai ϖ) pii, P ϱ (tai ρ) rho, Σ σ (tai ς) sigma, T τ tau, Υ υ ypsilon, Φ ϕ (tai φ) fii, X χ khii, Ψ ψ psii, Ω ω oomega. 2 Richard Courant ja Fritz John, Introduction to Calculus and Analysis, Volume I, Classics in Mathematics, Springer, Ernst Lindelöf, Differentiali- ja integralilasku ja sen sovellutukset III.1 Tavalliset differentiaaliyhtälöt. Mercatorin Kirjapaino Osakeyhtiö, 1935.

3 Harjoitukset Jatkuu Ratkaise yhtälö y = y2 + xy + x 2 x 2, x Olkoot f : R R jatkuva funktio ja a, b, c vakioita siten, että a 0 ja b 0. Osoita, että y on yhtälön y = f(ax + by + c) ratkaisu, jos ja vain jos funktio z(x) := a x+b y(x)+c toteuttaa separoituvan yhtälön z = a + bf(z). 3. Ratkaise yhtälö y = x + y 1, kun y + x 1. x + y + 1 Kulkeeko alkuehdon y(1) = 0 toteuttavan ratkaisun kuvaaja pisteen (2, 1) kautta? 4. Ratkaise alkuarvotehtävä y + 2 y = 0, y(0) = 1. 1 x2 5. a) Määrää alkuarvotehtävän y = k(y f(x)), y(0) = y 0, ratkaisu, kun k on positiivinen vakio, f(x) = a + b cos(ωx) sekä a, b ja ω ovat reaalisia vakioita. 1 b) Osoita, että ratkaisu voidaan esittää muodossa y(x) = a + (y 0 a)e kx + ce kx + d cos(ωx δ), missä c, d ja δ ovat vakioita. Määrää c, d ja δ. 6. Tarkastellaan ns. Bernoullin yhtälöä 2 y = A(x)y + B(x)y m, missä funktiot A, B : R ovat jatkuvia ja m Z, m > 1. Osoita, että y on Bernoullin yhtälön positiivinen ratkaisu, jos ja vain jos funktio z(x) = y(x) 1 m on lineaarisen yhtälön z = (1 m)a(x)z + (1 m)b(x) positiivinen ratkaisu. 7. Olkoot a positiivinen vakio ja q : ( 1, ) R jatkuva funktio sekä y lineaarisen alkuarvotehtävän y + ay = q(x), y(0) = 0 ratkaisu. Oletetaan, että q on rajoitettu, t.s. q(x) M kaikille x ( 1, ). 1 Yhtälö y = k(y f(x)) tunnetaan nimellä Newtonin jäähtymislaki. Funktio y kuvaa lämpötilaa ajan x funktiona; f(x) on ympäristön kappaleeseen kohdistama lämmitys/jäähdytys. Yhtälö on peräisin Sir Isaac Newtonilta 1600-luvun lopulta. Oleellisesti samaan differentiaaliyhtälöön Ly + Ry = f(x) päädytään seuraavanlaisessa sähköpiirissä: y = virran voimakkuus, L = itseinduktanssi, R = vastus ja f(x) = V cos(ωx) vaihtovirran jännite (taajuus ω). 2 Yhtälö Jakob Bernoullilta 1695, ratkaisu Johann Bernoullilta 1697.

4 Jatkuu 2 Osoita, että y(x) M a (1 e ax ) kaikille x (0, ). *8. Johann Bernoullilta on peräisin seuraava idea lineaarisen yhtälön y = A(x)y + B(x) ratkaisemiseksi: käytetään tulomuotoista yritettä y(x) = u(x) v(x). Tällöin y = A(x)y+B(x) u v+uv = A(x)uv+B(x) (u A(x)u)v = B(x) uv. Johann Bernoulli valitsi funktion u siten, että u A(x)u = 0, jolloin funktion v toteutettavaksi jää yhtälö v = B(x)/u(x). Osoita, että näiden yhtälöiden ratkaisuna saatava funktio y = uv antaa (oleellisesti) saman esityksen ratkaisulle y kuin mihin luennoissa päädyttiin. *9. Ratkaistessaan (Jakob) Bernoullin yhtälöä vuonna 1697 Johann Bernoulli esitti kaksi erilaista tapaa ratkaisun määräämiseen. Toinen tapa perustuu edellisen tehtävän kaltaiseen tulomuotoiseen yritteeseen. Olkoon y yhtälön y = A(x)y + B(x)y m (m Z, m > 1) ratkaisu. Käytetään y:n määräämiseksi yritettä y(x) = u(x) v(x). Osoita, että jos u on saman differentiaaliyhtälön ratkaisu kuin edellisen tehtävän funktio u, niin funktio v toteuttaa separoituvan differentiaaliyhtälön. *10. Ratkaise yhtälö y = 2xy + xy 2 (i) tehtävän 6 menetelmällä; ja (ii) tehtävän *9 menetelmällä. Hyödyllisiä kaavoja: e kx ω sin ωx + k cos ωx cos ωx dx = e kx, k 2 + ω 2 e kx sin ωx dx = ω cos ωx + k sin ωx k 2 + ω 2 e kx

5 Harjoitukset Jatkuu Millä kertoimia a, b, c ja d koskevalla ehdolla yhtälö ax+by+(cx+dy)y = 0 on eksakti? Kun yhtälö on eksakti, määrää ratkaisu implisiittisessä muodossa u(x, y) = C. 2. Osoita, että yhtälö 3x(xy 2) + (x 3 + 2y)y = 0 on eksakti. Määrää yhtälön kaikki ratkaisut (ratkaistussa muodossa y = y(x)). Selvitä myös ratkaisun maksimaalinen määrittelyväli eri tapauksissa. 3. Todista Lause 2.6.2: jos Q(x, y) 0 kaikilla (x, y) D ja funktio ( ) 1 P Q ϕ(x, y) = (x, y) (x, y) Q(x, y) y x riippuu vain muuttujasta x, niin µ(x) = e R ϕ(x) dx on yhtälön P (x, y) + Q(x, y)y = 0 integroiva tekijä. 4. Määrää alkuarvotehtävän { 1 2 y2 + 2ye x + (y + e x )y = 0, y(0) = 2, ratkaisu. [Vihje: Yhtälöllä on integroiva tekijä, joka riippuu vain muuttujasta x.] 5. Yhtälöllä cos x cos y 2 sin x sin y y = 0 on vain y:stä riippuva integroiva tekijä µ. Määrää µ ja ratkaisu implisiittisessä muodossa u(x, y) = C. 6. Yhtälöllä cos x cos y 2 sin x sin y y = 0 on vain x:stä riippuva integroiva tekijä µ. Määrää µ ja ratkaisu implisiittisessä muodossa u(x, y) = C. 7. Yhtälöllä 2xy y 2 y + (2xy x 2 x)y = 0 on integroiva tekijä µ, joka riippuu vain summasta x + y. Määrää µ. 8. Yhtälöllä 3y + (2x xy)y = 0 on integroiva tekijä µ, joka riippuu vain tulosta x y. Määrää µ ja ratkaisu implisiittisessä muodossa u(x, y) = C. *9. Yhtälöllä 3y + (2x xy)y = 0 on vain y:stä riippuva integroiva tekijä µ. Määrää µ ja ratkaisu implisiittisessä muodossa u(x, y) = C. *10. Osoita, että funktio µ(x, y) = integroiva tekijä. 1 y x f(y/x) on tasa-asteisen yhtälön y = f(y/x)

6 Jatkuu 2 *11. Etsi integroiva tekijä lineaariselle yhtälölle y + p(x)y = q(x), missä funktiot p, q : R ovat jatkuvia. Ratkaise saamasi yhtälö käyttäen eksaktien yhtälöiden ratkaisumenetelmää. Vertaa ratkaisua Lauseen mukaiseen ratkaisuun. [Vihje: Yhtälöllä on integroiva tekijä, joka riippuu vain muuttujasta x.] *12. Olkoot g : g R ja h: h R jatkuvia funktioita. Oletetaan, että h(y) 0 kaikille y h. Osoita, että separoituva yhtälö y = g(x)h(y) on yhtäpitävä jonkin eksaktin yhtälön kanssa. Määrää eksaktiin yhtälöön liittyvä funktio u. *13. Osoita, että jos θ := 1 ( P Q P y Q ) riippuu vain summasta x + y, niin yhtälöllä x P (x, y) + Q(x, y)y = 0 on integroiva tekijä µ, joka on (x + y):n funktio, µ = µ(x + y), ja että µ(s) = C e R θ(s) ds. 1 ( P *14. Osoita, että jos θ := yq xp y Q ) riippuu vain tulosta x y, niin yhtälöllä x P (x, y) + Q(x, y)y = 0 on integroiva tekijä µ, joka on (x y):n funktio, µ = µ(x y), ja että µ(s) = C e R θ(s) ds. *15. Yhtälöllä xy + x 2 y + y 3 + x 2 y = 0 on integroiva tekijä µ, joka on muotoa µ(x, y) = e x f(x 2 + y 2 ). Määrää µ. *16. Osoita, että myös funktio µ(x, y) = integroiva tekijä. 1 y (x 2 + y 2 ) on yhtälön xy + x2 y + y 3 + x 2 y = 0

7 Harjoitukset Jatkuu Osoita (yhtälöä ratkaisematta ja vetoamatta tehtävään 4), että yhtälön y = cos x cos y ratkaisu y : ( δ, δ) R, jolle y(0) = 0, on pariton funktio, t.s. y( x) = y(x) kaikille x ( δ, δ). 2. Osoita (yhtälöä ratkaisematta ja vetoamatta tehtävään 3), että yhtälön y = sin x sin y jokainen ratkaisu y : ( δ, δ) R on parillinen, t.s. y( x) = y(x) kaikille x ( δ, δ). 3. Olkoon f : R 2 R jatkuva funktio siten, että osittaisderivaatta 2 f = f on jatkuva. y Oletetaan, että f( x, y) = f(x, y) kaikille x R ja y R. Olkoon y : ( δ, δ) R yhtälön y = f(x, y) ratkaisu. Osoita, että y on parillinen. 4. Olkoon f : R 2 R jatkuva funktio siten, että osittaisderivaatta 2 f = f on jatkuva. y Oletetaan, että f( x, y) = f(x, y) kaikille x R ja y R. Olkoon y : ( δ, δ) R alkuarvotehtävän y = f(x, y), y(0) = 0, ratkaisu. Osoita, että y on pariton. 5. Ratkaise alkuarvotehtävä y = 2xy, y(0) = 1, Picardin peräkkäisten approksimaatioiden menetelmällä 1, t.s. laske ( ) y n (x) := 1 + x 0 f(t, y n 1 (t)) dt, n = 1, 2, 3,..., missä y 0 (x) 1 ja f(x, y) = 2xy, ja määritä rajafunktio lim n y n (x). [Ohje: Laske ensin funktiojonon pari ensimmäistä termiä ja arvaa niiden perusteella y n :n yleinen lauseke. Todista arvauksesi oikeaksi induktiolla.] 6. Olkoot y n, n = 0, 1, 2, 3,..., alkuarvotehtävän ( ) y = y 2, y(0) = 1, Picardin peräkkäisten approksimaatioiden menetelmällä ( ) määritellyt funktiot y n (x), missä y 0 (x) 1 ja f(x, y) = y 2. a) Osoita, että jokainen y n (x) on määritelty kaikille x R. b) Osoita, että alkuarvotehtävän ( ) ratkaisu y(x) ei ole määritelty kaikille x R. c) Suppeneeko jono (y n ) n=0 jollakin origokeskisellä välillä ( δ, δ) kohti alkuarvotehtävän ( ) ratkaisua y? 1 (Charles) Émile Picard (Traité d Analyse ). Abstraktissa muodossaan peräkkäisten approksimaatioiden menetelmä tunnetaan Banachin kiintopistelauseena (Stefan Banach 1922). Menetelmän toisen löytäjän, Ernst (Leonard) Lindelöfin (1890), mukaan menetelmä tunnetaan myös Picardin ja Lindelöfin menetelmänä. Differentiaaliyhtälön ratkaisun olemassaolo voidaan todistaa myös ns. Cauchyn ja Lipschitzin murtoviivamenetelmällä. Cauchyn ja Lipschitzin menetelmälle läheistä sukua ovat yhtälöiden numeeriseen ratkaisemiseen tarkoitetut Eulerin sekä Rungen ja Kuttan menetelmät. Peanon lauseena tunnettu olemassaolotulos puolestaan käyttää apuna Ascolin ja Arzelàn lausetta. Peanon lauseessa funktiosta f oletetaan vain jatkuvuus.

8 Jatkuu 2 Keskiviikkona ON luento (torstaina ei). Viimeinen luento pidetään keskiviikkona Viimeiset harjoitukset ovat tiistaina *7. Määrää alkuarvotehtävän y = cos x cos y, y(0) = 0, ratkaisu ratkaistussa muodossa y = y(x). Määrää ratkaisun maksimaalinen ratkaisuväli, ja osoita, että y on pariton. *8. Määrää alkuarvotehtävän y = sin x sin y, y(0) = y 0, ratkaisu ratkaistussa muodossa y = y(x) eri alkuarvoilla y 0. Määrää ratkaisun maksimaalinen ratkaisuväli, ja osoita, että y on parillinen. *9. Olkoon f : R 2 R, 2x, kun y x 2, f(x, y) = 2y/x, kun y < x 2, ja 2x, kun y x 2. Määritellään jono (y n ) n=0 samaan tapaan kuin Lauseen todistuksessa: y 0 (x) = x 2 ja y n (x) = x 0 f(t, y n 1 (t)) dt, kun n 1. Osoita, että jono (y n (x)) n=0 ei suppene millekään x 0. [Huomautus: a) f on jatkuva; b) alkuarvotehtävällä y = f(x, y), y(0) = 0, on yksikäsitteinen ratkaisu; vrt. seuraavaan tehtävään.] *10. Olkoot a ja b positiivisia lukuja ja f : [ a, a] [ b, b] R jatkuva funktio. Oletetaan, että f(x, y) < 0, kun xy > 0, ja f(x, y) > 0, kun xy < 0. Osoita, että alkuarvotehtävällä y = f(x, y), y(0) = 0, on yksikäsitteinen ratkaisu. [Vihje: Olemassaolo: osoita, että y = 0 on ratkaisu. Yksikäsitteisyys: käytä antiteesia: on olemassa ratkaisu y : [0, c] R siten, että y 0; tutki y:n minimiä ja maksimia; tarkastele vastaavalla tavalla ratkaisua välillä [d, 0], kun d < 0.] *11. Olkoot a > 0, b > 0, x 0, y 0 R sekä f : [x 0 a, x 0 + a] [y 0 b, y 0 + b] R jatkuva funktio. Osoita, että jos y : R toteuttaa integraaliyhtälön y(x) = y 0 + (x x 0 )y 1 + niin y toteuttaa alkuarvotehtävän x x 0 (x t) f(t, y(t)) dt, ( ) y = f(x, y), y(x 0 ) = y 0 ja y (x 0 ) = y 1. Myös käänteinen pätee (eli jos y toteuttaa alkuarvotehtävän ( ), niin y toteuttaa y.o. integraaliyhtälön). Miten soveltaisit Picardin peräkkäisten approksimaatioiden ideaa alkuarvotehtävän ( ) ratkaisun olemassaolon todistamiseen?

9 Harjoitukset Jatkuu Ratkaise yhtälö y y y = Ratkaise yhtälö y y + y = Minkä ensimmäisen kertaluvun separoituvan differentiaaliyhtälön yhtälön y +k sin y = 0 ratkaisu toteuttaa? Tässä k on positiivinen vakio. (Löytämääsi separoituvaa yhtälöä ei tarvitse ratkaista.) 4. Olkoot y 1 ja y 2 differentiaaliyhtälön y + p(x)y + r(x)y = 0 ratkaisuja, joilla on yhteinen nollakohta. Osoita, että {y 1, y 2 } ei voi olla ratkaisukanta. 5. Tarkastellaan vakiokertoimista homogeeniyhtälöä y + ay + by = 0, a, b R. a) Tutki millä ehdolla funktiot y 1 (x) = e λx ja y 2 (x) = xe λx, λ R, ovat yhtälön ratkaisuja? 2 b) Millä ehdolla y 3 (x) = sin(ωx), ω R, on yhtälön ratkaisu? c) Osoita, että jos y 3 on yhtälön ratkaisu, niin myös y 4 (x) = cos(ωx) on ratkaisu. 6. Olkoot y 1, y 2 : R homogeenisen yhtälön y + p(x)y + r(x)y = 0 ratkaisuja. Osoita, että funktioiden y 1 ja y 2 Wronskin determinantti 3 toteuttaa yhtälön W + p(x)w = 0. 4 W (x) := y 1 (x)y 2(x) y 1(x)y 2 (x) 7. Etsi kertaluvun pudotuksella 5 yhtälölle x 2 y 5xy + 9y = 0, x > 0, ratkaisukanta, kun tiedetään, että y 1 (x) = x 3 on eräs ratkaisu. 8. Osoita, että funktiot y 1 (x) = e x2 /2 ja y 2 (x) = e x2 /2 x 0 et2 /2 dt muodostavat yhtälön y + xy + y = 0 ratkaisukannan. Ratkaise alkuarvotehtävä y + xy + y = 0, y(0) = 0, y (0) = 1. 1 Luennolla tälle yhtälötyypille esitetty ratkaisumenetelmä on peräisin Jacopo Francesco Riccattilta vuodelta Riccatti käytti merkintää p = dy dx, jolloin y d2 dx = dp 2 dx = dp dy dy dx = dp dy p. 2 Idean eksponenttifunktioyritteen käytöstä vakiokertoimisille yhtälöille esitti Leonhard Euler kirjeessään Johann Bernoullille vuonna Euler julkaisi tuloksensa vuonna Determinantti on peräisin Josef Maria Hoëne-Wronskilta ( ). 4 Yhtälön W +p(x)w = 0 ratkaisulle saatava kaava W (x) = W (x 0 ) exp ( x x 0 p(t) dt ) tunnetaan Abelin kaavana norjalaisen Nils Henrik Abelin ( ) mukaan. Abel tutki mm. elliptisiä funktioita ja osoitti ensimmäisenä yhdessä Evariste Galois n ( ) kanssa, että viidennen asteen yhtälöä ei voi ratkaista rationaalisin laskutoimituksin ja juurenotoin. 5 Kertaluvun pudotus toisen, lineaarisesti riippumattoman ratkaisun löytämiseksi on peräisin Jean le Rond d Alembertilta ( ).

10 Keskiviikkona on luento (torstaina ei). Viimeinen luento pidetään keskiviikkona Viimeiset harjoitukset ovat tiistaina Loppukokeet ovat , ja Jatkuu 2 *9. Oletetaan, että funktiot y 1, y 2 : R R muodostavat homogeenisen yhtälön y + p(x)y + r(x)y = 0 ratkaisukannan. a) Osoita, että funktioiden y 1 ja y 2 nollakohdat ovat eristettyjä (eli ei ole olemassa nollakohtaa, jonka jokaisessa ympäristössä olisi muita nollakohtia). b) Oletetaan, että funktiolla y 2 on peräkkäiset nollakohdat x 1 < x 2 (siis y 2 (x 1 ) = y 2 (x 2 ) = 0 ja y 2 (x) 0, kun x (x 1, x 2 )). Osoita, että funktiolla y 1 on ainakin yksi nollakohta ξ välillä (x 1, x 2 ). c) Osoita, että funktiolla y 1 on vain yksi nollakohta välillä (x 1, x 2 ). [Vihje: Nollakohdan olemassaolo: Päättele Wronskin determinantin avulla, että y 1 saavuttaa erimerkkiset (ja nollasta eroavat) arvot pisteissä x 1 ja x 2. Nollakohdan löytämiseen tarvinnet Bolzanon lausetta 6. Huomaa, että y 2(x 1 ) 0 ja y 2(x 2 ) 0. Miksi? Nollakohtia on vain yksi: vaihda y 1 :n ja y 2 :n rooli.] 6 Bernard Bolzano Raja-arvon täsmällinen, δ-ε-määritelmä on peräisin Bolzanolta vuodelta Ansio raja-arvon ja jatkuvuuden määrittelemisestä nykyaikaisella tavalla annetaan yleensä kuitenkin Augustin Louis Cauchylle (vuonna 1821 julkaistut luennot Cours d Analyse).

11 Harjoitukset Olkoon λ R vakiokertoimisen homogeeniyhtälön y + ay + by = 0 karakteristisen yhtälön kaksinkertainen juuri. Tällöin y 1 (x) = e λx on homogeeniyhtälön eräs ratkaisu. Hae yhtälölle toinen lineaarisesti riippumaton ratkaisu yritteellä y 2 (x) = v(x)e λx. 2. Osoita, että jos ±ωi C, ω 0, ovat karakteristisen yhtälön λ 2 + aλ + b = 0 juuria, niin funktio y(x) = Kx cos(ωx) on yhtälön y + ay + by = A sin(ωx) ratkaisu jollakin K R. 3. Etsi differentiaaliyhtälölle y + 2y + y = e x, x > 0, ratkaisu vakioiden varioinnilla.1 x 4. Ratkaise yhtälö y + y = 1 cos x. 5. Osoita, että y 1 (x) = x on homogeeniyhtälön y + 1 y = 0 ratkaisu välillä (0, ). 4x2 Määrää tämän avulla yhtälön y + 1 4x y = 2 Axα, α R, yleinen ratkaisu. 6. Olkoot F : R R jatkuva funktio, U funktion F jokin integraalifunktio ja y = y(x) yhtälön y = F (y) ratkaisu. Osoita, että funktio E(x) := 1 2 y (x) 2 + U(y(x)) on vakio. Minkä ensimmäisen kertaluvun separoituvan differentiaaliyhtälön yhtälön y + k sin y = 0 ratkaisu toteuttaa? Tässä k on positiivinen vakio. 7. Olkoot F : R R jatkuva funktio ja ε positiivinen vakio. Olkoot U funktion F jokin integraalifunktio ja y = y(x) yhtälön y = F (y) εy ratkaisu. Osoita, että funktio E(x) := 1 2 y (x) 2 + U(y(x)) on vähenevä. 8. Olkoot a, b R annettuja vakioita. ja y = y(x) yhtälön x 2 y +a x y +b y = 0 ratkaisu välillä (0, ). Osoita, että funktio z(t) = y(e t ) toteuttaa vakiokertoimisen yhtälön 2 z + (a 1) z + b z = 0. Viimeinen luento pidetään keskiviikkona Harjoitukset 6 tiistaina ovat viimeiset. Loppukokeet ovat , ja Vakion variointimenetelmä (luennot, kohta 3.3.5) on peräisin Joseph Louis Lagrangelta ( ) vuosilta 1775 ja 1788 (Méchanique analytique). Valistunut arvaus (lause ) on puolestaan peräisin Leonhard Eulerilta vuodelta Yhtälö x 2 y + a x y + b y = q(x) tunnetaan Eulerin yhtälönä. Tosin Leonhard Eulerilta on matematiikkaan jäänyt niin monta kaavaa ja yhtälöä, ettei nimi ole kovin kuvaava.

12 Harjoitukset Xtra Jatkuu... *1. Määrää pyykkinarun differentiaaliyhtälön y = a 1 + (y ) 2 yleinen ratkaisu. (Kyseinen yhtälö kuvaa päistään kiinitetyn, vapaasti riippuvan langan muotoa (yhtälölle löytyy tavanomaiset fysikaaliset perustelut). Ratkaisun y = y(x) kuvaajaa kutsutaan yleensä ketjukäyräksi. 1 ) *2. Olkoot vakiokertoimisen homogeeniyhtälön y + ay + by = 0 karakteristisen yhtälön juuret λ = α ± iβ, β 0. Osoita, että funktiot muodostavat yhtälön ratkaisukannan. y 1 (x) = e αx sin βx ja y 2 (x) = e αx cos βx *3. Olkoon f : [ 1, 1] [ 1, 1] R, 0, kun x = 0 ja y 1, 2x, kun 0 < x 1 ja 1 y < 0, f(x, y) = 2x 4y/x, kun 0 < x 1 ja 0 y x 2, ja 2x, kun 0 < x 1 ja x 2 y 1. a) Osoita, että f on jatkuva ja f(x, y) 2. b) Määritellään jono (y n ) n=0 samaan tapaan kuin Lauseen todistuksessa: y 0 (x) = 0 ja y n (x) = x 0 f(t, y n 1 (t)) dt, kun n 1. Osoita, että jono (y n (x)) n=0 ei suppene millekään x 0. *4. Osoita yhtälöä ratkaisematta, että yhtälön y = e x2 sin x cos y ratkaisu y = y(x) on määritelty kaikille x R. *5. Olkoon y : R R yhtälön y = e x2 sin x cos y ratkaisu. Osoita yhtälöä ratkaisematta, että y on parillinen funktio, t.s. y( x) = y(x) kaikille x R. *6. Osoita, että funktiot y 1 (x) = sin x x cos x ja y 2 (x) = cos x + x sin x muodostavat yhtälön y (2/x)y + y = 0 ratkaisukannan. *7. Osoita, että funktiot y 1 (x) = (1/x) sin x ja y 2 (x) = (1/x) cos x muodostavat yhtälön y + (2/x)y + y = 0 ratkaisukannan. 1 Galileo Galilei väitti 1638, että vapaasti riippuva lanka on paraabeli. Pariakymmentä vuotta myöhemmin hollantilainen Christiaan Huygens totesi Galilein olevan väärässä. Oikean ratkaisun löysivät Gottfried Wilhelm Leibniz ja Johann Bernoulli infinitesimaalilaskennan avulla vuonna K. A. Poukan kirjassa Korkamman matematiikan alkeiskurssi (1934, viides laitos 1966) esitetään harhaanjohtavasti ketjukäyrän differentiaaliyhtälöksi yhtälöä y = vakio, jolloin y:n kuvaaja on paraabeli. Yhtälö y = vakio vastaa paremmin päistään kiinitetyn, tiukasti jännitetyn langan muotoa.

13 Jatkuu 2 *8. Ratkaise y + y = cot x. *9. Ratkaise y y = cosh x a) vakion varioinnilla; b) valistuneen arvauksen avulla. *10. Legendren 2 astetta yksi olevalla yhtälöllä (1 x 2 )y 2xy + 2y = 0, x < 1, on ratkaisu y 1 (x) = x. Määrää yhtälölle ratkaisukanta {y 1, y 2 }. *11. Olkoot y 1 ja y 2 differentiaaliyhtälön y + p(x)y + r(x)y = 0 ratkaisuja, joilla samassa pisteessä miminikohta (tai maksimikohta). Osoita, että {y 1, y 2 } ei voi olla ratkaisukanta. *12. Olkoot f = f(y, y ) kaksi kertaa jatkuvasti differentioituva funktio ja h(y, y ) := f(y, y ) + y f y (y, y ). Oletetaan, että y on Eulerin ja Lagrangen yhtälön 3 d f dx y (y(x), y (x)) f y (y(x), y (x)) = 0 ratkaisu. Osoita, että funktio x h(y(x), y (x)) on vakio. *13. Sovella edellisen tehtävän menetelmää Eulerin ja Lagrangen yhtälön ratkaisun määräämiseksi, kun f(y, y ) = y 1 + (y ) 2. *14. Osoita, että sarja y(x) = k=0 x 2k (k!) 2 suppenee kaikille x, ja että y toteuttaa differentiaaliyhtälön x 2 y + xy = 4x 2 y. [Tämä funktio tunnetaan nimellä modifioitu Besselin ensimmäisen lajin funktio I 0 (2x). Funktiolle I 0 (2x) ratkaisukannan antava pari K 0 (2x), modifioitu Besselin toisen lajin funktio, on mutkikkaampi käyttäytymiseltään eikä ole edes määritelty, kun x = 0.] 2 Adrien Marie Legendre ( ). Kun p on ei-negatiivinen kokonaisluku, on Legendren astetta p olevalla yhtälöllä (1 x 2 )y 2xy +p(p+1)y = 0 varsin mielenkiintoisia polynomiratkaisuja, jotka tunnetaan Legendren polynomien nimellä. 3 Leonhard Euler (Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes sive solutio problematis isoperimetrici latissimo sensu accepti, 1744) ja Joseph Louis Lagrange (Essai d une nouvelle méthode pour déterminer les maxima et les minima des formules intégrales indéfinies, 1760). Eulerin jäämistöä jokapäiväiseen matematiikkaan ovat mm. merkinnät f(x) funktiolle, Σ summalle, e Neperin luvulle ja i imaginääriyksikölle. Eulerin merkintä- ja esitystapa näkyy vielä varsin hyvin koulumatematiikassa (vrt. Institutiones calculi differentialis, 1755). Euler julkaisi tavattoman paljon, joukossa Kirjeitä saksalaiselle prinsessalle fysiikasta ja filosofiasta (suom. ja toim. Johan Stén, 2007).

6. Toisen ja korkeamman kertaluvun lineaariset

6. Toisen ja korkeamman kertaluvun lineaariset SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 51 6. Toisen ja korkeamman kertaluvun lineaariset differentiaaliyhtälöt Määritelmä 6.1. Olkoon I R avoin väli. Olkoot p i : I R, i = 0, 1, 2,..., n, ja q : I R jatkuvia

Lisätiedot

Harjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia:

Harjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: Differentiaaliyhtälöt, Kesä 216 Harjoitus 2 1. Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: (a) y = (2 y) 3, (b) y = (y 1) 2, (c) y = 2y y 2. 2. Etsi seuraavien

Lisätiedot

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen

Lisätiedot

Lineaarinen toisen kertaluvun yhtälö

Lineaarinen toisen kertaluvun yhtälö Lineaarinen toisen kertaluvun yhtälö Keijo Ruotsalainen Mathematics Division Lineaarinen toisen kertaluvun differentiaaliyhtälö Toisen kertaluvun täydellinen lineaarinen yhtälö muotoa p 2 (x)y + p 1 (x)y

Lisätiedot

4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt

4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt 4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt 4.1 Homogeeniset lineaariset differentiaaliyhtälöt Homogeeninen yhtälö on muotoa F(x, y,, y (n) ) = 0. (1) Yhtälö on lineaarinen, jos se voidaan

Lisätiedot

Matematiikka B3 - Avoin yliopisto

Matematiikka B3 - Avoin yliopisto 2. heinäkuuta 2009 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Lisäharjoitustehtävä Kurssin sisältö (1/2) 1. asteen Differentiaali yhtälöt (1.DY) Separoituva Ratkaisukaava Bernoyulli

Lisätiedot

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2 Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),

Lisätiedot

4 Korkeamman kertaluvun differentiaaliyhtälöt

4 Korkeamman kertaluvun differentiaaliyhtälöt Differentiaaliyhtälöt c Pekka Alestalo 2015 Tässä monisteessa käydään läpi tavallisiin differentiaaliyhtälöihin liittyviä peruskäsitteitä ja ratkaisuperiaatteita. Luennolla lasketaan esimerkkitehtäviä

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

SARJAT JA DIFFERENTIAALIYHTÄLÖT

SARJAT JA DIFFERENTIAALIYHTÄLÖT SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 43 0.5 0.4 0.3 0.2 0.1 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 Kuva 12. Esimerkin 4.26(c kuvauksen

Lisätiedot

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3.1 Homogeeniset lineaariset differentiaaliyhtälöt Toisen kertaluvun differentiaaliyhtälö on lineaarinen, jos se voidaan kirjoittaa muotoon Jos r(x)

Lisätiedot

a 1 y 1 (x) + a 2 y 2 (x) = 0 vain jos a 1 = a 2 = 0

a 1 y 1 (x) + a 2 y 2 (x) = 0 vain jos a 1 = a 2 = 0 6. Lineaariset toisen kertaluvun yhtälöt Toisen kertaluvun differentiaaliyhtälöt ovat tuntuvasti hankalampia ratkaista kuin ensimmäinen. Käsittelemmekin tässä vain tärkeintä erikoistapausta, toisen kertaluvun

Lisätiedot

Differentiaaliyhtälöt. Petri Juutinen

Differentiaaliyhtälöt. Petri Juutinen Differentiaaliyhtälöt Petri Juutinen 2. syyskuuta 2008 Sisältö Johdanto 3 2 Ensimmäisen kertaluvun yhtälöistä 6 2. Olemassaolo ja yksikäsitteisyys..................... 6 2.2 Separoituvat yhtälöt...........................

Lisätiedot

3 TOISEN KERTALUVUN LINEAARISET DY:T

3 TOISEN KERTALUVUN LINEAARISET DY:T 3 TOISEN KERTALUVUN LINEAARISET DY:T Huomautus epälineaarisista. kertaluvun differentiaaliyhtälöistä Epälineaarisen DY:n ratkaisemiseen ei ole yleismenetelmää. Seuraavat erikoistapaukset voidaan ratkaista

Lisätiedot

Dierentiaaliyhtälöistä

Dierentiaaliyhtälöistä Dierentiaaliyhtälöistä Markus Kettunen 17. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................

Lisätiedot

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos

Lisätiedot

Osoita, että eksponenttifunktio ja logaritmifunktio ovat differentiaaliyhtälön

Osoita, että eksponenttifunktio ja logaritmifunktio ovat differentiaaliyhtälön 3. Lineaariset differentiaaliyhtälöt 3.1. Lineaariyhtälöiden teoriaa 99. Onko differentiaaliyhtälö y + x(y y )=y + 1 a) lineaarinen, b) homogeeninen? 100. Olkoot funktiot f (x) ja g(x) jatkuvasti derivoituvia

Lisätiedot

Dierentiaaliyhtälöistä

Dierentiaaliyhtälöistä Dierentiaaliyhtälöistä Markus Kettunen 4. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

2. kl:n DY:t. Lause. Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.

2. kl:n DY:t. Lause. Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2. 2. kl:n DY:t Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.) Lause Olkoon f(x 2, x 1, t) funktio, ja oletetaan, että f, f/ x 1 ja f/ x

Lisätiedot

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin

Lisätiedot

Kompleksiluvun logaritmi: Jos nyt z = re iθ = re iθ e in2π, missä n Z, niin saadaan. ja siihen vaikuttava

Kompleksiluvun logaritmi: Jos nyt z = re iθ = re iθ e in2π, missä n Z, niin saadaan. ja siihen vaikuttava Kompleksiluvun logaritmi: ln z = w z = e w Jos nyt z = re iθ = re iθ e inπ, missä n Z, niin saadaan w = ln z = ln r + iθ + inπ, n Z Logaritmi on siis äärettömän moniarvoinen funktio. Helposti nähdään että

Lisätiedot

Osittaisdifferentiaaliyhtälöt

Osittaisdifferentiaaliyhtälöt Osittaisdifferentiaaliyhtälöt Harjoituskokoelmat 4 ja 5, kevät 2011 Palautus Eemeli Blåstenille to 23.6. klo 16.00 mennessä 1. Ratkaise Dirichlet ongelma u(x, y) = 0, x 2 + y 2 < 1, u(x, y) = y + x 2,

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1.

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1. Analyysi 1 Harjoituksia lukuihin 4 7 / Syksy 014 1. Tutki funktion x + x jatkuvuutta pisteissä x = 0 ja x = 1.. Määritä vakiot a ja b siten, että funktio a x cos x + b x + b sin x, kun x 0, x 4, kun x

Lisätiedot

1 Peruskäsitteet. Dierentiaaliyhtälöt

1 Peruskäsitteet. Dierentiaaliyhtälöt Teknillinen korkeakoulu Matematiikka Dierentiaaliyhtälöt Alestalo Tässä monisteessa käydään läpi tavallisiin dierentiaaliyhtälöihin liittyviä peruskäsitteitä ja ratkaisuperiaatteita. Esimerkkejä luennoilla

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle / Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle / 16. 18.5. Lineaariset differentiaaliyhtälöt, homogeeniset differentiaaliyhtälöt Tehtävä 1: a) Määritä differentiaaliyhtälön y 3y = 14e 4x

Lisätiedot

Talousmatematiikan perusteet, L2 Kertaus Aiheet

Talousmatematiikan perusteet, L2 Kertaus Aiheet Talousmatematiikan perusteet, L2 Kertaus 1 Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat lausekkeet (alkaen sisältä ulospäin) 2. potenssit ja juurilausekkeet 3. kerto-

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen

Lisätiedot

Differentiaaliyhtälöt I Ratkaisuehdotuksia, 2. harjoitus, kevät Etsi seuraavien yhtälöiden yleiset ratkaisut (Tässä = d

Differentiaaliyhtälöt I Ratkaisuehdotuksia, 2. harjoitus, kevät Etsi seuraavien yhtälöiden yleiset ratkaisut (Tässä = d Differentiaaliyhtälöt I Ratkaisuehdotuksia,. harjoitus, kevät 016 1. Etsi seuraavien yhtälöiden yleiset ratkaisut (Tässä = d dx ): (a) y + xy = xe x, (b) (1 + x ) y xy = (1 + x ), (c) y sin x y = 1 cos

Lisätiedot

5 Differentiaaliyhtälöryhmät

5 Differentiaaliyhtälöryhmät 5 Differentiaaliyhtälöryhmät 5.1 Taustaa ja teoriaa Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Toinen motivaatio yhtälöryhmien käytölle: Korkeamman asteen differentiaaliyhtälöt y (n) =

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, kevät 01 / ORMS1010 Matemaattinen Analyysi. harjoitus, viikko 1 R1 ke 1 16 D11 (..) R to 10 1 D11 (..) 1. Määritä funktion y(x) MacLaurinin sarjan kertoimet, kun y(0) = ja y (x) = (x

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Mat Matematiikan peruskurssi K2

Mat Matematiikan peruskurssi K2 Mat-.3 Matematiikan peruskurssi K Heikkinen/Tikanmäki Kolmas välikoe 6.5. Kokeessa saa käyttää ylioppilaskirjoituksiin hyväksyttyä laskinta. Sivun kääntöpuolelta löytyy integrointikaavoja.. Olkoon F(x,

Lisätiedot

Esimerkki: Tarkastellaan korkeudella h ht () putoavaa kappaletta, jonka massa on m (ks. kuva).

Esimerkki: Tarkastellaan korkeudella h ht () putoavaa kappaletta, jonka massa on m (ks. kuva). 6 DIFFERENTIAALIYHTÄLÖISTÄ Esimerkki: Tarkastellaan korkeudella h ht () putoavaa kappaletta, jonka massa on m (ks. kuva). Newtonin II:n lain (ma missä Yhtälö dh dt m dh dt F) mukaan mg, on kiihtyvyys ja

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, syksy 2016 / ORMS1010 Matemaattinen Analyysi 8. harjoitus, viikko 49 R1 to 12 14 F453 (8.12.) R2 to 14 16 F345 (8.12.) R3 ke 8 10 F345 (7.11.) 1. Määritä funktion f (x) = 1 Taylorin sarja

Lisätiedot

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y ) MATEMATIIKAN JA TILASTOTIETEEN LAITOS Differentiaaliyhtälöt, kesä 00 Tehtävät 3-8 / Ratkaisuehdotuksia (RT).6.00 3. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: y = + y + y = + y + ( y ) (y

Lisätiedot

Talousmatematiikan perusteet, L2 Kertaus Aiheet

Talousmatematiikan perusteet, L2 Kertaus Aiheet Talousmatematiikan perusteet, L2 Kertaus 1 Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat lausekkeet (alkaen sisältä ulospäin) 2. potenssit ja juurilausekkeet 3. kerto-

Lisätiedot

Epälineaaristen yhtälöiden ratkaisumenetelmät

Epälineaaristen yhtälöiden ratkaisumenetelmät Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin

Lisätiedot

2 Funktion derivaatta

2 Funktion derivaatta ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2019 2 Funktion derivaatta 2.1 Määritelmiä ja perusominaisuuksia 1. Määritä suoraan derivaatan määritelmää käyttäen f (0), kun (a) + 1, (b) (2 + ) sin(3). 2. Olkoon

Lisätiedot

Dierentiaaliyhtälöistä

Dierentiaaliyhtälöistä Dierentiaaliyhtälöistä Markus Kettunen 14. helmikuuta 2011 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun olemassaolosta ja yksikäsitteisyydestä...........

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

2. Viikko. CDH: luvut (s ). Matematiikka on fysiikan kieli ja differentiaaliyhtälöt sen yleisin murre.

2. Viikko. CDH: luvut (s ). Matematiikka on fysiikan kieli ja differentiaaliyhtälöt sen yleisin murre. 2. Viikko Keskeiset asiat ja tavoitteet: 1. Peruskäsitteet: kertaluku, lineaarisuus, homogeenisuus. 2. Separoituvan diff. yhtälön ratkaisu, 3. Lineaarisen 1. kl yhtälön ratkaisu, CDH: luvut 19.1.-19.4.

Lisätiedot

10. Toisen kertaluvun lineaariset differentiaaliyhtälöt

10. Toisen kertaluvun lineaariset differentiaaliyhtälöt 37. Toisen kertaluvun lineaariset differentiaalihtälöt Tarkastelemme muotoa () ( x) + a( x) ( x) + a( x) ( x) = b( x) olevia htälöitä, missä kerroinfunktiot ja oikea puoli ovat välillä I jatkuvia. Edellisen

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

2 Funktion derivaatta

2 Funktion derivaatta ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2018 2 Funktion derivaatta 1. Määritä derivaatan määritelmää käyttäen f (), kun (a), (b) 1 ( > 0). 2. Tutki, onko funktio sin(2) sin 1, kun 0, 2 0, kun = 0, derivoituva

Lisätiedot

r > y x z x = z y + y x z y + y x = r y x + y x = r

r > y x z x = z y + y x z y + y x = r y x + y x = r HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Osoita, että avoin kuula on avoin joukko ja suljettu kuula on suljettu joukko. Ratkaisu.

Lisätiedot

Epähomogeenisen yhtälön ratkaisu

Epähomogeenisen yhtälön ratkaisu Epähomogeenisen yhtälön ratkaisu Lause Olkoot a = a(x), b = b(x) ja f = f(x) jatkuvia funktioita välillä I R ja olkoot y 1 = y 1 (x) ja y 2 = y 2 (x) eräs homogeeniyhtälön y + a(x)y + b(x)y = 0 ratkaisujen

Lisätiedot

Ratkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1

Ratkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1 1. Selvitä missä tason pisteissä annetut funktiot ovat derivoituvia/analyyttisiä. Määrää funktion derivaatta niissä pisteissä, joissa se on olemassa. (a) (x, y) 2x + ixy 2 (b) (x, y) cos x cosh y i sin

Lisätiedot

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita

Lisätiedot

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2 HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Olkoon f : R R f(x 1, x ) = x 1 + x Olkoon C R. Määritä tasa-arvojoukko Sf(C) = {(x 1, x

Lisätiedot

800345A Differentiaaliyhtälöt I. Seppo Heikkilä, Martti Kumpulainen, Janne Oinas

800345A Differentiaaliyhtälöt I. Seppo Heikkilä, Martti Kumpulainen, Janne Oinas 800345A Differentiaaliyhtälöt I Seppo Heikkilä, Martti Kumpulainen, Janne Oinas 2. maaliskuuta 2009 Sisältö 1 Ensimmäisen kertaluvun differentiaaliyhtälöt 2 1.1 Merkintöjä ja nimityksiä...........................

Lisätiedot

Differentiaaliyhtälöt

Differentiaaliyhtälöt Informaatiotieteiden yksikkö Differentiaaliyhtälöt Pentti Haukkanen Sisältö Differentiaaliyhtälön käsite 4 2 Joitakin. kertaluvun differentiaaliyhtälöitä 7 2. Separoituva yhtälö........................

Lisätiedot

Poistumislause Kandidaatintutkielma

Poistumislause Kandidaatintutkielma Poistumislause Kandidaatintutkielma Mikko Nikkilä 013618832 26. helmikuuta 2011 Sisältö 1 Johdanto................................... 2 2 Olemassaolon ja yksikäsitteisyyden historiaa............ 3 3 Esitietoja..................................

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista

Lisätiedot

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +

Lisätiedot

f(x) f(y) x y f f(x) f(y) (x) = lim

f(x) f(y) x y f f(x) f(y) (x) = lim Y1 (Matematiikka I) Haastavampia lisätehtäviä Syksy 1 1. Funktio h määritellään seuraavasti. Kuvan astiaan lasketaan vettä tasaisella nopeudella 1 l/min. Astia on muodoltaan katkaistu suora ympyräkartio,

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

BM20A0900, Matematiikka KoTiB3

BM20A0900, Matematiikka KoTiB3 BM20A0900, Matematiikka KoTiB3 Luennot: Matti Alatalo Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luvut 1 4. 1 Sisältö Ensimmäisen kertaluvun differentiaaliyhtälöt

Lisätiedot

Word Taulukko-ominaisuus

Word Taulukko-ominaisuus Word Taulukko-ominaisuus Koulutusmateriaalin tiivistelmä 17.3.2014 JAO Seuranen Valtteri Valtteri Seuranen Tehtävä 1[1] Sisällys Taulukon luominen Word-ohjelmalla... 2 Taulukon muokkaaminen... 7 Rakenne

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot 3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,

Lisätiedot

Differentiaalilypsämöt II Harjoitus 1

Differentiaalilypsämöt II Harjoitus 1 Differentiaalilypsämöt II Harjoitus 1 Heikki Korpela 22. maaliskuuta 217 Tehtävä 1. Ratkaise seuraava differentiaaliyhtälösysteemin alkuarvotehtävä { y 1 = λ 1 y 1, y 1 ) = y y 2 = λ 1 y 1 λ 2 y 2, y2)

Lisätiedot

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu 2 Interpolointi Olkoon annettuna n+1 eri pistettä x 0, x 1, x n R ja n+1 lukua y 0, y 1,, y n Interpoloinnissa etsitään funktiota P, joka annetuissa pisteissä x 0,, x n saa annetut arvot y 0,, y n, (21)

Lisätiedot

5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia

5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 2018 5 Funktion jatkuvuus 5.1 Määritelmä ja perustuloksia 1. Tarkastellaan väitettä a > 0: b > 0: c > 0: d U c (a): f(d) / U b (f(a)), missä a, b, c, d R. Mitä funktion

Lisätiedot

Differentiaaliyhtälöt

Differentiaaliyhtälöt Differentiaaliyhtälöt Differentiaaliyhtälöksi (lyh. DY) sanotaan yhtälöä, jossa on tuntemattomana jokin funktio y(x) ja jossa esiintyy sen derivaattoja y, y, y, y (4),... Esimerkiksi y + y = x, y y + y

Lisätiedot

Funktioiden approksimointi ja interpolointi

Funktioiden approksimointi ja interpolointi Funktioiden approksimointi ja interpolointi Keijo Ruotsalainen Division of Mathematics interpolaatio-ongelma 8 Eksponenttifunktion exp(x) interpolointi 3.5 Funktion e^{0.25x} \sin(x) interpolointi 7 3

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, 009-010 / ORMS1010 Matemaattinen Analyysi 7 harjoitus 1 Määritä seuraavien potenssisarjojen suppenemissäteet a) k k x 5)k b) k=1 k x 5)k = k k 1) k ) 1) Suppenemissäteen R käänteisarvo

Lisätiedot

Osa 11. Differen-aaliyhtälöt

Osa 11. Differen-aaliyhtälöt Osa 11. Differen-aaliyhtälöt Differen-aaliyhtälö = yhtälö jossa esiintyy jonkin funk-on derivaa

Lisätiedot

4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 Laaja matematiikka 5 Kevät 010 4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa esiintyvistä matemaattisista malleista on differentiaaliyhtälö.

Lisätiedot

LUKU 6. Mitalliset funktiot

LUKU 6. Mitalliset funktiot LUKU 6 Mitalliset funktiot Määritelmistä 3. ja 3.0 seuraa, että jokainen Lebesgue-integroituva funktio on porrasfunktiojonon raja-arvo melkein kaikkialla. Kuitenkin moni tuttu funktio ei ole Lebesgue-integroituva.

Lisätiedot

d Todista: dx xn = nx n 1 kaikilla x R, n N Derivaatta Derivaatta ja differentiaali

d Todista: dx xn = nx n 1 kaikilla x R, n N Derivaatta Derivaatta ja differentiaali 6. Derivaatta 6.. Derivaatta ja differentiaali 72. Olkoon f () = 4. Etsi derivaatan määritelmän avulla f ( 3). f ( 3) = 08. 73. Muodosta funktion f () = derivaatta suoraan määritelmän mukaan, so. tarkastelemalla

Lisätiedot

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS Huomautus. Analyysin yksi keskeisimmistä käsitteistä on jatkuvuus! Olkoon A R mielivaltainen joukko

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle / MS-A008 Differentiaali- ja integraalilaskenta, V/207 Differentiaali- ja integraalilaskenta Ratkaisut 2. viikolle / 8. 2.4. Jatkuvuus ja raja-arvo Tehtävä : Määritä raja-arvot a) 3 + x, x Vihje: c)-kohdassa

Lisätiedot

2v 1 = v 2, 2v 1 + 3v 2 = 4v 2.. Vastaavasti ominaisarvoa λ 2 = 4 vastaavat ominaisvektorit toteuttavat. v 2 =

2v 1 = v 2, 2v 1 + 3v 2 = 4v 2.. Vastaavasti ominaisarvoa λ 2 = 4 vastaavat ominaisvektorit toteuttavat. v 2 = TKK, Matematiikan laitos Pikkarainen/Tikanmäki Mat-1.1320 Matematiikan peruskurssi K2 Harjoitus 12, A=alku-, L=loppuviikko, T= taulutehtävä, P= palautettava tehtävä, W= verkkotehtävä 21. 25.4.2008, viikko

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi

Lisätiedot

Analyysi I (sivuaineopiskelijoille)

Analyysi I (sivuaineopiskelijoille) Analyysi I (sivuaineopiskelijoille) Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2017 Mika Hirvensalo mikhirve@utu.fi Luentoruudut 19 1 of 18 Kahden muuttujan funktioista

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016

Lisätiedot

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan

Lisätiedot

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen 4. Funktiojonot ja funktiotermiset sarjat 4.1. Funktiojono ja funktioterminen sarja 60. Tutki, millä muuttujan R arvoilla funktiojono f k suppenee, kun Mikä on rajafunktio? a) f k () = 2k 2k + 1, b) f

Lisätiedot

Esimerkki 1 Ratkaise differentiaaliyhtälö

Esimerkki 1 Ratkaise differentiaaliyhtälö Esimerkki 1 Ratkaise differentiaaliyhtälö x 2 y xy =1/x. 1 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 1/20 20 Esimerkki 2 Ratkaise differentiaaliyhtälö x(ln y)y y ln x =0. 2 / K. Tuominen kimmo.i.tuominen@helsinki.fi

Lisätiedot

Luoki?elua: tavallinen vs osi?ais. Osa 11. Differen0aaliyhtälöt. Luoki?elua: kertaluku. Luoki?elua: lineaarisuus 4/13/13

Luoki?elua: tavallinen vs osi?ais. Osa 11. Differen0aaliyhtälöt. Luoki?elua: kertaluku. Luoki?elua: lineaarisuus 4/13/13 4/3/3 Osa. Differen0aaliyhtälöt Differen0aaliyhtälö = yhtälö jossa esiintyy jonkin funk0on derivaa?a. Esim: dx = x2 f x + f xy 2 2m d 2 ψ = Eψ dx 2 Luoki?elua: tavallinen vs osi?ais Differen0aaliyhtälöt

Lisätiedot

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0102 Differentiaali- ja integraalilaskenta 1 MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 15.11.2016 Sisältö Alkeisfunktiot 1.1 Funktio I Funktio f : A! B on sääntö, joka liittää

Lisätiedot

Normaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa

Normaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa Normaaliryhmä Toisen kertaluvun normaaliryhmä on yleistä muotoa x = u(t,x,y), y t I, = v(t,x,y), Funktiot u = u(t,x,y), t I ja v = v(t,x,y), t I ovat tunnettuja Toisen kertaluvun normaaliryhmän ratkaisu

Lisätiedot

Pisteessä (1,2,0) osittaisderivaatoilla on arvot 4,1 ja 1. Täten f(1, 2, 0) = 4i + j + k. b) Mihin suuntaan pallo lähtee vierimään kohdasta

Pisteessä (1,2,0) osittaisderivaatoilla on arvot 4,1 ja 1. Täten f(1, 2, 0) = 4i + j + k. b) Mihin suuntaan pallo lähtee vierimään kohdasta Laskukarnevaali Matematiikka B. fx, y, z) = x sin z + x y, etsi f,, ) Osittaisderivaatat ovat f f x = sin z + xy, y = x, f z = x cos z Pisteessä,,) osittaisderivaatoilla on arvot 4, ja. Täten f,, ) = 4i

Lisätiedot

Matematiikan tukikurssi: kurssikerta 12

Matematiikan tukikurssi: kurssikerta 12 Matematiikan tukikurssi: kurssikerta 2 Tenttiin valmentavia harjoituksia Huomio. Tähän tulee lisää ratkaisuja sitä mukaan kun ehin niitä kirjoittaa. Kurssilla käyään läpi tehtävistä niin monta kuin mahollista.

Lisätiedot

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio Olkoon a 1 = a 2 = 5 ja a n+1 = a n + 6a n 1 kun n 2. Todista induktiolla, että a n = 3 n ( 2) n, kun n on positiivinen

Lisätiedot

Peruskäsitteet 1. Mitkä ovat seuraavien funktiota y = y(x) koskevien differentiaaliyhtälöiden kertaluvut? Ovatko yhtälöt normaalimuotoisia?

Peruskäsitteet 1. Mitkä ovat seuraavien funktiota y = y(x) koskevien differentiaaliyhtälöiden kertaluvut? Ovatko yhtälöt normaalimuotoisia? Peruskäsitteet 1. Mitkä ovat seuraavien funktiota y = y(x) koskevien differentiaaliyhtälöiden kertaluvut? Ovatko yhtälöt normaalimuotoisia? a) xy + 2y sinx + y = e x b) y + sin(x + y) = 0 c) y = xy y y

Lisätiedot

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on? Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden

Lisätiedot

DIFFERENTIAALIYHTÄLÖN NUMEERISESTA RATKAISEMISESTA 2 1,5 0,5 -0,5 -1,5-2

DIFFERENTIAALIYHTÄLÖN NUMEERISESTA RATKAISEMISESTA 2 1,5 0,5 -0,5 -1,5-2 Differentiaaliyhtälön numeerisesta ratkaisemisesta Olkoot D R 2 alue ja r, f, g : D R jatkuvia funktioita. Differentiaaliyhtälön y r(x, y) suuntaelementtikenttä on kuvaus D R 2, (x, y) (, r(x, y)). Suuntaelementtikenttä

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen

Lisätiedot

Matematiikan perusteet taloustieteilij oille I

Matematiikan perusteet taloustieteilij oille I Matematiikan perusteet taloustieteilijöille I Harjoitukset syksy 2006 1. Laskeskele ja sieventele a) 3 27 b) 27 2 3 c) 27 1 3 d) x 2 4 (x 8 3 ) 3 y 8 e) (x 3) 2 f) (x 3)(x +3) g) 3 3 (2x i + 1) kun, x

Lisätiedot