HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos PL 26 (Teollisuuskatu 23) HELSINGIN YLIOPISTO

Koko: px
Aloita esitys sivulta:

Download "HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos PL 26 (Teollisuuskatu 23) HELSINGIN YLIOPISTO"

Transkriptio

1 G G G HELSINGIN YLIIST Tietojenäsitteytieteen itos L 26 (Teoisuustu 23) HELSINGIN YLIIST hjemoinnin j sennn perusmit Lsuhrjoitustehtäviä 1. oon j () "!#%$ () ( *) + (c) &' 2. soit indutio, että,.-/ ':.;<8<=?>. Kirjoit ui seurvt jouot: 3. erustee, että BCD E;? miä thns vähintään simerinen on eviventti inäärioston A nss siinä mieessä, :n merijonot voidn heposti oodt A :n merijonoisi j ääntäen. Miten pjon merijonon pituus voi muuttu suunnitteemsssi oodusess (siis jos merijonon pituus :ss, mitä sen pituus on A :ss)? 4. Trsten päätösongem nnettu ei-negtiiviset oonisuvut F, G ; ono FIHJG?. Muotoie ongem päätösongemformismin muisesi. (Vitse sopiv osto, uuprien oodus jne.) Miä on ongem vstv formi iei? 5. pe03-ieessä muuttujn nimesi ep /1/ merijono jo: MUMUEUT VW X MUEUMUY% CD MUMUEUT Z oostuu KTS, ei numero,. ei sisää uosnn mitään ieen vrttu sn, joit ovt: if, then, ese, whie, do, egin, end, not, nd, red j write Trsten päätösongem "nnettu /\/ merijono, ono ieen uvinen muuttujn nimi?". muotoie ongem päätösongemformismin muisesi, määrittee päätösongem vstv formi iei, pe03- tee humsi ieeä (pseudoieinenin äy) ohjem jo rtisee päätösongemn. hjem siis s syötteeseen merijonon j vst 1 jos merijono episi pe03:n muuttujn nimesi j muuten Trsten KML5N /1/ tspinoisesti suutettujen merijonojen ongem. Merijono on tspinoisesti suutettu jos sen jäeen un ii muut uin suumerit on / / pyyhitty pois, on muoto join ^]"_, ei esim. ` ;e: f=>`*gih dcwc j ovt tspinoisesti suutettuj, mutt ;*: =?> g(h j eivät. muotoie ongem päätösongemformismin muisesi, määrittee päätösongem vstv formi iei, tee humsi ieeä (pseudoieinenin äy) ohjem jo rtisee päätösongemn. 7. Kuv seurvt oston () ]j m () ]n m (c) ]j m ieet deterministisinä ääreisinä utomttein. sisätää täsmäeen si :t j vähintään yhden :n sisätää prittomn määrän :t sisätää priisen määrän :t j ome joisen määrän :tä

2 c 8. Kuv seurvt oston () ]j () ]n m (c) ]j m ieet deterministisinä ääreisinä utomttein. sisätää osjonon ti ei sisää osjono eiä sisätää osjonot j (jot voivt mennä pääeäin ) 9. Ldi epädeterministinen ti deterministinen ääreinen utomtti jo tunnist tehtävässä 5 määriteyn ieen. 10. Muodost ääreinen utomtti, jo tunnist seurvien sääntöjen muiset muuttujmääritteyt: - muuttujen edessä on tyyppimäärittey int ti fot, - muuttujnimi oostuu vin irjimist ti numeroist, - muuttujnimen ensimmäinen meri on irjin, - muuttujmääritteyn perässä on puoipiste. 11. Muodost seurv deterministist ääreistä utomtti vstv minimiutomtti: 12. Muodost seurv deterministist ääreistä utomtti vstv minimiutomtti: Ldi W epädeterministinen ääreinen utomtti, jo test sisätääö nnettu oston merijono osjono c cwc. Determinisoi utomtti. Minimoi se. 14. Muodost säännöinen usee, jo uv oienmuotoisi suomisi tuosoitteit (esim. Mnnerheimintie 5 A Hesini). 15. Muodost seurvi ieiä vstvt säännöiset useeet: () () (c) ]j C <;?m :n pituus on vähintään 3 j oms io on C` ]nc <;?m :n prittomt positiot ovt 1 j :ssä on priinen määrä C :i ]j C <;?m :ssä ei oe merijono ;;<C`

3 16. Muodost seurvi ieiä vstvt säännöiset () ]j m sisätää täsmäeen si :t () ]n m sisätää vähintään si :t ]j sisätää priisen määrän :t (c) 17. Kuv seurvt oston () ]j m () ]n m (c) ]j m 18. Sievennä seurvi oston # () T () D Ef (c) f E (d) ieet säännöisinä useein: sisätää osjonon ti ei sisää osjono eiä sisätää osjonot j (jot voivt mennä pääeäin ) säännöisiä useeit: 19. Muodost oheist -utomtti vstv epädeterministinen (ei :iton) ääreinen utomtti., ε ε 1 ε ε C ;< 20. Muodost uenno esistetyä tv säännöistä useett oist -siirtymät. Determinisoi se. Minimoi se. 5 vstv -utomtti. 21. Muodost uenno esitetyn onstrution muisesti seurvi ääreisiä utomttej vstvt säännöiset useeet: () ()

4 c - g Muodost seurvn ääreisen utomtin tunnistm ietä uvv säännöinen usee: 24. Todist pumppusemm että iei C Todist pumppusemm että iei Meritään merijono UMUEUf 2 ). Merijono on pindromi, jos Trsten oston. () soit, että iei AL ei oe säännöinen. ; " 7 () Ldi ieen tuottv ontestiton ieioppi. 27. vto seurvt ieet säännöisiä? Todist! ]n C` E on epäsäännöinen. on epäsäännöinen. tperin irjoitettun (so. jos, niin (esimerisi "isorissiissirosi"). pindromien muodostm ietä AL ] C CC CD; E;ECC <;;EC!jC `; R C` () () ]nc <;?m :n pituus on priton (c) ]j C <;?m :ss on yhtä mont C : j 1:ä (d) ]n m :n sisätämien -merien määrä on viideä joinen j -merien määrä on priton 28. Seurvien ontestittomien ieioppien tuottmt ieet ovt säännöisiä. Kuv ieet säännöisinä useein: () () C ; 29. Ldi ontestiton ieippi, jo uv yhden muuttujn c poynomej. Ysinertisuuden vuosi voit oett, että termien ertoimet j esponentit ovt ysinumeroisi ei-negtiivisi oonisuuj j ensimmäinen termi on etumeritön. Termien ei trvitse o missä tietyssä : ;, järjestysessä j smnsteisi termejä voi poynomiss o useit. Esim. c ˆ g c c ˆ Z g h%: : > c c, > c ˆ C, c,. 30. Ldi ontestittomt ieiopit seurvien ieten uvmiseen: () 7 C - () 8" m 7# C` -! (c) ]j :ssä on si ert niin mont :t uin :tä 31. Ldi oiee inerinen ieioppi ieen ] W ` ei sisää osjono D uvmiseen. UEUMU 23. soit, että minä thns säännöisten ieten uo on sujettu ompementtien j eiusten suhteen, so. jos ieet ^ ovt säännöisiä, niin smoin ovt myös ieet B % j!. (Vihje: Kompementointi vrten trstee :n tunnistv determinististä ääreistä utomtti j eiust vrten sove de Morgnin ej. Huomutus: Tämä tuos osoitt, että säännöisissä useeiss voitisiin si myös ompementtiopertio j eiusopertio imn, että uvttvien ieten uo muuttuisi.)

5 32. () soit, että seurv ieioppi on moniseitteinen: e e # () Muunn ieioppi LL(1)-muotoon uennoi esitetyä tv. no se nyt ysiseitteinen? 33. () Seurv ieippi ei oe LL(1)-muodoss: % Muunn ieioppi LL(1)-muotoon. () Ldi pseudooodi reursivisee jäsentäjäe ieiopin uvme ieee. 34. no oheinen ontestion ieioppi ysiseitteinen? erustee vstusesi. ( (# ( M 35. Muunn edeisen tehtävän ieioppi Chomsyn normimuotoon. Esitä myös väiviheet. 36. Muunn ieioppi % Chomsyn normimuotoon. Esitä myös väiviheet. 37. Muunn ieioppi (`# # T e Chomsyn normimuotoon. Esitä myös väiviheet. 38. Ljennetn pe03:ietä siten että Käytetyt muuttujt on määritetävä smn tpn uin esim. jvss: int n, i, j; ii muuttujmääritteyt tehdään ennen ohjemn äsyosn määritteyä ennen äsyosn määritteyä voidn määriteä myös iohjemi äytössä on hdentyyppisiä iohjemi, oonisuvun puttvi j uu puttmttomi. Ensimmäiset määriteään tyiin function nimi... end function, j jäimmäiset tyyiin procedure nimi... end procedure. Aiohjemi voi o piisi muuttuji, mutt ei utsuprmetrejä! Aiohjem ei voi o sisääisiä iohjemi. iohjemien nimet ovt syntsitn smnisi uten muuttujnimet Ljenn monisteen sivu 102 oev ieioppi siten että se tt myös yä uvtun jennusen. 39. Trsten ontestitont ieioppi ( (# ( M () no ieioppi ysiseitteinen? erustee vstusesi. () Muunn ieioppi Chomsyn normimuotoon. Esitä myös väiviheet. 40. Simuoi CYK-goritmin toimint sen rtistess uuuvto merijonot j ieiopin ; BC tuottmn ieeen. Myönteisissä tpusiss esitä merijonoie ieiopin muiset jäsennyspuut.

6 41. Simuoi CYK-goritmin toimint sen rtistess, uuuvto merijonot j ieiopin ( e ^ tuottmn ieeen. Myönteisissä tpusiss esitä merijonoie ieiopin muiset jäsennyspuut. 42. Simuoi CYK-goritmin toimint sen rtistess, uuuvto merijonot j ieiopin ; BC tuottmn ieeen. Myönteisissä tpusiss esitä merijonoie ieiopin muiset jäsennyspuut. 43. soit, että iei 6 oevi merijonoj.) ] ei oe ontestion. (Vihje: Trstee muoto 44. soit, että ontestittomien ieten % C uo ei oe sujettu eiusten eiä ompementtien hden ontestittomn ieen eiusen.) suhteen. (Vihje: Esitä iei 45. Ldi pinoutomtit seurvien ieten tunnistmiseen: () () 6 (c) ]j ]j M ]n T :ss on yhtä mont :t j :tä 46. Ldi rjoittmton ieioppi ieen e ]n tunnistmiseen.

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita.

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita. T-79.8 Syksy 22 Tietojenkäsittelyteorin perusteet Hrjoitus 5 Demonstrtiotehtävien rtkisut Säännölliset lusekkeet määritellään induktiivisesti: j kikki Σ ovt säännöllisiä lusekkeit. Mikäli α j β ovt säännöllisiä

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2015

ICS-C2000 Tietojenkäsittelyteoria Kevät 2015 ICS-C2 Tietojenkäsittelyteori Kevät 25 Kierros 3, 26. 3. tmmikuut Demonstrtiotehtävien rtkisut D: Ldi epädeterministinen äärellinen utomtti, jok test onko nnetun inäärijonon kolmnneksi viimeinen merkki,

Lisätiedot

Q = {q 1, q 2, q 3, q 4 } Σ = {a, b} F = {q 4 },

Q = {q 1, q 2, q 3, q 4 } Σ = {a, b} F = {q 4 }, T-79.48 Syksy 22 Tietojenkäsittelyteorin perusteet Hrjoitus 4 Demonstrtiotehtävien rtkisut 4. Tehtävä: Ldi epädeterministinen äärellinen utomtti, jok test onko nnetun inäärijonon kolmnneksi viimeinen merkki,

Lisätiedot

Täydentäviä muistiinpanoja epädeterministisistä äärellisistä automaateista

Täydentäviä muistiinpanoja epädeterministisistä äärellisistä automaateista Täydentäviä muistiinpnoj epädeterministisistä äärellisistä utomteist Antti-Juhni Kijnho 2. mrrsuut 25 NFA Trstelln seurv NFA:t. 2 3 Sen toimint merijonoll voidn esittää päätöspuun: 3 3 2 2 3 3 TIEA24 Automtit

Lisätiedot

Kieli, merkitys ja logiikka, kevät 2011 HY, Kognitiotiede. Vastaukset 2.

Kieli, merkitys ja logiikka, kevät 2011 HY, Kognitiotiede. Vastaukset 2. Kieli, merkitys j logiikk, kevät 2011 HY, Kognitiotiede stukset 2. ** Kikiss utomteiss lkutil on. 1.. nn äärelliset utomtit luseille (1-c), jokiselle omns. (1).. c. q3 q4 q3 q4 q5 q6. Muodost äärellinen

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2 Tietojenkäsittelyteori Kevät 2 Kierros,. 5. helmikuut Demonstrtiotehtävien rtkisut D: Sievennä seurvi säännöllisiä lusekkeit (so. konstruoi yksinkertisemmt lusekkeet smojen kielten kuvmiseen): ()

Lisätiedot

Olkoon. M = (Q, Σ, δ, q 0, F)

Olkoon. M = (Q, Σ, δ, q 0, F) T 79.148 Tietojenkäsittelyteorin perusteet 2.4 Äärellisten utomttien minimointi Voidn osoitt, että jokisell äärellisellä utomtill on yksikäsitteinen ekvivlentti (so. smn kielen tunnistv) tilmäärältään

Lisätiedot

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko 3.3 KILIOPPIN JÄSNNYSONGLMA Rtkistv tehtävä: Annettu yhteydetön kielioppi G j merkkijono x. Onko x L(G)? Rtkisumenetelmä = jäsennyslgoritmi. Useit vihtoehtoisi menetelmiä, erityisesti kun G on jotin rjoitettu

Lisätiedot

Olkoon. äärellinen automaatti. Laajennetaan M:n siirtymäfunktio yksittäisistä syötemerkeistä merkkijonoihin: jos q Q, x Σ, merkitään

Olkoon. äärellinen automaatti. Laajennetaan M:n siirtymäfunktio yksittäisistä syötemerkeistä merkkijonoihin: jos q Q, x Σ, merkitään T 79.00/002 Tietojenkäsittelyteorin perusteet 2. Äärellisten utomttien minimointi Voidn osoitt, että jokisell äärellisellä utomtill on yksikäsitteinen ekvivlentti (so. smn kielen tunnistv) tilmäärältään

Lisätiedot

11. Merkkijonot. 11.1. Merkkijonojen abstrakti tietotyyppi

11. Merkkijonot. 11.1. Merkkijonojen abstrakti tietotyyppi 11.1. Merkkijonojen strkti tietotyyppi 11. Merkkijonot Dokumenttien käsittey tietokoneiss on ksvnut vtvsti viimeisen prinkymmenen vuoden ikn. Tietokoneit käytetään dokumenttien kirjoittmiseen, muuttmiseen,

Lisätiedot

6.2 Algoritmin määritelmä

6.2 Algoritmin määritelmä 6.2 Algoritmin määritelmä Mitä lgoritmill yleensä trkoitetn? Peritteess: Yksiselitteisesti kuvttu jono (tietojenkäsittely)opertioit, jotk voidn toteutt meknisesti. Käytännössä: luonnollist kieltä, pseudokoodi

Lisätiedot

Automaatin tunnistama kieli on sen hyväksymien merkkijonojen joukko. Täsmällinen muotoilu: δ,q 0,{q 2,q 3,q 6 }), missä

Automaatin tunnistama kieli on sen hyväksymien merkkijonojen joukko. Täsmällinen muotoilu: δ,q 0,{q 2,q 3,q 6 }), missä T 79.1001/1002 Tietojenkäsittelyteorin perusteet 2.3 Äärellisen utomtin käsitteen formlisointi eknistinen mlli: syötenuh: nuhpää: ohjusyksikkö: i n p δ u q 1 q 2 Äärellinen utomtti koostuu äärellistilisest

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2000 Tietojenkäsittelyteori Kevät 2016 Kierros 5, 8. 12. helmikuut Demonstrtiotehtävien rtkisut D1: Hhmolusekkeet ovt esimerkiksi UN*X-järjestelmien tekstityökluiss käytetty säännöllisten lusekkeiden

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2000 Tietojenkäsittelyteori Kevät 2016 Kierros 2, 18. 22. tmmikuut Demonstrtiotehtävien rtkisut D1: Formuloi luennoll (monisteen s. 17) esitetty yksinkertinen khviutomtti täsmällisesti äärellisen

Lisätiedot

Laskennan mallit Erilliskoe , ratkaisuja (Jyrki Kivinen)

Laskennan mallit Erilliskoe , ratkaisuja (Jyrki Kivinen) 58226 Lskennn mllit Erilliskoe 4.2.2, rtkisuj (Jyrki Kivinen). [6+6+3+3 pistettä] () Kieli A koostuu niistä kkoston {, } merkkijonoist, joiss esiintyy osjono. Esitä kielelle A sekä deterministinen äärellinen

Lisätiedot

2.6 SÄÄNNÖLLISET LAUSEKKEET Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita:

2.6 SÄÄNNÖLLISET LAUSEKKEET Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita: 2.6 SÄÄNNÖLLISET LAUSEKKEET Automttimlleist poikkev tp kuvt yksinkertisi kieliä. Olkoot A j B kkoston Σ kieliä. Perusopertioit: Yhdiste: A B = {x Σ x A ti x B}; Ktentio: AB = {xy Σ x A, y B}; Potenssit:

Lisätiedot

2.5 Säännöllisten kielten rajoituksista

2.5 Säännöllisten kielten rajoituksista 68 2.5 Säännöllisten kielten rjoituksist Minkä thns kkoston formlej kieliä (= päätösongelmi, tunnistusongelmi) on ylinumeroituv määrä kun ts säännöllisiä lusekkeit (= merkkijonoj) on numeroituv määrä Näin

Lisätiedot

2. Laadi regexp, jonka avulla egrep-ohjelma löytää tekstitiedostosta kaikki

2. Laadi regexp, jonka avulla egrep-ohjelma löytää tekstitiedostosta kaikki Itseopiskelukurssin tehtävät lv. 2013 2014 TIEA241 Automtit j kieliopit Tehtävien tekeminen on suositeltv, j siihen knnustetn mm. trjomll rvosnn korotus kurssisivustoll kerrotull tvll. Kikki tehtäviä ei

Lisätiedot

Laskennan mallit (syksy 2010) 1. kurssikoe, ratkaisuja

Laskennan mallit (syksy 2010) 1. kurssikoe, ratkaisuja 582206 Lskennn mllit (syksy 2010) 1. kurssikoe, rtkisuj 1. [2+2+2 pistettä] Säännöllisissä lusekkeiss on käytetty tuttu lyhennysmerkintää Σ = ( ). () merkkijonot, joiden kksi ensimmäistä merkkiä ovt joko

Lisätiedot

Laskennan perusmallit 2013: Kertausta

Laskennan perusmallit 2013: Kertausta Lskennn perusmllit 13: Kertust Pekk Kilpeläinen Tietojenkäsittelytieteen litos, Itä-Suomen yliopisto sähköposti: pekk.t.kilpelinen@uef.fi 8. helmikuut 13 Lähtökoht j trkstelun kohde Lskentongelmt erityisesti

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 22. syyskuuta 2016

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 22. syyskuuta 2016 lusekkeet, lusekkeet, TIEA241 Automtit j kieliopit, syksy 2016 Antti-Juhni Kijnho lusekkeet j smuus TIETOTEKNIIKAN LAITOS 22. syyskuut 2016 Sisällys lusekkeet, lusekkeet lusekkeet j smuus j smuus lusekkeet

Lisätiedot

Mutta esimerkiksi 0-kertaisesti pumpattaessa: Siten L ei voi olla säännöllinen.

Mutta esimerkiksi 0-kertaisesti pumpattaessa: Siten L ei voi olla säännöllinen. 2.8 Säännöllisten kielten rjoituksist Krdinliteettisyistä on oltv olemss (pljon) ei-säännöllisiä kieliä: kieliä on ylinumeroituv määrä, säännöllisiä lusekkeit vin numeroituvsti. Voidnko löytää konkreettinen,

Lisätiedot

7303045 Laaja matematiikka 2 Kevät 2005 Risto Silvennoinen

7303045 Laaja matematiikka 2 Kevät 2005 Risto Silvennoinen 7303045 Lj mtemtii 2 Kevät 2005 Risto Silveoie. Luusrjt Kos srjt ovt summie jooj, ertmme esi jooje teori. Joot Joo o mtemtii iei perustvimpi äsitteitä j se vull ohdt äärettömyys esimmäistä ert. Luulueit

Lisätiedot

problem computational non computational problem problem unsolvable solvable problem problem efficient solution partially solvable

problem computational non computational problem problem unsolvable solvable problem problem efficient solution partially solvable ? BA F S R ] ] UbM R H ] ] ] d ] ] M S R H 678 G ED B A> UKV ST NOKPQ K IJKLM H \ US ST NOKPQ K IJKLM h US bje bokpq T UKV ST NOKPQ K IJKLM d i mn op k v qr kst { i 0 i i i probem ompttion probem non

Lisätiedot

Käydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja.

Käydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja. DI mtemtiikn opettjksi: Täydennyskurssi, kevät Luentorunko j hrjoituksi viikolle : ti 9.. klo :-5:, to.. klo 9:5-: j klo 4:5-6: Käydään läpi: äärirvo trkstelu, L Hospitl, integrli j srjoj.. Kerrtn äärirvojen

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C Tietojenkäsittelyteori Kevät 6 Kierros 8, 7.. mliskuut Demonstrtiotehtävien rtkisut D: Määrittele Turingin koneen stndrdimllin muunnelm, joss koneen työnuh on molempiin suuntiin ääretön, j osoit

Lisätiedot

Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita:

Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita: 2.6 SÄÄNNÖLLISET LAUSEKKEET Automttimlleist poikkev tp kuvt yksinkertisi kieliä. Olkoot A j B kkoston Σ kieliä. Perusopertioit: Yhdiste: A B = {x Σ x A ti x B}; Ktentio: AB = {xy Σ x A, y B}; Potenssit:

Lisätiedot

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA Tekijät: Ari Heimonen, Hellevi Kupil, Ktj Leinonen, Tuomo Tll, Hnn Tuhknen, Pekk Vrniemi Alkupl Tiedekeskus Tietomn torninvrtij

Lisätiedot

A-Osio. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat. A-osiossa ei saa käyttää laskinta.

A-Osio. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat. A-osiossa ei saa käyttää laskinta. MAA Loppukoe 5.. Jussi Tyni Tee pisteytysruudukko konseptin yläreunn! Vstuksiin väliviheet, jotk perustelevt vstuksesi! Lue ohjeet huolellisesti! A-Osio. Vlitse seurvist kolmest tehtävästä kksi, joihin

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Disreetin matematiian perusteet Osa 3: Kombinatoriia Riia Kangaslampi 2017 Matematiian ja systeemianalyysin laitos Aalto-yliopisto Kombinatoriia Summaperiaate Esimeri 1 Opetusohjelmaomiteaan valitaan

Lisätiedot

2.2 Automaattien minimointi

2.2 Automaattien minimointi 24 2.2 Automttien minimointi Kksi utomtti, jotk tunnistvt täsmälleen smn kielen ovt keskenään ekvivlenttej Äärellinen utomtti on minimlinen jos se on tilmäärältään pienin ekvivlenttien utomttien joukoss

Lisätiedot

Kuvausta f sanotaan tällöin isomorfismiksi.

Kuvausta f sanotaan tällöin isomorfismiksi. Määritelmä..12. Oletetn, että 1 =(V 1,E 1 ) j 2 =(V 2,E 2 ) ovt yksinkertisi verkkoj. Verkot 1 j 2 ovt isomorfiset, jos seurvt ehdot toteutuvt: (1) on olemss bijektio f : V 1 V 2 (2) kikill, b V 1 pätee,

Lisätiedot

Q on automaatin tilojen äärellinen joukko; Σ on automaatin syöteaakkosto; δ : Q Σ Q on automaatin siirtymäfunktio; q 0 Q on automaatin alkutila;

Q on automaatin tilojen äärellinen joukko; Σ on automaatin syöteaakkosto; δ : Q Σ Q on automaatin siirtymäfunktio; q 0 Q on automaatin alkutila; Q on utomtin tilojen äärellinen joukko; Σ on utomtin syötekkosto; δ : Q Σ Q on utomtin siirtymäfunktio; q Q on utomtin lkutil; F Q on utomtin hyväksyvien tilojen joukko. Siirtymäfunktio δ on määritelmän

Lisätiedot

Säännöllisten operaattoreiden täydentäviä muistiinpanoja

Säännöllisten operaattoreiden täydentäviä muistiinpanoja Säännöllisten operttoreiden täydentäviä muistiinpnoj Antti-Juhni Kijnho 1. huhtikuut 2011 Vnht määritelmät Määritelmä 1. Äärellinen epätyhjä joukko on merkistö, j sen lkioit kutsutn merkeiksi. Määritelmä

Lisätiedot

Vasen johto S AB ab ab esittää jäsennyspuun kasvattamista vasemmalta alkaen:

Vasen johto S AB ab ab esittää jäsennyspuun kasvattamista vasemmalta alkaen: Vasen johto S AB ab ab esittää jäsennyspuun kasvattamista vasemmalta alkaen: S A S B Samaan jäsennyspuuhun päästään myös johdolla S AB Ab ab: S A S B Yhteen jäsennyspuuhun liittyy aina tasan yksi vasen

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A00 Disreetin matematiian perusteet Esimerejä ym., osa I G. Gripenberg Jouo-oppi ja logiia Todistuset logiiassa Indutioperiaate Relaatiot ja funtiot Funtiot Aalto-yliopisto. maalisuuta 0 Kombinatoriia

Lisätiedot

NASTOLAN YRITYSPUISTO RAKENNUSTAPAOHJEET NASTOLAN YRITSPUISTON ALUEEN KORTTELEITA 500, 501, 504-511 KOSKEVAT RAKENNUSTAPAOHJEET

NASTOLAN YRITYSPUISTO RAKENNUSTAPAOHJEET NASTOLAN YRITSPUISTON ALUEEN KORTTELEITA 500, 501, 504-511 KOSKEVAT RAKENNUSTAPAOHJEET NASTOLAN YRISPUISTO RAKENNUSTAPAOHJEET NASTOLAN YRITSPUISTON ALUEEN KORTTELEITA 00, 0, 0 - KOSKEVAT RAKENNUSTAPAOHJEET NASTOLAN YRITSPUISTON ALUEEN KORTTELEITA 00, 0, 0 - KOSKEVAT RAKENNUSTAPAOHJEET YLEISTÄ

Lisätiedot

HAVAINNOINTI JA TUTKIMINEN

HAVAINNOINTI JA TUTKIMINEN ilumuoto st ksvtu luun ou perusk Tuntikehyksen os-lue: HAVAINNOINTI JA TUTKIMINEN A2 Aivomyrsky j unelmien leikkipuisto Kesto: 1 kksoistunti, 45 min + 45 min Aihe: Syvennetään jtuksi ympäristöstä liittyvästä

Lisätiedot

// Tulostetaan liukulukutyyppinen muuttuja riviä vaihtamatta // yhden desimaalin tarkkuudella. System.out.printf("%.

// Tulostetaan liukulukutyyppinen muuttuja riviä vaihtamatta // yhden desimaalin tarkkuudella. System.out.printf(%. Nämä tehtävät on trkoitettu inostn opiskelijoille, jotk pystyvät svuttmn 40 % rjn (21 pistettä) tekemällä 1 8 kpl ll olevist lisätehtävistä. Ole huolellinen j tee kikki pyydetty. Puutteellisi rtkisuj ei

Lisätiedot

F e. R kertaa ioniparien lukumäärä N. Kun laskemme tämän yhteen Coulombin attraktioenergian kanssa saamme kiteen kokonaisenergiaksi.

F e. R kertaa ioniparien lukumäärä N. Kun laskemme tämän yhteen Coulombin attraktioenergian kanssa saamme kiteen kokonaisenergiaksi. S-436, FYSIIKKA IV (EST) Kevät 5, LH Rtisut LH- Lse liui Ferieergi olettll että joie toi luovutt yhde eletroi johtovyöhö Johtvuuseletroit uodostvt vp vuoroviutttto eletroisu Kliui tiheys o 8,5 g / c 3

Lisätiedot

Ristitulo ja skalaarikolmitulo

Ristitulo ja skalaarikolmitulo Ristitulo j sklrikolmitulo Opetussuunnitelmn 00 mukinen kurssi Vektorit (MAA) sisältää vektoreiden lskutoimituksist keskeisenä ineksen yhteenlskun, vähennyslskun, vektorin kertomisen luvull j vektoreiden

Lisätiedot

R4 Harjoitustehtävien ratkaisut

R4 Harjoitustehtävien ratkaisut . Mitkä seurvist lusekkeist eivät ole polynomej? Miksi eivät? Polynomin termine eksponentti on luonnollinen luku, ne lusekkeet, joiss eksponentti ei ole luonnollinen luku ei ole myöskään polynomi.. x x

Lisätiedot

Riemannin integraalista

Riemannin integraalista Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 6 / vko 13

Diskreetin matematiikan perusteet Laskuharjoitus 6 / vko 13 MS-A040 Diskreetin mtemtiikn perusteet, IV/07 Kngslmpi / Jkosson Diskreetin mtemtiikn perusteet Lskuhrjoitus / vko Tuntitehtävät 4-4 lsketn lkuviikon hrjoituksiss j tuntitehtävät 45-4 loppuviikon hrjoituksiss.

Lisätiedot

Asennusopas. Daikin Altherma - Matalan lämpötilan Monoblocin varalämmitin EKMBUHCA3V3 EKMBUHCA9W1. Asennusopas. Suomi

Asennusopas. Daikin Altherma - Matalan lämpötilan Monoblocin varalämmitin EKMBUHCA3V3 EKMBUHCA9W1. Asennusopas. Suomi Dikin Altherm - Mtln lämpötiln Monolocin vrlämmitin EKMBUHCAV EKMBUHCA9W Suomi Sisällysluettelo Sisällysluettelo Tietoj sikirjst. Tieto tästä sikirjst... Tietoj pkkuksest. Vrlämmitin..... Vrusteiden poistminen

Lisätiedot

TAMPEREEN YLIOPISTO Valinnaisten opintojen syventäviin opintoihin kuuluva tutkielma. Lauri Kumpulainen. Büchin automaateista

TAMPEREEN YLIOPISTO Valinnaisten opintojen syventäviin opintoihin kuuluva tutkielma. Lauri Kumpulainen. Büchin automaateista TAMPEREEN YLIOPISTO Vlinnisten opintojen syventäviin opintoihin kuuluv tutkielm Luri Kumpulinen Büchin utomteist Luonnontieteiden tiedekunt Tietojenkäsittelytieteiden tutkinto-ohjelm Huhtikuu 2017 Tmpereen

Lisätiedot

Riemannin sarjateoreema

Riemannin sarjateoreema Riemannin sarjateoreema LuK-tutielma Sami Määttä 2368326 Matemaattisten tieteiden laitos Oulun yliopisto Sysy 206 Sisältö Johdanto 2 Luujonot 3 2 Sarjat 4 2. Vuorottelevat sarjat........................

Lisätiedot

Mikrotalousteoria 2, 2008, osa III

Mikrotalousteoria 2, 2008, osa III Sisältö Mikrotlousteori 2, 2008, os III Yrityksen tuotntofunktiost 2 Pnosten substituoitvuus 2 3 Yrityksen teori 3 4 Mittkvedut tuotnnoss 5 5 Yksikkökustnnusten j skltuottojen steen välinen yhteys 5 6

Lisätiedot

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi Tehtävä. Jtk loogisesti oheisi jonoj khdell seurvksi tulevll termillä. Perustele vstuksesi lyhyesti. ), c, e, g, b),,, 7,, Rtkisut: ) i j k - oike perustelu j oiket kirjimet, nnetn p - oike perustelu,

Lisätiedot

Laskennan perusmallit (LAP)

Laskennan perusmallit (LAP) Lskennn perusmllit (LAP) Kimmo Fredrikssonin j Mtti Nykäsen mterileist muoknnut Pekk Kilpeläinen Tietojenkäsittelytieteen litos, Itä-Suomen yliopisto sähköposti: pekk.t.kilpelinen@uef.fi Lukuvuoden 2014

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause MS-A010{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 7: Integrli j nlyysin perusluse Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 3.10.2016 Pekk Alestlo, Jrmo Mlinen

Lisätiedot

Tehtävä 3. Määrää seuraavien jonojen raja-arvot 1.

Tehtävä 3. Määrää seuraavien jonojen raja-arvot 1. Jonotehtävät, 0/9/005, sivu / 5 Perustehtävät Tehtävä. Muotoile matemaattiset vastineet seuraavien väitteiden negaatioille (ts. vastaohdat).. Jono (a n ) suppenee ohti luua a.. Jono (a n ) on asvava. 3.

Lisätiedot

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 7: Integrli j nlyysin perusluse Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November 20, 2017

Lisätiedot

Laskennan mallit (syksy 2010) Harjoitus 8, ratkaisuja

Laskennan mallit (syksy 2010) Harjoitus 8, ratkaisuja 582206 Laskennan mallit (syksy 2010) Harjoitus 8, ratkaisuja 1. Tarkastellaan yhteydetöntä kielioppia S SAB ε A aa a B bb ε Esitä merkkijonolle aa kaksi erilaista jäsennyspuuta ja kummallekin siitä vastaava

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29

Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29 Numeeriset menetelmät TIEA381 Luento 9 Kirsi Vljus Jyväskylän yliopisto Luento 9 () Numeeriset menetelmät 17.4.2013 1 / 29 Luennon 9 sisältö Numeerisest integroinnist Newtonin j Cotesin kvt Luento 9 ()

Lisätiedot

SUORAKULMAINEN KOLMIO

SUORAKULMAINEN KOLMIO Clulus Lukion Täydentävä ineisto 45 0 45 60 ( - ) + SUORKULMINEN KOLMIO Pvo Jäppinen lpo Kupiinen Mtti Räsänen Suorkulminen kolmio Suorkulminen kolmio Käsillä olev Lukion Clulus -srjn täydennysmterili

Lisätiedot

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA MAA0 0. Määrätyn integrlin käyttö eräiden pint-lojen lskemisess 0. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA Edellä on todettu, että f (x)dx nt x-kselin j suorien x =, x = sekä funktion

Lisätiedot

5 Epäoleellinen integraali

5 Epäoleellinen integraali 5 Epäoleellinen integrli 5. Integrlin suppeneminen Olkoon f sellinen välillä [, b[ (ei siis välttämättä pisteessä b) määritelty funktio, että f on Riemnn-integroituv välillä [, ] kikill ], b[ eli on olemss

Lisätiedot

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita.

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita. 8. Operttorit, mtriisit j ryhmäteori Mtemttinen operttori määrittelee opertion, jonk mukn sille nnettu funktiot muoktn. Operttorit ovt erityisen tärkeitä kvnttimekniikss, kosk siinä jokist suurett vst

Lisätiedot

Kirjallinen teoriakoe

Kirjallinen teoriakoe 11 Kirjllinen teorikoe Päivämäärä: Osllistujn nimi: Kirjllinen teorikoe Arviointi koostuu khdest osst: "yleiset kysymykset "j lskutehtävät" Kokeen hyväksytty rj on 51% molemmist osioist erikseen. St 1

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiian tuiurssi Kurssierta 5 Sarjojen suppeneminen Kiinnostusen ohteena on edelleen sarja a n = a + a 2 + a 3 + a 4 + n= Tämä summa on mahdollisesti äärellisenä olemassa, jolloin sanotaan että sarja

Lisätiedot

S if b then S else S S s. (b) Muodosta (a)-kohdan kieliopin kanssa ekvivalentti, so. saman kielen tuottava yksiselitteinen.

S if b then S else S S s. (b) Muodosta (a)-kohdan kieliopin kanssa ekvivalentti, so. saman kielen tuottava yksiselitteinen. T-79.148 Kevät 2004 Tietojenkäittelyteorin peruteet Hrjoitu 7 Demontrtiotehtävien rtkiut 4. Tehtävä: Ooit, että yhteydettömien kielten luokk on uljettu yhdite-, ktentioj ulkeumopertioiden uhteen, o. jo

Lisätiedot

Kognitiivinen mallintaminen I, kevät Harjoitus 1. Joukko-oppia. MMIL, luvut 1-3 Ratkaisuehdotuksia, MP

Kognitiivinen mallintaminen I, kevät Harjoitus 1. Joukko-oppia. MMIL, luvut 1-3 Ratkaisuehdotuksia, MP Kognitiivinen mllintminen I, kevät 007 Hrjoitus. Joukko-oppi. MMIL, luvut -3 Rtkisuehdotuksi, MP. Määritellään joukot: A = {,,, 3, 4, 5} E = {, {}, } B = {, 4} F = C = {, } G = {{, }, {,, 4}} D = {, }

Lisätiedot

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä?

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä? Relinen lukulue POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA Millinen on luku, joss on päättymätön j jksoton desimlikehitelmä? Onko sellisi? Trkstelln Pythgorn luseest stv yksikköneliön lävistäjää, luku + = x x =.

Lisätiedot

Asennusopas. Daikin Altherma Matalan lämpötilan Monoblocin varalämmitin EKMBUHCA3V3 EKMBUHCA9W1. Asennusopas. Suomi

Asennusopas. Daikin Altherma Matalan lämpötilan Monoblocin varalämmitin EKMBUHCA3V3 EKMBUHCA9W1. Asennusopas. Suomi Dikin Altherm Mtln lämpötiln Monolocin vrlämmitin EKMBUHCAV EKMBUHCA9W Dikin Altherm Mtln lämpötiln Monolocin vrlämmitin Suomi Sisällysluettelo Sisällysluettelo Tietoj sikirjst. Tieto tästä sikirjst...

Lisätiedot

OUML7421B3003. Jänniteohjattu venttiilimoottori KÄYTTÖKOHTEET TEKNISET TIEDOT OMINAISUUDET SOPIVAT VENTTIILIT TUOTETIEDOT. i OUV5049 i OUV5050

OUML7421B3003. Jänniteohjattu venttiilimoottori KÄYTTÖKOHTEET TEKNISET TIEDOT OMINAISUUDET SOPIVAT VENTTIILIT TUOTETIEDOT. i OUV5049 i OUV5050 OUML7421B3003 Jänniteohjttu venttiilimoottori TUOTETIEDOT OMINAISUUDET Helppo j nope sent Ei trvitse erillistä sennustelinettä Ei trvitse liikepituuden säätöä Momenttirjkytkimet Käsikäyttömhdollisuus Mikroprosessorin

Lisätiedot

Yhteydettömän kieliopin jäsennysongelma

Yhteydettömän kieliopin jäsennysongelma Yhteydettömän kieliopin jäsennysongelma Yhteydettömän kieliopin jäsennysongelmalla tarkoitetaan laskentaongelmaa Annettu: yhteydetön kielioppi G, merkkijono w Kysymys: päteekö w L(G). Ongelma voidaan periaatteessa

Lisätiedot

Riemannin integraali

Riemannin integraali LUKU 5 iemnnin integrli Tässä luvuss funktion f iemnnin integrli merkitään - b f = - b f() d. Vstvsti funktion f Lebesgue in integrli merkitään f = f() dm(). [,b] [,b] Luse 5.1. Olkoon f : [, b] rjoitettu

Lisätiedot

1.3 Toispuoleiset ja epäoleelliset raja-arvot

1.3 Toispuoleiset ja epäoleelliset raja-arvot . Toisuoleiset j eäoleelliset rj-rvot Rj-rvo lim f () A olemssolo edellyttää että muuttuj täytyy void lähestyä rvo kummst suust hyväsä. Jos > ii sot että lähestyy rvo oikelt ositiivisest suust. Jos ts

Lisätiedot

!""# $%&'( ' )' (*' " '' '( "! ' *'&' "! ' '( "!! )& "! # "! & "! ' "! $''!! &'&' $' '! $ & "!!" #!$ %! & '()%%'!! '!! # '&' &'!! &'&' *('(' &'!*! +& &*%!! $ & #" !!" "!!!" $ " # ' '&& % & #! # ' '&&

Lisätiedot

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [ 1. Derivtn Testi Jos funktio f on jtkuv voimell välillä ], b[ j x 0 ], b[ on kriit. ti singul. piste niin { f (x) < 0, x ], x 0 [ f x (x) > 0, x ]x 0, b[ 0 on lokli minimipiste (1) { f (x) > 0, x ], x

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 Kierros 6, 22. 26. helmikuuta Huom: arviointiviikolla 15. 19.2. ei ole laskuharjoituksia! Demonstraatiotehtävien ratkaisut D1: (a) Osoita, että seuraava yhteydetön

Lisätiedot

9 A I N. Alkuperäinen piiri. Nortonin ekvivalentti R T = R N + - U T = I N R N. Théveninin ekvivalentti DEE-11110 SÄHKÖTEKNIIKAN PERUSTEET

9 A I N. Alkuperäinen piiri. Nortonin ekvivalentti R T = R N + - U T = I N R N. Théveninin ekvivalentti DEE-11110 SÄHKÖTEKNIIKAN PERUSTEET DEE11110 SÄHKÖTEKNIIKAN PERUSTEET http://www.tut.fi/smg/course.php?id=57 Rtkisut Hrjoitukset 3, 2014 Tehtävä 1. Pyydetään muodostmn nnetun piirin Nortonin ekvivlentti. Nortonin, smoin kuin Theveninin,

Lisätiedot

J1 (II.6.9) J2 (X.5.5) MATRIISILASKENTA(TFM) MALLIT AV 6

J1 (II.6.9) J2 (X.5.5) MATRIISILASKENTA(TFM) MALLIT AV 6 MATRIISILASKENTA(TFM) MALLIT AV 6 J (II.6.9) Päättele, että avaruusvetorit a, b ja c ovat lineaarisesti riippuvat täsmälleen un vetoreiden virittämän suuntaissärmiön tilavuus =. Tuti tällä riteerillä ovato

Lisätiedot

Hanoin tornit. Merkitään a n :llä pienintä tarvittavaa määrää siirtoja n:lle kiekolle. Tietysti a 1 = 1. Helposti nähdään myös, että a 2 = 3:

Hanoin tornit. Merkitään a n :llä pienintä tarvittavaa määrää siirtoja n:lle kiekolle. Tietysti a 1 = 1. Helposti nähdään myös, että a 2 = 3: Hanoin tornit Oloot n ieoa asetettu olmeen tanoon uvan osoittamalla tavalla (uvassa n = 7). Siirtämällä yhtä ieoa errallaan, ieot on asetettava toiseen tanoon samaan järjestyseen. Isompaa ieoa ei missään

Lisätiedot

Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku.

Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku. Muodostetn vektorikentän kri-integrli yksinkertisen kren tpuksess. Plutetn mieleen, että joukko C R m on yksinkertinen kri, jos löytyy sellinen jtkuv bijektio γ : [, b] C, jok on ploittin C 1 -funktio

Lisätiedot

Analyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että

Analyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että Anlyysi Hrjoituksi lukuihin 3 / Kevät 5. Ann sellinen välillä ], [ jtkuv j rjoitettu funktio f, että () sup A m A j inf A min A, (b) sup A m A j inf A = min A, (c) sup A = m A j inf A min A, (d) sup A

Lisätiedot

uv n, v 1, ja uv i w A kaikilla

uv n, v 1, ja uv i w A kaikilla 2.8 Säännöllisten kielten rajoituksista Kardinaliteettisyistä on oltava olemassa (paljon) ei-säännöllisiä kieliä: kieliä on ylinumeroituva määrä, säännöllisiä lausekkeita vain numeroituvasti. Voidaanko

Lisätiedot

ANALYYSI I, kevät 2009

ANALYYSI I, kevät 2009 ANALYYSI I, kevät 009 Sisältö Relilukujen peruskäsitteitä Lukujonoist 4. Lukujonon rj-rvo....................... 4. Monotoniset jonot..........................3 Osjonot.............................. 7.4

Lisätiedot

Pythagoraan lause. Pythagoras Samoslainen. Pythagoraan lause

Pythagoraan lause. Pythagoras Samoslainen. Pythagoraan lause Pythgorn luse Pythgors Smoslinen Pythgors on legendrinen kreikklinen mtemtiikko j filosofi. Tiedot hänen elämästään ovt epävrmoj j ristiriitisi. Tärkein Pythgorst j pythgorlisi koskev lähde on Lmlihosin

Lisätiedot

Polynomien laskutoimitukset

Polynomien laskutoimitukset Polyomie lskutoimitukset Polyomi o summluseke, joss jokie yhteelskettv (termi) sisältää vi vkio j muuttuj välisiä kertolskuj. Esimerkki 0. Mm., 6 j ovt polyomej. Polyomist, joss o vi yksi termi, käytetää

Lisätiedot

+80.06 +80.25 +80.45 +80.75 +81.06 +81.43 +81.78 +82.14 +82.41 +82.72 +82.87 +83.02 +83.31 2.5 2.5 VARASTO 3 ATK 2K ATK 2 VR.NR.

+80.06 +80.25 +80.45 +80.75 +81.06 +81.43 +81.78 +82.14 +82.41 +82.72 +82.87 +83.02 +83.31 2.5 2.5 VARASTO 3 ATK 2K ATK 2 VR.NR. 0 OVINTU +0.0 +0. +0. +0. +.0 +. +. +. +. +. +. +.0 +. 00 +0. +0. +0. +0. +0. 00 TUVTEIT VUS SVNEOTUSIVO EI- UO + mm SIVUIE PPINTU yllä kulkusilta 00 0 0 00 EUNIVI J UOIE BONIIVEYS GN J SUISTV POISTUMISTIE-

Lisätiedot

Rekursiivinen Derives on periaatteessa aivan toimiva algoritmi, mutta erittäin tehoton. Jos tarkastellaan esim. kieliopinpätkää

Rekursiivinen Derives on periaatteessa aivan toimiva algoritmi, mutta erittäin tehoton. Jos tarkastellaan esim. kieliopinpätkää Rekursiivinen Derives on periaatteessa aivan toimiva algoritmi, mutta erittäin tehoton. Jos tarkastellaan esim. kieliopinpätkää S AB CA... A CB...... ja kutsua Derives(S, abcde), niin kutsu Derives(B,

Lisätiedot

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut T-79.148 Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut 4. Tehtävä: Laadi algoritmi, joka testaa onko annetun yhteydettömän kieliopin G = V, Σ, P, S tuottama

Lisätiedot

Joulukuun vaativammat valmennustehtävät ratkaisut

Joulukuun vaativammat valmennustehtävät ratkaisut Jouluuun vaativammat valmennustehtävät rataisut. Tapa. Pätee z = x + y, joten z = (x + y = x + y, josta sieventämällä seuraa xy 4x 4y + 4 = 0. Siispä (x (y =. Tästä yhtälöstä saadaan suoraan x =, y = 4

Lisätiedot

S BAB ABA A aas bba B bbs c

S BAB ABA A aas bba B bbs c T-79.148 Kevät 2003 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut 4. Tehtävä: Laadi algoritmi, joka testaa onko annetun yhteydettömän kieliopin G = V, Σ, P, S) tuottama

Lisätiedot

Mitä ovat blogit? Mitä blogit ovat. Mahdollisuuksia Verkostoitumista Viestintää Todistusta

Mitä ovat blogit? Mitä blogit ovat. Mahdollisuuksia Verkostoitumista Viestintää Todistusta Kirsi Myllyniemi, Blogikurssi teologeille mlikuuss 2006 Mitä blogit ovt Mhdollisuuksi Verkostoitumist Mitä ovt blogit? Mhdollisuuksi Verkostoitumist Sn blogi tulee englnnin snoist web log. Se sisältää

Lisätiedot

Laskennan mallit (syksy 2007) Harjoitus 5, ratkaisuja

Laskennan mallit (syksy 2007) Harjoitus 5, ratkaisuja 58226 Lskennn mllit (syksy 27) Hrjoitus 5, rtkisuj. Muodostetn NF kielelle : ε ε Muunnetn DF:ksi: {,,} {,} {,} {,} Luennoll (s. 5) stiin kielelle seurv DF: Poistmll tästä svuttmttomt tilt sdn Tulos on

Lisätiedot

T /1002 Tietojenkäsittelyteorian perusteet T/Y

T /1002 Tietojenkäsittelyteorian perusteet T/Y T-791001/1002 Tietojenkäsittelyteorin perusteet T/Y Hrri Hnpää Tietojenkäsittelyteorin lortorio, TKK Syksy 2006 Hrri Hnpää 1 Luento 0: Aiheen esittely j kurssin käytännöt Luento 1: temttisi peruskäsitteitä;

Lisätiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot TKK (c) Ilkk Mellin (24) 1 Johdtus todennäköisyyslskentn TKK (c) Ilkk Mellin (24) 2 : Mitä opimme? 1/2 Jos stunnisilmiötä hlutn mllint mtemttisesti, on ilmiön tulosvihtoehdot kuvttv numeerisess muodoss.

Lisätiedot

601 Olkoon tuntematon kateetti a ja tuntemattomat kulmat α ja β Ratkaistaan kulmat. 8,4 = 12. Ratkaistaan varjon pituus x. 14 x = 44,

601 Olkoon tuntematon kateetti a ja tuntemattomat kulmat α ja β Ratkaistaan kulmat. 8,4 = 12. Ratkaistaan varjon pituus x. 14 x = 44, Pyrmidi 3 Geometri tehtävien rtkisut sivu 08 60 Olkoon tuntemton kteetti j tuntemttomt kulmt j β Rtkistn kulmt. 8,4 cos 8,4 cos 45,579... 46 β 90 60 4 Rtkistn vrjon pituus 3 44,470... 44 Rtkistn kteetti.

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset DEE- Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille taroitetut rataisuehdotuset Tämän harjoitusen ideana on opetella -muunnosen äyttöä differenssiyhtälöiden rataisemisessa Lisäsi äytetään

Lisätiedot

T /1002 Tietojenkäsittelyteorian perusteet T/Y

T /1002 Tietojenkäsittelyteorian perusteet T/Y T-791001/1002 Tietojenkäsittelyteorin perusteet T/Y Hrri Hnpää Tietojenkäsittelyteorin lortorio, TKK Syksy 2007 Hrri Hnpää 1 T 791001/1002 Tietojenkäsittelyteorin perusteet T/Y Introduction to Theoreticl

Lisätiedot

Laskennan perusmallit (LAP)

Laskennan perusmallit (LAP) Lskennn perusmllit (LAP) Kimmo Fredrikssonin j Mtti Nykäsen luentomonisteest krsien muoknnut Pekk Kilpeläinen Tietojenkäsittelytieteen litos, Itä-Suomen yliopisto sähköposti: pekk.t.kilpelinen@uef.fi Lukuvuoden

Lisätiedot

t P1 `UT. Kaupparek. nro Y-tunnus Hämeenlinnan. hallinto- oikeudelle. Muutoksenhakijat. 1( UiH S<

t P1 `UT. Kaupparek. nro Y-tunnus Hämeenlinnan. hallinto- oikeudelle. Muutoksenhakijat. 1( UiH S< 1(0 1 4 1 1 4 UiH 0 0 0 1 S< A S I A N A J O T O I M I S T O O S S I G U S T A F S S O N P L 2 9, Ra u h a n k a t u 2 0, 1 5 1 1 1 L a h t i P u h e l i n 0 3 / 7 8 1 8 9 6 0, G S M 0 5 0 0 / 8 4 0 5

Lisätiedot

Kertausta: kielet ja automaatit. ICS-C2000 Tietojenkäsittelyteoria. Alue ja aiheet. Äärelliset automaatit

Kertausta: kielet ja automaatit. ICS-C2000 Tietojenkäsittelyteoria. Alue ja aiheet. Äärelliset automaatit Kertust: kielet j utomtit Lskennllisen ongelmn rtkisevi tietokoneohjelmi j -litteit voidn trkstell utomttein ICS-C2 Tietojenkäsittelyteori Luento 2: Äärelliset utomtit Alto-yliopisto Perustieteiden korkekoulu

Lisätiedot

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään.

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään. S-8. Sähkönsiirtoärstlmät Tntti 8..7 Vst thtäviin -4 vlits toinn thtävistä 5 6. Vstt siis nintään viitn thtävään.. Tutkitn ll piirrttyä PV-käyrää, ok kuv sllist vrkko, oss on tuotntolu kuormituslu niidn

Lisätiedot

763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014

763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014 763333A KIINTEÄN AINEEN FYSIIKKA Rtkisut 1 Kevät 014 1. Tehtävä: Lske, kuink mont hilpistettä on yksikkökopiss ) yksinkertisess kuutiollisess, b) tkk:ss j c) pkk:ss. (Ot huomioon, että esimerkiksi yksikkökopin

Lisätiedot