Helsinki University of Technology

Koko: px
Aloita esitys sivulta:

Download "Helsinki University of Technology"

Transkriptio

1 Helsinki University of Technology Laboratory of Telecommunications Technology S Signaalinkäsittely tietoliikenteessä I Signal Processing in Communications ( ov) Syksy Luento: Adaptiiviset korjaimet II prof. Timo Laakso Vastaanotto torstaisin klo 1-11 Huone G1, puh Sähköposti: timo.laakso@hut.fi Stokastinen gradienttialgoritmi (LM11.) Edellisessä luvussa päästiin FIR-suotimen adaptointiin MSEgradienttialgoritmilla (MSEG) joka korjaa askelparametrin määräämän verran kerroinvektoria kohti optimiratkaisua. Valitettavasti MSEG perustuu myös siihen, että kanavan ominaisuudet eli autokorrelaatiomatriisi ja ristikorrelaatiovektori tunnetaan. Näin ei yleensä ole, eli käytännön tuntemattomissa ja muuttuvissa kanavissa tarvitaan vielä lisää yksinkertaistuksia. 11/4/97 Teletekniikan laboratorio Sivu

2 ...Stokastinen gradienttialgoritmi Lopullinen algoritmi saadaan ottamalla käyttöön stokastinen ( kohinainen ) gradienttiestimaatti tarkan asemesta. Stokastiseen gradienttiin perustuva adaptointi tunnetaan yleensä LMS(Least-Mean Square)-algoritmina, vaikka nimi onkin epätarkka (MSE-virhe minimoituu vain approksimatiivisesti). Näin saadaan kuitenkin käyttökelpoinen ja ehkä maailman eniten käytetty adaptiivinen suodinalgoritmi. 11/4/97 Teletekniikan laboratorio Sivu 3 Gradientti ennen odotusarvoa MSEG-gradientti johdettiin ottamalla neliövirheestä ensin odotusarvo ja sitten gradientti: [ ] [ ] Re [ ] = E[ ak ] H { } + H H T { } [ ] E e = E a c E a r + c E r r c k k k k k k Re c a c H Φc ( 118. ) Tarkastellaan nyt ensin neliövirheen gradienttia ilman odotusarvoa. Koska gradientti ja odotusarvo ovat lineaarisia operaattoreita, niiden järjestystä voidaan vaihtaa: { } H H T k k k k k k e = a Re a c r + c r r c ( ) 11/4/97 Teletekniikan laboratorio Sivu 4

3 ...Gradientti ennen odotusarvoa Tälle saadaan gradientiksi (ks. Harj edellä) T c ek = rk( ak rk c) = ekrk ( 115. ) Tästä voitaisiin nyt ottaa odotusarvo ja saada tuttu tulos [ ] E e = c c a j k Φ ( 115. ) mutta (11.5) onkin itse asiassa toteutuksen kannalta parempi sellaisenaan. Voidaan osoittaa, että se antaa harhattoman (unbiased) estimaatin todelliselle gradientille. Estimaatti on stokastinen eli kohinainen. 11/4/97 Teletekniikan laboratorio Sivu 5 Stokastinen gradienttialgoritmi (SG) SG-algoritmin mukainen kertoimien adaptiivinen päivitys on muotoa [ ] β ck+ 1 = ck ce ek c= c k ( 115. ) ja sijoittamalla tähän (11.5) saadaan SG-algoritmi muotoon T [ ] c + 1 = c + βe r = I βr r c + βa r ( ) k k k k k k k k k Tätä voidaan nyt verrata MSEG-algoritmiin c + 1 = c + β( a Φc ) = ( I βφ) c + βa ( 118. ) j j j j 11/4/97 Teletekniikan laboratorio Sivu 6

4 ...Stokastinen gradienttialgoritmi SG-algoritmista tehdään seuraavat havainnot: 1) SG-algoritmi sisältää (valittavaa askelparametria β lukuunottamatta) vain havaintoarvoja ja muita tunnettuja suureita, eli on suoraan laskettavissa ilman muuta estimointia ) Kun MSEG-algoritmissa iteraatioindeksi j oli aikaindeksistä k riippumaton, SG-algoritmissa j = k. Gradientin estimointi toteutetaan siis aikakeskiarvoistamalla tulevaa dataa. 11/4/97 Teletekniikan laboratorio Sivu 7 SG-algoritmin laskentatoteutus... r k-j r k z -1 z -1 [ck]j x Accumulator x β a k + - e k SG-algoritmin laskenta yhtä päivitettävää kerrointa kohden on esitetty Kuvassa /4/97 Teletekniikan laboratorio Sivu 8

5 ...SG-algoritmin laskentatoteutus Adaptaatiokaava (11.53) voidaan kirjoittaa komponenttimuodossa [ c ] [ c ] 1 = + β er, L j L ( ) k+ j k j k k j eli laskenta etenee modulaarisesti komponentti kerrallaan. Uusi virhetermi lasketaan kierroksen päätteeksi seuraavaa päivitystä varten. 11/4/97 Teletekniikan laboratorio Sivu 9 SG-algoritmin suppeneminen (LM11..1) Perusero MSEG- ja SG-algoritmissa on että MSEG on deterministinen, eli (kunhan auto- ja ristikorrelaatiodata tunnetaan) suppeneminen etenee ennaltamäärättyä polkua pitkin. Sen sijaan SG-algoritmin suppenemisessa on aina stokastista variaatiota, eli joillain iteraatiokerralla tulos voi huonotakin. Suppeneminen on keskimääräistä. SG-algoritmin suppenemista voidaan tarkastella ottamalla odotusarvo (11.53):sta: T [[ ] a ] c = E I r r c + r = I c + a 1 β β ( βφ) β ( ) k+ k k k k k k 11/4/97 Teletekniikan laboratorio Sivu 1

6 ...SG-algoritmin suppeneminen (LM11..1) Ottamalla odotusarvo vielä kerroinprosessin suhteen saadaan E [ k ] βφ E[ k] c + 1 ( I ) c + βa ( ) SG-algoritmin suppenemispolku on siis keskimäärin sama kuin MSEG-algoritmilla. Tästä seuraa, että myös suppenemisehdot (askelparametrin valinta) ovat pääpiirteissään samat molemmille algoritmeille. 11/4/97 Teletekniikan laboratorio Sivu 11...SG-algoritmin suppeneminen Suppenemisen tarkemman analyysin helpottamiseksi määritellään vanhaan tapaan virhevektori qk = ck copt ( ) (Harj ) Johda SG-algoritmin päivityskaava muotoon missä q + 1 = Γ q + β d r ( 116. ) k k k k k I r r T Γ k = β k k ( ) ja d k on virhesignaali optimisuotimelle d = a r T c ( 116. ) k k k opt 11/4/97 Teletekniikan laboratorio Sivu 1

7 ...SG-algoritmin suppeneminen Koska virhesignaal d k on nolla vain keskimäärin, SG-algoritmi (11.6) ei koskaan suppene tarkasti kohti optimiratkaisua vaan jää keikkumaan sen ympärille. Ratkaisu on vain keskimäärin optimaalinen! SG-algoritmin hyvyyttä voidaankin arvioida kerroinvektorin Euklidisen (neliöllisen) virhemitan avulla q k k k = q H q ( ) joka kertoo kuinka lähellä kertoimet ovat optimia. 11/4/97 Teletekniikan laboratorio Sivu 13 SG-algoritmin jäännosvirhe Viime kädessä kiinnostaa kuitenkin mikä on suodatetun ja halutun signaalin ero (virhesignaali e k ). Tämän neliövirhe ja kerroinvirhe (11.63) ovat yhteydessä seuraavasti kuten edellä (11.15) johdettiin: [ ] E e k = ξ min + q H k Φq k ( ) Keskiarvoistamalla tämä myös kerroinvektorien suhteen saadaan [ E ek ] = + E[ q H k Φqk] ξ min ( ) Jälkimmäistä termiä sanotaan jäännösvirheeksi (excess MSE) ja se kertoo kuinka paljon kertoimien stokastisesta vaihtelusta aiheutuu lisävirhettä. 11/4/97 Teletekniikan laboratorio Sivu 14

8 SG-algoritmin suppenemisehto Tarkastellaan jäännösvirheen lauseketta siinä erikoistapauksessa että input-prosessi r k on korreloimatonta (valkoista kohinaa), eli [ ] Φ = ΦI, Φ = E r k ( ) Tällöin keskimääräinen MSE saadaan muotoon [ ] E e k = ξ min + Φ q ( ) Voidaan johtaa (ks. kirjan Appendix 11-A) tulos: [ ] [ q ] k 1 qk E + = γe + β NΦξ min ( ) missä γ = 1 βφ + β NΦ 11/4/97 Teletekniikan laboratorio Sivu 15 k...sg-algoritmin suppenemisehto Valkoisen kohinan tapauksessa on vain yksi adaptaatiomoodi (ominaisarvot ovat samat). Kaavasta (11.69) näkyy, kuinka jäännösvirhe riippuu askelparametrista β. Tuloksesta voidaan myös johtaa ehto algoritmin suppenemiselle, eli γ = 1 βφ + β N Φ < 1 ( 117. ) Nopeimpaan suppenemiseen johtaa pienin γ:n arvo, josta saadan optimi-β:ksi β opt = 1 ( ) N Φ 11/4/97 Teletekniikan laboratorio Sivu 16

9 ...SG-algoritmin suppenemisehto Suppenemisehtoa (11.71) havainnollistaa Kuva 11-8: 1 1-1/N γ β opt β opt β 11/4/97 Teletekniikan laboratorio Sivu 17...SG-algoritmin suppenemisehto SG-algoritmin stabiilisuusehdoksi saadaan (-1<γ:<1): < β < = βopt ( 117. ) NΦ Tätä voidaan verrata MSEG-algoritmin stabiilisuusehtoon < β < ( ) λ max SG-algoritmin stabiilisuusehto on usein paljon tiukempi - huomaa että se on kääntäen verrannollinen suotimen pituuteen N. Algoritmin stokastinen luonne vaatii siis ylimääräistä pelivaraa. 11/4/97 Teletekniikan laboratorio Sivu 18

10 SG-algoritmin modifikaatioita (LM 11..) Askelparametrin normalisointi Epästationäärisessä ympäristössä signaalin teho voi vaihdella paljonkin, mikä vaikuttaa suoraan algoritmin suppenemisnopeuteen jos askelparametri β pidetään vakiona. Tämä voidaan helposti eliminoida normalisoimalla β seuraavasti a βk = ( ) σk + b missä a ja b ovat sopivia parametreja ja σ k on input-signaalin tehon estimaatti aikaindeksillä k. Tehon estimointiin voidaan käyttää eksponentiaalisesti painotettua aikakeskiarvoa j σk = ( 1 α) α rk j ( ) j= 11/4/97 Teletekniikan laboratorio Sivu 19...SG-algoritmin modifikaatioita Kaavassa (11.78) tietysti <α<1. Tällöin tehoestimaatille saadaan näppärä rekursiokaava σ = ασ 1 + ( 1 α) r ( ) k k k Kaksimoodialgoritmit (Gear-Shift Algorithms) Johtotransmissio (esim. äänitaajuusmodeemit) kanava muuttuu vain vähän yhteyden aikana, jolloin alkuestimoinnin jälkeen askelparametria voidaan pienentää. 11/4/97 Teletekniikan laboratorio Sivu

11 Adaptiivinen DFE Edellä saatiin lineaarisen FIR-korjaimen adaptointiin kehitettyä lopultakin käyttökelpoinen menetelmä: stokastinen gradientti(sg- eli LMS-)algoritmi. Seuraavaksi kehitellään vastaava algoritmi päätöstakaisinkytketylle eli DFE-korjaimelle, jossa on lineaarisen korjaimen lisäksi osuus joka vähentää ISIä edellisiin päätöksiin perustuen. Osoittautuu, että lineaarisen FIR-korjaimen SGalgoritmia voidaan käyttää pienin muutoksin lähes sellaisenaan DFE-korjaimen adaptointiin. 11/4/97 Teletekniikan laboratorio Sivu 1 Adaptiivinen DFE (LM11.3) DFE-korjaimen rakenne oli jo esillä aiemmin Kuvassa 11-: n k D(z) a k P(z) r k C(z) u k q k a k e k 11/4/97 Teletekniikan laboratorio Sivu

12 ...Adaptiivinen DFE DFE-korjaimessa on siis lineaarinen FIR-osa (prekursori) joka suodattaa tulevia näytteitä kuten pelkkä LE. Lisäksi rekursiivinen osa (postkursori) poistaa ISIä vähentämällä vanhoja symboliarvoja (estimaatteja) sopivilla painokertoimilla. Postkursori vähentää siis vain ISIä eikä kohinaa. Se vaikuttaa kuitenkin koko korjaimen kohinavahvistukseen helpottamalla prekursorin toimintaa. Käytettäessä MSE-virheen minimointikriteeriä postkursorin lisääminen vaikuttaa siis myös prekursorin optimaalisiin kertoimiin. Adaptointi on siis tehtävä yhteisesti. 11/4/97 Teletekniikan laboratorio Sivu 3 Adaptiivisen DFE:n FIR-rakenne Oletamme nyt, kuten edellä, että prekursori on antikausaalinen N-kertoiminen FIR-suodin ja postkursori on M-kertoiminen ja kausaalinen (ei-kausaalisuus poistuu käytännössä viivettä lisäämällä). Laskenta voidaan esittää differenssiyhtälöllä q = cr d a ( 118. ) k i k i i= ( N 1) M i= 1 i k i eli se on painotettu keskiarvo uusista input-näytteistä ja vanhoista päätöksistä. Vaikka järjestelmä sisältää takaisinkytkentää, se voidaan esittää formaalisti Kuvan 11-1 FIR-rakenteella. 11/4/97 Teletekniikan laboratorio Sivu 4

13 Adaptiivisen DFE:n FIR-rakenne r k+n- r k+n-1... z -1 z -1 z -1 r k z-1... z -1 x c -N+1 x c -N+ x c -d 1 x -d M x q k _ + e k Kuva DFE-korjaimen rakenne. a k 11/4/97 Teletekniikan laboratorio Sivu 5 Adaptiivisen DFE:n MSE-ratkaisu Input-näytteet koostuvat paitsi halutusta symboleista myös keskinäisvaikutuksesta ja kohinasta, eli ne ovat muotoa r = p a + p a + n = p a + n ( 118. b) k k n k n n k n k n n jossa summausindeksit ja kertoimet p n eivät yleensä ole tarkkaan tiedossa. Sijoittamalla kaavaan (11.8) saadaan q = c p a d a + cn k i n ( k i) n i k i i i= ( N 1) n i= 1 i= ( N 1) = ν a + cn ( 118. c) m m k m i i= ( N 1) k i jossa päätökset on oletettu oikeiksi. M k k i 11/4/97 Teletekniikan laboratorio Sivu 6

14 ...Adaptiivisen DFE:n MSE-ratkaisu Tämä voidaan jakaa kolmeen termiin: q = a + i + n k ν k k k Ensimmäinen on haluttu symboli. Toinen on ISI-termi joka on muotoa ik = νmak m ( ) jossa m i k i k i= ( N 1) ν k = i i= ( N 1) cp d, 1 k M cp k i Kolmas termi edustaa kohinaa., muulloin 11/4/97 Teletekniikan laboratorio Sivu 7 ' ( 118. )...Adaptiivisen DFE:n MSE-ratkaisu Tätä havainnollistaa Kuva 11-11: n k a k P(z) C(z) + _ q k D(z) a k P(z)C(z) -D(z) q k n k C(z) 11/4/97 Teletekniikan laboratorio Sivu 8

15 ...Adaptiivisen DFE:n MSE-ratkaisu Kun oletetaan että kohina ja lähetetyt symbolit (ja siten myös ISI) ovat riippumattomia, niitä voidaan MSE:n minimoinnin kannalta tarkastella erikseen. Kun lisäksi symbolit keskenään ovat riippumattomia, on ilmeistä että kokonaisvirheen odotusarvo voidaan minimoida valitsemalla postkursorin kertoimet d k siten, että M ISI-termiä nollautuu. Näin saadaan MMSE-ratkaisu postkursorikertoimille muodossa dm = cipm i 1 m M ( ) i= ( N 1) Olettaen että ISI-termit tunnetaan, postkursorikertoimet riippuvat suoraan prekursorista. 11/4/97 Teletekniikan laboratorio Sivu 9...Adaptiivisen DFE:n MSE-ratkaisu Toteutuksessa voitaisiin optimoida suoraan prekursorikertoimet sopivalla algoritmilla ja laskea postkursorikertoimet kaavasta (11.83). Käytännössä on kuitenkin helpompaa käyttää Kuvan rakennetta ja signaaleja suoraan adaptointiin, kuten seuraavaksi johdetaan. 11/4/97 Teletekniikan laboratorio Sivu 3

16 SG-algoritmi DFE:lle Formaalisti SG-algoritmi voidaan johtaa DFE:n tapaukselle suoraviivaisesti. Määritellään kerroinvektori [ c N c d dm] v = ( 1) 1 ( ) joka sisältää siis prekursorin ja postkursorin kertoimet peräkkäin, N+M elementtiä. Vastaava pidennetty datavektori on muotoa [ r r a a ] w k = k + N k k k M ( 1) 1 ( ) T T 11/4/97 Teletekniikan laboratorio Sivu 31...SG-algoritmi DFE:lle Virhesignaali voidaan nyt esittää muodossa e = a v T w ( ) k k k joka on formaalisti samanlainen kuin LE-korjaimen virheen lauseke. Analogiaan vedoten voidaan katsoa mallia SGalgoritmille kaavasta (11.53): c + 1 = c + β e r ( ) k k k k Ottamalla kerroinvektorillekin päivitysindeksi k saadaan DFEkorjaimen SG-algoritmi muotoon v + 1 = v + β e w ( ) k k k k 11/4/97 Teletekniikan laboratorio Sivu 3

17 DFE-SG-algoritmin ominaisuuksia Aiemmin analysoitiin ideaalisen DFE-korjaimen ominaisuuksia stationäärisessä tilanteessa. Olennaista oli kohinavahvistuksen pieneneminen koska ISIn poisto helpottuu. Lähteessä Bingham: The Theory and Practice of Modem Design (Wiley 1988, s. 89) todetaan, että SG-DFE suppenee nopeammin kuin SG-LE, koska kanavaa ei tarvitse kääntää kokonaan. Näin SG-DFE on vähemmän herkkä input-signaalin autokorrelaatiomatriisin ominaisarvohajeelle. Koska pre- ja postkursorien kerrointen laskenta perustuu samaan virhesignaaliin, kompleksisuus ja suppeneminen ovat suunnilleen samanlaista kuin (N+M)-tappisella SG-LE-FIRkorjaimella. Toteutus on siis yksinkertainen mutta tehokas. 11/4/97 Teletekniikan laboratorio Sivu 33

Helsinki University of Technology

Helsinki University of Technology Helsinki University of Technology Laboratory of Telecommunications Technology S-38.11 Signaalinkäsittely tietoliikenteessä I Signal Processing in Communications ( ov) Syksy 1997 6. Luento: Adaptiiviset

Lisätiedot

Helsinki University of Technology Laboratory of Telecommunications Technology

Helsinki University of Technology Laboratory of Telecommunications Technology Helsinki University of Technology Laboratory of Telecommunications Technology S-38. Signaalinkäsittely tietoliikenteessä I Signal Processing in Communications ( ov) Syksy 998 6. Luento: Adaptiiviset koraimet

Lisätiedot

[ ] [ ] [ ] { } [ ] Helsinki University of Technology Laboratory of Telecommunications Technology

[ ] [ ] [ ] { } [ ] Helsinki University of Technology Laboratory of Telecommunications Technology Helsini University of Tehnology Laboratory of Teleommuniations Tehnology S-38. Signaalinäsittely tietoliienteessä I Signal Proessing in Communiations ( ov) Sysy 998 7. Luento: Adaptiiviset orjaimet II

Lisätiedot

Helsinki University of Technology

Helsinki University of Technology Helsinki University of Technology Laboratory of Telecommunications Technology S-38.211 Signaalinkäsittely tietoliikenteessä I Signal Processing in Communications (2 ov) Syksy 1997 12. Luento: Kertausta,

Lisätiedot

4.0.2 Kuinka hyvä ennuste on?

4.0.2 Kuinka hyvä ennuste on? Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki

Lisätiedot

Helsinki University of Technology

Helsinki University of Technology Helsinki University of Technology Laboratory of Telecommunications Technology S38.211 Signaalinkäsittely tietoliikenteessä I Signal Processing in Communications (2 ov) Syksy 1997 8. Luento: Kaiunpoisto

Lisätiedot

Ennustaminen ARMA malleilla ja Kalmanin suodin

Ennustaminen ARMA malleilla ja Kalmanin suodin Ennustaminen ARMA malleilla ja Kalmanin suodin MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2017

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016

Lisätiedot

Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio

Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio Tilastollisen analyysin perusteet Luento 9: lineaarinen lineaarinen Sisältö lineaarinen lineaarinen lineaarinen Lineaarinen Oletetaan, että meillä on n kappaletta (x 1, y 1 ), (x 2, y 2 )..., (x n, y n

Lisätiedot

3. Teoriaharjoitukset

3. Teoriaharjoitukset 3. Teoriaharjoitukset Demotehtävät 3.1 a Olkoot u ja v satunnaumuuttujia, joilla on seuraavat ominaisuudet: E(u = E(v = 0 Var(u = Var(v = σ 2 Cov(u, v = E(uv = 0 Näytä että deterministinen prosessi. x

Lisätiedot

b 1. b m ) + ( 2b Ax) + (b b)

b 1. b m ) + ( 2b Ax) + (b b) TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-9 Optimointioppi Kimmo Berg 5 harjoitus - ratkaisut min Ax b (vertaa PNS-tehtävät) a x + + a n x n a) Ax b = a m x + + a mn x n = x a a m }{{}

Lisätiedot

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen Yhden faktorin malli: n kpl sijoituskohteita, joiden tuotot ovat r i, i =, 2,..., n. Olkoon f satunnaismuuttuja ja oletetaan, että tuotot voidaan selittää yhtälön r i = a i + b i f + e i avulla, missä

Lisätiedot

Helsinki University of Technology

Helsinki University of Technology Helsinki University of Technology Laboratory of Telecommunications Technology S-38.11 Signaalinkäsittely tietoliikenteessä I Signal Processing in Communications ( ov) Syksy 1997. Luento: Pulssinmuokkaussuodatus

Lisätiedot

Keskipisteen lisääminen 2 k -faktorikokeeseen (ks. Montgomery 9-6)

Keskipisteen lisääminen 2 k -faktorikokeeseen (ks. Montgomery 9-6) Mat-.3 Koesuunnittelu ja tilastolliset mallit kevät Keskipisteen lisääminen k -faktorikokeeseen (ks. Montgomery 9-6) Esim (Montg. ex. 9-, 6-): Tutkitaan kemiallisen prosessin saannon Y riippuvuutta faktoreista

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen

Lisätiedot

6.2.3 Spektrikertymäfunktio

6.2.3 Spektrikertymäfunktio ja prosessin (I + θl + + θl q )ε t spektritiheysfunktio on Lemman 6. ja Esimerkin 6.4 nojalla σ π 1 + θ 1e iω + + θ q e iqω. Koska viivepolynomien avulla määritellyt prosessit yhtyvät, niin myös niiden

Lisätiedot

J. Virtamo Jonoteoria / Prioriteettijonot 1

J. Virtamo Jonoteoria / Prioriteettijonot 1 J. Virtamo 38.3143 Jonoteoria / Prioriteettijonot 1 Prioriteettijonot Tarkastellaan M/G/1-jonojärjestelmää, jossa asiakkaat on jaettu K:hon prioriteettiluokkaan, k = 1,..., K: - luokalla 1 on korkein prioriteetti

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 4

Inversio-ongelmien laskennallinen peruskurssi Luento 4 Inversio-ongelmien laskennallinen peruskurssi Luento 4 Kevät 20 Regularisointi Eräs keino yrittää ratkaista (likimääräisesti) huonosti asetettuja ongelmia on regularisaatio. Regularisoinnissa ongelmaa

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 2

Inversio-ongelmien laskennallinen peruskurssi Luento 2 Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +

Lisätiedot

Dynaamiset regressiomallit

Dynaamiset regressiomallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen

Lisätiedot

9. Tila-avaruusmallit

9. Tila-avaruusmallit 9. Tila-avaruusmallit Aikasarjan stokastinen malli ja aikasarjasta tehdyt havainnot voidaan esittää joustavassa ja monipuolisessa muodossa ns. tila-avaruusmallina. Useat aikasarjat edustavat dynaamisia

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (004) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden

Lisätiedot

Harha mallin arvioinnissa

Harha mallin arvioinnissa Esitelmä 12 Antti Toppila sivu 1/18 Optimointiopin seminaari Syksy 2010 Harha mallin arvioinnissa Antti Toppila 13.10.2010 Esitelmä 12 Antti Toppila sivu 2/18 Optimointiopin seminaari Syksy 2010 Sisältö

Lisätiedot

8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH

8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH 8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH Osa aikasarjoista kehittyy hyvin erityyppisesti erilaisissa tilanteissa. Esimerkiksi pörssikurssien epävakaus keskittyy usein lyhyisiin

Lisätiedot

2. Teoriaharjoitukset

2. Teoriaharjoitukset 2. Teoriaharjoitukset Demotehtävät 2.1 Todista Gauss-Markovin lause. Ratkaisu. Oletetaan että luentokalvojen standardioletukset (i)-(v) ovat voimassa. Huomaa että Gauss-Markovin lause ei vaadi virhetermien

Lisätiedot

Dynaamiset regressiomallit

Dynaamiset regressiomallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Viikko 6: 1 Kalmanin suodatin Aiemmin käsitellyt

Lisätiedot

Missä mennään. systeemi. identifiointi. mallikandidaatti. validointi. malli. (fysikaalinen) mallintaminen. mallin mallin käyttötarkoitus, reunaehdot

Missä mennään. systeemi. identifiointi. mallikandidaatti. validointi. malli. (fysikaalinen) mallintaminen. mallin mallin käyttötarkoitus, reunaehdot Missä mennään systeemi mallin mallin käyttötarkoitus, reunaehdot käyttö- (fysikaalinen) mallintaminen luonnonlait yms. yms. identifiointi kokeita kokeita + päättely päättely vertailu mallikandidaatti validointi

Lisätiedot

J. Virtamo Jonoteoria / Prioriteettijonot 1

J. Virtamo Jonoteoria / Prioriteettijonot 1 J. Virtamo 38.143 Jonoteoria / Prioriteettijonot 1 Prioriteettijonot TarkastellaanM/G/1-jonojärjestelmää, jossaasiakkaaton jaettu K:hon prioriteettiluokkaan, k =1,...,K: - luokalla 1 on korkein prioriteetti

Lisätiedot

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018 BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018 Tehtävä 8 on tällä kertaa pakollinen. Aloittakaapa siitä. 1. Kun tässä tehtävässä sanotaan sopii mahdollisimman hyvin, sillä tarkoitetaan

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 10 To 6.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 10 To 6.10.2011 p. 1/35 p. 1/35 Numeerinen integrointi Puolisuunnikassääntö b a f(x)dx = h 2 (f 0 + f

Lisätiedot

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio 17.11.2015/1 MTTTP5, luento 17.11.2015 Luku 5 Parametrien estimointi 5.1 Piste-estimointi Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla

Lisätiedot

TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio. Mat Systeemien Identifiointi. 4. harjoitus

TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio. Mat Systeemien Identifiointi. 4. harjoitus TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.4129 Systeemien Identifiointi 4. harjoitus 1. a) Laske valkoisen kohinan spektraalitiheys. b) Tarkastellaan ARMA-prosessia C(q 1 )y = D(q 1 )e,

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.14 Tilastollisen analyysin perusteet, kevät 7 7. luento: Tarina yhden selittään lineaarisesta regressiomallista atkuu Kai Virtanen 1 Luennolla 6 opittua Kuvataan havainnot (y, x ) yhden selittään

Lisätiedot

Signaalimallit: sisältö

Signaalimallit: sisältö Signaalimallit: sisältö Motivaationa häiriöiden kuvaaminen ja rekonstruointi Signaalien kuvaaminen aikatasossa, determinisitinen vs. stokastinen Signaalien kuvaaminen taajuustasossa Fourier-muunnos Deterministisen

Lisätiedot

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4

Lisätiedot

Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi on lineaarinen projektio.

Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi on lineaarinen projektio. Määritelmä 4.3. Estimaattoria X(Y ) nimitetään lineaariseksi projektioksi, jos X on lineaarinen kuvaus ja E[(X X(Y )) Y] 0 }{{} virhetermi Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi

Lisätiedot

1 Olkoon suodattimen vaatimusmäärittely seuraava:

1 Olkoon suodattimen vaatimusmäärittely seuraava: Olkoon suodattimen vaatimusmäärittely seuraava: Päästökaistan maksimipoikkeama δ p =.5. Estokaistan maksimipoikkeama δ s =.. Päästökaistan rajataajuus pb = 5 Hz. Estokaistan rajataajuudet sb = 95 Hz Näytetaajuus

Lisätiedot

Vastepintamenetelmä. Kuusinen/Heliövaara 1

Vastepintamenetelmä. Kuusinen/Heliövaara 1 Vastepintamenetelmä Kuusinen/Heliövaara 1 Vastepintamenetelmä Vastepintamenetelmässä pyritään vasteen riippuvuutta siihen vaikuttavista tekijöistä approksimoimaan tekijöiden polynomimuotoisella funktiolla,

Lisätiedot

Estimointi. Vilkkumaa / Kuusinen 1

Estimointi. Vilkkumaa / Kuusinen 1 Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. marraskuuta 2007 Antti Rasila () TodB 30. marraskuuta 2007 1 / 19 1 Lineaarinen regressiomalli ja suurimman uskottavuuden menetelmä Minimin löytäminen

Lisätiedot

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu) 21.11.2017/1 MTTTP5, luento 21.11.2017 Otossuureita ja niiden jakaumia (jatkuu) 4) Olkoot X 1, X 2,..., X n satunnaisotos (, ):sta ja Y 1, Y 2,..., Y m satunnaisotos (, ):sta sekä otokset riippumattomia.

Lisätiedot

Investointimahdollisuudet ja investoinnin ajoittaminen

Investointimahdollisuudet ja investoinnin ajoittaminen Investointimahdollisuudet ja investoinnin ajoittaminen Ajoituksen ratkaisu dynaamisella optimoinnilla Optimointiopin seminaari - Syksy 000 / Esitelmän sisältö Investoinnin ajoitusongelman esittely Ongelman

Lisätiedot

[xk r k ] T Q[x k r k ] + u T k Ru k. }.

[xk r k ] T Q[x k r k ] + u T k Ru k. }. Mat-2.48 Dynaaminen optimointi Mitri Kitti/Ilkka Leppänen Mallivastaukset, kierros 3. Johdetaan lineaarisen aikainvariantin seurantatehtävän yleinen ratkaisu neliöllisellä kustannuksella. Systeemi: x k+

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28 Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä

Lisätiedot

Diskriminanttianalyysi I

Diskriminanttianalyysi I Diskriminanttianalyysi I 12.4-12.5 Aira Hast 24.11.2010 Sisältö LDA:n kertaus LDA:n yleistäminen FDA FDA:n ja muiden menetelmien vertaaminen Estimaattien laskeminen Johdanto Lineaarinen diskriminanttianalyysi

Lisätiedot

805306A Johdatus monimuuttujamenetelmiin, 5 op

805306A Johdatus monimuuttujamenetelmiin, 5 op monimuuttujamenetelmiin, 5 op syksy 2018 Matemaattisten tieteiden laitos Lineaarinen erotteluanalyysi (LDA, Linear discriminant analysis) Erotteluanalyysin avulla pyritään muodostamaan selittävistä muuttujista

Lisätiedot

1. Tutkitaan regressiomallia Y i = β 0 + β 1 X i + u i ja oletetaan, että tavanomaiset

1. Tutkitaan regressiomallia Y i = β 0 + β 1 X i + u i ja oletetaan, että tavanomaiset TA7, Ekonometrian johdantokurssi HARJOITUS 7 RATKAISUEHDOTUKSET 16.3.2015 1. Tutkitaan regressiomallia Y i = β 0 + X i + u i ja oletetaan, että tavanomaiset regressiomallin oletukset pätevät (Key Concept

Lisätiedot

Duaalisuus kokonaislukuoptimoinnissa. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki

Duaalisuus kokonaislukuoptimoinnissa. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Duaalisuus kokonaislukuoptimoinnissa Mat-2.4191, Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Sisältö Duaalisuus binäärisissä optimointitehtävissä Lagrangen duaalisuus Lagrangen

Lisätiedot

Suodatus ja näytteistys, kertaus

Suodatus ja näytteistys, kertaus ELEC-C7230 Tietoliikenteen siirtomenetelmät Luento 6: Kantataajuusvastaanotin AWGN-kanavassa II: Signaaliavaruuden vastaanotin a Olav Tirkkonen Aalto, Tietoliikenne- ja tietoverkkotekniikan laitos a [10.6.3-10.6.6;

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Johdatus regressioanalyysiin Regressioanalyysin idea Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun selittävien muuttujien havaittujen arvojen vaihtelun avulla.

Lisätiedot

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (005) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden

Lisätiedot

Demo 1: Simplex-menetelmä

Demo 1: Simplex-menetelmä MS-C2105 Optimoinnin perusteet Malliratkaisut 3 Ehtamo Demo 1: Simplex-menetelmä Muodosta lineaarisen tehtävän standardimuoto ja ratkaise tehtävä taulukkomuotoisella Simplex-algoritmilla. max 5x 1 + 4x

Lisätiedot

ARMA mallien ominaisuudet ja rakentaminen

ARMA mallien ominaisuudet ja rakentaminen MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Viikko 4: 1 ARMA-mallien ominaisuudet 1 Stationaaristen

Lisätiedot

Aktiivisen melunhallintaprosessorin suunnittelu SystemC-kieltä ja korkean tason synteesiä käyttämällä

Aktiivisen melunhallintaprosessorin suunnittelu SystemC-kieltä ja korkean tason synteesiä käyttämällä Oulun yliopisto Elektroniikan piirit ja järjestelmät 2017 Aktiivisen melunhallintaprosessorin suunnittelu SystemC-kieltä ja korkean tason synteesiä käyttämällä Tässä artikkelissa kuvataan digitaalisen

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

1. LINEAARISET LUOKITTIMET

1. LINEAARISET LUOKITTIMET 1. LINEAARISET LUOKITTIMET Edellisillä luennoilla tarkasteltiin luokitteluongelmaa tnjakaumien avulla ja esiteltiin menetelmiä, miten tarvittavat tnjakaumat voidaan estimoida. Tavoitteena oli löytää päätössääntö,

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:

Lisätiedot

Ratkaisuehdotukset LH 7 / vko 47

Ratkaisuehdotukset LH 7 / vko 47 MS-C34 Lineaarialgebra, II/7 Ratkaisuehdotukset LH 7 / vko 47 Tehtävä : Olkoot M R symmetrinen ja positiividefiniitti matriisi (i) Näytä, että m > ja m > (ii) Etsi Eliminaatiomatriisi E R siten, että [

Lisätiedot

3.6 Su-estimaattorien asymptotiikka

3.6 Su-estimaattorien asymptotiikka 3.6 Su-estimaattorien asymptotiikka su-estimaattorit ovat usein olleet puutteellisia : ne ovat usein harhaisia ja eikä ne välttämättä ole täystehokkaita asymptoottisilta ominaisuuksiltaan ne ovat yleensä

Lisätiedot

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Konveksisuus Muista. + αd, α 0, on pisteessä R n alkava puolisuora, joka on vektorin d suuntainen. Samoin 2

Lisätiedot

Tampere University of Technology

Tampere University of Technology Tampere University of Technology EDE- Introduction to Finite Element Method. Exercise 3 Autumn 3.. Solve the deflection curve v(x) exactly for the beam shown y,v q v = q z, xxxx x E I z Integroidaan yhtälö

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden

Lisätiedot

Kokonaislukuoptimointi

Kokonaislukuoptimointi Kokonaislukuoptimointi Algebrallisen geometrian sovelluksia Sisältö Taustaa algebrallisesta geometriasta Gröbnerin kanta Buchbergerin algoritmi Kokonaislukuoptimointi Käypyysongelma Algoritmi ratkaisun

Lisätiedot

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin z muunnos ja sen soveltaminen LTI järjestelmien analysointiin muunnoksella (eng. transform) on vastaava asema diskreettiaikaisten signaalien ja LTI järjestelmien analyysissä kuin Laplace muunnoksella jatkuvaaikaisten

Lisätiedot

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1 Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

1 Rajoittamaton optimointi

1 Rajoittamaton optimointi Taloustieteen matemaattiset menetelmät 7 materiaali 5 Rajoittamaton optimointi Yhden muuttujan tapaus f R! R Muistutetaan mieleen maksimin määritelmä. Funktiolla f on maksimi pisteessä x jos kaikille y

Lisätiedot

Lineaarinen optimointi. Harjoitus 6-7, Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän. c T x = min!

Lineaarinen optimointi. Harjoitus 6-7, Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän. c T x = min! Lineaarinen optimointi Harjoitus 6-7, 016. 1. Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän c T x = min! (T) Ax b x 0 duaalitehtävän duaali on tehtävä (T). Ratkaisu. (P) c T x = min! Ax b x

Lisätiedot

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään tiedetään, että ainakin kaksi

Lisätiedot

Dynaamisten systeemien identifiointi 1/2

Dynaamisten systeemien identifiointi 1/2 Dynaamisten systeemien identifiointi 1/2 Mallin rakentaminen mittausten avulla Epäparametriset menetelmät: tuloksena malli, joka ei perustu parametreille impulssi-, askel- tai taajusvaste siirtofunktion

Lisätiedot

Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio

Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio Sisältö Regressioanalyysissä tavoitteena on tutkia yhden tai useamman selittävän muuttujan vaikutusta selitettävään muuttujaan. Sen avulla

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 26.9.2016 Pekka Alestalo,

Lisätiedot

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Konveksisuus Muista x + αd, α 0, on pisteestä x R n alkava puolisuora, joka on vektorin d suuntainen. Samoin

Lisätiedot

Maximum likelihood-estimointi Alkeet

Maximum likelihood-estimointi Alkeet Maximum likelihood-estimointi Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Maximum likelihood-estimointi p.1/20 Maximum Likelihood-estimointi satunnaismuuttujan X

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 7 8

Inversio-ongelmien laskennallinen peruskurssi Luento 7 8 Inversio-ongelmien laskennallinen peruskurssi Luento 7 8 Kevät 2011 1 Iteratiivisista menetelmistä Tähän mennessä on tarkasteltu niin sanottuja suoria menetelmiä, joissa (likimääräinen) ratkaisu saadaan

Lisätiedot

Ilkka Mellin Aikasarja-analyysi. Dynaamiset regressiomallit. TKK (c) Ilkka Mellin (2006) 1

Ilkka Mellin Aikasarja-analyysi. Dynaamiset regressiomallit. TKK (c) Ilkka Mellin (2006) 1 Ilkka Mellin Aikasarja-analyysi Dynaamiset regressiomallit TKK (c) Ilkka Mellin (2006) 1 Dynaamiset regressiomallit >> Staattiset vs dynaamiset regressiomallit Siirtofunktio-kohina-malli Siirtofunktio-kohina-mallin

Lisätiedot

6.5.2 Tapering-menetelmä

6.5.2 Tapering-menetelmä 6.5.2 Tapering-menetelmä Määritelmä 6.7. Tapering on spektrin estimointimenetelmä, jossa estimaattori on muotoa f m (ω) = 1 m ( ) k w 2π m Γ(k)e ikω, k= m missä Γ on otosautokovarianssifunktio ja ikkunafunktio

Lisätiedot

Department of Mathematics, Hypermedia Laboratory Tampere University of Technology. Roolit Verkostoissa: HITS. Idea.

Department of Mathematics, Hypermedia Laboratory Tampere University of Technology. Roolit Verkostoissa: HITS. Idea. Roolit Tommi Perälä Department of Mathematics, Hypermedia Laboratory Tampere University of Technology 25.3.2011 J. Kleinberg kehitti -algoritmin (Hypertext Induced Topic Search) hakukoneen osaksi. n taustalla

Lisätiedot

Osa IX. Z muunnos. Johdanto Diskreetit funktiot

Osa IX. Z muunnos. Johdanto Diskreetit funktiot Osa IX Z muunnos A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 298 / 322 A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 299 / 322 Johdanto

Lisätiedot

Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo?

Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo? MTTTP5, kevät 2016 15.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen 1. Valitaan 25 alkion satunnaisotos jakaumasta N(µ, 25). Olkoon H 0 : µ = 12. Hylätään H 0, jos otoskeskiarvo

Lisätiedot

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään, tiedetään, että ainakin

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

Mallin arviointi ja valinta. Ennustevirhe otoksen sisällä, parametrimäärän valinta, AIC, BIC ja MDL

Mallin arviointi ja valinta. Ennustevirhe otoksen sisällä, parametrimäärän valinta, AIC, BIC ja MDL Mallin arviointi ja valinta Ennustevirhe otoksen sisällä, parametrimäärän valinta, AIC, BIC ja MDL Sisältö Otoksen ennustevirheen estimointi AIC - Akaiken informaatiokriteeri mallin valintaan Parametrimäärän

Lisätiedot

Kompleksianalyysi, viikko 5

Kompleksianalyysi, viikko 5 Kompleksianalyysi, viikko 5 Jukka Kemppainen Mathematics Division Kompleksiset jonot Aloitetaan jonon suppenemisesta. Määr. 1 Kompleksiluvuista z 1,z 2,...,z n,... koostuva jono suppenee kohti raja-arvoa

Lisätiedot

2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyv

2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyv 2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyvien vakioiden määrittämiseen. Jännitystila on siten

Lisätiedot

BINÄÄRISET TIEDONSIIRTOMENETELMÄT TÄRKEIMPIEN ASIOIDEN KERTAUS A Tietoliikennetekniikka II Osa 11 Kari Kärkkäinen Syksy 2015

BINÄÄRISET TIEDONSIIRTOMENETELMÄT TÄRKEIMPIEN ASIOIDEN KERTAUS A Tietoliikennetekniikka II Osa 11 Kari Kärkkäinen Syksy 2015 BINÄÄRISET TIEDONSIIRTOMENETELMÄT TÄRKEIMPIEN ASIOIDEN KERTAUS 536A Tietoliienneteniia II Osa Kari Käräinen Sysy 5 Kantataajuusjärjestelmä lähettää ±A -tasoisia symboleita T:n välein. Optimaalinen vastaanotin

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

OPTIMAALINEN INVESTOINTIPÄÄTÖS

OPTIMAALINEN INVESTOINTIPÄÄTÖS OPTIMAALINEN INESTOINTIPÄÄTÖS Keskiarvoon palautuvalle prosessille ja Poissonin hyppyprosessille Optimointiopin seminaari - Syksy 000 / 1 I. KESKIAROON PALAUTUA PROSESSI Investoinnin kohde-etuuden arvo

Lisätiedot

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

1 Kertaus. Lineaarinen optimointitehtävä on muotoa: 1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n

Lisätiedot

Regressioanalyysi. Kuusinen/Heliövaara 1

Regressioanalyysi. Kuusinen/Heliövaara 1 Regressioanalyysi Kuusinen/Heliövaara 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun joidenkin

Lisätiedot

r = r f + r M r f (Todistus kirjassa sivulla 177 tai luennon 6 kalvoissa sivulla 6.) yhtälöön saadaan ns. CAPM:n hinnoittelun peruskaava Q P

r = r f + r M r f (Todistus kirjassa sivulla 177 tai luennon 6 kalvoissa sivulla 6.) yhtälöön saadaan ns. CAPM:n hinnoittelun peruskaava Q P Markkinaportfolio on koostuu kaikista markkinoilla olevista riskipitoisista sijoituskohteista siten, että sijoituskohteiden osuudet (so. painot) markkinaportfoliossa vastaavat kohteiden markkina-arvojen

Lisätiedot

Ohjelmistoradio tehtävät 4. P1: Ekvalisointi ja demodulaatio. OFDM-symbolien generoiminen

Ohjelmistoradio tehtävät 4. P1: Ekvalisointi ja demodulaatio. OFDM-symbolien generoiminen Ohjelmistoradio tehtävät 4 P: Ekvalisointi ja demodulaatio Tässä tehtävässä dekoodata OFDM data joka on sijotetty synknonontisignaalin lälkeen. Synkronointisignaali on sama kuin edellisessä laskutehtävässä.

Lisätiedot

Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾.

Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾. 24.11.2006 1. Oletetaan, että kaksiulotteinen satunnaismuuttuja µ noudattaa kaksiulotteista normaalijakaumaa. Oletetaan lisäksi, että satunnaismuuttujan regressiofunktio satunnaismuuttujan suhteen on ݵ

Lisätiedot

6.1 Autokovarianssifunktion karakterisaatio aikatasossa

6.1 Autokovarianssifunktion karakterisaatio aikatasossa 6. Spektraalianalyysi Tällä kurssilla on käyty läpi eräitä stationääristen aikasarjojen ominaispiirteitä, kuten aikasarjaa mallintavan stokastisen prosessin X t odotusarvo E[X t ] ja autokovarianssifunktio

Lisätiedot

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),

Lisätiedot

(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = =

(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = = JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 7, MALLIRATKAISUT Tehtävä Etsi seuraavien rationaalilukujen ketjumurtokehitelmät: (i) 7 6 (ii) 4 7 (iii) 65 74 (iv) 63 74 Ratkaisu Sovelletaan Eukleideen algoritmia

Lisätiedot