100-vuotissäätiö RATKAISUT. Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Koko: px
Aloita esitys sivulta:

Download "100-vuotissäätiö RATKAISUT. Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU"

Transkriptio

1 Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 00-vuotissäätiö Otava RATKAISUT AMMATIKKA top 5..0 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU Sarjat: MERKITSE OMA SARJA O O O. Ylioppilastutkinto. Kaksoistutkinto. Toisen asteen perustutkinto O. Tekniikka ja liikenneala O. Matkailu-, ravitsemus- ja talousala O. Yhteiskuntatieteiden, liiketalouden ja hallinnon ala sekä Luonnontieteiden ala O 4. Sosiaali-, terveys- ja liikunta-ala O 5. Kulttuuriala, Luonnonvara- ja ympäristöala sekä Humanistinen ja kasvatusala AIKAA KOKEEN TEKEMISEEN 0 MINUUTTIA MUKANA KYNÄ, KUMI, VIIVOTIN JA LASKIN

2 .Muunna seuraavat yksiköt a), kg = 00 g ( p) b) 400 m = 0,4 km ( p) c), dl = 0 cm ( p) d),5 h = 90 min ( p) e) 08 km / h = 0 m / s ( p) f), m = 00 mm ( p). a) Laske 7,80,4 0 7, ,4 0 60,560 6,056 0 ( p) b) Ilmoita tulos kolmen desimaalin tarkkudella ( p) 0,065 0,9 5,8 c) Piirrä ja nimeä kappale, jolla on neljä pintaa. ( p) Tetraedi (kolmisivuinen pyramidi) tai esim./8 osa pallo d) Mitä tulee maksamaan yksi kuppi kahvia ( dl), kun yhteen litraan kahvia tarvitaan 70 g ( p) l 70g dl 7g Hinta: ½kg 4 7g 4 ½kg 4 x 0,056 5, 6snt 7g x 500g

3 e) Laske oheisen poikkileikkauskuvion pinta-ala. ( p) a h,5,5 A,. a) Suorakulmion muotoisen pöydän pituus on 84 cm suurempi kuin pöydän leveys. Mikä on pöydän pituus, kun pöydän ympärysmitta on 67 cm? ( p) x 84cm 67cm 4 x 67cm 84cm 67cm 68cm cm x cm x 0cm 4 b) Lääkäri määrää potilaalle 60 (LX) kappaletta kapseleita. Kapselin lääkevahvuus on 50 mg ja potilas tarvitsee tätä lääkettä 000 mg vuorokaudessa. Kuinka kauan kuuri kestää? ( p) 60 50mg 5vrk 000mg / vrk ps. L=50 ja X=0 eli LX=50+0=60 4. Kuutio, jonka särmän pituus on 60 cm leikkaillaan pieniksi kuutioiksi, joiden särmän pituus on cm. a) Kuinka monta pientä kuutiota syntyy? ( p) 60 cm 60cm 60cm 60cm cm cm cm cm b) Laske alkuperäisen isomman kuution kokonaisalan suhde pienempien kuutioiden yhteiseen pinta-alaan. ( p) 6 60cm 60cm 600cm cm cm cm 0

4 5. a) Laske palkansaajan viikon työtunnit ja viikkoansio, kun työtunnin Päivittäiset työajat ovat seuraavat. ( p) maanantai klo tiistai klo keskiviikko klo torstai klo perjantai klo h0 8h0 8h0 8h40 7h45 4h5 4, 5h 4,5h / h 495 b) Mikä oheisen kuvion pienemmän, viivoitetun neliön ala, kun isomman neliön sivu on cm? ( p) sin 0 x 0,5 x cos 0 y y y x A cm cm 0,54cm 6.a) Ratkaise x yhtälöstä 6,5 0,5 4 x ( p) x 5 x 5 x 4 x 6 x 6 6 x 4

5 b) Ratkaise x yhtälöstä ax a a ( p) ax a 8a a 4a ax a 8a ax 8a a x 8a a 7. a) Huivi kudotaan kangaspuissa. Huivin lopullisten mittojen on tarkoitus olla: leveys 0 cm ja pituus 40 cm. Kutomisen jälkeen huivin oletetaan kutistuvan pituudesta 6 % ja leveydestä %. Laske huivin kudonta pinta-ala ennen kutistumista? ( p) x x 0,06 40cm 0,94x x 49cm y y 0,0 0cm 0,98y y 0, 6cm A x y 49cm 0,6cm 4560cm 45,6dm Kuinka monta metriä pituussuuntaista loimilankaa työhön tarvitaan, kun lankatiheys kudottaessa on 5 lankaa/cm? ( p) L 49cm 0,6cm 5/ cm 797cm 8m, %, mutta nousi sitten loppuvuodeksi,7 %:iin. Kuinka paljon olivat korkomenot euroissa keskimäärin kuukautta kohden? ( p) kpt 90000,% 4kk 90000,7% 8kk r ; r r r ; r 00 00% kk 00% kk r 50 Keskimääräinen korko kuukaudessa; r 50 kk 87,50 / kk 8. a) Erästä työtehtävää on tekemässä kolme ammattihenkilöä ja seitsemän kesätyöntekijää. Ammattihenkilöille maksetaan tunnilta palkkaa 58 % enemmän, kuin kesätyöntekijöille. Laske ammattihenkilön tuntipalkka, kun 8 tunnin työviikon palkkameno on yhteensä 5400 euroa. ( p) h 8h 8h,74 7 x,58 x 5400,74x x, / h Ammattihenkilön palkka, / h,58 9, / h

6 b) Ympyräneljänneksen piiri (ympärysmitta) olkoon tunnettu. Määritä ympyrän säde, kun piiri on 0,4 cm. ( p) 0,4cm 0,4cm r r 0,4cm r 0,4cm r 5, 7cm 4 4,57 9. a) Kolme suomalaista keihäänheittäjää sijoittuivat viime olympialaisissa kahdentoista parhaan joukkoon. Ruuskanen oli kolmas, Pitkämäki viides ja Mannio yhdestoista. Kuinka monella eri tavalla he kaiken kaikkiaan olisivat voineet kyseisessä loppukilpailussa sijoittua, kun kaikki mahdollisuudet otetaan huomioon? Oletetaan kuitenkin, että jaettuja sijoituksia (sama sija kahdella eri kilpailijalla) ei satu ja kaikki saivat hyväksytyn tuloksen. ( p) Ensimmäinen suomalaisista heittäjistä voi sijoittua eri paikalle. Seuraavalle on jäljellä mahdollista paikkaa ja kolmannella 0 paikkaa. Kolmen heittäjän sijoittumisvaihtoehdoiksi saadaan näin ollen. 0 0 Tapa :Määritellään kahdentoista henkilön kaikki mahdolliset järjestykset (!) ja eliminoidaan sitten muiden, kuin suomalaisten heittäjien järjestysten (9!) vaikutus. Tällöin saadaan! jne 0 0 9! 9 8 jne b) Metallisen ripustimen valmistamiseen tarvittiin 08 cm metallilankaa, jonka poikkileikkauspinta-ala oli 5 mm.ripustimen paino oli 60 g. Käytössä oli samasta metalliseoksesta valmistettua toista lankaa. 0 m tätä metallilankaa osoittautui painavan tasan yhden kilon. Laske tämän toisen metallilangan poikkileikkauksen pinta-ala. ( p) m 60g V 08cm 0,5cm 000g 000cm A 000g 000cm 5,95g / cm 5,95g / cm A 0, 056 cm A 5,6mm

7 0. -, maalaus-, yms. Lisäksi erilaiset logistiikkakustannukset olivat /6 työpalkkojen euromäärästä. Laske huvimajan hinta. ( p) % 00% x / 6 5% 00% x x x x 7 x x x b) Autoa testattiin kolmivaiheisella koeajolla. Ensin ajettiin km tietyllä vakionopeudella. Seuraavaksi ajettiin km paluumatka kaksinkertaisella nopeudella. Ja lopuksi km pituinen matka edelliseen verrattuna 0 km/h pienemmällä nopeudella. Määritä käytetyt ajonopeudet, kun testiajon ajovaiheisiin kului aikaa yhteensä 4 minuuttia. ( p) km km km 4min 7h ½v v v 0km/ h 60min/ h 0 7 v 990 v 7 v v v 0 0 v v 0 v 0v 0 kerrotaan ristiin 0v v 7v 0v 7v 860v v v 0km/ h v,85km/ h v ei kelpaa ratkaisuksi Testiin käytetyt nopeudet olivat; 55 km/h, 0 km/h ja 80 km/h Pisteytys: 6 pistettä/tehtävä, maksimipistemäärä 60 pistettä.

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 15.11.2012 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 11.11.2010 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 13.11.2008 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 14.11.2013 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 13.11.2014 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 12.11.2009 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 17.11.2011 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 17.11.2011 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 15.11.2007 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

AMMATIKKA top 16.11.2006

AMMATIKKA top 16.11.2006 AMMATIKKA top 16.11.2006 Toisen asteen ammatillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU Nimi Oppilaitos Koulutusala Luokka Sarjat: MERKITSE OMA SARJA 1. Tekniikka ja liikenne: O 2.

Lisätiedot

MATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:.

MATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:. AMMATIKKA top 17.11.005 MATEMATIIKAN KOE. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu Nimi: Oppilaitos:. Koulutusala:... Luokka:.. Sarjat: MERKITSE OMA SARJA 1. Tekniikka

Lisätiedot

1. Muunna seuraavat yksiköt. Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu. Oppilaitos:.. Koulutusala:...

1. Muunna seuraavat yksiköt. Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu. Oppilaitos:.. Koulutusala:... MATEMATIIKAN KOE Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu Nimi: Oppilaitos:.. Koulutusala:... Luokka:.. Sarjat: LAITA MERKKI OMAAN SARJAASI. Tekniikka ja liikenne:..

Lisätiedot

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu MATEMATIIKAN KOE Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu Nimi: Oppilaitos:.. Koulutusala:... Luokka:.. AIKAA KOKEEN TEKEMISEEN 90 MINUUTTIA MUKANA KYNÄ, KUMI,

Lisätiedot

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu MATEMATIIKAN KOE Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu Nimi: Oppilaitos:.. Koulutusala:... Luokka:.. AIKAA KOKEEN TEKEMISEEN 90 MINUUTTIA MUKANA KYNÄ, KUMI,

Lisätiedot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.2 Kulman tangentti 2.3 Sivun pituus tangentin avulla 2.4 Kulman sini ja kosini 2.5 Trigonometristen funktioiden käyttöä 2.7 Avaruuskappaleita 2.8 Lieriö 2.9

Lisätiedot

Cadets 2004 - Sivu 1 RATKAISUT

Cadets 2004 - Sivu 1 RATKAISUT Cadets 2004 - Sivu 1 3 pistettä 1/ Laske 2004 4 200 A 400800 B 400000 C 1204 1200 E 2804 2004 4 200= 2004 800= 1204 2/ Tasasivuista kolmiota AC kierretään vastapäivään pisteen A ympäri. Kuinka monta astetta

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

MATEMATIIKKA PAOJ2 Harjoitustehtävät

MATEMATIIKKA PAOJ2 Harjoitustehtävät MATEMATIIKKA PAOJ2 Harjoitustehtävät 6. Laske kuvan suorakulmion pinta-ala. ( T ) 1. Täytä taulukko m 12 1,45 0,805 2. Täytä taulukko mm 12345 4321 765 23,5 7. Laske kuvan suorakulmion pinta-ala.( T )

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 008 MATEMATIIKKA TEHTÄVIEN RATKAISUT Tehtävä. Maljakossa on 0 keltaista ja 0 punaista tulppaania, joista puutarhuriopiskelijan on määrä

Lisätiedot

Merkitse yhtä puuta kirjaimella x ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3x + 2x = 5x + =

Merkitse yhtä puuta kirjaimella x ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3x + 2x = 5x + = Mikä X? Esimerkki: Merkitse yhtä puuta kirjaimella ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3 + 2 = 5 + = 5 + = 1. Merkitse yhtä päärynää kirjaimella ja kirjoita yhtälöksi? Mikä tulee vastaukseksi?

Lisätiedot

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu MTEMTIIKN KOE mmatiisen kouutuksen kaikkien aojen yhteinen matematiikan vamiuksien kipaiu Nimi: Oppiaitos:.. Kouutusaa:... Luokka:.. Sarjat: LIT MERKKI OMN SRJSI. Tekniikka ja iikenne:... Matkaiu-,ravitsemus-

Lisätiedot

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella.

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella. Tasogeometria Tasogeometrian käsitteitä ja osia Suora on äärettömän pitkä. A ja B ovat suoralla olevia pisteitä. Piste P on suoran ulkopuolella. Jana on geometriassa kahden pisteen välinen suoran osuus.

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE Matematiikan koe.6.009 Nimi: Henkilötunnus: VASTAUSOHJEET: 1. Koeaika on tuntia (klo 1.00 14.00). Kokeesta saa poistua aikaisintaan klo 1.0..

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA JA YMPÄRISTÖALAN VALINTAKOE

AMMATTIKORKEAKOULUJEN LUONNONVARA JA YMPÄRISTÖALAN VALINTAKOE AMMATTIKORKEAKOULUJEN LUONNONVARA JA YMPÄRISTÖALAN VALINTAKOE Matematiikan koe 7.6.2005 Nimi: Henkilötunnus: Sain kutsun kokeeseen Hämeen amk:lta Jyväskylän amk:lta Kymenlaakson amk:lta Laurea amk:lta

Lisätiedot

1 Laske ympyrän kehän pituus, kun

1 Laske ympyrän kehän pituus, kun Ympyrään liittyviä harjoituksia 1 Laske ympyrän kehän pituus, kun a) ympyrän halkaisijan pituus on 17 cm b) ympyrän säteen pituus on 1 33 cm 3 2 Kuinka pitkä on ympyrän säde, jos sen kehä on yhden metrin

Lisätiedot

Peruskoulun matematiikkakilpailu Loppukilpailu 2010 Ratkaisuja OSA 1

Peruskoulun matematiikkakilpailu Loppukilpailu 2010 Ratkaisuja OSA 1 Peruskoulun matematiikkakilpailu Loppukilpailu 010 Ratkaisuja OSA 1 1. Mikä on suurin kokonaisluku, joka toteuttaa seuraavat ehdot? Se on suurempi kuin 100. Se on pienempi kuin 00. Kun se pyöristetään

Lisätiedot

Kenguru Benjamin (6. ja 7. luokka) ratkaisut sivu 1 / 6

Kenguru Benjamin (6. ja 7. luokka) ratkaisut sivu 1 / 6 Kenguru Benjamin (6. ja 7. luokka) ratkaisut sivu 1 / 6 3 pisteen tehtävät 1) Mikä on pienin? A) 2 + 0 + 0 + 8 B) 200 : 8 C) 2 0 0 8 D) 200 8 E) 8 + 0 + 0 2 2) Millä voidaan korvata, jotta seuraava yhtälö

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN MATEMATIIKAN V. 2010 VALINTAKOETEHTÄVIEN RATKAISUT

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN MATEMATIIKAN V. 2010 VALINTAKOETEHTÄVIEN RATKAISUT AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN MATEMATIIKAN V. 2010 VALINTAKOETEHTÄVIEN RATKAISUT TEHTÄVÄT 1.a) Oheisessa kuviossa janat ja janoihin liittyvät luvut kuvaavat pisteiden välisiä reittejä

Lisätiedot

OSA 3: GEOMETRIAA. Alkupala. Kokoa neljästä alla olevasta palasesta M kirjain.

OSA 3: GEOMETRIAA. Alkupala. Kokoa neljästä alla olevasta palasesta M kirjain. OSA 3: GEOMETRIAA Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen, Pekka Vaaraniemi Alkupala Kokoa neljästä alla olevasta palasesta M kirjain. G. GEOMETRIAA Hannu ja

Lisätiedot

[MATEMATIIKKA, KURSSI 9]

[MATEMATIIKKA, KURSSI 9] 2016 Puustinen, Sinn PYK [MATEMATIIKKA, KURSSI 9] Avaruusgeometrian teoriaa, tehtäviä ja linkkejä peruskoululaisille 1 SISÄLLYSLUETTELO 9. KURSSIN SISÄLTÖ... 3 9.0.1 MALLIKOE 1... 4 9.0.2 MALLIKOE 2...

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE Matematiikan koe 1.6.2016 Nimi: Henkilötunnus: VASTAUSOHJEET 1. Koeaika on 2 tuntia (klo 12.00 14.00). Kokeesta saa poistua aikaisintaan klo

Lisätiedot

Tekijät: Tarja Kokkila, Maija Salmivaara OuLUMA, sivu 1

Tekijät: Tarja Kokkila, Maija Salmivaara OuLUMA, sivu 1 Tekijät: Tarja Kokkila, Maija Salmivaara OuLUMA, sivu 1 Mittakaava Avainsanat: yhdenmuotoisuus, suurennos, pienennös, mittakaava, mittaaminen, pinta-ala, tilavuus, suhde Luokkataso: 3-9 Välineet: kynä,

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio Geometrian kertausta MAB2 Juhani Kaukoranta Raahen lukio Ristikulmat Ristikulmat ovat yhtä suuret keskenään Vieruskulmien summa 180 Muodostavat yhdessä oikokulman 180-50 =130 50 Samankohtaiset kulmat Kun

Lisätiedot

4. Varastossa on 24, 23, 17 ja 16 kg:n säkkejä. Miten voidaan toimittaa täsmälleen 100 kg:n tilaus avaamatta yhtään säkkiä?

4. Varastossa on 24, 23, 17 ja 16 kg:n säkkejä. Miten voidaan toimittaa täsmälleen 100 kg:n tilaus avaamatta yhtään säkkiä? Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina 3.2.2012 OSA 1 Ratkaisuaika 30 min Pistemäärä 20 Tässä osassa ei käytetä laskinta. Kaikkiin tehtäviin laskuja, kuvia tai muita perusteluja näkyviin.

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutkintolautakunta S tudentexamensnämnden MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ.9.013 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutkintolautakunnan

Lisätiedot

Mikä neljästä numeroidusta kuviosta jatkaa alkuperäistä kuviosarjaa? Perustele lyhyesti

Mikä neljästä numeroidusta kuviosta jatkaa alkuperäistä kuviosarjaa? Perustele lyhyesti Tehtävä 1. Mikä neljästä numeroidusta kuviosta jatkaa alkuperäistä kuviosarjaa? Perustele lyhyesti a) 1 4 b) 1 4 a) - kuvio, annetaan 1,5 p - ympyrä täyttyy neljänneksen kerrallaan, annetaan 1,5 p b) -

Lisätiedot

Kenguru 2014 Junior sivu 1 / 8 (lukion 1. vuosikurssi)

Kenguru 2014 Junior sivu 1 / 8 (lukion 1. vuosikurssi) Kenguru 2014 Junior sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi) Kenguru 2012 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia.

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia. Pitkä matematiikka Suullinen kuulustelu (ma00s00doc) Tehtävät, jotka on merkitty (V), ovat vaativia Yleistä Ratkaise yhtälöt n n n n n 5 a) 5 + 5 + 5 + 5 + 5 = 5 b) ( ) ( ) > 0 + = + c) ( ) Suureet ja

Lisätiedot

MAA3 HARJOITUSTEHTÄVIÄ

MAA3 HARJOITUSTEHTÄVIÄ MAA3 HARJOITUSTEHTÄVIÄ 1. Selosta, miten puolitat (jaat kahtia) annetun koveran kulman pelkästään harppia ja viivoitinta käyttäen. 2. Piirrä kolmio, kun tunnetaan sen kaksi kulmaa (α ja β) sekä näiden

Lisätiedot

= A h, joten poikkipinta-alaksi saadaan. Rännin tilavuus V. 80 dm. 90 dm = 0,888... dm 0,89 dm 902 V. Poikkipinta-alan pitää olla. 0,89 dm.

= A h, joten poikkipinta-alaksi saadaan. Rännin tilavuus V. 80 dm. 90 dm = 0,888... dm 0,89 dm 902 V. Poikkipinta-alan pitää olla. 0,89 dm. Pyramidi Geometria tetävien ratkaisut sivu 149 901 a on lieriö b ei ole, ojat eivät ole ytenevät c on d ei ole, lieriön määritelmän eto suora liikkuu suuntansa säilyttäen ja alaa louksi lätöaikkaansa käymättä

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN MATEMATIIKAN V. 2010 VALINTAKOETEHTÄVIEN PISTEYTYSOHJEET

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN MATEMATIIKAN V. 2010 VALINTAKOETEHTÄVIEN PISTEYTYSOHJEET AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN MATEMATIIKAN V. 010 VALINTAKOETEHTÄVIEN PISTEYTYSOHJEET Pisteytys on pyritty tekemään pelkistetyksi, jotta kaikki korjaajat päätyisivät samaan arvosteluun.

Lisätiedot

kartiopinta kartio. kartion pohja, suora ympyräkartio vino pyramidiksi

kartiopinta kartio. kartion pohja, suora ympyräkartio vino pyramidiksi 5.3 Kartio Kun suora liikkuu avaruudessa niin, että yksi sen piste pysyy paikoillaan ja suoran jokin toinen piste kiertää jossakin tasossa jonkin suljetun käyrän palaten lähtöpaikkaansa, syntyy kaksiosainen

Lisätiedot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Trigonometriset funktiot ja lukujonot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Trigonometriset funktiot ja lukujonot Calculus Lukio MAA9 Trigoometriset fuktiot ja lukujoot Paavo Jäppie Alpo Kupiaie Matti Räsäe Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Trigoometriset fuktiot ja lukujoot (MAA9) Pikatesti

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2014 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2014 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 4.9.04 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

[MATEMATIIKKA, KURSSI 8]

[MATEMATIIKKA, KURSSI 8] 2015 Puustinen, Sinn PYK [MATEMATIIKKA, KURSSI 8] Trigometrian ja avaruusgeometrian teoriaa, tehtäviä ja linkkejä peruskoululaisille Sisällysluettelo 8.1 PYTHAGORAAN LAUSE... 3 8.1.1 JOHDANTOTEHTÄVÄT 1-6...

Lisätiedot

Lukion. Calculus. Analyyttinen geometria. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Analyyttinen geometria. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA Analttinen geometria Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Analttinen geometria (MAA) Pikatesti ja Kertauskokeet Tehtävien

Lisätiedot

Tehtävä 1 2 3 4 5 6 7 Vastaus

Tehtävä 1 2 3 4 5 6 7 Vastaus Kenguru Ecolier, vastauslomake Nimi Luokka/Ryhmä Pisteet Kenguruloikka Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi, jos

Lisätiedot

Näyttötutkintojen järjestämisestä sopiminen

Näyttötutkintojen järjestämisestä sopiminen Näyttötutkintojen järjestämisestä sopiminen Arviointiriihi AEL 25.3.2014 Markku Kokkonen Opetushallitus Säädökset ja ohjeet Laki ammatillisesta aikuiskoulutuksesta (631/1998, 7 ) Koulutuksen järjestäjä

Lisätiedot

Kokeile ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu täydellisesti lääkiksen pääsykokeeseen! Miten opit parhaiten?

Kokeile ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu täydellisesti lääkiksen pääsykokeeseen! Miten opit parhaiten? Miten opit parhaiten? Valmistaudu täydellisesti lääkiksen pääsykokeeseen! n Voit harjoitella kotoa käsin huippusuositulla Mafynetti-ohjelmalla. Mukaan kuuluu 4 täysimittaista harjoituskoetta!! n Harjoittelu

Lisätiedot

Tässä osassa ei käytetä laskinta. Selitä päätelmäsi lyhyesti tai perustele ratkaisusi laskulausekkeella, kuviolla tms.

Tässä osassa ei käytetä laskinta. Selitä päätelmäsi lyhyesti tai perustele ratkaisusi laskulausekkeella, kuviolla tms. OSA 1 Ratkaisuaika 30 min Pistemäärä 20 Tässä osassa ei käytetä laskinta. Selitä päätelmäsi lyhyesti tai perustele ratkaisusi laskulausekkeella, kuviolla tms. 1. Mikä on suurin kokonaisluku, joka toteuttaa

Lisätiedot

Ahlmanin ammattiopisto, Tampere 22.06.2015 10:24 33/2015 (1. jakso) 10. - 16.08.2015 Viikkotuntimäärä: 23

Ahlmanin ammattiopisto, Tampere 22.06.2015 10:24 33/2015 (1. jakso) 10. - 16.08.2015 Viikkotuntimäärä: 23 33/2015 (1. jakso) 10. - 16.08.2015 Viikkotuntimäärä: 23 Maanantai 10.08. Tiistai 11.08. Keskiviikko 12.08. Torstai 13.08. Perjantai 14.08. Lauantai 15.08. Sunnuntai 16.08. Matematiikka YHT2.1. Ma Fyke

Lisätiedot

Ylemmät ammattikorkeakoulututkinnot 15 22 19 19 30 63 % 99 % -14 % 8 %

Ylemmät ammattikorkeakoulututkinnot 15 22 19 19 30 63 % 99 % -14 % 8 % 1 Yrkeshögskolan Novia määrälliset tavoitteet ja tunnusluvut kaudelle 2013 2016 Toteutuma Keskiarvo OPM/sov. tavoite Tavoitteen tot.-% 2014 Tot. muutos-% 2013-2014 2012 2013 2014 2012-2014 2013-2016 AMK

Lisätiedot

Suorakulmainen kolmio

Suorakulmainen kolmio Suorakulmainen kolmio 1. Määritä terävä kulma α, β ja γ, kun sinα = 0,5782, cos β = 0,745 ja tanγ = 1,222. π 2. Määritä trigonometristen funktioiden sini, kosini ja tangentti, kun kulma α = ja 3 β = 73,2

Lisätiedot

Kenguru 2015 Student (lukiosarja)

Kenguru 2015 Student (lukiosarja) sivu 1 / 9 NIMI RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

3 Avaruusgeometria. Lieriö. 324. a) V = 30 20 12 = 7 200 (cm 3 ) 7 200 cm 3 = 7,2 dm 3 = 7,2 l. b) V = A p h = 30 15 = 450 (cm 3 )

3 Avaruusgeometria. Lieriö. 324. a) V = 30 20 12 = 7 200 (cm 3 ) 7 200 cm 3 = 7,2 dm 3 = 7,2 l. b) V = A p h = 30 15 = 450 (cm 3 ) Avaruusgeometria Lieriö 4. a) 0 0 1 7 00 (cm ) 7 00 cm 7, dm 7, l b) A p h 0 15 450 (cm ) 5. Kuution särmän pituus on a 1, cm. a) a 1, 1,78 1,7 (cm ) b) A 6a 6 1, 8,64 8,6 (cm ) 16 6. r d 8 (cm) A p h

Lisätiedot

Kenguru 2014 Benjamin (6. ja 7. luokka) sivu 1 / 7 ja Pakilan ala-aste

Kenguru 2014 Benjamin (6. ja 7. luokka) sivu 1 / 7 ja Pakilan ala-aste (6. ja 7. luokka) sivu 1 / 7 ja Pakilan ala-aste NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä

Lisätiedot

Ahlmanin ammattiopisto, Tampere 10.06.2015 15:43 36/2015 (1. jakso) 31.08. - 06.09.2015 Viikkotuntimäärä: 7

Ahlmanin ammattiopisto, Tampere 10.06.2015 15:43 36/2015 (1. jakso) 31.08. - 06.09.2015 Viikkotuntimäärä: 7 36/2015 (1. jakso) 31.08. - 06.09.2015 Viikkotuntimäärä: 7 Maanantai 31.08. Tiistai 01.09. Keskiviikko 02.09. Torstai 03.09. Perjantai 04.09. Lauantai 05.09. Sunnuntai 06.09. 09:00 Palmu Riina C TVT2 Yritystoiminnan

Lisätiedot

Näyte. Peruslaskutoimitukset. Perustehtävät. Alkulämmittely. A Laske a) 1 + 2 3 35 b) 7 c) 2 7 + 8 7 d) 32 + 75 + 68

Näyte. Peruslaskutoimitukset. Perustehtävät. Alkulämmittely. A Laske a) 1 + 2 3 35 b) 7 c) 2 7 + 8 7 d) 32 + 75 + 68 LUKKPIRUETTEJ Peruslaskutoimitukset Perustehtävät Laske a) 1 + 2 5 b) 7 c) 2 7 + 8 7 d) 2 + 75 + 68 Muunna sekunneiksi a) 8 min b) 4,5 min Muunna minuuteiksi. a) 120 s b) 150 s c) 1 h 1. Jalkapallo-ottelun

Lisätiedot

TV08S1E(CD) Mediatekniikan koulutusohjelma, S08, ryhmät C & 15.9. - 21.9.

TV08S1E(CD) Mediatekniikan koulutusohjelma, S08, ryhmät C & 15.9. - 21.9. TV08SE(CD) Mediatekniikan koulutusohjelma, S08, ryhmät C & 5.9. - 2.9. maanantai 5.9. tiistai 6.9. keskiviikko 7.9. torstai 8.9. perjantai 9.9. lauantai 20.9. XX00AA0 TV Orient.opinn.. Merenti-Välimäki

Lisätiedot

Kolmiot ABC ja DEF ovat keskenään yhdenmuotoisia eli ABC DEF. Ratkaise. 6,0 cm. Koska vastinkulmat ovat yhtä suuret, myös kulman a suuruus on 29.

Kolmiot ABC ja DEF ovat keskenään yhdenmuotoisia eli ABC DEF. Ratkaise. 6,0 cm. Koska vastinkulmat ovat yhtä suuret, myös kulman a suuruus on 29. 1 Yhdenmuotoisuus Keskenään samanmuotoisia kuviota kutsutaan yhdenmuotoisiksi kuvioiksi. Yhdenmuotoisten kuvioiden toisiaan vastaavia kulmia kutsutaan vastinkulmiksi ja toisiaan vastaavia osia vastinosiksi.

Lisätiedot

Lukion. Calculus. Funktiot ja yhtälöt. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Funktiot ja yhtälöt. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA Funktiot ja yhtälöt Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Funktiot ja yhtälöt (MAA) Pikatesti ja kertauskokeet Pikatesti

Lisätiedot

Mb03 Koe 21.5.2015 Kuopion Lyseon lukio (KK) sivu 1/4

Mb03 Koe 21.5.2015 Kuopion Lyseon lukio (KK) sivu 1/4 Mb03 Koe 2..20 Kuopion Lyseon lukio (KK) sivu /4 Kokeessa on kaksi osaa. Osa A ratkaistaan tehtäväpaperille ja osa B ratkaistaan konseptipaperille. Osa A: saat käyttää taulukkokirjaa mutta et laskinta.

Lisätiedot

797 E. matematiikka. Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola

797 E. matematiikka. Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola 797 E matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava 24 Ongelmanratkaisu yhtälön avulla Yhtälön

Lisätiedot

Kolmioitten harjoituksia. Säännöllisten monikulmioitten harjoituksia. Pythagoraan lauseeseen liittyviä harjoituksia

Kolmioitten harjoituksia. Säännöllisten monikulmioitten harjoituksia. Pythagoraan lauseeseen liittyviä harjoituksia Kolmioitten harjoituksia Piirrä kolmio, jonka sivujen pituudet ovat 4cm, 5 cm ja 10 cm. Minkä yleisen kolmion sivujen pituuksia ja niitten eroja koskevan johtopäätöksen vedät? Määritä huippukulman α suuruus,

Lisätiedot

Avautuvat työpaikat (ammattirakenteen muutos + poistumat )

Avautuvat työpaikat (ammattirakenteen muutos + poistumat ) KM 8.5.2007 Avautuvat työpaikat (ammattirakenteen muutos + poistumat ) Taulukko 1.1 Avautuvat työpaikat 2005-2020, henkeä vuodessa ( Tavoitekehitys, Pääammattiryhmät) Pirkan- Pääammattiryhmät maa Häme

Lisätiedot

Ammatilliseen peruskoulutukseen ohjaava ja valmistava koulutus

Ammatilliseen peruskoulutukseen ohjaava ja valmistava koulutus Ammatilliseen peruskoulutukseen ohjaava ja valmistava koulutus Ammattistartti on ollut todella mahtavaa! Olen todella tykännyt olla täällä ja sen myös huomaa arvosanoistani. Kiitokset ammattistartin keksijöille!

Lisätiedot

MAATALOUS-METSÄTIETEELLISEN TIEDEKUNNAN VALINTAKOE 2014

MAATALOUS-METSÄTIETEELLISEN TIEDEKUNNAN VALINTAKOE 2014 MAATALOUS-METSÄTIETEELLISEN TIEDEKUNNAN VALINTAKOE 2014 KOE 2: Ympäristöekonomia KANSANTALOUSTIEDE JA MATEMATIIKKA Sekä A- että B-osasta tulee saada vähintään 10 pistettä. Mikäli A-osan pistemäärä on vähemmän

Lisätiedot

Kappaleiden tilavuus. Suorakulmainensärmiö.

Kappaleiden tilavuus. Suorakulmainensärmiö. Kappaleiden tilavuus Suorakulmainensärmiö. Tilavuus (volyymi) V = pohjan ala kertaa korkeus. Tankomaisista kappaleista puhuttaessa nimitetään korkeutta tangon pituudeksi. Pohjan ala A = b x h Korkeus (pituus)

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN alculus Lukion M Geometia Paavo Jäppinen lpo Kupiainen Matti Räsänen Otava PIKTESTIN J KERTUSKOKEIEN TEHTÄVÄT RTKISUINEEN Geometia (M) Pikatesti ja ketauskokeet Tehtävien atkaisut 1 Pikatesti (M) 1 Määitä

Lisätiedot

KYSELY AMMATILLISTEN PERUSTUTKINTOJEN OPISKELIJOILLE TYÖSSÄOPPIMISESTA

KYSELY AMMATILLISTEN PERUSTUTKINTOJEN OPISKELIJOILLE TYÖSSÄOPPIMISESTA KYSELY AMMATILLISTEN PERUSTUTKINTOJEN OPISKELIJOILLE TYÖSSÄOPPIMISESTA Hyvä vastaaja! Kysely on osa kartoitustyötä, jolla keräämme tietoa työssäoppimisesta toisen asteen ammatillisen perustutkinnon opiskelijoilta.

Lisätiedot

PERUSTIEDOT/Ammatillinen peruskoulutus Käyttömenojen valtionosuuksien laskenta Opiskelijamäärä 20.9.2014

PERUSTIEDOT/Ammatillinen peruskoulutus Käyttömenojen valtionosuuksien laskenta Opiskelijamäärä 20.9.2014 OPETUSHALLITUS Rahoitus PERUSTIEDOT/Ammatillinen perus Käyttömenojen valtionosuuksien laskenta Opiskelijamäärä 1.Yhteystiedot Koulutuksen järjestäjä Koulutuksen järjestäjän numero Yhteyshenkilön nimi Osoite

Lisätiedot

YHTEISHAKU TOISEN ASTEEN KOULUTUKSIIN

YHTEISHAKU TOISEN ASTEEN KOULUTUKSIIN YHTEISHAKU TOISEN ASTEEN KOULUTUKSIIN 2016 Koulutusjärjestelmä PERUSKOULUN JÄLKEEN Lukiokoulutus Ammatillinen peruskoulutus Ammatillinen erityisopetus Ammatilliseen peruskoulutukseen valmentava koulutus

Lisätiedot

Kenguru Ecolier, ratkaisut (1 / 5) 4. - 5. luokka

Kenguru Ecolier, ratkaisut (1 / 5) 4. - 5. luokka 3 pisteen tehtävät Kenguru Ecolier, ratkaisut (1 / 5) 1. Missä kenguru on? (A) Ympyrässä ja kolmiossa, mutta ei neliössä. (B) Ympyrässä ja neliössä, mutta ei kolmiossa. (C) Kolmiossa ja neliössä, mutta

Lisätiedot

Ahlmanin ammattiopisto, Tampere 22.06.2015 16:11 33/2015 (1. jakso) 10. - 16.08.2015 Viikkotuntimäärä: 0

Ahlmanin ammattiopisto, Tampere 22.06.2015 16:11 33/2015 (1. jakso) 10. - 16.08.2015 Viikkotuntimäärä: 0 33/2015 (1. jakso) 10. - 16.08.2015 Viikkotuntimäärä: 0 Maanantai 10.08. Tiistai 11.08. Keskiviikko 12.08. Torstai 13.08. Perjantai 14.08. Lauantai 15.08. Sunnuntai 16.08. 34/2015 (1. jakso) 17. - 23.08.2015

Lisätiedot

JATKOKOULUTUKSEEN HAKEMINEN LUKIO- OPINTOJEN JÄLKEEN

JATKOKOULUTUKSEEN HAKEMINEN LUKIO- OPINTOJEN JÄLKEEN JATKOKOULUTUKSEEN HAKEMINEN LUKIO- OPINTOJEN JÄLKEEN ABI-INFO KEVÄT 2014 Suomen koulutusjärjestelmä Ylioppilas voi hakea 1. Yliopistoon 2. Ammattikorkeakouluun 3. Ammatilliseen peruskoulutukseen 1.- 2.

Lisätiedot

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia.

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia. Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia. Yleistä 1. Ratkaise yhtälöt. a) n n n n n 5 b) x 3 x 1 5 5 5 5 5 5 x 1 0 x c). Suureet x ja y ovat

Lisätiedot

Kertausosan ratkaisut. 1. Kulma α on 37 suurempi kuin kulma eli 37. Koska kulmat α ja β ovat vieruskulmia, niiden summa on 180 eli

Kertausosan ratkaisut. 1. Kulma α on 37 suurempi kuin kulma eli 37. Koska kulmat α ja β ovat vieruskulmia, niiden summa on 180 eli Kertausosa 1. Kulma α on 7 suurempi kuin kulma eli 7. Koska kulmat α ja β ovat vieruskulmia, niiden summa on 180 eli 180 7 180 14 : 71,5 Siis 7 71,5 7 108, 5 Vastaus: 108,5, 71, 5. Kuvaan merkityt kulmat

Lisätiedot

LÄPÄISYN TEHOSTAMISOHJELMAN SEURANTA. Laivaseminaari 6.5.2014 Salla Hurnonen

LÄPÄISYN TEHOSTAMISOHJELMAN SEURANTA. Laivaseminaari 6.5.2014 Salla Hurnonen LÄPÄISYN TEHOSTAMISOHJELMAN SEURANTA Laivaseminaari 6.5.2014 Salla Hurnonen SEURANTA Seurannan kehittäminen aloitettu syksyllä 2011 Ensimmäinen julkistus 2013 Hankkeita käynnissä v. 2014 24 kpl 55 koulutuksen

Lisätiedot

Viikko 13 23.3.2015-29.3.2015

Viikko 13 23.3.2015-29.3.2015 Viikko 13 23.3.2015-29.3.2015 Maanantai 23.3. Tiistai 24.3. Keskiviikko 25.3. Torstai 26.3. Perjantai 27.3. Lauantai 28.3. Sunnuntai 29.3. Radio Channels, Luento 08:15 - TS127 Communication signal processing

Lisätiedot

Testaa taitosi 1. 2. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on

Testaa taitosi 1. 2. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on Testaa taitosi. Laske lausekkeen 60 cos80 sin arvo. Päättele sinin ja kosinin arvot yksikköympyrästä. y x. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on y y. x x. Määritä

Lisätiedot

Kertaustehtävien ratkaisut

Kertaustehtävien ratkaisut Kertaustehtävien ratkaisut. x y = x + 6 (x, y) 0 0 + 6 = 6 (0, 6) + 6 = (, ) + 6 = 0 (, 0) y-akselin leikkauspiste on (0, 6) ja x-akselin (, 0).. x y = x (x, y) 0 0 (0, 0) (, ) (, ) x y = x + (x, y) 0

Lisätiedot

Oppiainevalinnat yleissivistävässä opetuksessa ja segregaatio. Opetusneuvos Liisa Jääskeläinen

Oppiainevalinnat yleissivistävässä opetuksessa ja segregaatio. Opetusneuvos Liisa Jääskeläinen Oppiainevalinnat yleissivistävässä opetuksessa ja segregaatio Opetusneuvos Liisa Jääskeläinen Opetusministeriön asettama työryhmä segregaation purkamiseksi Kokous 18.12.2009 Matematiikan valinnaiset kurssit

Lisätiedot

Ahlmanin ammattiopisto, Tampere 22.06.2015 17:11 33/2015 (1. jakso) 10. - 16.08.2015 Viikkotuntimäärä: 25

Ahlmanin ammattiopisto, Tampere 22.06.2015 17:11 33/2015 (1. jakso) 10. - 16.08.2015 Viikkotuntimäärä: 25 33/2015 (1. jakso) 10. - 16.08.2015 Viikkotuntimäärä: 25 Maanantai 10.08. Tiistai 11.08. Keskiviikko 12.08. Torstai 13.08. Perjantai 14.08. Lauantai 15.08. Sunnuntai 16.08. 10:15 Työskentely puutarha-alalla

Lisätiedot

Tasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus.

Tasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus. KOLMIULOTTEISI KPPLEIT Tsogeometriss käsiteltiin kuvioit vin ydessä tsoss. vruusgeometriss tsoon tulee kolms ulottuvuus, jolloin sdn kppleen tilvuus. SUORKULMINEN SÄRMIÖ Suorkulmisess särmiössä kikki kulmt

Lisätiedot

Öljysäiliö maan alla

Öljysäiliö maan alla Kaigasniemen koulu Öljysäiliö maan alla Yläkoulun ketaava ja syventävä matematiikan tehtävä Vesa Maanselkä 009 Ostat talon jossa on öljylämmitys. Takapihalle on kaivettu maahan sylintein muotoinen öljysäiliö

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA7 Derivaatta Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Derivaatta (MAA7) Pikatesti ja kertauskokeet Tehtävien ratkaisut Pikatesti

Lisätiedot

Kalastusluokan Perholajien Kilpailusäännöt

Kalastusluokan Perholajien Kilpailusäännöt Suomen Castingliitto ry:n Kalastusluokan Perholajien Kilpailusäännöt LAJIT Taimenluokan tarkkuusheitto Taimenluokan pituusheitto Meritaimenluokan pituusheitto Lohiluokan pituusheitto Spey pituusheitto

Lisätiedot

Ahlmanin ammattiopisto, Tampere 22.06.2015 10:56 36/2015 (1. jakso) 31.08. - 06.09.2015 Viikkotuntimäärä: 7

Ahlmanin ammattiopisto, Tampere 22.06.2015 10:56 36/2015 (1. jakso) 31.08. - 06.09.2015 Viikkotuntimäärä: 7 36/2015 (1. jakso) 31.08. - 06.09.2015 Viikkotuntimäärä: 7 Maanantai 31.08. Tiistai 01.09. Keskiviikko 02.09. Torstai 03.09. Perjantai 04.09. Lauantai 05.09. Sunnuntai 06.09. 37/2015 (1. jakso) 07. - 13.09.2015

Lisätiedot

määrittelemässä alueessa? Laske alueen kärkipisteiden koordinaatit. Piirrä kuvio.

määrittelemässä alueessa? Laske alueen kärkipisteiden koordinaatit. Piirrä kuvio. Yo-tehtäviä Mb06 kurssista Sarja 1 k09/12. Mikä on suurin arvo, jonka lauseke x + y saa epäyhtälöiden x 0, y 0, 2x + 3y 24, 5x + 3y 30 määrittelemässä alueessa? Laske alueen kärkipisteiden koordinaatit.

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 4.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 4.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka 4..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1

Lisätiedot

Tehnyt 9B Tarkistanut 9A

Tehnyt 9B Tarkistanut 9A Tehnyt 9B Tarkistanut 9A Kuitinmäen koulu Syksy 2006 Avaruusgeometrian soveltavia tehtäviä... 3 1. Päästäänkö uimaan?... 3 2. Mummon kahvipaketti... 3 3. Tiiliseinä... 4 4. SISUSTUSTA... 5 5. Kirkon torni...

Lisätiedot

LÄPÄISY TEHOSTUU Osaamisen is en ja si ja v si is v ty is ksen ty parha r aksi a

LÄPÄISY TEHOSTUU Osaamisen is en ja si ja v si is v ty is ksen ty parha r aksi a LÄPÄISY TEHOSTUU Ajatusta alkuun Kukaan ei kysy, mitä mulle kuuluu Suomessa keskeyttämistä on käsitelty voittopuolisesti yksilön ongelmallisuutena koulujärjestelmän ongelmana näkemisen sijaan. A-M. Souto

Lisätiedot

2.3 Voiman jakaminen komponentteihin

2.3 Voiman jakaminen komponentteihin Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.

Lisätiedot

Ammattikorkeakoulujen yhteishaut 2011

Ammattikorkeakoulujen yhteishaut 2011 Ammattikorkeakoulujen yhteishaut 2011 Nuorten suomen- ja ruotsinkielisen koulutuksen yhteishaku tilanne 27.8. Hakeneet *, ** Hyväksytyt *, ** 2010 2009 Paikan vastaanottaneet* Hakeneet *, ** Hyväksytyt

Lisätiedot

FYSIIKAN HARJOITUSTEHTÄVIÄ

FYSIIKAN HARJOITUSTEHTÄVIÄ FYSIIKAN HARJOITUSTEHTÄVIÄ MEKANIIKKA Nopeus ja keskinopeus 6. Auto kulkee 114 km matkan tunnissa ja 13 minuutissa. Mikä on auton keskinopeus: a) Yksikössä km/h 1. Jauhemaalaamon kuljettimen nopeus on

Lisätiedot

Turun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut

Turun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut (1) Laske 20 12 11 21. Turun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut a) 31 b) 0 c) 9 d) 31 Ratkaisu. Suoralla laskulla 20 12 11 21 = 240 231 = 9. (2) Kahden peräkkäisen

Lisätiedot