TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012

Koko: px
Aloita esitys sivulta:

Download "TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012"

Transkriptio

1 TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas

2 KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen empiirisen jakauman esittäminen Frekvenssijakauma Luokittelu Kuviot Tunnusluvut Kaksiulotteisen jakauman esittäminen ja riippuvuus Ristiintaulukko ja kuviot Riippuvuuden tunnusluvut Vähän todennäköisyydestä Otantajakauma Tilastollinen päätöksenteko Estimointi Hypoteesien testaus Perustestejä Keskiarvotestit, varianssianalyysit Riippuvuuden testit

3 ESIMERKKI TILASTOLLISESTA HYPOTEESIN TESTAAMISESTA Ennen aineiston keräämistä B on selvittänyt, että: Suuressa yhdysvaltalaisessa kartoituksessa vastaavan tyyppisen perusjoukon pituuden keskiarvoksilaskettiin 180 cm. Tutkimuskysymys: Voiko B:n otoksesta laskettua keskiarvoa pitää yhtä suurena amerikkalaistutkimuksen kanssa? Tutkimushypoteesi: (Hän olettaa, että omasta) otoksesta laskettu keskiarvo on yhtä suuri kuin yhdysvaltalaisessa tutkimuksessa. Tilastolliset hypoteesit: Nollahypoteesi: Pituuden keskiarvot ovat yhtä suuret. Vastahypoteesi: Keskiarvot eivät ole yhtä suuret. Huom. B ei tiedä mihin suuntaan mahdollinen ero voisi esiintyä, jos sitä löytyy, siksi hän valitsee kaksisuuntainen vastahypoteesin

4 ESIMERKKI TILASTOLLISESTA HYPOTEESIN TESTAAMISESTA Koska otoskoko on pieni (n= 3), B pitää mahdollista eroa tärkeänä, jos tutkimuksessa todennäköisyys havaita ero keskiarvoissa on korkeintaan 5 % (ts. riskitaso on 0.05) B kerää aineiston ja tarkastaa testin oletukset Hänen kokoamansa otos on satunnaisotos Samoin kerrotaan amerikkalaistutkimuksen otoksesta Hänen otoksensa on vain kolme tutkittavaa, joten hän olettaa jakauman perusjoukossa noudattavan normaalijakaumaa Amerikkalaistutkimuksessa pituuden havaittiin noudattavan normaalijakaumaa

5 ESIMERKKI Testisuure Otos Otoskeskiarvo Keskivirhe Otantayksiköt perusjoukossa : : : : : : : : : : : : = =. /. Itseisarvo: t = = =2 1 Γ(+1 2 ) Γ( 1+ 2 ) (!) Kuinka todennäköistä on havaita yhtä suuri ero (kuin tässä) tai suurempi ero keskiarvojen välillä, kun oletetaan, että nollahypoteesi pitää perusjoukon tasolla paikkansa? Todennäköisyys (p-arvo): Määritetään t-jakaumalta integroimalla Mitä pienempi p-arvo, sitä suurempi ero on kyseessä Johtopäätös: Koska p-arvo > riskitaso (ts > 0.05), todetaan ettei keskiarvojen välillä ole tilastollisesti merkitsevää eroa (nollahypoteesi jää voimaan). B laskee, että jos otoskoko olisi ollut 7, niin p-arvo = Keskiarvoero on yli 8 cm

6 TILASTOLLINEN HYPOTEESIEN TESTAUS On olemassa ennakkokäsitys tarkasteltavan parametrin mahdollisesta arvosta Testaamisen tarkoitus on selvittää, pitääkö tällainen ennakkokäsitys paikkansa Testaamista varten määritetään toisensa poissulkevat testaushypoteesit: nollahypoteesija vastahypoteesi Tekninen määritelmä: sopivan testin perusteella selvitetään onko otosinformaatio sopusoinnussa nollahypoteesin mukaisen parametriarvon kanssa, vai onko joku muu arvo todennäköisempi

7 TESTAUKSEN TÄRKEIMMÄT VAIHEET 1. Testaushypoteesit: mitä testataan? Nollahypoteesi (ja vastahypoteesi) 2. Riskitaso: millä tasolla tulkitaan p-arvoa? α= 0.05, 0.01 tai Oletukset: sopiiko testi aineistolle? Satunnaisotanta, normaalijakautuneisuus jne. 4. p-arvo: testin tulos nollahypoteesin suhteen Jos p> α, nollahypoteesi jää voimaan Jos p< α, nollahypoteesi hylätään Ennen aineiston tarkastelua Periaatteessa ennen aineiston tarkastelua Aineiston pohjalta

8 TESTAUSHYPOTEESIT ESIMERKKI: KAHDEN RYHMÄN KESKIARVOJEN VERTAILU Testaushypoteesit Tutkimushypoteesi Nollahypoteesi Vastahypoteesi µ 1 = µ 2 H 0 : µ 1 = µ 2 H 1 : µ 1 µ 2 Poikien (1) liikunta-aktiivisuus on keskimäärin samalla tasolla kuin tytöillä (2). µ 1 < µ 2 H 0 : µ 1 = µ 2 H 1 : µ 1 µ 2 tai H 1 : µ 1 <µ 2 Poikien (1) liikunta-aktiivisuus on keskimäärin vähäisempää kuin tytöillä (2). µ 1 > µ 2 H 0 : µ 1 = µ 2 Poikien (1) liikunta-aktiivisuus on keskimäärin korkeampaa kuin tytöillä (2). H 1 : µ 1 µ 2 tai H 1 : µ 1 >µ 2 Liikunta-aktiivisuus = liikuntaan käytetty aika

9 OLETUKSET Testausoletukset: matemaattiset olosuhteet, joissa tilastollinen testi on järkevää suorittaa Kaikissa testeissä: tarkastellaan satunnaisotosta Keskiarvotesteissä: normaalijakautuneisuus, varianssien yhtä suuruus Korrelaatiot: normaalijakautuneisuus Jos testillä on oletuksia, niiden voimassaolo pitää tarkistaa, että voidaan luottaa saatuun testitulokseen Näitä tarkastellaan lähemmin testien yhteydessä HUOM! Kun puhutaan oletuksistatarkoitetaan testien oletuksia, ei tutkimus- tai testaushypoteeseja

10 P-ARVO Todennäköisyys, jolla saataisiin (itseisarvoltaan) yhtä suuri tai suurempi testisuureen arvo Mitä pienempi p-arvo, sitä suurempi testisuureen arvo Keskiarvotestit: mitä pienempi p-arvo, sitä suurempi ero keskiarvojen välillä Riippuvuustestit: mitä pienempi p-arvo, sitä suurempi riippuvuus Miksei esim. keskiarvoeroa raportoida ainoastaan p-arvolla? Otoksen koko vaikuttaa: mitä suurempi otos sitä pienempi on p-arvo, vaikka keskiarvoero olisi sama Mitä suurempi otoskoko on, sitä pienempi erotus tulee merkitseväksi (vrt. luottamusvälit)

11 P-ARVO JA RISKITASO p-arvoa tulkitaan suhteessa riskitasoon Riskitaso (α) määrittää virhepäätelmän todennäköisyyden testattaessa Todennäköisyys, jolla tutkija on valmis hylkäämään nollahypoteesin, vaikka se saattaisikin pitää perusjoukossa paikkansa Määritetään ennen testausta Käytettyjä riskitasoja: α= 0.05, jos p< α: melkein merkitsevä (*) α= 0.01, jos p< α: merkitsevä (**) α= 0.001, jos p< α: erittäin merkitsevä (***) Jos p> α, jää nollahypoteesi testin perusteella voimaan. Jos p< α, hylätään nollahypoteesi testin tuloksena.

12 KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen empiirisen jakauman esittäminen Frekvenssijakauma Luokittelu Kuviot Tunnusluvut Kaksiulotteisen jakauman esittäminen ja riippuvuus Ristiintaulukko ja kuviot Riippuvuuden tunnusluvut Vähän todennäköisyydestä Otantajakauma Tilastollinen päätöksenteko Estimointi Hypoteesien testaus Perustestejä Keskiarvotestit, varianssianalyysit Riippuvuuden testit

13 PERUSTESTEJÄ Tarkastellaan eroja Keskiarvotestit Tarkastellaan riippuvuutta Riippuvuustestit Riippumattomat otokset Riippuvat otokset Yhden otoksen t-testi Kahden otoksen t-testi Yksisuuntainen Varianssianalyysi Kahden otoksen t-testi χ 2 -riippumattomuustesti Korrelaatiokertoimen merkitsevyystesti

14 NORMAALIJAKAUTUNEISUUS Useita menetelmiä Vinouden ja huipukkuuden tunnusluvut Histogrammi Kvantiilikuvio Normaalijakautuneisuuden testit Kun vertaillaan ryhmiä esim. keskiarvotestejä varten, tulisi normaalijakautuneisuus varmistaa kullekin ryhmälle erikseen eikä muuttujan kokonaisjakaumalle Tarkastelun tueksi: normaalijakauma havaittu aikaisemmissa tutkimukset Varsinkin pienille otoksille hyvä tarkistaa SPSS: Analyze/ Descriptive statistics/ Explore

15 Molemmat merkitseviä ja arvoltaan > 2 Molemmat merkitseviä, mutta arvoltaan < 2

16 HISTOGRAMMI Jyväskyläläisten 75-vuotiaiden naisten histogrammi kuulokynnysmuuttujalle Jyväskyläläisten 75-vuotiaiden naisten histogrammi kolesterolimuuttujalle

17 HISTOGRAMMI Jyväskyläläisten 75-vuotiaiden naisten kuulokynnysmuuttuja Jyväskyläläisten 75-vuotiaiden naisten kolesterolimuuttuja

18 KVANTIILIKUVIO(Q-Q PLOT) Jyväskyläläisten 75-vuotiaiden naisten kuulokynnysmuuttuja Jyväskyläläisten 75-vuotiaiden naisten kolesterolimuuttuja

19 DETRENDED Q-Q PLOT Jyväskyläläisten 75-vuotiaiden naisten kuulokynnysmuuttuja Jyväskyläläisten 75-vuotiaiden naisten kolesterolimuuttuja

20 BOX PLOT Jyväskyläläisten 75-vuotiaiden naisten kuulokynnysmuuttuja Jyväskyläläisten 75-vuotiaiden naisten kolesterolimuuttuja

21 NORMAALIJAKATUNEISUUDEN TESTAUS H 0 : Muuttuja on perusjoukossa normaalisti jakautunut. H 1 : Muuttuja ei ole perusjoukossa normaalisti jakautunut. Jos muuttuja on normaalisti jakautunut testin p-arvo (Sig.) on suuri, suurempi kuin valittu riskitaso, esim Kolmogorov-Smirnovin testiä käytetään usein kuin n > 50. Huom. Testin merkitsevyyteen vaikuttaa myös otoskoko: Suuremmissa otoksissa pienikin jakauman poikkeavuus aiheuttaa tilastollisesti merkitsevän tuloksen

22 VARIANSSIEN YHTÄ SUURUUS Keskiarvojen ryhmävertailussa oletetaan hajonnan olevan samalla tasolla ryhmissä Oletuksen voimassaoloa voi testata Levenen testillä Kun testataan k kpl ryhmiä: H 0 : Ryhmien varianssit ovat yhtä suuret (s 12 = = s k2 ). H 1 : Ryhmien varianssit eivät ole yhtä suuret. Esim. pituusmuuttujan varianssit siviilisäätyryhmissä p= > 0.05, joten variansseja voi pitää yhtä suurina riskitasolla 0.05.

23 KESKIARVOTESTIT Yhden otoksen keskiarvon testaus Ongelma: Onko perusjoukon keskiarvo sama kuin vertailuarvo? Esim. Poikkeaako jyväskyläläisten miesten kokonaiskolesterolin keskimääräinen arvo merkitsevästi arvosta 5 mmol/l? Hypoteesit: Nollahypoteesi H 0 : µ= µ 0 Otoksesta laskettu keskiarvo on vertailuarvon suuruinen Vastahypoteesit (valitaan vain yksi tutk. kys. perusteella) H 1 : µ µ 0 H 1 : µ< µ 0 H 1 : µ> µ 0 Keskiarvo poikkeaa vertailuarvosta Keskiarvo on pienempi kuin vertailuarvo Keskiarvo on suurempi kuin vertailuarvo

24 YHDEN OTOKSEN KESKIARVON TESTAUS Oletukset: Muuttuja vähintään välimatka-asteikollinen Otos on riippumaton otos perusjoukosta (ts. se on satunnaisotos) Muuttuja on likimain normaalijakautunut perusjoukossa (vinous, huipukkuus, KS-testi) Riskitaso: Valitaan sopiva α-taso (0.05 / 0.01 / 0.001)

25 YHDEN OTOKSEN KESKIARVON TESTAUS Testisuure: perusjoukon keskihajonta tiedetään tai n> 30 standardoitu normaalijakauma, ks. luentomoniste, liite. yleisemmin keskihajontaa ei tiedetä (lasketaan otoksesta) ja / tai n < 30; käytetään Studentin t-jakaumaa: Vapausasteet: t x µ 0 s/ n = ~ t(df) lasketaan otoskoon avulla: df= n-1 x µ 0 s n Otoskeskiarvo Vertailuarvo Otoskeskihajonta Otoskoko

26 VAPAUSASTEET(DEGREES OF FREEDOM) Pienillä otoksilla (n< 30), kun perusjoukon parametrit ovat tuntemattomia keskiarvoeroihin liittyvät otantajakaumat noudattavat likimain Studentin t-jakaumaa Jakauman tarkemman muodon eri otoskokojen kohdalla määrittää vapausasteet (vrt. oheinen kuvio t- jakaumasta) Useilla otantajakaumilla, jakauman muoto riippuu otoskoosta Frekvenssi df=1 df=5 df=20 normaali X

27 YHDEN OTOKSEN KESKIARVON TESTAUS Johtopäätökset: Jos testisuureeseen liittyvä p-arvo on pienempi kuin riskitaso (p < α), katsotaan testin puoltavan nollahypoteesin hylkäämistä. Tällöin vastahypoteesi selittää tutkittavan ilmiön paremmin ja se astuu voimaan. Jos testisuureeseen liittyvä p-arvo on suurempi kuin riskitaso (p > α), nollahypoteesi saa tukea.

28 YHDEN OTOKSEN KESKIARVON TESTAUS Esimerkki Haluttiin tarkastaa yleisen uimarannan bakteeripitoisuus. Bakteerikanta ei saisi ylittää 200 yksikköä. Otettiin satunnaisista paikoista 10 vesinäytettä, joiden bakteeripitoisuuden keskiarvo oli yksikköä ja keskihajonta Onko uimarannan vesi riittävän puhdasta? Hypoteesit Valitaan yksisuuntainen vastahypoteesi, sillä tämän asian kannalta ei ole merkitystä, jos bakteerikanta on yli 200 yks.: H 0 : µ= 200 H 1 : µ< 200

29 YHDEN OTOKSEN KESKIARVON TESTAUS Oletukset Muuttuja on suhdeasteikollinen Mittauspaikat on valittu satunnaisesti Normaalijakautuneisuus oletetaan voimassa olevaksi (data ei ole saatavilla, joten oletetaan olevan voimassa) Riskitaso Valitaan 0.05, sillä asialla on suhteellisen vakavat seuraukset Testisuure(pyöristetyillä arvoilla) = x s/ µ df= 10 1 = 9 Johtopäätös t p= n 0 = = / Nollahypoteesi hylätään, koska p >

30 SPSS T-Test Kaksoisklikkaa: p-arvo = /

31 RAPORTOINTI Erotuksen raportointivaihtoehtoja: Keskimääräinen bakteeripitoisuus (195 yksikköä/ml, keskihajonta: yks.) ei poikkea tilastollisesti merkitsevästi kriittisestä 200 yksikön raja-arvosta (p = 0.119). Keskihajonnan tilalta voidaan ilmoittaa vaihtoehtoisesti keskivirhe:. =4.16yksikköä Keskimääräinen bakteeripitoisuus (195 yksikköä/ml, 95 % luottamusväli: 187, 203) ei poikkea tilastollisesti merkitsevästi kriittisestä 200 yksikön raja-arvosta. Keskimääräisen bakteeripitoisuus oli n. 5.2 yksikköä (luottamusväli: , 4.2) matalampi kuin 200 yksikön kriittinen raja Tässä tilanteessa luottamusvälitarkastelu vastaa samaa asiaa kuin hypoteesien testaus, koska vertailussa tarkastellaan vain yhtä otoskeskiarvoa Yleensä käytetään merkitsevyystestiä, jos halutaan tietää eron merkitsevyys; jos taas halutaan tietää minkälaisia eroja olisi mahdollista havaita, lasketaan luottamusväli keskiarvoerotukselle

32 Kahden riippumattoman otoksen keskiarvojen vertailu Ongelma: Ovatko kahden ryhmän perusjoukkojen keskiarvot yhtä suuret? Esim. Onko jyväskyläläisten miesten keskimääräinen kehon rasvaprosentti yhtä suuri kuin göteborgilaisten miesten? Hypoteesit: Nollahypoteesi H 0 : µ 1 = µ 2 Keskiarvot ovat yhtä suuret (µ 1 -µ 2 = 0) Vastahypoteesit (valitaan vain yksi tutk. kys. perusteella) H 1 : µ 1 µ 2 H 1 : µ 1 < µ 2 H 1 : µ 1 > µ 2 Keskiarvot eri suuret Ensimmäisen ryhmän keskiarvo on pienempi kuin toisen ryhmän Toisen ryhmän keskiarvo on pienempi kuin ensimmäisen ryhmän

33 Kahden riippumattoman otoksen keskiarvojen vertailu Oletukset: Muuttuja vähintään välimatka-asteikollinen Otos on riippumaton otos perusjoukosta (ts. se on satunnaisotos) ja tarkasteltavat kaksi ryhmää ovat riippumattomia toisistaan Muuttuja on likimain normaalijakautunut kummassakin perusjoukossa (KS-testi) Perusjoukon varianssit ovat yhtä suuret. Jos ovat erisuuret, käytetään erilaista menettelyä kuin tässä esitellään. Riskitaso: Valitaan sopiva α-taso (0.05 / 0.01 / 0.001)

34 Kahden riippumattoman otoksen keskiarvojen vertailu Testisuure: Lasketaan yhteinen varianssiestimaatti s 2 s = ( n 1 2 1) s1 ( n2 1) s n + n Sitten keskiarvojen erotuksen t-testisuure: t 1 2 = ~ t(df) s/ x 1 /n + 1/n 1 x Vapausasteet: lasketaan otoskokojen avulla: df= n 1 + n 2-2 2

35 Kahden riippumattoman otoksen keskiarvojen vertailu Johtopäätökset: Jos testisuureeseen liittyvä p-arvo on pienempi kuin riskitaso (p< α), nollahypoteesi hylätään ja vastahypoteesi astuu voimaan Jos testisuureeseen liittyvä p-arvo on suurempi kuin riskitaso (p> α), nollahypoteesi saa tukea eikä sitä hylätä Esim. jos riskitaso on α= 0.05, hylätään nollahypoteesi, jos p-arvo on tätä pienempi.

36 Kahden riippumattoman otoksen keskiarvojen vertailu Esimerkki Tarkastellaan kehon rasvatonta painoa 75- vuotiailla jyväskyläläisillä ja göteborgilaisilla miehillä. Molemmista perusjoukoista on kerätty satunnaisotos ja havaittiin: Hypoteesit jyväskyläläiset: n 1 = 104, x 1 = (s 1 = 6.35) göteborgilaiset: n 2 = 118, x 2 = (s 2 = 6.43) Valitaan kaksisuuntainen vastahypoteesi, sillä tuloksen suunnasta ei ole tietoa: H 0 : µ 1 = µ 2 H 1 : µ 1 µ 2

37 Kahden riippumattoman otoksen keskiarvojen vertailu Oletukset Muuttuja on suhdeasteikollinen Otokset satunnaisotoksia ja riippumattomia toisistaan Normaalijakautuneisuus: KS-testin perusteella havaitaan: Kolmogorov-Smirnov Paikkakunta Statistic df Sig. NC2618 Kehon 1 Jyväskylä, ,101 rasvaton paino 2 Göteborg, ,200* Varianssit oletetaan yhtä suuriksi (testauksesta myöhemmin) Riskitaso Valitaan 0.05, joka on yleisesti käytetty riskitaso tutkimuksessa.

38 Kahden riippumattoman otoksen keskiarvojen vertailu Testisuure s = ( n 2 1) s1 ( n2 1) s n + n 2 2 (104 1)6.35 (118 1) = = t = s/ x x 1/n1 + 1/n / / = = = 2.26 df= = 220 p= Johtopäätös Nollahypoteesi hylätään, koska p< 0.05, ja sanotaan, että kehon rasvattoman painon keskiarvot eroavat toisistaan.

39 Normaalijakautuneisuus ryhmittäin

40 H 0 : Rasvaton paino on normaalistijakautunut.

41 Esim. suhteellisen tarkka 95 % luottamusväli: ± % luottamusvälit Fin: 56.21,58.65 Swe: 58.21,60.53 t = s/ x 1 1 x 2 1 /n + 1/n 2 H 0 : s 12 = s 2 2 H 0 : µ 1 = µ 2 Jyväskyläläisten ja göteborgilaisten miesten ryhmissä rasvattoman painon variansseja voitiin pitää yhtä suurina (p = 0.979). Paikkakuntien välillä rasvaton kehonpaino oli korkeampi göteborgilaisilla miehillä (t= -2.26, df= 220, p= 0.025). HUOM. Useamman kuin yhden ryhmän vertailuissa luottamusvälien päällekkäisyys ei aina anna samaa tulosta kuin testi.

42 RAPORTOINTI Table 1. Means, standard deviations(sd) and group comparisonp-valuesfor 75-year-old menlivingin Jyväskylä and Göteborg in Jyväskylä (n = 103) Göteborg (n = 116) Mean SD Mean SD p-value Waist girth Diastolic blood pressure Lean body mass Glucose Tulosten taulukoinnista lisää: Ehrenberg ASC Rudiments of Numeracy. J R Stat Soc A: 140, Ehrenberg ASC The Problem of Numeracy. Am Stat: 35,

43 Data: järjestysast. Ei Kyllä Jatkuva, normaali Kyllä t-testi Ei Poikkeavia arvoja Kyllä Mediaani testi ks. luentomoniste Ei Mann-Whitney Valintakaavio: Kahden riippumattoman ryhmän jakauman keskikohdan vertailu Jäikö tulos vielä epävarmaksi: Selvitä antavatko eri testit samansuuntaisen tuloksen.

44 Kahden riippuvan otoksen keskiarvojen vertailu Ongelma: Ovatko kahden ryhmän perusjoukkojen keskiarvot yhtä suuret, kun ryhmien välillä on riippuvuutta? Esim. Onko jyväskyläläisten miesten keskimääräinen kehon rasvaprosentti yhtä suuri 75-vuotiaana kuin 80-vuotiaana? Hypoteesit: Nollahypoteesi H 0 : µ 1 = µ 2 Keskiarvot ovat yhtä suuret Vastahypoteesit (valitaan vain yksi tutk. kys. perusteella) H 1 : µ 1 µ 2 H 1 : µ 1 < µ 2 H 1 : µ 1 > µ 2 Keskiarvot eri suuret Ensimmäisen ryhmän keskiarvo on pienempi kuin toisen ryhmän Toisen ryhmän keskiarvo on pienempi kuin ensimmäisen ryhmän

45 KAHDEN RIIPPUVAN OTOKSEN KESKIARVOJEN VERTAILU Riippuvuus Asetelman aiheuttamaa sisäkorrelaatiota Saman yksilö sisäinen: toistomittaukset (alku- vs. seurantamittaus) saman yksilön osatekijät (vasen vs. oikea jalka) Ryhmä yksilöitä: kaksosparin kaksoset (kaksonen 1 vs. 2) lapsi-vanhempi parit (lapsi vs. äiti) parittainen case-control tutkimus (case vs. control) Esim. seurantatilanteessa voidaan merkitä esim. kehon rasvaprosenttia alkumittauksessa (X) ja seurantamittauksessa (Y) Oletukset: Muuttuja on vähintään välimatka-asteikollinen Havaintoparit riippumaton otos perusjoukosta Vastinparien erotus (d i = x i y i ) on perusjoukossa normaalisti jakautunut (erotusmuuttujaa D voidaan testata esim. KS-testillä) Riskitaso: Valitaan sopiva α-taso (0.05 / 0.01 / 0.001)

46 KAHDEN RIIPPUVAN OTOKSEN KESKIARVOJEN VERTAILU Testisuure: Lasketaan erotusten d i keskiarvo ja keskihajonta: Sitten keskiarvojen erotuksen t-testisuure: s Vapausasteet: t d d n d i = =1 n d = ~ t(df) / i n lasketaan otoskoon avulla: df= n 1,missä non tarkasteltavien erotusparien lukumäärä s d = n i= 1 ( di d ) n 1 2

47 KAHDEN RIIPPUVAN OTOKSEN KESKIARVOJEN VERTAILU Johtopäätökset: Jos testisuureeseen liittyvä p-arvo on pienempi kuin riskitaso (p< α), nollahypoteesin hylätään ja vastahypoteesi astuu voimaan Jos testisuureeseen liittyvä p-arvo on suurempi kuin riskitaso (p> α), nollahypoteesi saa tukea

48 KAHDEN RIIPPUVAN OTOKSEN KESKIARVOJEN VERTAILU Esimerkki Lääketehdas on tuottanut kaksi unilääkettä UNI1 ja UNI2. Nyt halutaan tietää kumpi lääke antaa pidemmän unen. Valitaan satunnaisotannallakoehenkilöt, jotka ottavat molempia unilääkkeitä ja kertovat unen pituuden. Aineiston perusteella tarkastellaan, onko unilääkkeillä eroa saavutetun nukkumisajan suhteen. Kh UNI1 UNI Yhteensä Keskiarvo

49 KAHDEN RIIPPUVAN OTOKSEN KESKIARVOJEN VERTAILU Unimäärä (tuntia) Keskiarvo UNI1 UNI

50 KAHDEN RIIPPUVAN OTOKSEN KESKIARVOJEN VERTAILU Hypoteesit Valitaan kaksisuuntainen vastahypoteesi, sillä tuloksen suunnasta ei ole ennakkotietoa: H 0 : µ 1 = µ 2 H 1 : µ 1 µ 2 Oletukset Satunnaisotos ja suhdeasteikollinen muuttuja Erotusten jakauma on normaali KS-testillä Kolmogorov-Smirnov testattuna: Statistic df Sig. Riskitaso D,178 10,200* Valitaan α = 0.05, koska seuraukset eivät ole vakavat.

51 KAHDEN RIIPPUVAN OTOKSEN KESKIARVOJEN VERTAILU Testisuure s d t = = = s/ d ( 5) d n 2 i ( d n n 1 2 = = 1.08/ 10 = 1.46 Johtopäätös: Nollahypoteesi jää voimaan, sillä p> i ) p= Kh UNI1 UNI2 d i d 2 i Yhteensä Keskiarvo

52 H 0 : Erotusmuuttuja on normaalistijakautunut.

53 H 0 : ρ= 0 H 0 : µ 1 = µ 2 Tulos: Nollahypoteesi jää voimaan. (Miksi?) Raportointi: Keskimääräinen unen pituus unilääkkeellä UNI1 oli 4.6 (sd = 2.4) ja unilääkkeellä UNI2 oli 5.1 (sd= 2.2). Keskiarvoero ei ollut tilastollisesti merkitsevä (t = -1.46, df= 9, p = 0.177).

54 Data: järjestysast. Kyllä Ei Jatkuva, normaali Kyllä t-testi Ei Onko jakauma symmetrinen Kyllä Wilcoxon ks. luentomoniste Ei Merkkitesti Valintakaavio: Kahden riippuvan ryhmän jakauman keskikohdan vertailu

55 VARIANSSIANALYYSI Varianssianalyysillä ei testata varianssien yhtä suuruutta, vaan keskiarvojen yhtä suuruutta Yksisuuntaisessa varianssianalyysissä vertaillaan yhden jatkuvan muuttujankeskiarvoja toisen, luokittelevan muuttujan eri luokissa. Tällöin siis tarkastellaan yhden selitettävän muuttujan keskiarvojen (tasot) vaihtelua luokitteluasteikollisen selittävän muuttujan (käsittelyt) mukaan. Selitettävä muuttuja (esim. pituus, cm) jaetaan luokittelevan muuttujan (esim. koulutustausta, kolmiluokkainen muuttuja) perusteella ryhmiin ja keskiarvojen yhtä suuruutta tarkastellaan näissä ryhmissä

56 VARIANSSIANALYYSIN VAIHEET Olkoon vertailtavia ryhmiä k kpl Hypoteesit H 0 : µ 1 = µ 2 = = µ k (kaikkien ryhmien keskiarvot ovat yhtä suuret) H 1 : µ 1 µ 2 µ k (ainakin yhden joukon keskiarvo poikkeaamuiden joukkojen keskiarvoista) Oletukset 1) selitettävä muuttuja vähintään välimatkaasteikollinen 2) perusjoukkojen jakaumat normaaliset 3) perusjoukkojen varianssit yhtä suuret 4) perusjoukoista poimittujen otosten täytyy olla toisistaan riippumattomia [5) ryhmät yhtä suuria]

57 VARIANSSIHAJOTELMA Varianssianalyysissä vertaillaan ryhmien välistä vaihtelua ryhmien sisäiseenvaihteluun varianssien kaltaisilla neliösummilla Ryhmien välinen vaihtelu(ss b ) kertoo siitä, kuinka paljon ryhmittelevä muuttuja selittää ryhmien välisiä keskiarvoeroja (ts. miten erilaisia ryhmät ovat). Ryhmien sisäinen vaihtelu(ss w ) kertoo ryhmän sisällä olevan vaihtelun määrää (miten erilaisia ovat ryhmän tutkittavat keskenään). Kokonaisvaihteluksi saadaan: SS TOTAL = SS b + SS w Testisuure Flasketaan neliösummien pohjalta ja se kertoo keskimääräisestä ryhmien välisestä vaihtelusta suhteessa ryhmien sisäiseen vaihteluun

58 VARIANSSIANALYYSI Riskitaso:Riskitaso αvalitaan kuten muissa keskiarvotesteissä. Johtopäätökset: Jos testisuureeseen liittyvä p-arvo on pienempi kuin riskitaso (p< α), nollahypoteesin hylätään ja vastahypoteesi astuu voimaan Jos testisuureeseen liittyvä p-arvo on suurempi kuin riskitaso (p > α), nollahypoteesi saa tukea Jos nollahypoteesi hylätään testin tuloksena, voidaan selvittää keskiarvoparien välisten erojen merkitsevyyttä parittaisilla ryhmävertailutestillä

59 PARITTAISET RYHMÄVERTAILUT Varianssianalyysin merkitsevä tulos kertoo, että ainakin yhden ryhmäparin keskiarvoero on merkitsevä Parittaisia vertailuja ei yleensä tehdä t-testeinä, koska todennäköisyys löytää sattumanvarainen merkitsevä ero ainakin yhdessä keskiarvoparissa kasvaa liian suureksi Varianssianalyysin yhteydessä: parittaisia keskiarvovertailuja on sallittua käyttää vasta, kun varianssianalyysin nollahypoteesi hylätään H 0 : µ i = µ j, i=1,, k; j= 1,, k; i j Erilaisia menetelmiä (SPSS: 18 kpl) Varianssit yhtä suuret: LSD, Tukey, Scheffe, Bonferroni Varianssit eivät yhtä suuret: TamhaneT2 Lisää ks. Toothaker, 1991

60 ESIMERKKI Tutkija selvittää eri kävelykyvyn suhdetta kehon rasvaprosentin tasoon Rasvaprosentti on jatkuva muuttuja Kävelykykymuuttuja on tutkittavan arvio kyvystä kävellä ulkona huonolla säällä Ei vaikeuksia (1) Kävelee aikaisempaa hitaammin (2) On vaikeuksia tai ei kykene (3) Tarkasteltavina ovat jyväskyläläiset 75-vuotiaat naiset

61

62 Rasvaprosentin normaalijakautuneisuus oli voimassa ja varianssit voidaan olettaa yhtä suuriksi (p = 0.552). Ryhmien rasvaprosenttikeskiarvoissa on ero / eroja (p= 0.028). η 2 = / = (n. 3.7 %) Kävelykyky selitti rasvaprosentin vaihtelusta n. 3.7 %. Parittaiset vertailut osoittavat vain kävelykyvyn ääripäiden välillä olevan merkitsevää eroa (p= 0.029).

63 Kyllä Data: järjestysast. Ei Jatkuva, normaali Kyllä Yhtä suuret varianssit Kyllä Varianssianalyysi Ei Suuria poikkeavia arvoja Ei Ei Kruskal- Wallis Ei Brown-Forsythe Welsh Kyllä Mediaani testi Valintakaavio: Kolmen tai useamman riippumattoman ryhmän jakauman keskikohdan vertailu

64 NORMAALIJAKAUMA A B C D n= 205 Vinous: 0.56 (0.17)* Huip.: (0.39) KS (p-arvo): SW (p-arvo): < n= 29 Vinous: (0.43) Huip.: (0.85) KS (p-arvo): > SW (p-arvo): n= 29 Vinous: 2.03 (0.43)* Huip.: 4.19 (0.85)* KS (p-arvo): < SW (p-arvo): < n= 209 Vinous: 0.92 (0.17)* Huip.: 6.19 (0.34)* KS (p-arvo): SW (p-arvo): < *Tunnusluku on tilastollisesti merkitsevä. Mikä jakaumista on normaalisti jakautunut? Mitä ongelmia löytyy muista jakaumista?

65 RIIPPUVUUS Korrelaatiokertoimen merkitsevyystestaus Ongelma: Onko korrelaatiokertoimen arvo nollasta poikkeava perusjoukossa? Hypoteesit: Nollahypoteesi H 0 : ρ= 0 Muuttujat ovat riippumattomia Vastahypoteesi (valitaan vain yksi) H 1 : ρ 0 H 1 : ρ< 0 H 1 : ρ> 0 Muuttujat riippuvat toisistaan Muuttujien välillä on negatiivinen korrelaatio Muuttujien välillä on positiivinen korrelaatio

66 KORRELAATIOKERTOIMEN MERKITSEVYYSTESTAUS Oletukset: Muuttujat vähintään järjestysasteikollisia Riippumaton otos perusjoukosta (Jatkuvat) muuttujat ovat likimain normaalijakautuneet perusjoukossa (KS-testi) Riskitaso: Valitaan sopiva α-taso (0.05 / 0.01 / 0.001)

67 KORRELAATIOKERTOIMEN MERKITSEVYYSTESTAUS Testisuure: lasketaan korrelaatiokertoimen, r, ja otoskoon, n, avulla: t r r n 2 = = ~ t(df) r / n 2 1 r Vapausasteet: lasketaan otoskoon avulla: df= n 2

68 KORRELAATIOKERTOIMEN MERKITSEVYYSTESTAUS Johtopäätökset: Jos testisuureeseen liittyvä p-arvo on pienempi kuin riskitaso (p < α), katsotaan testin puoltavan nollahypoteesin hylkäämistä.tällöin vastahypoteesi selittää tutkittavan ilmiön paremmin ja se astuu voimaan. Muuttujien välillä sanotaan silloin olevan riippuvuutta. Jos testisuureeseen liittyvä p-arvo on suurempi kuin riskitaso (p> α), nollahypoteesi saa tukea. Tällöin muuttujia pidetään toisistaan riippumattomia.

69 ESIMERKKI Tutkimuksessa laskettiin käden puristusvoiman (KPV) ja kehon rasvattoman painon (KRP) välisen korrelaatiokertoimen arvo göteborgilaisille miehille (n = 92). Testataan riippuvuushypoteesiparia: H 0 : ρ= 0 H 1 : ρ 0 Oletukset: Muuttujat ovat riippumattomia Muuttujat riippuvat toisistaan Muuttujat ovat jatkuvia Riippumaton otos perusjoukosta Normaalijakautuneisuus KPV: vinous (0.251); huipukkuus (0.498) KRP: vinous (0.251); huipukkuus (0.498)

70 Regressiosuora LOESS Valitaan riskitasoksi Lineaarisuus Normaalijakautuneisuus

71 r n t = = r df = n 2 = 92 2 = 90 = p< (Tarkka p-arvo: ) Nollahypoteesi hylätään ja puristusvoiman ja kehon rasvattoman painon välillä sanotaan olevan kohtalaista positiivista riippuvuutta.

72 χ 2 -RIIPPUMATTOMUUSTESTI Ongelma: Onko kahden vähintään luokitusasteikollisen muuttujan välinen riippuvuus tilastollisesti merkitsevää? Nollahypoteesinmukaisessa tilanteessa mm. rivijakaumat ovat samanlaiset. x 1 x 2 x 3 y 1 f 11 f 12 f 13 y 2 f 21 f 22 f 23 Hypoteesit H 0 : f ij = e ij H 1 : f ij e ij eli muuttujat ovat riippumattomia eli muuttujat riippuvat toisistaan

73 χ 2 -RIIPPUMATTOMUUSTESTI Oletukset Muuttujat ovat vähintään luokitusasteikollisia. Otos on satunnaisotos. Kaikki odotetut frekvenssit ovat suurempia kuin 1. Korkeintaan 20% odotetuista frekvensseistä on arvoltaan pienempiä kuin 5. Riskitaso Valitaan sopiva α-taso(0.05 / 0.01 / 0.001).

74 χ 2 -RIIPPUMATTOMUUSTESTI Testisuure -Tarvittavat kaavat on jo esitetty edellä. Odotetut frekvenssit laskettiin: e ij = f i n - ja testisuure laskettiin: χ = i= 1 j= 1 f j e 2 g h ( 2 ij ij ) f missä gon rivien lukumäärä, h sarakkeiden lukumäärä, e ij ovat odotetut frekvenssit. e ij, x 1 x 2 x 3 Yht. y 1 f 11 f 12 f 13 f 1 y 2 f 21 f 22 f 23 f 2 Yht. f 1 f 2 f 3 n Vapausasteet testisuure noudattaa χ 2 -jakaumaa vapausasteilla: df= (g 1) (h 1)

75 χ 2 -RIIPPUMATTOMUUSTESTI Johtopäätökset Jos p-arvo on pienempi kuin riskitaso (p< α), niin nollahypoteesi ei saa tukea ja se hylätään. Tällöin sanotaan, että muuttujien välillä on riippuvuutta. Jos p-arvo on suurempi kuin riskitaso(p> α), nollahypoteesia ei voida hylätä ja sanotaan, että muuttujien välillä ei ole riippuvuutta.

76 ESIMERKKI Haluttiin selvittää oliko alkumittauksessa mitattu tutkittavien oma arvio terveydentilastaan yhteydessä seurannan loppuun mennessä havaittuun kuolleisuuteen 75-vuotiailla jyväskyläläisillä Terveydentila: (1 = hyvä, 2 = tyydyttävä, 3 = huono) Kuolleisuus: (0 = kuollut, 1 = elossa) Hypoteesit Kuten edellä esitettiin. Valitaan vastahypoteesi kaksisuuntaiseksi Oletukset Muuttujat ovat luokitusasteikollisia. Kyseessä on satunnaisotos. Tarkastetaan frekvenssioletus myöhemmin Riskitaso Valitaan riskitasoksi 0.05.

77 Χ 2 -RIIPPUMATTOMUUSTESTI(5) Nähdään, että pienin odotettu frekvenssi on 18.2, joten frekvenssioletukset ovat kunnossa.

78 χ 2 -RIIPPUMATTOMUUSTESTI(6) Nollahypoteesi ei saa tukea, koska p< Tulkinta: Seurannan päättyessä elossa olleet arvioivat alkumittauksen terveytensä paremmaksi (p < 0.001).

79 JÄÄNNÖKSET Jäännös Usein hankala tulkita Standardoitu jäännös # $% =& $% ' $% # (()$% = & $% ' $% )' $% Rivi: i= 1,, g Sarake: j= 1,, h Jos itseisarvo r (S)ij 1.96 (~ 2), merkittävä kontribuutio riippuvuuteen Tällaisia soluja ei aina löydy, vaikka χ 2 olisi merkitsevä Adjustoitu jäännös # (*)$% = & $% ' $% +' $% & $ - & % - Jos itseisarvo r (A)ij 1.96 (~ 2), merkittävä kontribuutio riippuvuuteen

80 Jäännökset (Residual): suhteellinen tulkinta (suurempi vs. pienempi). Standardoidut jäännökset (Std. Residual): heikon terveyden ryhmässä itseisarvo > 2. Adjustoidut jäännökset (Adjusted Residual): hyvä vs. huono terveys

81 SUHTEELLISTEN OSUUKSIEN TESTAUS YHDEN OTOKSEN TESTI Eroaako otoksesta laskettu suhteellinen osuus vertailuarvosta perusjoukossa? Olkoon p 0 vertailuarvo ja Xon muuttuja, siten että silloin, kun tutkittavalla on ominaisuus A, X= 1 muulloin, X= 0 Otoksesta suhteellinen osuus lasketaan p= f A /n, - missä on niiden tutkittavien & * =./ $ $=1 lukumäärä, joilla X= 1

82 HYPOTEESIT Nollahypoteesi H 0 : p= p 0 suhteellinen osuus on sama kuin vertailuarvo Vastahypoteesit (valitaan vain yksi tutk. tilanteen perusteella) H 1 : p p 0 H 1 : p> p 0 H 1 : p< p 0 Oletukset suhteellinen osuus ei ole sama kuin vertailuarvo suhteellinen osuus on suurempi kuin vertailuarvo suhteellinen osuus on pienempi kuin vertailuarvo Riippumaton otos perusjoukosta Jokaisella havainnolla on yhtä suuri havainnointitodennäköisyys Odotetut frekvenssit np 0 ja n(1 p 0 ) ovat suurempia kuin 5, missä n on kaikkien tutkittavien lukumäärä

83 YHDEN OTOKSEN TESTI Riskitaso Valitaan sopiva riskitaso (0.05/ 0.01 / 0.001) Testisuure z noudattaa standardoitua normaalijakaumaa nollahypoteesin ollessa voimassa. p p0 f A np0 z = = p 1 p ) / n np (1 p ) 0( Johtopäätökset Jos p-arvo on pienempi kuin riskitaso (p< α), niin nollahypoteesi ei saa tukea ja se hylätään. Tällöin sanotaan, että suhteellinen osuus eroaa vertailuarvosta. Yksisuuntaisen hypoteesin tilanteessa ero ilmenee vastahypoteesin mukaiseen suuntaan Jos p-arvo on suurempi kuin riskitaso(p> α), nollahypoteesia ei voida hylätä ja sanotaan, että suhteellinen osuus ei eroa vertailuarvosta.

84 ESIMERKKI Yhdysvaltalainen tutkimus arvioi, että tutkittavista 75-vuotiaista 4.1 % oli kliinisesti diagnosoitu sydänkohtaus, joka oli myös todennettu EKG-mittauksilla. Jyväskyläläisillä 75-vuotiailla vastaava tieto kerättiin satunnaisotoksesta 240 tutkittavalta haastattelemalla ja heistä 12:lla havaittiin diagnosoitu sydänkohtaus Testataan 0.05 merkitsevyystasolla hypoteesia, jonka mukaan jyväskyläläisten sydänkohtauksien prevalenssioli sama kun yhdysvaltalaistutkimuksessa.

85 ESIMERKKI Hypoteesit H 0 : p= H 1 : p Valitaan kaksisuuntainen vastahypoteesi, koska ei ole syytä olettaa suuntaa mahdolliselle erolle Oletukset Satunnaisotanta Oletetaan havainnointi todennäköisyys samaksi tutkittavilla Odotetut frekvenssit ok: = 9.84; = f A = 12, n= 240; p= 0.05 z = f A np np 1 0 ( 0 ) ( ) = = = p p-arvo voidaan määrittää standardoidulta normaalijakaumalta, p = Koska p> 0.05, nollahypoteesi jää siis voimaan ja suhteellisia osuuksia voidaan pitää yhtä suurina

86 SUHTEELLISTEN OSUUKSIEN TESTAUS KAHDEN OTOKSEN TESTI Onko kahdesta otoksesta laskettujen suhteellisten osuuksien välillä eroa perusjoukossa? Olkoon X muuttuja, siten että silloin, kun tutkittavalla on ominaisuus A, X= 1 muulloin, X= 0 Otoksista suhteellinen osuus lasketaan p i = f (A)i /n i, (i= 1, 2), missä & (*)$ =./ $% on niiden tutkittavien lukumäärä ryhmässä i, joilla X = 1 - $ %=1

87 HYPOTEESIT Nollahypoteesi H 0 : p 1 = p 2 suhteellinen osuus on sama molemmissa ryhmissä Vastahypoteesit H 1 : p 1 p 2 suhteellinen osuus ei ole sama molemmissa ryhmissä H 1 : p 1 > p 2 suhteellinen osuus on suurempi ryhmässä 1 kuin ryhmässä 2 H 1 : p 1 < p 2 suhteellinen osuus on pienempi ryhmässä 1 kuin ryhmässä 2

88 KAHDEN OTOKSEN TESTI Oletukset Riippumaton otos perusjoukosta ja ryhmät ovat toisistaan riippumattomat Jokaisella havainnolla on yhtä suuri havainnointitodennäköisyys Odotetut frekvenssit n i Pja n i (1 P), i= 1, 2, ovat suurempia kuin 5 Riskitaso Valitaan sopiva riskitaso (0.05 / 0.01 / 0.001) Testisuure z P = n1 p1 n n n 2 2 p 2 z = p p P( 1 P)(1/ n1 + 1/ n2) noudattaa standardoitua normaalijakaumaa nollahypoteesin ollessa voimassa. 1 2

89 KAHDEN OTOKSEN TESTI Johtopäätökset Jos p-arvo on pienempi kuin riskitaso (p< α), niin nollahypoteesi ei saa tukea ja se hylätään. Tällöin sanotaan, että suhteellisten osuuksien välillä on eroa. Yksisuuntaisen hypoteesin tilanteessa ero ilmenee vastahypoteesin mukaiseen suuntaan. Jos p-arvo on suurempi kuin riskitaso(p> α), nollahypoteesia ei voida hylätä ja sanotaan, että suhteellisten osuuksien välillä ei ole eroa.

90 ESIMERKKI Tutkimuksessa selvitettiin ikääntyneiden miesten (n 1 = 119) ja naisten (n 1 = 236) kuolleiden osuutta 10 seurantavuoden jälkeen. Kuolleita miehiä oli 51 ja naisia 132. Testataan nollahypoteesia, jonka mukaan kuolleiden osuus on sama molemmissa ryhmissä. Valitaan riskitasoksi 0.05 ja vastahypoteesi kaksisuuntaiseksi.

91 ESIMERKKI Hypoteesit H 0 : p 1 = p 2 H 1 : p 1 p 2 Oletukset Satunnaisotanta, riippumattomat ryhmät (jos mukana ei ole aviopareja) Oletetaan havainnointitodennäköisyys samaksi tutkittavilla Odotetut frekvenssit: p1 = = p2 = = n p1 + n2 p P = = n + n = n P = n (1 P) = 119 ( ) = 1 = n P = n (1 P) = 236 ( ) = 2 = OK

92 ESIMERKKI Testisuure z = ja p= p p P( 1 P)(1/ n1 + 1/ n2) = = ( ) (1/ / 236) Nollahypoteesi ei siis jää voimaan: naisten kuolleiden suhteellinen osuus on siis suurempi kuin miesten

93 Tulos on merkitsevä p< 0.05: naisten kuolleiden osuus on seurannan päättyessä miesten kuolleisuutta korkeampi. Huom. (-2.327) 2 = 5.415

RISKITASO. Riskitaso (α) määrittää virhepäätelmän todennäköisyyden. Käytettyjä riskitasoja:

RISKITASO. Riskitaso (α) määrittää virhepäätelmän todennäköisyyden. Käytettyjä riskitasoja: RISKITASO Riskitaso (α) määrittää virhepäätelmän todennäköisyyden testattaessa Todennäköisyys, jolla tutkija on valmis hylkäämään nollahypoteesin, vaikka se saattaisikin pitää perusjoukossa paikkansa Käytettyjä

Lisätiedot

TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas

TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas NORMAALIJAKATUNEISUUDEN TESTAUS H 0 : Muuttuja on perusjoukossa normaalisti jakautunut. H 1 : Muuttuja ei ole perusjoukossa normaalisti

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas Keskivirheyksiköllä ilmaistuna voidaan erottaa otantajakaumalta kriittisiä kohtia: Keskimmäinen 95 % otoskeskiarvoista välillä [-1.96,+1.96] Keskimmäinen

Lisätiedot

Kyllä. Kyllä. Jäitkö vielä epävarmaksi: Selvitä antavatko testit samansuuntaisen tuloksen.

Kyllä. Kyllä. Jäitkö vielä epävarmaksi: Selvitä antavatko testit samansuuntaisen tuloksen. Data: järjestysast. Ei Kyllä Jatkuva, normaali Kyllä t-testi Ei Suuria poikkeavia arvoja Ei Mann-Whitney Kyllä Mediaani testi ks. luentomoniste Valintakaavio: Kahden riippumattoman ryhmän jakauman keskikohdan

Lisätiedot

HAVAITUT JA ODOTETUT FREKVENSSIT

HAVAITUT JA ODOTETUT FREKVENSSIT HAVAITUT JA ODOTETUT FREKVENSSIT F: E: Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies (1) 59 28 4 91 Nainen (2) 5 14 174 193 Yhteensä 64 42 178 284 Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies

Lisätiedot

TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas

TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas Ilman Ruotsia: r = 0.862 N Engl J Med 2012; 367:1562-1564. POIKKEAVAN HAVAINNON VAIKUTUS PAIRWISE VAI LISTWISE? Kun aineistossa on muuttujia, joilla

Lisätiedot

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit. A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas JAKAUMAN MUOTO Vinous, skew (g 1, γ 1 ) Kertoo jakauman symmetrisyydestä Vertailuarvona on nolla, joka vastaa symmetristä jakaumaa (mm. normaalijakauma)

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen

Lisätiedot

Estimointi. Luottamusvälin laskeminen keskiarvolle α/2 α/2 0.1

Estimointi. Luottamusvälin laskeminen keskiarvolle α/2 α/2 0.1 Estimointi - tehdään päätelmiä perusjoukon ominaisuuksista (keskiarvo, riskisuhde jne.) otoksen perusteella - mitä suurempi otos, sitä tarkemmat estimaatit Otokseen perustuen määritellään otantajakaumalta

Lisätiedot

Estimointi. Otantajakauma

Estimointi. Otantajakauma Otantajakauma Otantajakauma kuvaa jonkin parametrin arvojen (esim. keskiarvon) jakauman kaikille tietyn kokoisille otoksille. jotka perusjoukosta voidaan muodostaa Histogrammissa otantajakauman parametrin

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Jatkuvat muuttujat: hajontakuvio Koehenkilöiden pituus 75- ja 80-vuotiaana ID Pituus 75 Pituus 80 1 156

Lisätiedot

TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas

TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas TEOREETTISISTA JAKAUMISTA Usein johtopäätösten teko helpottuu huomattavasti, jos tarkasteltavan muuttujan perusjoukon jakauma noudattaa

Lisätiedot

Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo?

Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo? MTTTP5, kevät 2016 15.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen 1. Valitaan 25 alkion satunnaisotos jakaumasta N(µ, 25). Olkoon H 0 : µ = 12. Hylätään H 0, jos otoskeskiarvo

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170 VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain

Lisätiedot

Väliestimointi (jatkoa) Heliövaara 1

Väliestimointi (jatkoa) Heliövaara 1 Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).

Lisätiedot

TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas

TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas MUITA HAJONNAN TUNNUSLUKUJA Varianssi, variance (s 2, σ 2 ) Keskihajonnan neliö Käyttöä enemmän osana erilaisia menetelmiä (mm. varianssianalyysi),

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas f 332 = 3 Kvartiilit(302, 365, 413) Kvartiilit: missä sijaitsee keskimmäinen 50 % aineistosta? Kvartiilit(302, 365, 413) Keskiarvo (362.2) Keskiarvo

Lisätiedot

10. laskuharjoituskierros, vko 14, ratkaisut

10. laskuharjoituskierros, vko 14, ratkaisut 10. laskuharjoituskierros, vko 14, ratkaisut D1. Eräässä kokeessa verrattiin kahta sademäärän mittaukseen käytettävää laitetta. Kummallakin laitteella mitattiin sademäärät 10 sadepäivän aikana. Mittaustulokset

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 15. marraskuuta 2007 Antti Rasila () TodB 15. marraskuuta 2007 1 / 19 1 Tilastollisia testejä (jatkoa) Yhden otoksen χ 2 -testi varianssille Kahden riippumattoman

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

Harjoitus 7: NCSS - Tilastollinen analyysi

Harjoitus 7: NCSS - Tilastollinen analyysi Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Tilastollinen testaus Tilastollinen testaus Tilastollisessa testauksessa tutkitaan tutkimuskohteita koskevien oletusten tai väitteiden paikkansapitävyyttä havaintojen avulla. Testattavat oletukset tai

Lisätiedot

Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit

Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Sisältö Tilastollisia testejä tehdään jatkuvasti lukemattomilla aloilla. Meitä saattaa kiinnostaa esimerkiksi se, että onko miesten ja

Lisätiedot

Kandidaatintutkielman aineistonhankinta ja analyysi

Kandidaatintutkielman aineistonhankinta ja analyysi Kandidaatintutkielman aineistonhankinta ja analyysi Anna-Kaisa Ylitalo M 315, anna-kaisa.ylitalo@jyu.fi Musiikin, taiteen ja kulttuurin tutkimuksen laitos Jyväskylän yliopisto 2018 2 Havaintomatriisi Havaintomatriisi

Lisätiedot

TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas

TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas Itse arvioidun terveydentilan ja sukupuolen välinen riippuvuustarkastelu. Jyväskyläläiset 75-vuotiaat miehet ja naiset vuonna 1989.

Lisätiedot

Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta?

Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Yhden otoksen suhteellisen osuuden testaus Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Hypoteesit H 0 : p = p 0 H 1 : p p 0 tai H 1 : p > p 0 tai H 1 : p < p 0 Suhteellinen osuus

Lisätiedot

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1 Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että

Lisätiedot

Tilastollinen aineisto Luottamusväli

Tilastollinen aineisto Luottamusväli Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden

Lisätiedot

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0. 806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy 2012 1. Olkoon (X 1,X 2,...,X 25 ) satunnaisotos normaalijakaumasta N(µ,3 2 ) eli µ

Lisätiedot

Johdatus varianssianalyysiin. Vilkkumaa / Kuusinen 1

Johdatus varianssianalyysiin. Vilkkumaa / Kuusinen 1 Johdatus varianssianalyysiin Vilkkumaa / Kuusinen 1 Motivointi Luento 4: kahden riippumattoman otoksen odotusarvoja voidaan vertailla t-testillä H 0 : μ 1 = μ 2, T = ˉX 1 ˉX 2 s 2 1 + s2 2 n 1 n 2 a t(min[(n

Lisätiedot

Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin

Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin Tilastollisen analyysin perusteet Luento 10: Sisältö Varianssianalyysi Varianssianalyysi on kahden riippumattoman otoksen t testin yleistys. Varianssianalyysissä perusjoukko koostuu kahdesta tai useammasta

Lisätiedot

MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu

MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu 10.1.2019/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 10.1.2019 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2018 10.1.2019/2

Lisätiedot

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään, tiedetään, että ainakin

Lisätiedot

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. 5.10.2017/1 MTTTP1, luento 5.10.2017 KERTAUSTA Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla todennäköisyydellä,

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemianalyysin laboratorio Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 11 (vko 48/003) (Aihe: Tilastollisia testejä, Laininen luvut 4.9, 15.1-15.4, 15.7) Nordlund 1. Kemiallisen prosessin

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset

Lisätiedot

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään tiedetään, että ainakin kaksi

Lisätiedot

¼ ¼ joten tulokset ovat muuttuneet ja nimenomaan huontontuneet eivätkä tulleet paremmiksi.

¼ ¼ joten tulokset ovat muuttuneet ja nimenomaan huontontuneet eivätkä tulleet paremmiksi. 10.11.2006 1. Pituushyppääjä on edellisenä vuonna hypännyt keskimäärin tuloksen. Valmentaja poimii tämän vuoden harjoitusten yhteydessä tehdyistä muistiinpanoista satunnaisesti kymmenen harjoitushypyn

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas RIIPPUVUUS ALARYHMISSÄ Riippuvuus saattaa olla erilaista jos samassa aineistossa on esim. tutkittavia molemmista sukupuolista Yhteys saattaa olla erilaista

Lisätiedot

MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu

MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu 5.3.2018/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 5.3.2018, osa 1 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2017

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (004) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden

Lisätiedot

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu) 21.11.2017/1 MTTTP5, luento 21.11.2017 Otossuureita ja niiden jakaumia (jatkuu) 4) Olkoot X 1, X 2,..., X n satunnaisotos (, ):sta ja Y 1, Y 2,..., Y m satunnaisotos (, ):sta sekä otokset riippumattomia.

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 4. luento: Jakaumaoletuksien testaaminen Kai Virtanen 1 Jakaumaoletuksien testaamiseen soveltuvat testit χ 2 -yhteensopivuustesti yksi otos otoksen

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit s t ja t kahden Sisältö t ja t t ja t kahden kahden t ja t kahden t ja t Tällä luennolla käsitellään epäparametrisia eli

Lisätiedot

Tilastotieteen kertaus. Kuusinen/Heliövaara 1

Tilastotieteen kertaus. Kuusinen/Heliövaara 1 Tilastotieteen kertaus Kuusinen/Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla reaalimaailman ilmiöistä voidaan tehdä johtopäätöksiä tilanteissa, joissa

Lisätiedot

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut Mat-2.091 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Avainsanat: Estimointi, Havaittu frekvenssi, Homogeenisuus,

Lisätiedot

Luentokalvoja tilastollisesta päättelystä. Kalvot laatinut Aki Taanila Päivitetty 30.11.2012

Luentokalvoja tilastollisesta päättelystä. Kalvot laatinut Aki Taanila Päivitetty 30.11.2012 Luentokalvoja tilastollisesta päättelystä Kalvot laatinut Aki Taanila Päivitetty 30.11.2012 Otanta Otantamenetelmiä Näyte Tilastollinen päättely Otantavirhe Otanta Tavoitteena edustava otos = perusjoukko

Lisätiedot

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. 6.10.2016/1 MTTTP1, luento 6.10.2016 KERTAUSTA JA TÄYDENNYSTÄ Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla

Lisätiedot

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen)

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen) 1 MTTTP3 Luento 29.1.2015 Luku 6 Hypoteesien testaus Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? H 0 : µ = µ 0 H 1 : µ < µ 0 Nollahypoteesi Vaihtoehtoinen hypoteesi

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen

Lisätiedot

Testit järjestysasteikollisille muuttujille

Testit järjestysasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten

Lisätiedot

1. Nollahypoteesi on, että teksti on kirjoitettu lyhyemmällä murteella. Mahdollisiavaihtoehtojaonvainyksieliettäteksti

1. Nollahypoteesi on, että teksti on kirjoitettu lyhyemmällä murteella. Mahdollisiavaihtoehtojaonvainyksieliettäteksti Sosiaalitieteiden laitos Tilastotieteen jatkokurssi, kevät 20 7. laskuharjoitusten ratkaisuehdotukset. Nollahypoteesi on, että teksti on kirjoitettu lyhyemmällä murteella. Mahdollisiavaihtoehtojaonvainyksieliettäteksti

Lisätiedot

tilastotieteen kertaus

tilastotieteen kertaus tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla

Lisätiedot

Testit laatueroasteikollisille muuttujille

Testit laatueroasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten

Lisätiedot

MTTTP1, luento KERTAUSTA

MTTTP1, luento KERTAUSTA 25.9.2018/1 MTTTP1, luento 25.9.2018 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2018/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 2. luento: Tilastolliset testit Kai Virtanen 1 Tilastollinen testaus Tutkimuksen kohteena olevasta perusjoukosta esitetään väitteitä oletuksia joita

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 18 1 Kertausta: momenttimenetelmä ja suurimman uskottavuuden menetelmä 2 Tilastollinen

Lisätiedot

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto Kynä-paperi -harjoitukset Taina Lehtinen 43 Loput ratkaisut harjoitustehtäviin 44 Stressitestin = 40 s = 8 Kalle = 34 pistettä Ville = 5 pistettä Z Kalle 34 8 40 0.75 Z Ville 5 8 40 1.5 Kalle sijoittuu

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut

Lisätiedot

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),

Lisätiedot

11. laskuharjoituskierros, vko 15, ratkaisut

11. laskuharjoituskierros, vko 15, ratkaisut 11. laskuharjoituskierros vko 15 ratkaisut D1. Geiger-mittari laskee radioaktiivisen aineen emissioiden lukumääriä. Emissioiden lukumäärä on lyhyellä aikavälillä satunnaismuuttuja jonka voidaan olettaa

Lisätiedot

Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle

Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle - Sisältö - - - Varianssianalyysi Varianssianalyysissä (ANOVA) testataan oletusta normaalijakautuneiden otosten odotusarvojen

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.04 Tilastollisen analyysin perusteet, kevät 007 4. luento: Jakaumaoletuksien testaaminen Kai Virtanen Jakaumaoletuksien testaamiseen soveltuvat testit χ -yhteensopivuustesti yksi otos otoksen vertaaminen

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas LUENNOT Luento Paikka Vko Päivä Pvm Klo 1 L 304 8 Pe 21.2. 08:15-10:00 2 L 304 9 To 27.2. 12:15-14:00 3 L 304 9 Pe 28.2. 08:15-10:00 4 L 304 10 Ke 5.3.

Lisätiedot

Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4

Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4 Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN...6 1.1 INDUKTIO JA DEDUKTIO...7 1.2 SYYT JA VAIKUTUKSET...9

Lisätiedot

Tilastollisen analyysin perusteet Luento 5: Jakaumaoletuksien. testaaminen

Tilastollisen analyysin perusteet Luento 5: Jakaumaoletuksien. testaaminen Tilastollisen analyysin perusteet Luento 5: Sisältö Tilastotieteessä tehdään usein oletuksia havaintojen jakaumasta. Useat tilastolliset menetelmät toimivat tehottomasti tai jopa virheellisesti, jos jakaumaoletukset

Lisätiedot

Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan

Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan 17.11.2006 1. Kahdesta kohteesta (A ja K) kerättiin maanäytteitä ja näistä mitattiin SiO -pitoisuus. Tulokset (otoskoot ja otosten tunnusluvut): A K 10 16 Ü 64.94 57.06 9.0 7.29 Oletetaan mittaustulosten

Lisätiedot

/1. MTTTP1, luento Normaalijakauma (kertausta) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti:

/1. MTTTP1, luento Normaalijakauma (kertausta) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti: 2.10.2018/1 MTTTP1, luento 2.10.2018 7.4 Normaalijakauma (kertausta) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti: Samoin z /2 siten, että P(Z > z /2 ) = /2, graafisesti: 2.10.2018/2

Lisätiedot

/1. MTTTP1, luento Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti:

/1. MTTTP1, luento Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti: 4.10.2016/1 MTTTP1, luento 4.10.2016 7.4 Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti: Samoin z /2 siten, että P(Z > z /2 ) = /2, graafisesti: 4.10.2016/2

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi. Viikko 5

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi. Viikko 5 MS-A Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko Tilastollinen testaus Tilastollisten testaaminen Tilastollisen tutkimuksen kohteena olevasta perusjoukosta on esitetty jokin väite tai

Lisätiedot

Näistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina.

Näistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina. [MTTTP1] TILASTOTIETEEN JOHDANTOKURSSI, kevät 2019 https://coursepages.uta.fi/mtttp1/kevat-2019/ HARJOITUS 3 Joitain ratkaisuja 1. x =(8+9+6+7+10)/5 = 8, s 2 = ((8 8) 2 + (9 8) 2 +(6 8) 2 + (7 8) 2 ) +

Lisätiedot

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden 1.12.2006 1. Satunnaisjakauman tiheysfunktio on Ü µ Üe Ü, kun Ü ja kun Ü. Määritä parametrin estimaattori momenttimenetelmällä ja suurimman uskottavuuden menetelmällä. Ratkaisu: Jotta kyseessä todella

Lisätiedot

Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto

Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Tutkimusaineistomme otantoja Hyödyt Ei tarvitse tutkia kaikkia Oikein tehty otanta mahdollistaa yleistämisen

Lisätiedot

3. a) Mitkä ovat tilastolliset mitta-asteikot? b) Millä tavalla nominaaliasteikollisen muuttujan jakauman voi esittää?

3. a) Mitkä ovat tilastolliset mitta-asteikot? b) Millä tavalla nominaaliasteikollisen muuttujan jakauman voi esittää? Seuraavassa muutamia lisätehtäviä 1. Erään yrityksen satunnaisesti valittujen työntekijöiden poissaolopäivien määrät olivat vuonna 003: 5, 3, 16, 9, 0, 1, 3,, 19, 5, 19, 11,, 0, 4, 6, 1, 15, 4, 0,, 4,

Lisätiedot

MTTTP1, luento KERTAUSTA

MTTTP1, luento KERTAUSTA 26.9.2017/1 MTTTP1, luento 26.9.2017 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2017/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen

Lisätiedot

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. 6.10.2015/1 MTTTP1, luento 6.10.2015 KERTAUSTA JA TÄYDENNYSTÄ Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla

Lisätiedot

MTTTP5, luento Luottamusväli, määritelmä

MTTTP5, luento Luottamusväli, määritelmä 23.11.2017/1 MTTTP5, luento 23.11.2017 Luottamusväli, määritelmä Olkoot A ja B satunnaisotoksen perusteella määriteltyjä satunnaismuuttujia. Väli (A, B) on parametrin 100(1 - ) %:n luottamusväli, jos P(A

Lisätiedot

Näistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina.

Näistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina. [MTTTP1] TILASTOTIETEEN JOHDANTOKURSSI, Syksy 2017 http://www.uta.fi/sis/mtt/mtttp1/syksy_2017.html HARJOITUS 3 viikko 40 Joitain ratkaisuja 1. Suoritetaan standardointi. Standardoidut arvot ovat z 1 =

Lisätiedot

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (005) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden

Lisätiedot

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit laatueroasteikollisille muuttujille Laatueroasteikollisten muuttujien testit Testi suhteelliselle

Lisätiedot

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä Sisältö Riippumattomuus Jos P(A B) = P(A)P(B), niin tapahtumat A ja B ovat toisistaan riippumattomia. (Keskustelimme

Lisätiedot

riippumattomia ja noudattavat samaa jakaumaa.

riippumattomia ja noudattavat samaa jakaumaa. 12.11.2015/1 MTTTP5, luento 12.11.2015 Luku 4 Satunnaisotos, otossuure ja otosjakauma 4.1. Satunnaisotos X 1, X 2,, X n on satunnaisotos, jos X i :t ovat riippumattomia ja noudattavat samaa jakaumaa. Sanonta

Lisätiedot

Otoskoko 107 kpl. a) 27 b) 2654

Otoskoko 107 kpl. a) 27 b) 2654 1. Tietyllä koneella valmistettavien tiivisterenkaiden halkaisijan keskihajonnan tiedetään olevan 0.04 tuumaa. Kyseisellä koneella valmistettujen 100 renkaan halkaisijoiden keskiarvo oli 0.60 tuumaa. Määrää

Lisätiedot

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾ ËØÙ ÓØÓ Ø Mitta-asteikot Nominaali- eli laatueroasteikko Ordinaali- eli järjestysasteikko Intervalli- eli välimatka-asteikko ( nolla mielivaltainen ) Suhdeasteikko ( nolla ei ole mielivaltainen ) Otos

Lisätiedot

https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014

https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014 1 MTTTP3 Tilastollisen päättelyn perusteet 2 Luennot 8.1.2015 ja 13.1.2015 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014

Lisätiedot

xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n =

xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n = 1. Tutkitaan paperin ominaispainon X(kg/dm 3 ) ja puhkaisulujuuden Y (m 2 ) välistä korrelaatiota. Tiettyä laatua olevasta paperierästä on otettu satunnaisesti 10 arkkia ja määritetty jokaisesta arkista

Lisätiedot

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio 17.11.2015/1 MTTTP5, luento 17.11.2015 Luku 5 Parametrien estimointi 5.1 Piste-estimointi Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1

Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1 Kaksisuuntainen varianssianalyysi Vilkkumaa / Kuusinen 1 Motivointi Luennot 6 ja 7: yksisuuntaisella varianssianalyysilla testataan ryhmäkohtaisten odotusarvojen yhtäsuuruutta, kun perusjoukko on jaettu

Lisätiedot

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös):

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös): Tilastollinen tietojenkäsittely / SPSS Harjoitus 5 Tarkastellaan ensin aineistoa KUNNAT. Kyseessähän on siis kokonaistutkimusaineisto, joten tilastollisia testejä ja niiden merkitsevyystarkasteluja ei

Lisätiedot

Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma tiedetään. Se on normaalijakauma, havainnollistaminen simuloiden

Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma tiedetään. Se on normaalijakauma, havainnollistaminen simuloiden 1 KERTAUSTA JA TÄYDENNYSTÄ Luento 30.9.2014 Olkoon satunnaisotos X 1, X 2,, X n normaalijakaumasta N(µ, σ 2 ), tällöin ~ N(µ, σ 2 /n), kaava (6). Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma

Lisätiedot

MTTTP1, luento KERTAUSTA

MTTTP1, luento KERTAUSTA 19.3.2019/1 MTTTP1, luento 19.3.2019 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2018/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen

Lisätiedot

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3 OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 3 Tutkimussuunnitelman rakenne-ehdotus Otsikko 1. Motivaatio/tausta 2. Tutkimusaihe/ -tavoitteet ja kysymykset

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin

Lisätiedot

Matemaatikot ja tilastotieteilijät

Matemaatikot ja tilastotieteilijät Matemaatikot ja tilastotieteilijät Matematiikka/tilastotiede ammattina Tilastotiede on matematiikan osa-alue, lähinnä todennäköisyyslaskentaa, mutta se on myös itsenäinen tieteenala. Tilastotieteen tutkijat

Lisätiedot