Suora-alkoholipolttokennot ja niiden mallinnus

Koko: px
Aloita esitys sivulta:

Download "Suora-alkoholipolttokennot ja niiden mallinnus"

Transkriptio

1 SÄÄTÖTENIIAN LABORATORIO Suor-lkoholpolttokennot j nden mllnnus rkku Ohenoj j uko Levskä Rportt B No 69, Huhtkuu 2009

2 Oulun ylopsto Säätöteknkn lbortoro Rportt B No 69, Huhtkuu 2009 Suor-lkoholpolttokennot j nden mllnnus rkku Ohenoj j uko Levskä Oulun ylopsto, Säätöteknkn lbortoro Lyhennelmä: Vetypolttokennojen hekkouksn kuuluu polttoneen stvuus, jok on usen pyrtty rtksemn vlmstmll vety smss prosessketjuss polttokennon knss. Yksnkertsemp energntuotnnon rtksu ols suor-lkoholpolttokenno, joss polttoneeseen stoutunut vety erotetn ktlyyttsest j käytetään polttokennorektoss. Tässä rportss tehdään ktsus suor-lkoholpolttokennojen tomntn j erohn tvllseen PE-vetypolttokennoon verrttun. Ilmöt, kuten vuotmnen j ksunmuodostumnen vkuttvt luonnollsest mllnnuksess pnotettvn sohn. Rportss estetty dynmnen mll perustuu hyvn tunnettuun suormetnolpolttokennon mlln, jonk omnsuuks on tässä työssä pyrtty kehttämään mm. lsäämällä shen lämpötse. Useden mhdollsten kehtyskohteden toteuttmnen ols vtnut koedt, jot tässä työssä ol stvll erttän rjllsest. Toteutettujen kehtyskohteden vldont ol hnkl smst syystä. llll vodn smulod muutoks nn vdtuss vrrntheydessä kun metnoln syöttökonsentrtoss. Tämä rportt on jtko säätöteknkn lbortoross emmn tehdylle vetypolttokennoj kästtelevälle työlle (rportt B67 j B68). Hkusnt: suormetnolpolttokenno, suoretnolpolttokenno, DFC, DEFC, dynmnen mllnnus, smulont ISBN ISSN Oulun ylopsto Säätöteknkn lbortoro PL 400 FIN OULUN YLIOPISTO

3 Ssällysluettelo 1 JOHDANTO Suor-lkoholpolttokennot Ertysprteet Syöttökonsentrto j polttonetloudellsuus Vuotmnen sunmuodostumnen nodll ut sekkoj Suortuskyky... 4 DFC:n mllt Peruskonsept lln kehttämnen Lämpötse DEFC:n mllt DFC:n Smulont Isotermnen mll Adbttnen mll E-dbttnen mll YHTEENVETO... 1 LÄHDELUETTELO... 2

4 1 JOHDANTO Polttokennot mhdollstvt joustvn j päästöttömän vhtoehdon tulevsuuden energntuotntoon. Näden sähkökemllsten ltteden sovelluks tulemme hyvn todennäkösest näkemään mm. penelektronkss j lkenteessä. Jtkoss polttokennoll trkotetn PE-polttokenno, jok on kentes potentlsn polttokennotyypp mm. mtln tomntlämpötlns vuoks. Polttokennon tomnt perustuu vetyonen j elektronen erottmseen. Tvllsmmn polttoneen on puhds vety, jonk tuottmnen j kästeltävyys rjott kutenkn vetypolttokennojen ylestymstä, sllä vety e esnny vpn luonnoss. Vedyn tuotntoprosessn yhdstämnen polttokenno käyttävään sovellukseen lsää puolestn sovelluksen monmutksuutt. Tämän vuoks houkuttelevmp vhtoehto olskn käyttää vetyä ssältävä yhdstetä suorn polttokennon polttoneen. Alkoholt, kuten metnol j etnol ssältävät pljon vetyä j normloloss ne ovt nestemäsessä olomuodoss, kuten mon nykyään käytettävä polttone (öljy, bensn). Säätöteknkn lbortoross emmn tehdyn vetypolttokennohn lttyvän tutkmuksen /1,2/ ohell on syytä trkstell myös suor-lkoholpolttokennojen tlnnett. Tämä työ koostuu krjllsuusktsuksest j smulontosost. rjllsuusktsuksess estellään suor-lkoholpolttokennohn lttyvä lmötä j vllll olev mllnnuksen suuntuks. Smulontososs on toteutettu mllrkenteeltn vetypolttokennost selväst pokkev dynmnen mll j estetty sen kehtysvheet. Pyrkmyksenä on ollut kehttää krjllsuudess estettyä mll sten, että se vst omnsuuksltn emmn rportotuj vetypolttokennojen mllej. ll on toteutettu tlb /Smulnk - ympärstössä. 1

5 2 SUORA-ALOHOLIPOLTTOENNOT Suor-lkoholpolttokennot ovt muunnelm PE-vetypolttokennost, joss elektrodt erottvn elektrolyyttnä tom onjohtv membrn. Polttoneen käytetään tvllsmmn metnoln vesluost j suormetnolpolttokennoj (DFC) onkn tutkttu j mllnnettu melko kttvst /-14/. Suoretnolpolttokennoss (DEFC) polttoneest johtuvt ongelmt ovt DFC: hstvmp j tutkmus tällä srll on vst lkutekjössään, kun suormetnolpolttokennojen kehtys on jtkunut jo vuoskymmenä. Etnoln käytön puolest puhuu sen ympärstöystävällsyys j helppo kästeltävyys, mutt sen vull svutetut tehon theydet (n. 0,05 W/cm 2 ) ovt huomttvst metnol hekomp (0,2-0, W/cm 2 ) /15-18/. uvss 1 on estetty tyypllnen polttokennon rkenne j mhdollset rektntt. BP AF AD AC CC CD CF BP H 2, H 2 O Ilm Alkohol, H 2 O O 2 uv 1. Polttokennon rkenne /19/. BP on bpolrnen levy, AF on nodn vrtusknv, AD on nodn dffuusokerros, AC on nodn ktlyyttkerros, on membrn, CC on ktodn ktlyyttkerros, CD ktodn dffuusokerros j CF ktodn vrtusknv. Suormetnolpolttokennoss nodn ktlyyttkerroksess tphtuvss rektoss (rekto 1) vputuu kuus elektron, jotk johtuvt dffuusokerroksen läp elektronjohtvlle päätylevylle j kertävät ulkosen kuormn kutt ktodlle. todll elektront osllstuvt yhdessä hpen j membrnn läpässeden vetyonen knss yhtälön 2 mukseen rektoon. /11, s.4/ Suoretnolpolttokennoss vstvt rektot ovt yhtälöden j 4 mukset. /17/ + CH OH + H 2O CO2 + 6H + 6e (1) + 2 O2 + 6H + 6e H 2O (2) CH 12 + CH 2OH + H 2O 2CO2 + 12H + e () + O2 + 12H + 12e 6H 2O (4) 2

6 todll hpen pelkstymstrekton seuruksen syntyvän veden lsäks vettä kulkeutuu ktodlle nodlt, sllä myös vesmolekyylt läpäsevät membrnn /19/. Ves höyrystyy ktodlle syötettävään lmn, joten ktod on kksfssysteem. yös nod on tvllsest kksfssysteem kondensotumsen, höyrystymslmöden j hldoksdn muodostumsen vuoks /19/. Anodn rektntt vodn syöttää joko ksun t nesteenä. susyöttönen DFC vkutt kutenkn olevn epäkäytännöllnen, kun polttokennosysteemltä vdtn hyvää energtehokkuutt j dynmst käyttäytymstä /11, s.20/. Polttokennon rektntten syöttötp vo oll pssvnen t ktvnen. Pssvpolttokennoss metnol dffusotuu nodlle konsentrtogrdentn jmn suorn sälöstä /8/. yös ktod s trvtsemns hpen suorn lmst. Aktvpolttokennoss rektntten syöttönopeutt hlltn pumppujen j puhltmen vull, jotk käyttävät osn polttokennon tuottmst energst /8/. 2.1 Ertysprteet Suor-lkohol- j vetypolttokennosysteemen välllä on jotn huomttv eroj. äytännössä kkk edellä mntut lmöt koskevt nn etnol- kun metnolpolttokenno. Päähuomo on kutenkn suormetnolpolttokennoss Syöttökonsentrto j polttonetloudellsuus Suor-lkoholpolttokennoss vn pen os polttoneest rego nodll. Tloudellsen tomnnn knnlt regomton polttone on kerrätettävä. Tällön nodrektoss vputuv hldoksd on postettv kerrätysvrrst. Erotusoperto vt luonnollsest energ, jollon polttokennosysteemn kokonstehokkuus lskee. /11, s.18/ yös membrnerotuksen mhdollsuutt on tutkttu /11, s.19/. Tonen polttokennosysteemn tomnnn knnlt huomotv sekk on, että lkohol-vesluoksen lkoholkonsentrtot on pystyttävä muuttmn, sllä syötteen lkoholkonsentrtoll on merkttävä vkutus lähes kkkn lmöhn polttokennoss. Suortuskyvyn mksmomseks DFC:n syöttökonsentrtot ptäs pystyä säätelemään vrrntheyden perusteell /15/. Vetypolttokenno huomttvst htmmn knetkn vuoks myös lämmöntuotnto on hekomp. Tämän vuoks suor-lkoholpolttokennot vovt vt lämmtyselementn svuttkseen rttävän nopen kylmäkäynnstyksen Vuotmnen entes suurn DFC:n ongelm on, että vetyonen j veden ohell myös metnol vo läpästä membrnn. Tällä tvon polttoneen käyttösuhde hekkenee, kun os metnolst kulkeutuu ktodlle. Tämän lsäks ktodll tphtuv e-tovottu hpettumsrekto lent ktodn jänntettä. /, s.2/ Ilmö näkyy verrttess DFC:n mtttu j termodynmsest lskettu tyhjäkäyntjänntettä /5/; Teoreettsen rvon 1,2 V sjn jännte on 0,6-0,7 V. etnoln vuotmsen (crossover) meknsm e tunnet trkst, mutt lmön vkutukset on lähes pokkeuksett huomotu mllnnuksess. Tvllsest vuotmst kuvtn dffuuson, pnegrdentn j elektro-osmoosn vull, joden vkutus vhtelee vlltseven olosuhteden mukn. /4/

7 2.1. sunmuodostumnen nodll Tonen tärkeä nestesyöttösen DFC:n prre on ksunmuodostumnen nodll, jok lmenee myös mtlss lämpötloss /, s.6/. Anodrektoss vputuvn hldoksdn lsäks myös ves j metnol vovt ksuuntu. Tämä trkott, että nod on todellsuudess ktodn tpn khden fsn systeem. Huonon lukenevuutens vuoks hldoksd esntyy kupln, jotk estävät metnoln pääsyn ktlyytlle j nän hekentävät polttokennon tomnt /11, s.18/. Toslt ksvvll metnoln ksufsn osuudell on dffuusot edstävä vkutus delsess systeemssä /, s.26/. Todellsuudess metnoln ksuuntumnen vo heutt vstv ongelm kun hldokskuplt. sunmuodostumslmön ssällyttämnen mllehn on hrvnst, vkk usess tutkmuksss epällään juur tämän yksnkertstuksen heuttvn mlln ennustuskyvyn hekkenemsen. Nordlund /, s.29/ rporto, että yl 0 ºC lämpötloss yhden fsn mlln ennustuskyky pokke huomttvst khden fsn mllst. llen välset ennustukset pokkevt stä enemmän, mtä suuremp on metnoln moolosuus ksufsss /, s.0/. Suormetnolpolttokennoss polttone vodn syöttää myös ksumsess muodoss, jollon khden fsn esntymnen on hyvn epätodennäköstä /19/ j mllnnukselle setetut hsteet ovt tältä osn penemmät ut sekkoj Suormetnolpolttokennoss huomotv sot edellsten lsäks ovt mm. rektomeknsm nodll j membrnn läpässyt ves ktodll. etnoln hpettumnen nodll on monvhenen sähkökemllnen rekto, joss vputuu kuus elektron. tlyyttn vomkkst bsorbotuvt yhdsteet vkeuttvt metnoln konversot j heuttvt huomttvn jänntteenlskun elektrodll /5/. embrnn läpässeen veden kertymnen ktodlle heutt tulvmst, jollon ves pettää dffuusokerroksen huokoset j rjott hpen pääsyä ktlyytn pnnlle. Ongelm hlltn ptämällä ktodn lmvrtus rttävän suuren, jollon ves srtyy tehokkst pos ktodlt. /19/ Suunntteluss eräs tärkeä elementt on vrtusknven geometr, jonk vull ttn optmlnen rektntten jkutumnen polttokennon ssällä /14/. Polttokennosysteemä trksteltess mukn stuvt mm. hldoksdn postmnen nodn kerrätysvrtuksest. 2.2 Suortuskyky Polttokennon tspnotln jänntteen j vrrn mttuks kuvtn tvllsmmn polrstokäyrän vull. uvss 2 on estetty erään suormetnolpolttokennon polrstokäyrä er metnoln syöttökonsentrtoll. Polrstokäyrästä on hvttvss kolme luett /5/: tlll vrrntheyden rvoll jännte rppuu nodrekton knetkst. Vrrntheyden ksvess jännte tppuu, kosk metnoln neensrto koht ktlyyttkerrost hekkenee j myös membrnn resstvsyys ksv. orkell vrrn rvoll metnoln neensrron vstukset ksvvt lopult nn suurks, että jänntteen rvo romht. Syöttökonsentrtot ksvttmll tämä rj srtyy eteenpän, mutt optmlsen tomnnn knnlt syöttökonsentrto on rppuvnen 4

8 vrrntheyden rvost: tlll vrrntheyden rvoll svutetn korkemp jännte, kun syöttökonsentrto e ole ln suur. uv 2. DFC:n polrstokäyrä er metnoln syöttökonsentrtoll /9/. uvss -5 on estetty DFC:n jänntteen mtttu j smulotu dynmnen käyttäytymnen sekä elektroden ylpotentlen j metnoln määrän smulodut tulokset. Askelkokeess metnoln syöttökonsentrto on lskettu rvost 1500 mol/m nolln jnhetkellä t=0, kun vrrntheyden rvo on pdetty vkon. Vsteest on erotettvss uset lmötä /6/: Non 200 sekunnn vve johtuu metnoln nnosteluventtln j nodn välmtkst. Tämän jälkeen tphtuv jänntteen nousu johtuu metnoln vuotmsen vähenemsestä, jollon ktodll tphtuv metnoln hpettumnen vähenee nopest j ktodn suortuskyky prnee. etnolkonsentrton muutos syötössä vkutt huomttvst nopemmn ktodll kun nodll. Anodll ktlyyttn stoutuneet yhdsteet hpettuvt velä metnolsyötön loputtu vten suuren ylpotentln. uv. ennon jänntteen mttut (O) j smulodut vsteet er vrrntheyksllä metnoln syöttökonsentrtoss tphtuvn skelmuutokseen /6/. 5

9 uv 4. Anodn j ktodn ylpotentlen smulodut vsteet metnoln syöttökonsentrtoss tphtuvn skelmuutokseen /6/. uv 5. todlle vuotvn metnoln vuon j ktodn metnolkonsentrton smulodut vsteet metnoln syöttökonsentrtoss tphtuvn skelmuutokseen /6/. Vrrntheydelle suortetut skelkokeet vkosyöttökonsentrtoss heuttvt suormetnolpolttokennon jänntteeseen vetypolttokennost tutun käyttäytymsen, mutt settumsjt ovt ptempä htmmn knetkn vuoks. uvss 6 on estetty skelkoesrjn kokeellset tulokset, jost vodn hvt jänntteen tekevän yltyksen vrrntheyden rvon muuttuess. Vrrntheyden skeleen lttyessä nolln, pokke vste ernästen lmöden vuoks. Ilmöhn lttyvä seltyksä vo etsä vtteestä /11, s.8-86/. 6

10 uv 6. DFC:n jännteen dynmnen käyttäytymnen vrrntheydessä tehtävn skelmuutoksn /11, s.84/. llen ylestyskyky on oletettvst hekko. Esmerkks Nordlund /, s.1/ kertoo, että nod vodn rkent sten, että sen tomnt rjott joko neensrto t knetkk, rppuen tloudellsst näkökulmst: käl ktlyytt on hyvn kllst, on järkevntä hllt systeemn knetkk. Jos ktlyyttkustnnukset ovt mtlt, vodn rkent neensrtorjottenen systeem, jollon polttokennon koko vodn mnmod. Nässä tpuksss mllnnuksess tulee trkent er sot. Nordlund osott, että hyvn korkell metnoln konsentrtoll nodn suortuskykyä vodn kuvt tehokkst pelkken kneettsten yhtälöden vull (neensrto e rjot tomnt) /, s.4/. 7

11 DFC:N ALLIT PE-polttokennolle luodulle modulrslle systeemtso lähestyvlle mllelle e vkut olevn tällä hetkellä vstnet suor-lkoholpolttokennoss. PE-polttokennomllest poketen DFC:n mllt ovt keskttyneet ptkält pelkken sähkökemllsten lmöden tutkmseen j oletus sotermsestä systeemstä esntyy lähes pokkeuksett nässä mlless. Nordlund // huomo kutenkn lämpötln vkutukset nodrektoden knetkkn. o et l. /8/ muodostvt lämpötseen DFC-mlllle, mutt tässä systeemä kuvttn dbttsen. Zhou et l. /6/ ssällyttvät mllns polttoneen vrtuksst heutuvn vveen. osk suormetnolpolttokennohn lttyvä ongelm e ole velä kyetty rtksemn, polttokennon mllnnus on keskttynyt myös näden lmöden ymmärtämseen. Tämä trkott, että mllen on oltv hyvn trkkoj j kyettävä ennustmn pkkrppuvs konsentrto- j pnegrdenttej sekä ottmn huomoon khden fsn vkutukset elektrodell. Nässä tpuksss mllnnus ktt tosnn vn osn polttokennost ekä dynmnen trkstelu ole usenkn mukn. Yksnkertsemmt DFC:n mllt koostuvt tvllsest setsemästä tselueest j mllehn ssällytetään elektrodell tphtuvt rektot j neensrto. Usess tpuksss on tehty oletus runsst lm-/hppylmäärästä, joten ktodlle e ole muodostettu netset. yös nodlle syötettävän veden määrä on usen oletettu nn suureks, ette slle ktsot trpeellseks muodost netsett. Nämä oletukset kuuluvt myös dynmseen mlln /5-7/, jot on käytetty usen muun mllnnustyön pohjn /4,8,9,11/. ysenen mll estetään seurvks..1 Peruskonsept kst systeemssä smnksest tphtuvst lmöstä on vke sd kvntttvst teto kokeellsen dtn perusteell /7/. Suormetnolpolttokennon dynmnen mll ssältää sten lukus yksnkertstuks j oletuks. ll kuv seurv keskesä lmötä /5/: uljetus nodn vrtusknvss etnoln j hldoksdn neensrto nodn dffuusokerroksen läp etnoln sähkökemllnen hpettumnen nodn ktlyyttkerroksess j etovottu hpettumnen ktodn ktlyyttkerroksess Hpen sähkökemllnen pelkstymnen ktodn ktlyyttkerroksess etnoln vuotmnen membrnn läp dffuuson, elektro-osmoosn j pnegrdentn jmn. lln ssältyvät oletukset ovt puolestn /5,7/: Isotermnen tomnt (polttokennon penen koon vuoks) Elektroden jänntteet ovt vkot vrtussuunnss Elektronen srtymnen bpolrsll levyllä e heut ohms hävötä 8

12 Hppe (lm) syötetään huomttvst yl stokometrsen rvon, jollon hpen kulutus ktodll vodn jättää huomomtt Anodn vrtusknv kästellään jtkuvtomsen sekotusrektorn (CSTR) Hpp j hldoksd evät dffusodu membrnn Anodll j membrnss olevn veden konsentrto on vko Aneensrron vstukset ktlyyttkerroksss ovt mtättömät verrttun dffuusokerroksen vstuksn, kosk ktlyyttkerros on hyvn ohut (~10μm) verrttun dffuusokerrokseen (~100μm) etnoln j hldoksdn neensrtokertomet nodn dffuusokerroksess ovt smt Anod on yksfssysteem el hldoksdn oletetn lukenevn nestefsn. Sundmchern et l. /5/ mllss nodll tphtuvn rekton oletetn koostuvn neljästä vheest, jost ensmmänen, metnoln dssosotumnen ktlyytn pntn, on rjottv rekto. un muden rektomeknsmn rektoden oletetn olevn tspnoss, sdn pntyhdsteden (Θ ) välset osuudet rtkstu. Nämä reltot huomomll vodn rjottvn rekton nopeusyhtälö esttää tunnettujen muuttujen j rektoden tspnovkoden vull. Rektot, rektonopeusyhtälöt j yhtälöden kästtelyä on estetty tulukoss 1. Sundmchern et l. /5/ käyttämät mllyhtälöt on estetty tulukoss 2. llyhtälöt koostuvt metnoln j hldoksdn netsest nodn vrtusknvss j ktlyyttkerroksess sekä nodn j ktodn sähkösen potentln tsest. etnoln vuo membrnn läp on määrtelty Schlögln yhtälön vull, johon elektrostttnen grdentt (d/dz) on johdettu Nernst-Plnck-yhtälöstä oletuksell protonen vkokonsentrtost membrnss (jollon protonvuo on lskettvss Frdyn yhtälöstä). Lsäks on oletettu, että pnegrdentt vodn lmst elektroden pneden erotuksen j membrnn pksuuden suhteell. lln neensrtokertomet, kneettset kertomet j elektroden kpstnssen rvot on lun pern määrtetty koetuloksst j ne on estetty tulukoss. pstnsst evät kutenkn ole vkot, sllä jänntteen lskemnen skelkokeess e koetulosten perusteell ole lnerst. pstnsst vodn lmst elektroden ylpotentlen funkton yhtälön 5 muksest. /6/ C ( C C ) ( η ) j ( η j ) = C j, e + j,0 j, e exp σ j (5) 9

13 Tulukko 1. neettsten yhtälöden kästtely Sundmchern et l. mllss /5/. (R1) Pt + CH OH Pt COH + H + + e (R2) (R) (R4) (R5) + Ru + H 2O Ru OH + H + e COH + 2Ru OH Pt COOH + H 2O + 2Pt + Pt COOH + Ru OH CO2 + H 2O + Pt + Ru + O2 + 6H + 6e H 2O 2 Pt 2Ru 1 α1f Θ CL 1 F k1 exp η Pt ceoh exp η Θ RT 1 RT r2 α 2F 1 F = k2 exp η Θ Ru exp η Θ Ru OH RT 2 RT r = k Θ Pt COH Θ Ru OH Θ Pt COOH Θ PtΘ Ru 1 CL r4 = k4 Θ Pt COOH Θ Ru OH cco2θ PtΘ Ru 4 / 2 α 5F F p O2 r = c k5 exp ηc 1 exp ηc RT RT pc Asettmll r = r = r 0 j huomomll r = Pt COH 2 4 = Θ Pt + Θ Pt COH + Θ Pt COOH = 1 F, = 2 exp η Θ Ru + Θ Ru OH = 1 RT sdn Θ j rtkstu Pt Θ Pt COH c Θ, Θ CL CO2 Pt COH = Θ Pt 4 Pt = Θ q + D + q D Pt + CL ( + c ) 4 c CO2 CL CO2 CL 2 ( c ) 2 2 Θ Pt CO2 q =, D = q CL CL + 2cCO2 cco2 CL α1f CL cco2 F r = k1 exp η ceoh exp η Θ RT 1 4 RT CL cco2 Pt 4 = 0 10

14 Tulukko 2. llyhtälöden kästtely Sundmchern et l. mllss /5/. LS S dceoh 1 F k A CL = ( ceoh ceoh ) ( ceoh ceoh ) dt τ V dc dc dc CO2 1 dt CL eoh dt CL CO2 dt = τ LS S F k A CL ( c c ) ( c c ) CO2 LS k A = V k dη 1 = dt C CL A S CO2 V CO2 CO2 S CL A ( c c ) ( n + r ) eoh eoh V CL S CL A ( c 2 c ) + r LS S = CL CO CO2 V c ( 6Fr ) cell V CL [ F( r + n )] dηc 1 = cell 6 dt C n eoh = vd Pe D D eoh d eoh c CL eoh c eoh ( Pe) Pe exp exp( Pe) 1 eoh etnoln vuo membrnn läp kφ k dφ p dp v = ch + F Schlögln yhtälö μ dz μ dz k k F φ dφ p dp nh + = DH + + ch + F ch + ch + RT μ Nernst-Plnckn yhtälö dz μ dz = Fn H Frdyn yhtälö + v V cell cell dp kφ, = dz μ = U θ cell cell / F + ch + k p / μ dp / dz k p D / RT + c k / μ μ H + d η + ηc κ cell H + φ dp dz, dp dz = p c p d Polttokennon jännte, θ U cell = 1, 21V 11

15 Tulukko. Er lähtestä pomttuj mllprmetrej. /5/ /6/ /9/ uut etnoln konsentrto syöttövrtuksess ennon vrrntheys Tulomuuttuj: A/m 2 F c eoh cell Tulomuuttuj: 0,125-2 mol/l ( mol/m ) mol/m p Elektrodn pne Tulomuuttuj: 0,1-0,10 6 P T Lämpötl Tulomuuttuj: 08-6 F V Anodn syöttövrtusnopeus 2, , , 10-8 m /s LS Tehollnen neensrron k kerron (neste-knteä) 0,1-0, m/s eskmääränen vpymäk τ nodn vrtusknvss = V /V F /12/ s S A Elektrodn pokkpnt-l m 2 Anodn vrtusknvn V tlvuus m CL Anodn ktlyyttkerroksen V tlvuus =A S *d CL, <d CL < /20/ m Anodn kksoskerroksen C kpstnss /12/ F/m 2 todn kksoskerroksen C c kpstnss /12/ F/m 2 d embrnn pksuus μm D eoh etnoln dffuusokerron 2, , , /20/ m 2 /s embrnn sähkökemllnen k φ permeblteett 1, , m 2 μ Fludn vskosteett membrnss,5 10-4, , /20/ kg/m s D + Protonn dffuusokerron 5, , , , /20/ m 2 /s H Protonkonsentrto c H + membrnss mol/m embrnn hydrulnen k p permeblteett 1, , m 2 κ embrnn johtvuus ,087 /20/ (Ω m) -1 k 1 Anodrekton nopeusvko , , /8/ mol/m 2 s α 1 Vruksensrtokerron 0,5 0,5-1 Rekton 1 tspnovko Rekton 2 tspnovko ,5, /8/ - Rekton tspnovko Rekton 4 tspnovko ,74 14, 10 0,7, /8/ - k5 todrekton nopeusvko /8/ mol/m 2 s.2 lln kehttämnen Scott et l. /10/ johtvt metnoln neensrron kerront korjvn mlln, jok huomo hldoksdkuplen vkutukset polttokennon suortuskykyyn. orrelto pätee tpuksss, joss polttokenno on vksuorss el hldoksdkuplt postuvt 12

16 ktlyytn pnnlt ylöspän nosteen vkutuksest. etnoln neensrron mll vt estmtn dffuusokerroksen fsjkumst (fstlvuudet) sekä kerroksen rkennett kästtelevän emprsen kertomen. Sundmcher & Scott /7/ lsäsvät dmensottomn mllns Flsh-prosessn, jonk vull kyettn ennustmn komponentn moolosuudet neste- j ksufsss. Nämä moolosuudet yhdstettn j estettn pseudo-moolosuuksn, jot käytettn nodn vrtusknvn tsess konsentrtoden tlll. He mntsvt myös, että Flshprosessn yhtälöden vull vodn korjt neensrron kertom vstmn todellst tlnnett, joss esntyy kks fs. Flsh-prosessn lskennss trvtn mm. estmtt komponentten ktvsuukertomst. Aemmst mllst poketen Sundmcher & Scott /7/ muodostvt tseyhtälön myös ktodn ktlyyttkerroksess olevlle metnollle. Lsäks hedän käyttämänsä yhtälö jänntteen lskemsess pokke emmn estetystä. Zhou et l. /6/ smulovt metnoln syötön vvettä yksnkertsen eksponenttfunkton vull, kun syöttöputken hlksj j ptuus tunnetn (kts. yhtälö 6). Hedän mllss käyttämänsä rektomeknsm on sm, mutt kneettnen yhtälö pokke hemn lkuperäsessä mllss käytetystä. neettsn yhtälöhn on lsätty muutm vkotermejä j tosen rekton kertluvut ovt muuttuneet. Tämän seuruksen pltnpkkojen osuuden rtksemseks vdttvt termt tulee joht uudelleen. Termestä sdn yhtälön 7 mukset. c F, F CH OH ( t) = cch OH tube A L τ = F V tube exp ( t / )) τ, (6) q = 2c D = c AC CO2 AC CO2 c exp c exp θ 2 ( α Fη / RT ) θ 2 2 ( α Fη / RT ) exp 2 / 2 ( α Fη / RT ) + q 2 (7) Xu et l. /9/ evät kyenneet tostmn tuloks Sundmchern et l. /5/ esttämllä prmetrell j estmovt mllss esntyvät kneettset prmetrt uudelleen. He yksnkertstvt kneettsen yhtälön kästtelyä dynmsss smulonness käyttämällä Θ Pt :lle optmlst tspnotln vkorvo tetyllä vrrntheydellä. o et l. /8/ optmovt myös mlln kneettsä prmetrej. Nämä prmetrt löytyvät tulukost 1. Hcqurd /12, s.65/ post oletuksen, että nodn rjottv rekto on metnoln dssosotumnen j muodost tseyhtälöt myös pntkomponentelle. Smulonttulosten perusteell kysenen rekto vkutt kutenkn olevn knetkk rjottv rekto. ll hän yksnkertst jättämällä pos ktlyyttkerroksen tseyhtälöt, jollon mll e ot knt komponentten dffuusoon dffuusokerroksen läp. Tämän mlln Hcqurd sovtt keräämnsä koetuloksn. Hän kokel myös mll, joss nodn ktlyytt- 1

17 kerroksen tseet ovt mukn. Johtopäätökset molempen mllen oslt olvt smt /12, s.82/; ll ktt er tomt-olosuhtet hyvn rjllsest j prmetren sovtus vos onnstu premmn kpemmll tomnt-lueell. ll lrvo ktodn ylpotentln selväst. tlyyttkerroksen tseden huomomnen heutt muutoks sovtettvn prmetrehn, mutt e vkut mlln suortuskykyyn. Hcqurdn mukn Sundmchern et l. /5/ esttämä yhtälö metnoln vuotmselle lrvo lmötä j nkn metnoln dffuusokerron tulee sovtt koetulosten perusteell. Schultz /11, s.1/ käyttkn smulonnessn klbrotuj dffuusokertom nn membrnlle kun mllns ssältämlle mulle dffuusolmölle. Scott et l. /1/ esttvät lun pern ursen & Skoun (1996) määrttämän korrelton metnoln dffuusokertomen lämpötlrppuvuudelle. Tätä kerront he käyttvät tehollsen neensrtokertomen määrttämseen. o et l. /8/ huomovt polttokennon jänntteen lskemsess myös ktodn konsentrtohävöt (kts. yhtälö 8). Lsäks he esttvät yhtälön veden vuotmselle membrnn läp (kts. yhtälö 9). Elektro-osmoosn kertomelle n d on vomss yhtälössä 10 estetty lämpötlkorjus. V n cell θ d + + ln 1 cell U B cell η ηc cell (8) κ k cell p ρ H 2O = ( nd + 0, ) ( pc p ) (9) F μ = lm H 2O 5 H 2O n d = 5,77 + 0, 027 T (10) Yhteenvedettynä edellä estetyt mllnnuksen kehtysdet ovt: ksoskerroksen kpstnssen epälnersuus etnoln neensrron kertomen korjukset hden fsn kuvmnen Flsh-prosessn vull neettsten prmetren estmont etnoln syötön vve etnoln vuotmsen yhtälön korjmnen todn konsentrtohävöden huomomnen Näden toteuttmseks ols oltv stvll rttäväst koedt. neettsten prmetren j neensrron kertomen estmont vt optmontlgortmn käyttämsen kyseselle mlln oslle. Flsh-prosessn kuvmnen vt termodynmst teto neensrtoon osllstuvst komponentest. Nämä kehtysdet ovt sten lmn koetomnt krjllsuudess rportotujen tulosten vrss, jot on hyvn rjllsest j usen tedot ovt myös puutteells. Esmerkks kpstnssen epälnersuutt kuvvn yhtälöön e ole stvll kertomen rvoj. Toteuttmskelposlt kehtysdeolt vkuttvt sten yllä olevss lstss vn kolme lmmst koht. 14

18 . Lämpötse Sopvn tomntlämpötln svuttmnen suormetnolpolttokennoss on hstv. Penet, vn muutmn kennon ssältävät systeemt vovt vt sopvn tomntlämpötln svuttmseks lämmtyksen. ylmäkäynnstyksen yhteydessä hyvä erstys j erllnen lämmtys ovt trpeells. /21/ Suuremmt kennostot tuottvt tomessn puolestn sen verrn lämpöä, että systeem vo vt jäähdytysjärjestelmän /22/. Suormetnolpolttokennoss nodlle syötettävä metnolseos on tvllsest lämmtetty, sllä nodrekto on endotermnen. Systeemessä, joss metnolseos lämmtetään sen syöttösälössä, metnolseoksen mksmlämpötl on 55 ºC sälön lämpöhävöden vuoks /21/. Polttokennon tomntpsteestä j kennoston koost rppuen vo syötettävä metnolseos tuod lämpöä kennoon t vedä lämpöä postumll kennost syöttölämpötl korkemmss lämpötlss. todlle syötettävä lm on tvllsest ympärstön lämpötlss j sten sllä on kenno jäähdyttävä vkutus. Lämpö srtyy nodlt ktodlle membrnn läpäsevän veden j metnoln elektro-osmoottsen vrtuksen kutt. embrnn läpäsevä ves j metnol kuluttvt energ, sllä ne höyrystyvät ktodn ktlyyttkerroksess ktodrekton tuottmn lämmön vkutuksest. Polttokennon rkenteest syntyvät lämpöhävöt sen ympärstöön koostuvt johtumsest, kulkeutumsest j sätelystä. /22/ Lämpöhävöt ovt kutenkn melko vähäset, kuten kuvst 7 vo hvt. Het Losses uv 7. olmekennosen kennoston energvrrt. Anodn vrtuksst lämpöä stoutuu 22 W, ktodn vrtuksst lämpöä postuu 10,57 W. ennosto tuott lämpöä 2,4 W j lämpöhävöt ovt yhteensä 1,48 W. Lämmöntuotnnon nettomäärä kennostoss on 12,46 W /22/. rjllsuudess /8/ estetty dbttsen DFC systeemn lämpötse ssältää seurvt termt: omponentten entlp ktodn j nodn ssääntulovrrss, omponentten entlp ktodn j nodn ulostulovrrss, etnoln hpettumsen rektolämpö nodll, 15

19 Hpen pelkstymsen rektolämpö ktodll, etnoln vuotmsest heutuvn hpettumsen rektolämpö ktodll, Polttokennon tuottm teho, Polttokennon rkenteen j elektrodell oleven neden stom lämpö. Lämpötse koostuu yhtälön 11 muksst osst j sen myötä on kyettävä lskemn mon uus muuttuj. Adbttsess systeemssä term Q loss =0. dt C = Q dt C = m Q Q Q flow chem elec = = Q = U flow sold cell N C c, rxn A Q p, sold n c x n c, + Q chem Q out + nc xc, C p, c, + n n out n n ( hc, hc, ) + N x, ( h, rxn + Q elec Over Q n loss eoh A x n, out, C h p,, out, ) (11) Anodn j ktodn kokonsmoolmäärät (n j n c ) sdn delksuln vull. Anodlle syötettävä ves-metnolseos koostuu lähes täysn vedestä, sllä veden konsentrto on mol/m j metnoln mol/m. etnoln syöttökonsentrtoss mhdollsest tphtuvt muutokset evät sten merkttäväst vkut kokonsmoolvrtukseen j nodn syöttövrtus vodn muutt tlvuusvrtuksest moolvrtukseks pelkän veden konsentrton (moolmssn j theyden) vull. todll vlltsevt vrtusolosuhteet vodn rtkst muodostmll ktodlle hpen trpeeseen perustuvt netseet /2/. äytännössä tällnen tlnne vos syntyä, kun ktodn lmvrtust ohj säädn, jok ptää ktodll hlutun lmylmäärän kullosenkn vrrntheyden rvon perusteell. Hluttu lmylmäärää kuv stokometrnen kerron (X), jonk pohjn on metnoln msshyötysuhde (η ). Lsäks trvtn tonen stokometrnen tekjä (v), jok kertoo kunk pljon hppe on käytettävssä vrsnseen vrrntuottoon verrttun vuotneen metnoln hpettmseen /2/. osk kenno vo tuott jänntettä vn, kun v 1, on tämän ehdon toteutumst seurttv smulonnn kn. Tämän vuoks mlln lsättn smulonnn pysäyttävä lohko, jos edellä mnttu ehto e täyty. Edellä mnttujen kertomen kesknäset rppuvuudet on estetty yhtälössä N eoh, elec elec elec η = = = (12) N eoh, elec + N eoh, cross elec + cross elec + 6FneOH X 1 mn η (1) 1 v = X +1 (14) η 16

20 todn netseet j moolosuudet vodn rtkst yhtälöden vull, kun lsäks oletetn, että ktodll olev ves höyrystyy täysn j veden moolosuus vodn sten ennust kylläsen höyrynpneen j ktodn kokonspneen vull (yhtälö 20) /2/. N Ar 1 A 1 A cross A, n = X = v + (15) x 4F x 4F 4F O2 O2 A N O 2, out = ( v 1) (16) 4F N xn 2, n A 1 = + 1 xo2, n 4F η N 2, out v (17) N CO2, out A 1 = 1 6F η (18) x = ) (19) H 2O N H 2O, out ( N CO2, out + N N 2, out + N O2, out 1 xh 2O ph 2O 5 ΔHV 1 1 x =, = 1 10 exp H 2O ph 2O (20) Pc R T 7,15 Edellä estetystä lämpötseest puuttuu ktodlle vuotvn veden höyrystymsentlp, jok kulutt energ. Lsäks ktodlle vuotv ves on huomotv ktodn moolvrtusten lskennss. todlle vuotvn veden määrä vodn lske yhtälön 9 vull. Höyrysrymsentlp sdn kertomll edellnen polttokennon ktvsell pnt-lll j veden höyrystymslämmöllä 40,67 kj/mol. todlt postuvn veden (höyryn) moolvrtus vodn krjott yhtälön 21 osottmll tvll, joss vrtus koostuu hpen pelkstymsrektoss j ktodlle vuotvn metnoln hpettumsrektoss syntyvän veden määrästä sekä ktodlle vuotvn veden määrästä. ertomet Frdyn vkon edessä tulevt rektoden stokometrst. = A + 2F F + n cross N H 2O, out H 2O (21) Prosessss esntyven komponentten lämpökpsteett, entlpt j nod- j ktodrekton rektolämmöt lsketn vtteessä o et l. /8/ estettyjen yhtälöden perusteell. yös ktodlle vuotneen metnoln hpettumsrekton rektolämmön luseke otetn smst vtteestä, mutt veden (höyryn) muodostumslämmölle käytetään sen todellst rvo -241,82 J/mol. lln oletuksn kuuluu, että elektrodelt postuven vrtusten lämpötl on sm kun polttokennon lämpötl. Tuntemttomks tässä vheess jää polttokennon knteän osn stomn lämpömäärän lskemnen, jok ptkält määrää 17

21 lämpötln dynmsen käyttäytymsen. Alustven smulonten perusteell vlttn (mc p ) sold = 5 J/. Lämpömäärä vodn luonnollsest rvod myös kennon yksttästen osen (päätylevyt, dffuusokerrokset jne.) lämpökpsteetten j mssojen vull /24/. Vkk edellä todettn kennon lämpöhävöden olevn penet, vo lämpöhävöden huomomnen oll trpeellst smulotess suuremp kennostoj. Tätä vrten mllss on seurvt termt kerrottv kennoston kennojen lukumäärällä: ennon jännte (U cell ), Anodn j ktodn lämpövuot (Q flow ), ennon rektolämmöt (Q chem ), todlle vuotvn veden höyrystymslämpö (H vp ) j ennon rkenteen j vrtusknvss oleven rektntten stom lämpö (C). Näden lsäks on huomotv, että mlln tulomuuttujn kuuluven nodn j ktodn syöttövrtukset lmotetn yhtä kenno kohden ekä koko kennoston syöttövrtusten perusteell. Itse lämpöhävön luseke (yhtälö 22) koostuu kennoston ulkosest pnt-lst sekä kennoston j ympärllä lkkuvn lmn välsestä lämmönsrtokertomest /24/. Er kokos kennostoj smulotess on huomotv ulkosen pnt-ln muutos. Lämmönsrtokerron vodn rvod kokeellsest j PE-polttokennoll sen on rportotu olevn W/m 2 rppuen stä, onko lämmönsrto luonnollst v pkotettu /24/. Q loss ( ha) ( T Tmb = ) (22) stck Yks rvo penen DFC:n ulkosest pnt-lst vodn lske vtteen Argyropoulos et l. /22/ vull. Vtteen tedost sdn smulontmlln kennon ptuudeks 0,051 m. Vttessä estetyn kennoston päätylevyjen dmensot ovt 0,25x0,25 m. Jos kennon oletetn muodostvn näden mttojen muksen kppleen, sdn smulontmlln ulkoseks pnt-lks 0,05 m 2. Lskennss e ole huomotu kennon molemmss päädyssä olevn erstekerroksen j sen ulkopuolell olevn tuklevyn pksuutt ekä tuklevyn ulkost pnt-l, sllä nämä ost ovt Argyropouloksen et l. /22/ esttämen tulosten perusteell muut kenno mtlmmss lämpötlss. Lämmönsrtokertomen rvoks smulontej vrten vlttn 10 W/m 2. 18

22 4 DEFC:N ALLIT Suoretnolpolttokennoll svutetut tehontheydet ovt velä kukn teoreettsst lukemstn, vkk etnoln vuotmnen on vähäsempää kun metnoln vuotmnen DFC:ss /15/. Etnoln elektroktlyysn ongelmllsuus johtuu etnoln hlhlsdoksest, jonk ktksemnen vt suuren potentln j epätäydellsessä hpettumsrektoss syntyy yhdstetä, ylesmpnä seltldehyd j etkkhppo, jotk lskevt polttoneen hyötysuhdett. Nämä yhdsteet hekentävät nodn ktlyytn tomnt j etnoln vuotmsen seuruksen myös ktodn ktlyytt myrkyttyy /25/. Tämän vuoks DEFC:n tutkmus on lähes yksnomn keskttynyt ktlyyttkehtykseen. tlyytn muuttmnen vkutt luonnollsest nn kennon suortuskykyyn kun nodn tuotejkumn /16/. tlyyttkehtys on johtnut kksos- j kolmoskomponenttktlyyttehn /26/, jollon rektomeknsm monmutkstuu setten suuremp hstet myös kneettselle mllnnukselle. yös ktlyyttkerroksen rkenteen vull vodn vkutt polttokennon suortuskykyyn. Wng et l. /27/ svt nostettu suoretnolpolttokennon tehontheyden non 100 mw/cm 2 ktlyytn kksoskerrosrkenteen vull. Andreds et l. /17,25,28/ ovt rportoneet suoretnolpolttokennon sotermsen tspnotln mlln, jonk vull tutkttn operontprmetren (vrrntheys, lämpötl, etnoln syöttökonsentrto) vkutust elektroden ylpotentlehn j etnoln vuotmseen. oko polttokennon kttv mll /28/ (vttet /17/ j /25/ evät ot knt ktodn ylpotentln) on hemn edellä estettyjä DFC:n mllej yksnkertsemp, sllä knetkk kuvtn kokonsrekton vull myös nodn oslt. Anetseet perustuvt ptkält kulloseenkn vrrntheyden rvoon. Etnoln vuotmnen nodlt ktodlle on kuvttu yhtälön 2 vull. llss ulostulojännte lsketn elektroden ktvto- j konsentrtoylpotentlen sekä ohmsen ylpotentln vull. Ohmnen ylpotentl koostuu yhtälön 24 muksest polttokennon kosketnvstuksest j yhtälön 25 muksest membrnn jänntehävöstä. Ulostulojännte sdn vähentämällä edellä mntut hävöt DEFC:n Nernstn potentlst, jok on 6 :ssä 1,18 V. /28/ n k EtOH m CEtOH = exp = D / l m EtOH m m exp( v / k ) m m ( v / k ) 1 m, v m = v m m H 2 OnH 2O / c c d d ( lm + ln + lcth + ln + lcth ) I ρ H 2O η contct = (24) S η = lm membr I (25) m (2) mssä l on mebrnn, ktlyytt- t dffuusokerroksen pksuus [cm], on membrnn johtvuus [S/cm] j S on ktlyyttkerroksen johtvuus [S/cm]. 19

23 Tonen smulontmll on estetty vtteessä Sous et l. /18/. Anetseet koostuvt komponentten dffuusost j kuljetuksest. Anodn knetkk kuvtn rektomeknsmn vhesn ltetyllä Tfeln yhtälöllä, kuten emmn DFC:n oslt. ll on luotu ennustmn nodn komponentten konsentrtoproflej j nodn elektrodlle bsorbotuneden yhdsteden määrä j on sten kksulottenen. ll on toteutettu osttsdfferentlyhtälöden vull Comsol ultphyscs ohjelmll, joten sen trkemp esttämnen tässä yhteydessä e ole melekästä. 20

24 5 DFC:N SIULOINTI 5.1 Isotermnen mll Isotermsen suormetnolpolttokennon dynmnen mll on rkennettu Smulnkohjelmll. llyhtälöt ovt tulukoden 1 j 2 mukset j mllprmetren päädyttn käyttämään vtteen Xu et l. /9/ muks prmetrej. uvss 8 on estetty mllll smulodun skelkokeen tuloks. Askelkokeess syöttövrtuksen metnolkonsentrto on nostettu rvost 100 rvoon 1500 mol/m. Vertlu kuvn 9 skelvsteden knss osott, että vstess on merkttävä eroj. Tspnotln tulokset pokkevt metnoln vuotmsen (n CHOH, ceem), ktodn rektonopeuden (r c, r5) j elektroden ylpotentlen (η, ovpoan j η c, ocpocc) oslt, jost vrsnkn nodn ylpotentl on tässä mllss non kymmenen kert suuremp kun vtteen Xu et l. /9/ tuloksss. Tämän vuoks myös mlln lskem polttokennon jännte (U cell ) jää vtteen tulost mtlmmks. Tuloks verrttess on huomotv, että kuvn 8 mllss k-skel on muuttuv j kuvn 9 tuloksss on käytetty dskreettä k-skelt. Lsäks kuvn 8 mllss nodn ktlyyttkerroksen pltnpkkojen osuus on muuttuv, kun kuvn 9 mllss pltnpkkojen osuudelle on käytetty vkorvo. Ensmmäset smulonnt osottvt mlln vrtystrpeen. uv 8. lln vstet syöttökonsentrtoss tphtuvn skelmuutokseen mol/m. Pstevvt kuvvt ktlyyttkerroksen konsentrtot j ktkovvt ktodn omnsuutt. Smulonnss käytetyt olosuhteet olvt cell =00 A/m 2, T=4, P =0,1 P, P c =0, P. 21

25 uv 9. Smulonttulokset metnoln syöttökonsentrtoll 1500 mol/m /9/. rjllsuusktsuksen perusteell ol odotettvss, että tällä tvon rkennettu mll lrvo metnoln vuotmst. Tspnotlss metnolvuo membrnn läp on non kolme kert penemp kun vtteessä Zhou et l. /6/ (kts. kuv 5). Tämän perusteell metnoln vuotmselle setettn mlln korjuskerron, jollon hvttn kuvn 10 mukset käyttytymset vuotmselle, ktodn ylpotentllle j ktodn rektonopeudelle. yseset tulokset vstvt nyt premmn vtteess Xu et l. /9/ estettyjä tuloks. todn ylpotentln tsesrvon ksvmnen lsk smulonnss hvttu kennon jänntettä, jok on nyt non 0,0 V. 22

26 uv 10. lln vstet syöttökonsentrtoss tphtuvn skelmuutokseen mol/m. Pstevvt kuvvt tlnnett, joss metnoln vuotmst kuvv yhtälö on ennlln. Smulonnss käytetyt olosuhteet olvt cell =00 A/m 2, T=4, P =0,1 P, P c =0, P. lln ennustmn ln penen kennon jänntteen rvon vuoks mllprmetrej on muokttv edelleen. todrekton nopeusvkon vrttämnen trjo hyvän vhtoehdon, sllä ktodn rektonopeus tom ssääntuloprmetrn nostn ktodn ylpotentllle. Hyvän lähtökohdn ktodn nopeusvkon vrttämselle nt kennon jänntteen trkklemnen lmn kuorm (OCV, open crcut voltge), sllä vrrntheyden olless nollss e nodll tphdu rektot j jänntteen lskun heutt sten metnoln vuotmsen j ktodrektoden heuttm ktodn ylpotentl. Tulukkoon 4 on kerätty vtteessä Sundmcher & Scott /7/ estettyjä OCV-rvoj j mlln lskemt vstvt rvot er ktodrekton nopeusvkon rvoll. Tulukko 4. OCV-rvoj er syöttökonsentrtoll. Smulonnss käytetyt olosuhteet olvt c F,eOH =1500 mol/m, T=6, P =0,1 P, P c =0, P. c eoh,f (mol/m ) Sundmcher & Scott /7/ 0,69 0,67 0,65 0,65 0,64 k c = ,55 0,51 0,46 0,44 0,42 k c = ,65 0,61 0,56 0,54 0,52 k c = ,69 0,65 0,61 0,58 0,56 k c = ,72 0,72 0,68 0,65 0,6 OCV (V) Tulosten perusteell ktodrekton nopeusvkon rvoks vltn 10-7 mol/m 2 s, sllä tähän stsss smulonness on pnotettu korkemp metnoln syöttökonsentrtot. Lsäks OCV-rvojen vull vodn trkstell lämpötln vkutust polttokennon tomntn. Alustven smulonten mukn käyttäytymnen e ole tovottv, sllä korkemmss lämpötlss kennon jännte on penemp, kun käyttäytymsen tuls oll pänvstst. Sundmcher & Scott /7/ jtkovtkn mlln vrttmstä settmll ktodn rektonopeusvkolle yhtälön 26 muksen lämpötlrppuvuuden. ΔE 1 1 k c ( T) = kc ( Tref )exp (26) R T Tref 2

27 Tämä lämpötlrppuvuus lsättn myös tähän mlln, kun T ref =6 j E =48,5 kj/mol. Lämpötlrppuvuuden vkutus lmenee tulukon 5 tedost. Smulodut rvot ovt Sundmchern & Scottn /7/ rvoj suuremp, sllä edellä mll vrtettn korkelle syöttökonsentrton rvolle j tässä smulonnt suortettn suhteellsen mtlss syöttökonsentrtoss, joss mlln ennustuskyky on hekomp. Lämpötlrppuvuuden lsäämsellä on kutenkn merkttävä vkutus mlln käyttäytymseen j lämpötln vkutus kennon jänntteeseen on nyt teorn muknen. Tulukko 5. OCV-rvoj er lämpötloss. Smulonnss käytetyt olosuhteet olvt c F,eOH =750 mol/m, P =0,1 P, P c =0, P. T () Sundmcher & Scott (1999) 0,54 0,56 0,58 0,58 0,60 0,61 0,65 ll lmn yhtälöä 12 0,78 0,77 0,75 0,74 0,72 0,71 0,69 ll yhtälön 12 knss 0,62 0,6 0,64 0,65 0,67 0,68 0,69 OCV lln tehtyjen muutosten tk on trpeen tutk, mten mlln suortuskyky on muuttunut emmst smulonnest. uvss 11 on estetty smulonness hvttuj muutoks, kun ktodn rektonopeusvkot on muutettu j shen on lsätty lämpötlrppuvuus. Vertlun perusteell mllprmetrn muuttmnen e vkuttnut ktodn ylpotentln j kennon jänntteen lsäks muden prmetren käyttäytymseen, kun skelmuutos kohdstu metnoln syöttökonsentrtoon t vrrntheyteen. () (b) uv 11. todn rektonopeusvkon vkutus () vrrntheydessä tphtuvn skelmuutokseen A/m 2, kun c F,eOH =1500 mol/m, T=5 j (b) syöttökonsentrtoss tphtuvn skelmuutokseen mol/m, kun cell =00 mol/m, T=4. uut smulonnss käytetyt olosuhteet olvt P =0,1 P, P c =0, P. uvss 12 on estetty vrtetyllä sotermsellä suormetnolpolttokennon mllll smulodut polrstokäyrät, jotk kuvvt polttokennon jänntteen tspnotln rvoj er vrrntheyden rvoll, kun myös metnoln syöttökonsentrto s er rvoj. 24

28 uv 12. Isotermsell mllll smulodut polrstokäyrät. Smulonnss käytetyt olosuhteet olvt T=4, P =0,1 P, P c =0, P. 5.2 Adbttnen mll ll luotn lsäämällä edellä estettyyn sotermseen mlln vtteessä o et l. /8/ esttämä dbttsen systeemn lämpötse j sen lskemseen vdttvt ktodn netseet j veden vuotmsen yhtälö. Smll mlln lsättn ktodn konsentrtoylpotentln luseke (yhtälö 8) j membrnn johtvuuden lämpötlrppuvuus /29/ (yhtälö 27). todn konsentrtoylpotentln yhteydessä esntyvä rjottv vrrntheyden rvo on ktodlle omnnen j sen rvo on lmylmäärän vuoks nodn rjottvn vrrntheyden rvo huomttvst suuremp /28/. Näden muutosten ohell mlln lsättn mhdollsuus käyttää Vern /29/ esttämää yhtälöä metnoln vuotmselle. Vkk kysenen yhtälö (yhtälö 28) e ssällä pnegrdentt, ennust se metnoln vuotmst huomttvst mllss emmn käytettyä yhtälöä premmn, jok vt korjuskertomen. 1 1 κ = κ 0 exp 1268 (27) 298 T W H 2O W CL n eoh = nd ceoh + ρ H 2O F D eoh c CL eoh d (28) Suormetnolpolttokennon dbttselle mlllle vodn vtteen o et l. /8/ smulonten perusteell suortt kvlttvst trkstelu. uvss 1 on mllll suortettu metnoln syöttökonsentrtolle skelmuutos lspän rvost > 500 mol/m, kun vrrntheys on korke, 500 A/m 2. Jänntteen j lämpötln käyttäytymnen 25

29 on odotettu; Askelmuutos heutt jänntteen nousun j lämpötln lskun. Jänntteessä hvttu muutos on non 0,2 V, jok on sm suuruusluokk kun vtteen o et l. smulonness. Lämpötln muutos on lle yhden steen, kun vtteessä o et l. se on hemn suuremp. Smulonnss hvttu lämpötl on penemp kun nodn syöttölämpötl, jok pokke vtteen o et l. hvnnost, joss lämpötl on syöttölämpötl korkemp. Tämä vtt shen, että kennon lämmöntuotnto on vähäsempää tässä mllss. Veden vuotmnen on mtlmmn lämpötln vuoks vähäsempää, sllä vrrntheyden olless vko, vn lämpötl vkutt shen. etnoln vuotmseen vkutt lämpötln lsäks metnoln syöttökonsentrto, jollon metnoln vuotmnen on lähes smll tsoll kun vtteessä o et l. Dynmsen käyttäytymsen vertmnen näden khden smulonttpuksen välllä osott, että tässä työssä rkennetun mlln vste on huomttvst htmp. Lämpötln settumsk on yl 1000 s, kun vteessä o et l. settumsjt ovt kkss tpuksss muutm kymmen sekuntej. uv 1. Askel 1500->500 mol/m. Smulonnss käytetyt olosuhteet olvt cell =500 A/m 2, P =0,1 P, P c =0, P, T,n =, T c,n =298, X=4. uvss 14 on estetty mlln lskemt lämpövuot, kun syöttökonsentrtoon on tehty skelmuutos ylöspän. yös tässä tpuksess jänntteen j lämpötln käyttäytymnen on odotettu. Askelmuutos vkutt vomkkst ktodll tphtuvn rektohn, sllä hpen pelkstymsrektoon käytetty lämpömäärä ksv huomttvst, kuten myös membrnn läpässeen metnoln hpettumsest vputuv lämpömäärä. uvss 14 on huomotv, että rektolämpöjen, polttokennon tehon j membrnn läpässeen veden höyrystymslämmön etumerkt ovt negtvs lämpötseess. 26

30 uv 14. Askel 1000->2000 mol/m. Smulonnss käytetyt olosuhteet olvt cell =1000 A/m 2, P =0,1 P, P c =0, P, T,n =, T c,n =298, X=4. Tässä vheess smulontej hvttn, että smulonness e vrrntheydelle vod käyttää penä rvoj. Tämä johtuu stä, että penellä vrrntheyden rvoll myös syötettävän lmn määrä penenee. Ilmylmäärästä huolmtt ktodll e ole rttäväst hppe molempn rektohn. Ilmylmäärän kerront (X) ols ksvtettv vähntään kymmenkertseks. Suur X trkott puolestn stä, että ktodlt postuu runsst lämpöä, jos ktodlle syötettävä lm on huoneenlämpöstä, sllä mlloletusten mukn ktodvrtuksen ulostulolämpötl on sm kun kennon lämpötl. Tämän ongelmn vuoks mll korjttn sten, että ktodlle syötettävä lmmäärä (mol/s) kuuluu mlln ssääntulomuuttujn. yös ktodn netseet kokvt muutoks, sllä nyt metnoln msshyötysuhteen käyttö ol turh. Anetseet koostuvt nyt syötettävän lmn vrtuksest, ktodrekton hpen kulutuksest j veden muodostumsest, ktodlle vuotneest vedestä j ktodlle vuotneen metnoln hpettumsrektoss kuluvst hpest j muodostuvst hldoksdst (yhtälöt 29-1). 27

31 cross N H 2O, out = A + + nh 2 2F F N O O cross 2, out = 0,21 N Ar, n A + (29) 4F 4F N N 2, out 0, 79 N Ar, n = (0) N CO cross 2, out = A (1) 6F Anetseden pävttämnen e heut muutoks edellä estettyhn smulontehn, kun lmvrtukseks vlttn 4, mol/s, jok vst melko trkst nelnkertst lmylmäärää vrrntheydelle 1000 A/m 2. lln ssällytettn lmvrtust trkklev lohko, jok pysäyttää smulonnn, mkäl syötettävä lmmäärä e rtä vrrntuotntoon j ktodlle vuotneen metnoln hpettmseen. 5. E-dbttnen mll Lämpöhävön huomomnen suormetnolpolttokennomllss on vke lmn kunnolls koetuloks. lln lsättn kutenkn jonknlnen rvo mhdollsest kennon ulkopnnlt tphtuvst lämpöhävöstä (kts. s.18). Vtteessä Scott et l. /21/ on kuvttu kolmest kennost koostuvn kennoston lämpötlkäyttäytymstä. uvss 15 on trkkltu elektroden tulo- j lähtövrtusten lämpötl sekä kennon keskmäärästä lämpötl jn funkton, kun kennosto tom () kuormtt j (b) 50 ma/cm 2 vrrntheydellä. uv 15. olmekennosen kennoston lämpökäyttäytymnen /21/: () operont pelkällä lämmtetyllä syötöllä (b) operont lämmtetyllä syötöllä j kuormll 50 ma/cm 2, U stck =1,2 V, c F,eOH =1000 mol/m, V F =5,5 dm /mn, P c =1,7 br. 28

32 uvss 15 lämpötl nousee ktodlle vuotneen metnoln hpettumsrekton seuruksen. Hds vste heutuu kennon huonost lämmönjohtokyvystä. uvss 15b huomotv on, että nodn ulostulovrt svutt hyvn korken lämpötln, kun ktodn ulostulovrt j nodn ssääntulovrt ovt puolestn kennon lämpötl mtlmmll tsoll. Anodrektoss vputuvst lämmöstä os srtyy nodll vrtvn seokseen. Smulontmllll tälls tuloks e vod svutt, sllä lämpötseen oletuksn kuuluu, että elektroden ulostulovrrt ovt smss lämpötlss kun kenno. Oletus heutt sen, että ktodlt postuu enemmän lämpöä, kun mtä kuvss 15. Edbttsen smulontmlln tuloks on estetty kuvss 16. Tulokset osottvt, että lämpöhävöllä on suur vkutus mlln käyttäytymseen. Lämpöhävön huomomnen lskee kennon lämpötl merkttäväst. yös lämpötln settumsk penenee. uv 16. Askel 500->0 A/m 2. Vsemmnpuolesess kuvjss lämpöhävö e ole mukn j okenpuolesess kuvss lämpöhävö ssältyy lskentn. Smulonnss käytetyt olosuhteet olvt c F,eOH =1000 mol/m, P =0,1 P, P c =0, P, T,n =, T c,n =298. uvss 17 on puolestn estetty vstvn smulonnn lämpövuot. uvst nähdään, että DFC:n kolmest mllnnetust rektost stv nettolämpö on postvnen. Suurn lämmöntuoj systeemn on kutenkn nodn vrtus. Nämä yhdessä rttävät vn nukst kttmn mlln muksen lämpöhävön. Aemmn estetyssä kuvss 7 /22/ lämpöhävön merktys ol erttän pen verrttun muhn lämpövrtohn, vn non puolet rektoss tuotetust nettolämmöstä. Huomonrvost on, että kuvn 7 energvrrt kuvvt kolmekennost kennosto, jonk ulkonen pnt-l e pokke merkttäväst smulontmlln kennon ulkosest pnt-lst. Lämpöhävön määrän tuls kutenkn smulontmllss oletettvst oll non puolet penemp. 29

33 uv 17. ennon energvrrt, kun cell =500 A/m 2, c F,eOH =1000 mol/m, P =0,1 P, P c =0, P, T,n =, T c,n =298. 0

34 6 YHTEENVETO rjllsuusktsuksen perusteell selvs, että suor-lkoholpolttokennoss on velä mont ongelm yltettävänä ennen nden läpmurto. Esmerkks polttokennon teho j hyötysuhdett lskevn lkoholn vuotmsen meknsm e tunnet trkst. etnoln oslt polttokennojen kehtys on jo ptkällä, mutt etnoln oslt tutkmus on keskttynyt premmn ktlyytn etsntään. llnnuksen knnlt keskestä ols huomod myös ongelm heuttvt lmöt, kuten vuotmnen j ksunmuodotumnen nodll. Vetypolttokennost tutun emprsen yhtälön käyttämnen sähkökemllsen käyttäytymsen ennustmseen e ole melekästä, sllä shen e vod ssällyttää lkoholn syöttökonsentrton muutoks, jok on välttämätöntä kennon mtotuksess j tomnnn optmonnss. Usess työssä referotu mll ol pohjn myös tämän työn smulontmllss. ll huomo nodn rektntten neensrron vrtusknvss j ktlyyttkerroksess, metnoln vuotmsen j lskee kennon tuottmn jänntteen elektrodelle muodostettujen vrustseden vull. ll olett nodn yksfssysteemks. Tulomuuttujn tomvt vrrntheys j syötön metnolkonsentrto. llnnustyö e edennyt ongelmtt, vkk krjllsuudest ol stvll melko kttvst mllprmetrej. rjllsuudess estetyt smulonttulokset pokkesvt tässä työssä svutetust, joten mll vrtettn muuttmll vuotmsen lusekett j ktodn rektonopeuskerront. Lämpötseen lsäämsen ohell mlln lsättn konsentrtoylpotentln luseke sekä muutmlle prmetrelle lämpötlrppuvuus. lln konvergotumsongelmen vuoks tuloprmetrn tomnut lmylmäärän kerron korvttn syötettävän lmn moolvrtuksell. Smulonnt vttsvt tässä vheess kennon vähäseen lämmöntuotntoon j htseen vsteeseen. Lopuks mlln lsättn krke rvo lämpöhävöstä, joll vkutt olevn merkttävä vkutus nn kennon lämpötln kun lämpötln settumskn. Tosn lämpöhävön lusekkeen todettn lottelevn lmötä. Tulosten vldont jä kkenkkkn vltettvn vjks lmn koetomnt, sllä krjllsuudess lämpötlkäyttäytymsen rportont ol hyvn vähästä. Smst syystä potentlsten kehtysvhtoehtojen toteuttmnen osottutu vkeks. 1

35 LÄHDELUETTELO 1. Arno J & Levskä (2008) Dynmc odels for Hydrogen Feeded Fuel Cells. Report B No. 67, Unversty of Oulu, Control Engneerng Lbortory, June pges. In Fnnsh. 2. Ohenoj & Levskä (2008) Dynmc odel for PE Fuel Cells. Report B No. 68, Unversty of Oulu, Control Engneerng Lbortory, August pges. In Fnnsh.. Nordlund J (200) The Anode n the Drect ethnol Fuel Cell. Doctorl Thess, unglg Teknsk Högskoln, Stockholm, Pges. 4. Olver V B, Flcão D S, Rngel C & Pnto A F R (2007) A comprtve study of pproches to drect methnol fuel cells modellng. Interntonl Journl of Hydrogen Energy, Volume 2, Issue, rch 2007, Pges Sundmcher, Schultz T, Zhou S, Scott, Gnkel & Glles E D (2001) Dynmcs of the drect methnol fuel cell (DFC): experments nd model-bsed nlyss. Chemcl Engneerng Scence 56 (2001) Zhou S, Schultz T, Peglow & Sundmcher (2001) Anlyss of the nonlner dynmcs of drect methnol fuel cell. PCCP. Physcl chemstry chemcl physcs,, (), Sundmcher & Scott (1999) Drect methnol polymer electrolyte fuel cell: Anlyss of chrge nd mss trnsfer n the vpour lqud sold system. Chemcl Engneerng Scence, Volume 54, Issues 1-14, July 1999, Pges o D, Lee, Jng W & rewer U (2008) Non-sotherml dynmc modellng nd optmzton of drect methnol fuel cell. Journl of Power Sources, Volume 180, Issue 1, 15 y 2008, Pges Xu C, Follmnn P, Begler L T & Jhon S (2005) Numercl smulton nd optmzton of drect methnol fuel cell. Computers & Chemcl Engneerng, Volume 29, Issue 8, 15 July 2005, Pges Scott, Argyropoulos P & Sundmcher (1999) A model for the lqud feed drect methnol fuel cell. Journl of Electronlytcl Chemstry, Volume 477, Issue 2, 22 November 1999, Pges Schultz T (2004) Expermentl nd odel-bsed Anlyss of the Stedy-stte nd Dynmc Opertng Behvour of the Drect ethnol Fuel Cell (DFC). Doctorl Thess, Otto-von-Guercke Unversty of gdeburg, y Pges. 2

36 12. Hcqurd A (2005) Improvng nd Understndng Drect ethnol Fuel Cell (DFC) Performnce..Sc. Thess, Worcester Polytechnc Insttute, y Pges. 1. Scott, Tm W, rmer S, Argyropoulos P & Sundmcher (1999b) Lmtng current behvour of the drect methnol fuel cell. Electrochmc Act, Volume 45, Issue 6, 1 December 1999, Pges Cheng C H, Fe, Hong C W (2007) Computer smulton of hydrogen proton exchnge membrne nd drect methnol fuel cells. Computers nd Chemcl Engneerng 1 (2007) Song S, Zhou W, Lng Z, C R, Sun C, Xn Q, Stergopoulos V & Tskrs P (2005) The effect of methnol nd ethnol cross-over on the performnce of PtRU/C-bsed node DAFCs. Appled Ctlyss B: Envronmentl 55, (1), Rousseu S, Coutnceu C, Lmy C & Léger J- (2006) Drect ethnol fuel cell (DEFC): Electrcl performnces nd recton products dstrbuton under opertng condtons wth dfferent pltnum-bsed nodes. Journl of Power Sources, Volume 158, Issue 1, 14 July 2006, Pges Andreds G & Tskrs P (2006) Ethnol crossover nd drect ethnol PE fuel cell performnce modelng nd expermentl vldton. Chemcl Engneerng Scence 61 (2006) Sous R, Anjos D, Tremlos-Flho G, Gonzlez E, Coutnceu C, Sbert E, Léger J- & okoh (2008) odelng nd smulton of the node n drect ethnol fuel cells. Journl of Power Sources, 180, (1), Yo Z, rn, cauley B, Oosthuzen P, Peppley B & Xe T (2004) A Revew of themtcl odels for Hydrogen nd Drect ethnol Polymer Electrolyte embrne Fuel Cells. Fuel Cells, 4, (1-2), rewer U (2005) System-orented Anlyss of the Dynmc Behvour of Drect ethnol Fuel Cells. Doctorl Thess, Otto-von-Guercke Unversty of gdeburg, November Pges. 21. Scott, Argyropoulos P & Tm W (2000) odellng Trnsport Phenomen nd Performnce of Drect ethnol Fuel Cell Stcks. Chemcl Engneerng Reserch nd Desgn, 78, (6), Argyropoulos P, Scott & Tm W (1999) One-dmensonl therml model for drect methnol fuel cell stcks: Prt I. odel development. Journl of Power Sources, 79, s

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIMUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oppa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttauspöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttausöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

8.4 Gaussin lause Edellä laskettiin vektorikentän v = rf(r) vuo R-säteisen pallon pinnan läpi, tuloksella

8.4 Gaussin lause Edellä laskettiin vektorikentän v = rf(r) vuo R-säteisen pallon pinnan läpi, tuloksella H 8.3.2 uontegrlt: vektoreden pntntegrlt Tvllsn tpus pntntegrlest on lske vektorkentän vuo pnnn läp: Trkstelln pnt j sllä psteessä P (x, y, z olev pnt-lkot d. Määrtellään vektorlnen pnt-lko d sten, että

Lisätiedot

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO Integrlilskent Tämä on lukion oppimterileist hiemn poikkev yksinkertistettu selvitys määrätyn integrlin lskemisest. Kerromme miksi integroidn, mitä integroiminen trkoitt, miten integrli lsketn j miten

Lisätiedot

TYÖ 30. JÄÄN TIHEYDEN MÄÄRITYS. Tehtävänä on määrittää jään tiheys.

TYÖ 30. JÄÄN TIHEYDEN MÄÄRITYS. Tehtävänä on määrittää jään tiheys. TYÖ 30 JÄÄN TIHEYDEN MÄÄRITYS Tehtävä älineet Tusttietoj Tehtävänä on äärittää jään tiheys Byretti (51010) ti esi 100 l ittlsi (50016) j siihen sopivi jääploj, lkoholi (sopii jäähdytinneste lsol), nlyysivk

Lisätiedot

Sähkökiukaan kivimassan vaikutus saunan energiankulutukseen

Sähkökiukaan kivimassan vaikutus saunan energiankulutukseen LAPPEENRANNAN ENILLINEN YLIOPISO eknllnen tedekunta LU Energa Sähkökukaan kvmassan vakutus saunan energankulutukseen Lappeenrannassa 3.6.009 Lass arvonen Lappeenrannan teknllnen ylopsto eknllnen tedekunta

Lisätiedot

2.4 Pienimmän neliösumman menetelmä

2.4 Pienimmän neliösumman menetelmä 2.4 Pienimmän neliösummn menetelmä Optimointimenetelmiä trvitn usein kokeellisen dtn nlysoinniss. Mittuksiin liittyy virhettä, joten mittus on toistettv useit kertoj. Oletetn, että mittn suurett c j toistetn

Lisätiedot

θ 1 θ 2 γ γ = β ( n 2 α + n 2 β = l R α l s γ l s 22 LINSSIT JA LINSSIJÄRJESTELMÄT 22.1 Linssien kuvausyhtälö

θ 1 θ 2 γ γ = β ( n 2 α + n 2 β = l R α l s γ l s 22 LINSSIT JA LINSSIJÄRJESTELMÄT 22.1 Linssien kuvausyhtälö 22 LINSSIT JA LINSSIJÄRJSTLMÄT 22. Linssien kuvusyhtälö Trkstelln luksi vlon tittumist pllopinnll (krevuussäde R j krevuuskeskipiste C) kuvn mukisess geometriss. Tässä vlo siis tulee ineest ineeseen 2

Lisätiedot

Valonlähteiden värintoisto-ominaisuuksien kuvaaminen

Valonlähteiden värintoisto-ominaisuuksien kuvaaminen TEKNILLINEN KORKEAKOULU Sähö- j tetolennetenn ossto MIKES TKK Mttusten Vlonlähteden värntosto-omnsuusen uvmnen 1.9.2008 Ales Sormnen les.sormnen()t.f Mttustenn erostyö urssn S-108.3120 Erostyö Opntopsteet

Lisätiedot

Mikrotalousteoria 2, 2008, osa III

Mikrotalousteoria 2, 2008, osa III Sisältö Mikrotlousteori 2, 2008, os III Yrityksen tuotntofunktiost 2 Pnosten substituoitvuus 2 3 Yrityksen teori 3 4 Mittkvedut tuotnnoss 5 5 Yksikkökustnnusten j skltuottojen steen välinen yhteys 5 6

Lisätiedot

Monte Carlo -menetelmä

Monte Carlo -menetelmä Monte Carlo -menetelmä Helumn perustlan elektron-elektron vuorovakutuksen laskemnen parametrsodulla yrteaaltofunktolla. Menetelmän käyttökohde Monen elektronn systeemen elektronkorrelaato oteuttamnen mulla

Lisätiedot

FDS-OHJELMAN UUSIA OMINAISUUKSIA

FDS-OHJELMAN UUSIA OMINAISUUKSIA FDS-OHJELMAN UUSIA OMINAISUUKSIA Smo Hostkka VTT PL 1000, 02044 VTT Tvstelmä Fre Dynamcs Smulator (FDS) ohjelman vdes verso tuo mukanaan joukon muutoksa, jotka vakuttavat ohjelman käyttöön ja käytettävyyteen.

Lisätiedot

Uuden eläkelaitoslain vaikutus allokaatiovalintaan

Uuden eläkelaitoslain vaikutus allokaatiovalintaan TEKNILLINEN KORKEAKOULU Systeemanalyysn laboratoro Mat-2.108 Sovelletun matematkan erkostyö Uuden eläkelatoslan vakutus allokaatovalntaan Tmo Salmnen 58100V Espoo, 14. Toukokuuta 2007 Ssällysluettelo Johdanto...

Lisätiedot

Ristitulo ja skalaarikolmitulo

Ristitulo ja skalaarikolmitulo Ristitulo j sklrikolmitulo Opetussuunnitelmn 00 mukinen kurssi Vektorit (MAA) sisältää vektoreiden lskutoimituksist keskeisenä ineksen yhteenlskun, vähennyslskun, vektorin kertomisen luvull j vektoreiden

Lisätiedot

1, MITÄ TARKOITETAAN SEURAAVILLA TERMEILLÄ:

1, MITÄ TARKOITETAAN SEURAAVILLA TERMEILLÄ: KRANPDON TNTT 14.4.2014 LAY/OTK OT: Vst jkseen kysymykseen erllselle pperlle (must merktä nm myös krjnptu"t.u"ppern). ös et vst jhnkn kysymykseen, jätä nmetty vstuspper myös kysesen tehtävän slt' rrävär:

Lisätiedot

YLIVIESKAN SEUTUKUNNAN TUR- VALLISUUSSUUNNI- TELMA

YLIVIESKAN SEUTUKUNNAN TUR- VALLISUUSSUUNNI- TELMA YLIVIESKAN SEUTUKUNNAN TUR- VALLISUUSSUUNNI- TELMA 2009-2012 Ylveskn kupunk Kljoen kupunk Oulsten kupunk Merjärven kunt Alveskn kunt Sevn kunt 2 Verso 0.6 8.1.2009 Koonnut: Jr Lepstö, Joklksojen pelstusltos

Lisätiedot

FYSA220/2 (FYS222/2) VALON POLARISAATIO

FYSA220/2 (FYS222/2) VALON POLARISAATIO FYSA220/2 (FYS222/2) VALON POLARSAATO Työssä tutktaan valoaallon tulotason suuntasen ja stä vastaan kohtsuoran komponentn hejastumsta lasn pnnasta. Havannosta lasketaan Brewstern lan perusteella lasn tatekerron

Lisätiedot

Suomen metsäkeskus. Zonation ja luonnonhoidon alueellinen suunnittelu yksityismetsissä

Suomen metsäkeskus. Zonation ja luonnonhoidon alueellinen suunnittelu yksityismetsissä Suomen metsäkeskus Zonton j luonnonhodon lueellnen suunnttelu ykstysmetsssä Johtv luonnonhodon sntuntj Mtt Seppälä METSO j Zonton semnr Ksvu j vkuttvuutt METSO luonnonhotoon 2014-2016 Zonton kehttämsen

Lisätiedot

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö:

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö: Puupntasen sandwchkattoelementn lujuuslaskelmat. Ssältö: Sandwch kattoelementn rakenne ja omnasuudet Laatan laskennan kulku Tulosten vertalua FEM-malln ja analyyttsen malln välllä. Elementn rakenne Puupntasa

Lisätiedot

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita.

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita. 8. Operttorit, mtriisit j ryhmäteori Mtemttinen operttori määrittelee opertion, jonk mukn sille nnettu funktiot muoktn. Operttorit ovt erityisen tärkeitä kvnttimekniikss, kosk siinä jokist suurett vst

Lisätiedot

Yksikköoperaatiot ja teolliset prosessit

Yksikköoperaatiot ja teolliset prosessit Ykskköoperaatot ja teollset prosesst 1 Ylestä... 2 2 Faasen välnen tasapano... 3 2.1 Neste/höyry-tasapano... 4 2.1.1 Puhtaan komponentn höyrynpane... 4 2.1.2 Ideaalnen seos... 5 2.1.3 Epädeaalnen nestefaas...

Lisätiedot

Viivaintegraali: "Pac- Man" - tulkinta. Viivaintegraali: "Pac- Man" - tulkinta. "Perinteisempi" tulkinta: 1D 3/19/13

Viivaintegraali: Pac- Man - tulkinta. Viivaintegraali: Pac- Man - tulkinta. Perinteisempi tulkinta: 1D 3/19/13 Viivintegrli: "Pc- Mn" - tulkint Otetn funk:o f(,), jok riippuu muudujist j. Jokiselle, tson pisteellä funk:oll on siis joku rvo. Tpillisiä fsiklis- kemillisi esimerkkejä voisivt oll esimerkiksi mss:hes

Lisätiedot

Painopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1

Painopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1 Pinopiste Snomme ts-ineiseksi kpplett, jonk mteriliss ei ole sisäisiä tiheyden vihteluj. Tällisen kppleen pinopisteen sijinti voidn joskus päätellä kppleen muodon perusteell. Esimerkiksi ts-ineisen pllon

Lisätiedot

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi Tehtävä. Jtk loogisesti oheisi jonoj khdell seurvksi tulevll termillä. Perustele vstuksesi lyhyesti. ), c, e, g, b),,, 7,, Rtkisut: ) i j k - oike perustelu j oiket kirjimet, nnetn p - oike perustelu,

Lisätiedot

LINSSI- JA PEILITYÖ TEORIAA. I Geometrisen optiikan perusaksioomat

LINSSI- JA PEILITYÖ TEORIAA. I Geometrisen optiikan perusaksioomat (0) LINSSI- JA PEILITYÖ MOTIVOINTI Tutustutn linsseihin j peileihin geometrisen optiikn mittuksiss Tutkitn vlon käyttäytymistä linsseissä j peileissä Määritetään linssien j peilien polttopisteet Optiset

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 4 Tilvuuden j vipn ln lskeminen Kuten iemmin käsittelimme, määrätyn integrlin vull voi lske pintloj j tilvuuksi. Tyypillisenä sovelluksen tilvuuden lskemisest on tpus, joss

Lisätiedot

Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä 2005-9-14 Palautuspäivä 2005-9-28

Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä 2005-9-14 Palautuspäivä 2005-9-28 Jyväskylän Aattkorkeakoulu, IT-nsttuutt IIF00 Sovellettu fyskka, Syksy 005, 4.5 ETS Opettaja Pas epo alln lö Laatja - Pas Vähäartt Vuoskurss - IST4SE Tekopävä 005-9-4 Palautuspävä 005-9-8 8.9.005 /7 LABOATOIOTYÖ

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2009

MAOL-Pisteitysohjeet Fysiikka kevät 2009 MOL-Pstetysohjeet Fyskka kevät 9 Tyypllsten vrheden aheuttama pstemenetyksä (6 psteen skaalassa): - pen laskuvrhe -/3 p - laskuvrhe, epämelekäs tulos, vähntään - - vastauksessa yks merktsevä numero lkaa

Lisätiedot

BL20A0600 Sähkönsiirtotekniikka

BL20A0600 Sähkönsiirtotekniikka BLA6 Sähkönsrtoteknkka Tehonaon laskenta Jarmo Partanen LT Energy Electrcty Energy Envronment Srtoverkkoen laskenta Verkon tehonaon laskemnen srron hävöt ännteolosuhteet ohtoen kuormttumnen verkon käyttäytymnen

Lisätiedot

Aamukatsaus 13.02.2002

Aamukatsaus 13.02.2002 Indekst & korot New Yorkn päätöskursst, euroa Muutos-% Päätös Muutos-% Helsnk New York (NY/Hel) Dow Jones 9863.7-0.21% Noka 26.21 26.05-0.6% S&P 500 1107.5-0.40% Sonera 5.05 4.99-1.1% Nasdaq 1834.2-0.67%

Lisätiedot

Jäykän kappaleen tasokinetiikka harjoitustehtäviä

Jäykän kappaleen tasokinetiikka harjoitustehtäviä ynmiikk 1 Liite lukuun 6. Jäykän kppleen tskinetiikk - hrjitustehtäviä 6.1 vlvpkettiutn mss n 1500 kg. ut lähtee levst liikkeelle 10 % ylämäkeen j svutt vkikiihtyvyydellä npeuden 50 km / h 1 10 60 m mtkll.

Lisätiedot

TULEVAISUUDEN KILPAILUKYKY VAATII OSAAVAT TEKIJÄNSÄ. Suomen Ammattiin Opiskelevien Liitto - SAKKI ry

TULEVAISUUDEN KILPAILUKYKY VAATII OSAAVAT TEKIJÄNSÄ. Suomen Ammattiin Opiskelevien Liitto - SAKKI ry TULEVAISUUDEN KILPAILUKYKY VAATII OSAAVAT TEKIJÄNSÄ Suomen Ammattn Opskeleven Ltto - SAKKI ry AMMATILLINEN KOULUTUS MUUTOKSEN KOURISSA Suomalasen ammatllsen koulutuksen vahvuus on sen laaja-alasuudessa

Lisätiedot

MATRIISILASKENNAN PERUSTEET. Timo Mäkelä

MATRIISILASKENNAN PERUSTEET. Timo Mäkelä MTRIISILSKENNN PERUSTEET Tmo Mäkelä Mtrslske perusteet SISÄLLYS:. PERUSSIOIT.... MÄÄRITELMIÄ.... MTRIISITYYPPEJÄ.... LSKUTOIMITUKSET.... MTRIISIN KERTOMINEN LUVULL.... YHTEEN- J VÄHENNYSLSKU.... KERTOLSKU....

Lisätiedot

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA MAA0 0. Määrätyn integrlin käyttö eräiden pint-lojen lskemisess 0. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA Edellä on todettu, että f (x)dx nt x-kselin j suorien x =, x = sekä funktion

Lisätiedot

Tilastollisen fysiikan luennot

Tilastollisen fysiikan luennot Tlastollsen fyskan luennot Tvstelmät luvuttan I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ Lämpö on systeemen mkroskooppsten osen satunnasta lkettä Lämpöenerga vrtaa kuumemmasta kappaleesta kylmempään Jos kaks kappaletta

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2015

ICS-C2000 Tietojenkäsittelyteoria Kevät 2015 ICS-C2 Tietojenkäsittelyteori Kevät 25 Kierros 3, 26. 3. tmmikuut Demonstrtiotehtävien rtkisut D: Ldi epädeterministinen äärellinen utomtti, jok test onko nnetun inäärijonon kolmnneksi viimeinen merkki,

Lisätiedot

Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa

Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa Mttausteknkan perusteet / luento 6 Mttausepävarmuus ja shen lttyvää termnologaa Mttausepävarmuus = mttaustulokseen lttyvä parametr, joka kuvaa mttaussuureen arvojen odotettua vahtelua Mttauksn lttyvä kästtetä

Lisätiedot

solmujoukko V omassa säiliössä (sekvenssi) kaarijoukko E kaarialkio-säiliössä kussakin kaarialkiossa viite sen alku- ja loppusolmuun

solmujoukko V omassa säiliössä (sekvenssi) kaarijoukko E kaarialkio-säiliössä kussakin kaarialkiossa viite sen alku- ja loppusolmuun Grf-tetorkenteen toteutus Grfn toteutus? Perustp : krlst e f Tetorkenteet, syksy 7 Grf-tetorkenteen toteutus Perusopertoen työmäärä krlstss...: ovtko solmut u j v verekkäsä?: O(m) solmun lsäys: O() solmun

Lisätiedot

Työssä tutustutaan harmonisen mekaanisen värähdysliikkeen ominaisuuksiin seuraavissa

Työssä tutustutaan harmonisen mekaanisen värähdysliikkeen ominaisuuksiin seuraavissa URUN AMMAIKORKEAKOULU YÖOHJE (7) FYSIIKAN LABORAORIO V.2 2.2 38E. MEKAANISEN VÄRÄHELYN UKIMINEN. yön tavote 2. eoraa yössä tutustutaan harmonsen mekaansen värähdyslkkeen omnasuuksn seuraavssa tapauksssa:

Lisätiedot

Asennus- ja käyttöohje ROBA -liukunavoille Koot 0 12 (B.1.0.FIN)

Asennus- ja käyttöohje ROBA -liukunavoille Koot 0 12 (B.1.0.FIN) Pyydämme lukemn käyttöohjeen huolellisesti läpi j noudttmn sitä! Ohjeiden liminlyönti voi joht kytkimen toiminthäiriöihin j siitä johtuviin vurioihin. Nämä käyttöohjeet (B.1.0.FIN) ovt os kytkintoimitust.

Lisätiedot

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA Tekijät: Ari Heimonen, Hellevi Kupil, Ktj Leinonen, Tuomo Tll, Hnn Tuhknen, Pekk Vrniemi Alkupl Tiedekeskus Tietomn torninvrtij

Lisätiedot

Oulun kansalaisopiston liikunnan tuotepaketit - kuntoliikunnan ja hyvän olon kurssit. Eeva Tallqvist

Oulun kansalaisopiston liikunnan tuotepaketit - kuntoliikunnan ja hyvän olon kurssit. Eeva Tallqvist Oulun knslsopston lkunnn tuotepkett - kuntolkunnn j hyvän olon kursst Eev Tllqvst Opnnäytetyö Verumäen ykskkö Lkunnn j vp-jn ko. Syksy 2013 Lkunnn j vp-jn koulutusohjelm, monmuoto Tvstelmä 17.10.2013 Tekjä

Lisätiedot

Gillespie A.: Foundations of Economics., 2011, luvut 6-8, 17, 21 ja 29. ISBN 978-0-19-958654-7. Oxford University Press.

Gillespie A.: Foundations of Economics., 2011, luvut 6-8, 17, 21 ja 29. ISBN 978-0-19-958654-7. Oxford University Press. Vltiotieteellinen tiedekunt Tloustieteen vlintkoe Arvosteluperusteet Kesä 0 Vlintkoekirjt Gillespie A.: Foundtions of Economics., 0, luvut 6-8, 7, j 9. ISBN 978-0-9-958654-7. Oxford University Press. sekä

Lisätiedot

Kansainvälisen konsernin verosuunnittelu ja tuloksenjärjestely

Kansainvälisen konsernin verosuunnittelu ja tuloksenjärjestely Kansanvälsen konsernn verosuunnttelu ja tuloksenjärjestely Kansantaloustede Pro gradu -tutkelma Talousteteden latos Tampereen ylopsto Toukokuu 2007 Pekka Kleemola TIIVISTELMÄ Tampereen ylopsto Talousteteden

Lisätiedot

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko 3.3 KILIOPPIN JÄSNNYSONGLMA Rtkistv tehtävä: Annettu yhteydetön kielioppi G j merkkijono x. Onko x L(G)? Rtkisumenetelmä = jäsennyslgoritmi. Useit vihtoehtoisi menetelmiä, erityisesti kun G on jotin rjoitettu

Lisätiedot

Markkinoinnin laitos Rehtorinpellonkatu 3 20500 Turku KYSELYLOMAKE

Markkinoinnin laitos Rehtorinpellonkatu 3 20500 Turku KYSELYLOMAKE Turun upporoulu LUOTTAMUKSELLINEN Mrnonnn ltos Rtornpllontu 000 Turu KYSELYLOMAKE. Kun mont rt tloussnn ttn vm voll lntrv- mut pävttästvrostos? Mtn ostost utuvt survn ostospon sn mä ol smääränn rtostostn

Lisätiedot

Kapselointilaitoksen luokitukset

Kapselointilaitoksen luokitukset Työrportt 2-6 Kpselontltoksen luoktukset Tpn Kukkol Toukokuu 2 POSIVA OY Mkonktu 5 A, FIN- HELSINKI, FINLAND Tel. +358-9-228 3 Fx +358-9-228 379 Työ rportt 2-6 Kpselontltoksen luoktukset Tpn Kukkol Fortum

Lisätiedot

9 A I N. Alkuperäinen piiri. Nortonin ekvivalentti R T = R N + - U T = I N R N. Théveninin ekvivalentti DEE-11110 SÄHKÖTEKNIIKAN PERUSTEET

9 A I N. Alkuperäinen piiri. Nortonin ekvivalentti R T = R N + - U T = I N R N. Théveninin ekvivalentti DEE-11110 SÄHKÖTEKNIIKAN PERUSTEET DEE11110 SÄHKÖTEKNIIKAN PERUSTEET http://www.tut.fi/smg/course.php?id=57 Rtkisut Hrjoitukset 3, 2014 Tehtävä 1. Pyydetään muodostmn nnetun piirin Nortonin ekvivlentti. Nortonin, smoin kuin Theveninin,

Lisätiedot

Mittaustulosten käsittely

Mittaustulosten käsittely Mttaustulosten kästtely Vrhettä ja epävarmuutta lmasevat kästteet Tostokoe ja satunnasten vrheden tlastollnen kästtely. Mttaustulosten jakaumaa kuvaavat tunnusluvut. Normaaljakauma 7. Tostokoe ja suurmman

Lisätiedot

Sonera Ethernet. Palvelukuvaus 1.6.2013

Sonera Ethernet. Palvelukuvaus 1.6.2013 1 (19) Soner Ethernet Plvelukuvus Yrtystedot TelSoner Fnlnd Oyj Teollsuusktu 15, 00510 Helsnk Kotpkk: Helsnk Y-tunnus 1475607-9, ALV REK Yhteystedot Vhde 020401 www.soner.f/operttorelle 2 (19) Ssällys

Lisätiedot

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa.

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa. Jkso 12. Sähkömgneettinen induktio Tässä jksoss käsitellään sähkömgneettist induktiot, jok on tärkeimpiä sioit sähkömgnetismiss. Tätä tphtuu koko jn rkisess ympäristössämme, vikk emme sitä välttämättä

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio ähkömgneettinen inuktio Kun johinsilmukn läpi menevä mgneettikentän vuo muuttuu, silmukkn inusoituu jännite j silmukss lk kulke sähkövit. Mgneettikentässä liikkuvn johtimeen syntyy myös jännite. Näitä

Lisätiedot

PPSS. Roolikäyttäytymisanalyysi 28.03.2011. Tämän raportin on tuottanut: MLP Modular Learning Processes Oy Äyritie 8 A FIN 01510 Vantaa info@mlp.

PPSS. Roolikäyttäytymisanalyysi 28.03.2011. Tämän raportin on tuottanut: MLP Modular Learning Processes Oy Äyritie 8 A FIN 01510 Vantaa info@mlp. PP Roolkäyttäytymsanalyys Roolkäyttäytymsanalyys Rool: Krjanptäjä Asema: Laskentapäällkkö Organsaato: Mallyrtys Tekjä: Matt Vrtanen 8.0.0 Tämän raportn on tuottanut: MLP Modular Learnng Processes Oy Äyrte

Lisätiedot

Runkovesijohtoputket

Runkovesijohtoputket Runkovesijohtoputket PUTKET JA PUTKEN OSAT SSAB:n vlmistmi pinnoitettuj putki j putken osi käytetään lähinnä runkovesijohtolinjoihin, joiden hlkisij on DN 400-1200. Ost vlmistetn teräksisistä pineputkist

Lisätiedot

LIGNIININ RAKENNE JA OMINAISUUDET

LIGNIININ RAKENNE JA OMINAISUUDET 16006 LIGNIININ RAKENNE JA INAISUUDET Hlatomen nmeämnen γ 16006 6 α 1 β 5 3 4 e Lgnnn prekursort (monomeert) Lgnnn bosyntees e e e Peroksdaasn ja vetyperoksdn läsnäollessa prekursorsta muodostuu resonanssstablotu

Lisätiedot

ELINTARVIKEVALVONTASUUNNITELMA

ELINTARVIKEVALVONTASUUNNITELMA Lte nr: 3 KAINUUN MAAKUNTA KUNTAYHTYMÄ Ympärstöterveydenhult ELINTARVIKEVALVONTASUUNNITELMA VUODELLE 2006 Hyväksytty ssl- j terveyslutkunnss 2 01.03.2006 SISÄLLYSLUETTELO 1 YLEISTÄ 2 2 VALVONTAKOHTEET

Lisätiedot

ELE-3600 Elektroniikan erikoistyö 24.05.2007 tomi.kettunen@biaspiste.fi. Putkitekniikan perusteet

ELE-3600 Elektroniikan erikoistyö 24.05.2007 tomi.kettunen@biaspiste.fi. Putkitekniikan perusteet Putkitekniikn perusteet 1 Sisällysluettelo 1. Historist nykypäivään...3 2. Putkitekniikn perusteet...4 3. Putken eri ost...8 4. Diodi...12 5. Triodi...18 6. Tetrodi...31 7. Pentodi...33 8. Lähdeluettelo...39

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.4 Rtkisut j rvostelu. Koululisen todistuksen keskirvo x on lskettu ) b) c) d) kymmenen ineen perusteell. Jos koululinen nostisi neljän ineen

Lisätiedot

Riemannin integraalista

Riemannin integraalista Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:

Lisätiedot

Numeerinen integrointi

Numeerinen integrointi Pitkärnt: Lj mtemtiikk IX9 Numeerinen integrointi IX9 Numeerinen integrointi Numeerisell integroinnill trkoitetn määrätyn integrlin, eli reliluvun I(f,,b) = f(x)dx lskemist numeerisin keinoin (likimäärin)

Lisätiedot

Kuluttajahintojen muutokset

Kuluttajahintojen muutokset Kuluttajahntojen muutokset Samu Kurr, ekonomst, rahapoltkka- ja tutkmusosasto Tutkmuksen tausta ja tavotteet Tavaroden ja palveluden hnnat evät muutu jatkuvast, vaan ovat ana jossan määrn jäykkä lyhyellä

Lisätiedot

Yrityksen teoria ja sopimukset

Yrityksen teoria ja sopimukset Yrtyksen teora a sopmukset Mat-2.4142 Optmontopn semnaar Ilkka Leppänen 22.4.2008 Teemoa Yrtyksen teora: tee va osta? -kysymys Yrtys kannustnsysteemnä: ylenen mall Työsuhde vs. urakkasopmus -analyysä Perustuu

Lisätiedot

Jaksolliset ja toistuvat suoritukset

Jaksolliset ja toistuvat suoritukset Jaksollset ja tostuvat suortukset Korkojakson välen tostuva suortuksa kutsutaan jaksollsks suortuksks. Tarkastelemme tässä myös ylesempä tlanteta jossa samansuurunen talletus tehdään tasavälen mutta e

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 5.2.2013

Preliminäärikoe Pitkä Matematiikka 5.2.2013 Preliminäärikoe Pitkä Mtemtiikk 5..0 Kokeess s vstt enintään kymmeneen tehtävään. Tähdellä ( * ) merkittyjen tehtävien mksimipistemäärä on 9, muiden tehtävien mksimipistemäärä on 6.. ) Rtkise yhtälö b)

Lisätiedot

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.

Lisätiedot

JARRUDYNAMOMETRIN LASKENTAOHJELIITE

JARRUDYNAMOMETRIN LASKENTAOHJELIITE LIITE JARRUDYNAMOMETRIN LASKENTAOHJELIITE Jrruje surtuskyvy määrtys jrrudymmetrllä Määräksktsstuksess rsk kurm-ut j erävuu jrrujärjestelmä surtuskyky määrtetää jrrudymmetrmttuksll. Jrrujärjestelmä mttussuurede

Lisätiedot

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon tyhjäkäyntijännite 1 DEE-5400 Risto Mikkonen 1.1.014 g:n määrittäminen olttokennon toiminta perustuu Gibbsin vapaan energian muutokseen. ( G = TS) Ideaalitapauksessa

Lisätiedot

4 Taso- ja avaruuskäyrät

4 Taso- ja avaruuskäyrät P2-luentoj kevät 2008, Pekk Alestlo 4 Tso- j vruuskäyrät Tässä luvuss tutustutn tso- j vruuskäyriin, niiden krenpituuteen j krevuuteen. Konkreettisin sovelluksin trkstelln nnettu rt pitkin liikkuvn hiukksen

Lisätiedot

Kollektiivinen korvausvastuu

Kollektiivinen korvausvastuu Kollektvnen korvausvastuu Sar Ropponen 4.9.00 pävtetty 3..03 Ssällysluettelo JOHDANTO... KORVAUSVASTUUSEEN LIITTYVÄT KÄSITTEET VAHINKOVAKUUTUKSESSA... 3. MERKINNÄT... 3. VAHINGON SELVIÄMINEN JA KORVAUSVASTUU...

Lisätiedot

OUML7421B3003. Jänniteohjattu venttiilimoottori KÄYTTÖKOHTEET TEKNISET TIEDOT OMINAISUUDET SOPIVAT VENTTIILIT TUOTETIEDOT. i OUV5049 i OUV5050

OUML7421B3003. Jänniteohjattu venttiilimoottori KÄYTTÖKOHTEET TEKNISET TIEDOT OMINAISUUDET SOPIVAT VENTTIILIT TUOTETIEDOT. i OUV5049 i OUV5050 OUML7421B3003 Jänniteohjttu venttiilimoottori TUOTETIEDOT OMINAISUUDET Helppo j nope sent Ei trvitse erillistä sennustelinettä Ei trvitse liikepituuden säätöä Momenttirjkytkimet Käsikäyttömhdollisuus Mikroprosessorin

Lisätiedot

KUVIEN LAADUN ANALYSOINTI

KUVIEN LAADUN ANALYSOINTI KUVIEN LAADUN ANALYSOINTI Lasse Makkonen 1.7.2003 Joensuun Ylopsto Tetojenkästtelytede Pro gradu tutkelma Tvstelmä Tutkelmassa luodaan katsaus krjallsuudessa esntyvn dgtaalsten kuven laadullsen analysonnn

Lisätiedot

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS 11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS Tilvuus on sen verrn rkielämässä viljelty käsite, että useimmiten sen syvemmin edes miettimättä ymmärretään, mitä juomlsin ti pikkuvuvn kylpymmeen tilvuudell trkoitetn.

Lisätiedot

PRS-xPxxx- ja LBB 4428/00 - tehovahvistimet

PRS-xPxxx- ja LBB 4428/00 - tehovahvistimet Vestntäjärjestelmät PRS-xPxxx- ja -tehovahvstmet PRS-xPxxx- ja - tehovahvstmet www.boschsecrty.f 1, 2, 4, ta 8 äänlähtöä (valnta 100 / 70 / 50 V:n lähdöstä) Äänenkästtely ja jokasen vahvstnkanavan vve

Lisätiedot

Polynomien laskutoimitukset

Polynomien laskutoimitukset Polyomie lskutoimitukset Polyomi o summluseke, joss jokie yhteelskettv (termi) sisältää vi vkio j muuttuj välisiä kertolskuj. Esimerkki 0. Mm., 6 j ovt polyomej. Polyomist, joss o vi yksi termi, käytetää

Lisätiedot

Työllistääkö aktivointi?

Työllistääkö aktivointi? Jyväskylän ylopsto Matemaatts-luonnonteteellnen tedekunta Työllstääkö aktvont? Vakuttavuusanalyys havannovassa tutkmuksessa Elna Kokkonen tlastoteteen pro gradu tutkelma 31. elokuuta 2007 Tlastoteteen

Lisätiedot

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään.

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään. S-8. Sähkönsiirtoärstlmät Tntti 8..7 Vst thtäviin -4 vlits toinn thtävistä 5 6. Vstt siis nintään viitn thtävään.. Tutkitn ll piirrttyä PV-käyrää, ok kuv sllist vrkko, oss on tuotntolu kuormituslu niidn

Lisätiedot

Polttokennolaboratoriotyö

Polttokennolaboratoriotyö Polttokennolaboratoriotyö Polttokennot ovat sähkökemiallisia laitteita, jotka muuntavat polttoaineen kemiallisen energian suoraan sähköksi ja lämmöksi [1]. Ne eivät nimensä mukaisesti kuitenkaan polta

Lisätiedot

Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio?

Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio? Mttausteknkan perusteet / luento 7 Mttausepävarmuus Mttausepävarmuus Mttaustulos e ole koskaan täysn oken Mttaustulos on arvo mtattavasta arvosta Mttaustuloksen ja mtattavan arvon ero on mttausvrhe Mkäl

Lisätiedot

3 Mallipohjainen testaus ja samoilutestaus

3 Mallipohjainen testaus ja samoilutestaus Tietojenkäsittelytiede 24 Joulukuu 2005 sivut 8 21 Toimittj: Jorm Trhio c kirjoittj(t) Historiljennus mllipohjisess testuksess Timo Kellomäki Tmpereen teknillinen yliopisto Ohjelmistotekniikn litos 1 Johdnto

Lisätiedot

Hanna-Kaisa Hurme Teräksen tilastollinen rakenneanalyysi Diplomityö

Hanna-Kaisa Hurme Teräksen tilastollinen rakenneanalyysi Diplomityö Hanna-Kasa Hurme Teräksen tlastollnen rakenneanalyys Dplomtyö Tarkastajat: professor Kejo Ruohonen (TUT) ja dosentt Esko Turunen (TUT) Tarkastajat ja ahe hyväksytty Luonnonteteden ja ympärstöteknkan tedekuntaneuvoston

Lisätiedot

6 Kertausosa. 6 Kertausosa

6 Kertausosa. 6 Kertausosa Kertusos Kertusos. ) b). ) b). ) ( ( ) : ) ( : ) b) { : [ ( ) ]} { :[ - ]} { : } -{ - } -{} c) ( ) : - ( ) ( ) ( ) ( 9) 9 9 Kertusos. ) ( ) b) ( ). ) ) ) b) / / c) : 7 7. ) ) ) b) Kertusos c) : 7 ( 9)

Lisätiedot

5.4 Ellipsi ja hyperbeli (ei kuulu kurssivaatimuksiin, lisätietoa)

5.4 Ellipsi ja hyperbeli (ei kuulu kurssivaatimuksiin, lisätietoa) 5.4 Ellipsi j hypereli (ei kuulu kurssivtimuksiin, lisätieto) Aurinkokuntmme plneett kiertävät Aurinko ellipsin (=litistyneen ympyrän) muotoist rt, jonk toisess polttopisteessä Aurinko on. Smoin Mt kiertävät

Lisätiedot

Kohina. Mittaustekniikan perusteet / luento 8. Kohina. Kohina. Kohinan mittaaminen

Kohina. Mittaustekniikan perusteet / luento 8. Kohina. Kohina. Kohinan mittaaminen Mttutkk prutt / luto 8 Koh Koh mttm Koh lttyvää trmolog Kohtyypt Mttuvhvt Kohll trkott lktro järjtlmää pot fluktutot, jok hutuu jok ltt, kompot t mtrl fykt Ku mtt pä glj, mttuk lrj (pmmä mtttv gl) määrää

Lisätiedot

VAIKKA LAINAN TAKAISIN MAKSETTAVA MÄÄRÄ ON SEN NIMELLISARVO, SIJOITTAJA VOI MENETTÄÄ OSAN MERKINTÄHINNASTA, JOS LAINA ON MERKITTY YLIKURSSIIN

VAIKKA LAINAN TAKAISIN MAKSETTAVA MÄÄRÄ ON SEN NIMELLISARVO, SIJOITTAJA VOI MENETTÄÄ OSAN MERKINTÄHINNASTA, JOS LAINA ON MERKITTY YLIKURSSIIN DANSKE BANK A/S 2017: NOUSEVA KIINA Lanakohtaset ehdot A. Sopmusehdot Nämä lanakohtaset ehdot muodostavat yhdessä 28.6.2012 pävättyyn sekä 8.8.2012, 5.11.2013 ja 13.2.2013 täydennettyyn ohjelmaestteeseen

Lisätiedot

TKK @ Ilkka Mellin (2008) 1/24

TKK @ Ilkka Mellin (2008) 1/24 Mat-.60 Sovellettu todeäkösyyslasketa B Mat-.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Mtta-astekot Havatoaesto kuvaame ja otostuusluvut Avasaat: Artmeette keskarvo, Frekvess, Frekvessjakauma,

Lisätiedot

HASSEN-WEILIN LAUSE. Kertausta

HASSEN-WEILIN LAUSE. Kertausta HASSEN-WEILIN LAUSE Kertausta Käytetään seuraava merkntjä F = F/F q on sukua g oleva funktokunta Z F (t = L F (t (1 t(1 qt on funktokunnan F/F q Z-funkto. α 1, α 2,..., α 2g ovat polynomn L F (t nollakohten

Lisätiedot

VEKTORILASKENTA. Timo Mäkelä SISÄLTÖ: 1 VEKTORIN KÄSITE...1

VEKTORILASKENTA. Timo Mäkelä SISÄLTÖ: 1 VEKTORIN KÄSITE...1 VEKTORILASKENTA Timo Mäkelä SISÄLTÖ: VEKTORIN KÄSITE VEKTOREIDEN ERUSLASKUTOIMITUKSET VEKTOREIDEN YHTEENLASKU VEKTOREIDEN VÄHENNYSLASKU 4 VEKTORIN KERTOMINEN LUVULLA6 4 VEKTORILAUSEKKEIDEN KÄSITTELY7 TASON

Lisätiedot

Hyrynsalmen kunta, jäljempänä kunta. Laskutie 1, 89400 HYRYNSALMI. Kohde sijaitsee Hallan Sauna- nimisessä kiinteistössä.

Hyrynsalmen kunta, jäljempänä kunta. Laskutie 1, 89400 HYRYNSALMI. Kohde sijaitsee Hallan Sauna- nimisessä kiinteistössä. VUOKRASOPIMUS 1.1 Sopjapuolet Hyrynsalmen kunta, jäljempänä kunta. Laskute 1, 89400 HYRYNSALMI Hallan Sauna Oy (y-tunnus: 18765087) CIO Tl- Tekno Oulu Oy Kauppurnkatu 12, 90100 OULU 1.2 Sopmuksen kohde

Lisätiedot

Kohteen turvaluokitus on

Kohteen turvaluokitus on LVI 03-10517 SIT 13-610091 KH X4-00513 INFRA 053-710109 ST 41.01 HANKETIETOKORTTI HT12 Hnketietokortiss esitetään rkennuskohteen lähtötiedot j tiljn edellyttämä ltutso suunnittelun työmäärän rviointi vrten.

Lisätiedot

JYVÄSKYLÄN YLIOPISTO JULKISEN JA YKSITYISEN SEKTORIN VÄLISET PALKKAEROT SUOMESSA 2000-LUVULLA

JYVÄSKYLÄN YLIOPISTO JULKISEN JA YKSITYISEN SEKTORIN VÄLISET PALKKAEROT SUOMESSA 2000-LUVULLA JYVÄSKYLÄN YLIOPISTO Talousteteden tedekunta JULKISEN JA YKSITYISEN SEKTORIN VÄLISET PALKKAEROT SUOMESSA 2000-LUVULLA Kansantaloustede, Pro gradu- tutkelma Huhtkuu 2007 Laatja: Terh Maczulskj Ohjaaja:

Lisätiedot

Laudatur 10 MAA10 ratkaisut kertausharjoituksiin

Laudatur 10 MAA10 ratkaisut kertausharjoituksiin Ludtur MAA rtkisut kertushrjoituksiin Integrlifunktio. ) Jokin integrli funktio on esimerkiksi F( ) b) Kikki integrlifunktiot F( ) + C, missä C on vkio Vstus: ) F( ) b) F( ) + C, C on vkio. Kikki integrlifunktiot

Lisätiedot

Sähkön- ja lämmöntuotannon kustannussimulointi ja herkkyysanalyysi

Sähkön- ja lämmöntuotannon kustannussimulointi ja herkkyysanalyysi Sähkön- ja lämmöntuotannon kustannussmulont ja herkkyysanalyys Pekka Nettaanmäk Osmo Schroderus Jyväskylän ylopsto Tetoteknkan latos 2010 1 2 Tvstelmä Raportn tarkotuksena on esttää pelkstetyn matemaattsen

Lisätiedot

HIFI-KOMPONENTTIJÄRJESTELMÄ

HIFI-KOMPONENTTIJÄRJESTELMÄ HUOMIO: Kauttmes (e tomteta latteen mukana) vovat erota tässä ohjekrjassa estetystä. mall RNV70 HIFI-KOMPONENTTIJÄRJESTELMÄ Huolto ja teknset tedot LUE käyttöohjeet, ennen kun yrtät käyttää latetta. VARMISTA,

Lisätiedot

9.1 LTY Juha Pyrhönen, TKK Tapani Jokinen, luonnos 9. LÄMMÖNSIIRTO

9.1 LTY Juha Pyrhönen, TKK Tapani Jokinen, luonnos 9. LÄMMÖNSIIRTO 9. LTY Juha Pyrhönen, TKK Tapan Joknen, luonnos 9. LÄMMÖNSIITO Lämmönsrtoa tapahtuu ana lämpötlaerojen esntyessä. Lämpötlaerot tasottuvat luonnostaan, kun lämpö srtyy korkeammasta lämpötlasta koht matalampaa

Lisätiedot

Kertausosa. Kertausosa. Verrattuna lähtöarvoon kurssi oli laskenut. Kalliimman tukkuhinta 1,2 480 = 576 Kalliimman myyntihinta 1,3

Kertausosa. Kertausosa. Verrattuna lähtöarvoon kurssi oli laskenut. Kalliimman tukkuhinta 1,2 480 = 576 Kalliimman myyntihinta 1,3 Kertusos. ) Edullisemm hit 480, = 64 Klliimm tukkuhit, 480 = 576 Klliimm myytihit, 576 = 748,80 b) 748,80 64 = 0,666... = 6,66% 7% 748,80. Liittymä puhelimell mks khde vuode ik 4 8,50 = 684. Liittymä ilm

Lisätiedot

Pythagoraan lause. Pythagoras Samoslainen. Pythagoraan lause

Pythagoraan lause. Pythagoras Samoslainen. Pythagoraan lause Pythgorn luse Pythgors Smoslinen Pythgors on legendrinen kreikklinen mtemtiikko j filosofi. Tiedot hänen elämästään ovt epävrmoj j ristiriitisi. Tärkein Pythgorst j pythgorlisi koskev lähde on Lmlihosin

Lisätiedot

521. 522. 523. 524. 525. 526. 527. 12. Lisää määrätystä integraalista. 12.1. Integraalin arvioimisesta. Osoita: VASTAUS: Osoita: Osoita:

521. 522. 523. 524. 525. 526. 527. 12. Lisää määrätystä integraalista. 12.1. Integraalin arvioimisesta. Osoita: VASTAUS: Osoita: Osoita: 12. Lisää määrätystä integrlist 12.1. Integrlin rvioimisest 521. Osoit: 1 + x 2 22 1 < < 1 + x21 21. 522. Osoit: x 3 < 5 x 6 + 8x + 9 < 15 1 5. 523. Osoit: 2 2 < e x2 x < 2e 2. e 524. Olkoon k >. Osoit:

Lisätiedot

Kirkkonummen kunta Yhdyskuntatekniikan toimiala Pöyry Finland Oy / Veikko Urmas 13.5.2015

Kirkkonummen kunta Yhdyskuntatekniikan toimiala Pöyry Finland Oy / Veikko Urmas 13.5.2015 rkkoumm kut dyskuttkk tom öyry Fd y / kko rms M - D M yrkv j oktty strbyt, strbykr, oktyt, oktytörmä, oktyoku jk-t, ysäkötut tuuokk strbyt o v mt, jok muuttuu kduks o yrkv j okty kv-u ääktu j v myös joukkokttä

Lisätiedot

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos.

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos. Sgnaalt ja järjestelmät Laskuharjotukset Svu /9. Ampltudmodulaato (AM) Spektranalysaattorlla mtattn 50 ohmn järjestelmässä ampltudmodulaattorn (AM) lähtöä, jollon havattn 3 mpulssa spektrssä taajuukslla

Lisätiedot