ELEMENTTIMENETELMÄN PERUSTEET SESSIO 17: Interpolointi emoneliön ja emokolmion alueessa.

Koko: px
Aloita esitys sivulta:

Download "ELEMENTTIMENETELMÄN PERUSTEET SESSIO 17: Interpolointi emoneliön ja emokolmion alueessa."

Transkriptio

1 7/ EEMETTIMEETEMÄ PERUSTEET SESSIO 7: Interpolointi emoneliön ja emokolmion alueessa. ITERPOOITI EMOEIÖ AUEESSA Yksiulotteisen interpoloinnin yhteydessä tulivat esille interpolointifunktioiden perusominaisuudet solmujen kohdilla. Kaksi- ja kolmiulotteisten interpolointifunktioi- Yksiulotteinen interpolointi voidaan yleistää kaksiulotteiseksi interpoloinniksi x-emoneliöelementin alueessa. Tavoitteena on tällöin lausua kahden muuttujan ja funktio f(, ) likimääräisesti solmuarvojensa ja niitä vastaavien interpolointifunktioiden avulla. Tarkastellaan kuvan nelisolmuista elementtiä, jonka solmut sijaitsevat elementin nurkissa. Kenttäfunktion f(, ) interpolointi on nyt ~ f(, ) f (, ) = i= (, ) i f i jolloin i (, ) on kahden muuttujan interpolointifunktio ja f i kenttäfunktion solmuarvo. Määritetään solmun interpolointifunktio perusominaisuuksien pohjalta. Mahdolli- Kuva. elisolmuinen emoneliö. simman alhaista astetta oleva polynomi, jonka arvot solmuissa, ja ovat nollia, on (, ) = ( )( ). Solmussa on (, ) =, joten perusvaatimukset toteuttava funktio on (, ) = (, )/ (, ) = ( )( ) = () Saatu funktio voidaan tulkita - ja -suuntien lineaaristen interpolointifunktioiden tuloksi, mistä johtuen sitä sanotaan bilineaariseksi interpolointifunktioksi. Funktion koordinaattiakseleiden suuntaiset tasoleikkaukset ovat suoria. ei kuitenkaan esitä tasopintaa, sillä sen lausekkeessa on termi /, joten kyseessä on hyperboloidipinta. Kuvassa on funktion kuvaaja. Muutkin kuvan elementin interpolointifunktiot voidaan muodostaa samalla periaatteella. Tulos on () = ( )( )/ = (+ )( )/ = (+ )(+ )/ = ( )(+ )/ () Kuva. Interpolointifunktio.

2 7/ den on yhteensopivuuden toteutumiseksi mentävä nollaksi elementin kaikilla niillä sivuilla, jotka eivät liity funktiota vastaavaan solmuun. Bilineaariset interpolointifunktiot () toteuttavat tämän lisävaatimuksen, esimerkiksi funktion arvo on nolla sivuilla ja. Bilineaariset interpolointifunktiot voidaan muodostaa - ja -suuntien lineaaristen agrangen interpolointifunktioiden tuloina. Samaa ajatusta voidaan soveltaa myös korkeamman asteen interpolointiin. Tällöin tulon tekijän meneminen nollaksi - tai -suunnan vieraissa solmuissa takaa nollaksi menemisen koko vieraalla sivulla. Muodostetaan tällä tensoritulomenetelmällä kuvan 9-solmuisen bikvadraattisen elementin interpolointifunktiot. 7 9 Kuva. Bikvadraattinen elementti. 7 9 = ( ) ( ) / = ( + ) ( ) / = ( + ) ( + ) / = ( ) ( + ) / = ( = ( + )( = ( = ( )( = ( ) ( ) / ) ( + ) / )( ) / ) / ) () Funktiot () jakaantuvat kolmeen perustyyppiin.,, ja ovat nurkkafunktiot,,, 7 ja sivufunktiot ja 9 on sisäfunktio. Kuvassa on esitetty kunkin perustyypin kuvaaja, ja 9. Vastaavalla tavalla voidaan muodostaa esimerkiksi -solmuinen bikuutiollinen elementti, jolla on nurkkasolmua, sivusolmua ja sisäsolmua sekä korkeammankin interpolointiasteen elementtejä. Tensoritulomenetelmällä muodostettuja elementtejä sanotaan agrangen elementtiperheeksi, koske sen interpolointifunktiot perustuvat yksiulotteiseen agrangen interpolointikaavaan. Elementin tehokkuus on riippuvainen siitä, kuinka korkea-asteinen täydellinen polynomi sen interpolointifunktioilla voidaan esittää. Ensimmäisen asteen täydellinen kahden muuttujan polynomi on p (, ) = A + B + C () Bilineaarisen elementin interpolointifunktiot sisältävät termit,, ja, joten niillä pystytään esittämään p ja mukana on vielä ylimääräinen termi. Toisen asteen täydellinen kahden muuttujan polynomi on p (, ) = A + B + C + D + E + F ()

3 7/ Kuva. Bikvadraattisia interpolointifunktioita. 9 Bikvadraattisen elementin interpolointifunktiot sisältävät termit,,,,,,, ja, joten niillä pystytään esittämään p ja mukana on vielä kolme ylimääräistä termiä, ja. Täydellisten polynomien sisältämät termit voidaan esittää kuvan kaaviona, jolloin tietyn asteinen täydellinen polynomi sisältää kaavion kärjestä alkaen termit astelukuaan vastaavaan vaakariviin asti. Kaaviosta nähdään myös tietyn asteisen agrangen interpoloinnin sisältämät termit, jotka sisältyvät vastaavan kärjestä alkavan neliön alueeseen. Tietyn asteen täydellisen polynomin tarkkaan interpolointiin mukaan tulevien ylimääräisten termien suhteellinen osuus kasvaa asteluvun kasvaessa ( k = : /, k = : / 9, k = : / ). agrangen elementtiperheen haittana ovat edellä mainitut ylimääräiset termit, joiden laskentatarkkuutta lisäävä vaikutus on pieni niiden aiheuttamaan työmäärään nähden. Toinen pieni haitta on sisäsolmujen esiintyminen, sillä ne ovat laskennassa jonkin verran kärki- ja sivusolmuja tehottomampia, koska ne eivät kytke elementtejä toisiinsa.

4 7/ k= k= Kuva. Termien kaavio. Edellä esitettyjen haittojen pienentämiseksi on kehitetty Serendip-elementtiperhe, jolla ei ole joko lainkaan sisäsolmuja tai vain tietyn asteen täydellisen polynomin esittämiseen tarvittava määrä sisäsolmuja. Bilineaarinen emoneliö on myös Serendip-elementti. + = 0 + = 0 = 0 Kuva. Kvadraattinen Serendip-elementti. Tarkastellaan esimerkkinä yleisemmästä tapauksesta kuvan kvadraattista Serendipemoneliötä. Sen interpolointifunktiot voidaan johtaa perusominaisuuksien avulla. Johdetaan solmun interpolointifunktion lauseke. Sen 7 on mentävä nollaksi sivuilla ja, joten funktion tulee sisältää tekijöinä näiden sivujen yhtälöiden + = 0 ja + = 0 vasemmat puolet. isäksi funktion pitää mennä nollaksi solmuissa ja 7, mikä toteutuu, kun tekijänä on suoran 7 yhtälön = 0 vasen puoli. Funktio = (+ )(+ )( ) toteuttaa näin kaikki nollaantumisvaatimukset. Koska solmussa on (,) = ( ) =, on = (+ )(+ )( )/ solmun interpolointifunktio. Muiden kärkisolmujen interpolointifunktiot saadaan samalla tavalla. Sivusolmun interpolointifunktiossa pitää olla tekijöinä vieraiden sivujen, 7 ja yhtälöiden + = 0, = 0 ja + = 0 vasemmat puolet ja lisäksi on oltava (,0 ) =, josta seuraa solmun interpolointifunktioksi = (+ )(+ )( )/ = (+ )( )/.

5 7/ Muiden sivusolmujen interpolointifunktiot löytyvät samalla periaatteella. Kvadraattisen Serendip-elementin interpolointifunktiot ovat 7 = ( )( )(+ + )/ = (+ )( )( + )/ = (+ )(+ )( )/ = ( )(+ )(+ )/ = ( )( )/ = (+ )( )/ = ( )(+ )/ = ( )( )/ (7) Funktiot (7) jakaantuvat kahteen tyyppiin,,, ja ovat nurkkafunktiot ja,, 7 ja sivufunktiot. Kuvassa 7 on esitetty kummankin perustyypin kuvaaja. Funktiot (7) sisältävät termiä lukuun ottamatta samat termit kuin bikvadraattiset agrangen interpolointifunktiot, ylimääräisiä termejä on siis yhtä vähemmän ja laskenta jonkin verran tehokkaampaa. Kuva 7. Serendip-interpolointifunktioita. Korkeamman asteen Serendip-elementtien interpolointifunktioita voidaan myös johtaa edellä esitetyllä tekijämenetelmällä. ITERPOOITI EMOKOMIO AUEESSA Tarkastellaan kuvan lineaarista emokolmioelementtiä, jonka solmut sijaitsevat elementin kärkipisteissä. Tämän emokolmion lineaariset interpolointifunktiot on helppo päätellä suoraan perusominaisuuksista ja ne ovat = = = ()

6 7/ (0,) (0,0) (,0) Kuva. ineaarinen emokolmio. Perusominaisuuksien avulla on helppo muodostaa myös korkeampiasteisien kolmioelementtien interpolointifunktioita. Kuvassa 9 on kvadraattinen emokolmio, jonka sivusolmut sijaitsevat sivujen keskipisteissä. Määritetään kärkisolmun interpolointifunktio, jonka on mentävä nollaksi sivulla sekä solmuissa ja. Sivun kautta kulkevan suoran yhtälö on = 0 sekä solmujen ja kautta kulkevan suoran yhtälö on 0, = 0, joten nollaantumisvaatimukset toteuttava funktio on = ( )(0, ). Tämä funktio saa solmussa arvon /, joten solmun interpolointifunktioksi tulee = ( )( ). Määrätään vielä sivusolmun interpolointifunktio. Sivujen ja kautta kulkevien suorien yhtälöiden = 0 ja = 0 vasempien puolien tulo = ( ) menee nollaksi kaikissa vieraissa solmuissa ja saa solmussa arvon /, joten solmun interpolointifunktioksi saadaan = ( ). Vastaavalla tavalla voidaan määrittää myös muiden solmujen interpolointifunktiot ja tulokseksi saadaan = ( )( ) = ( ) = = ( ) = ( ) = ( ) (9) Kuva 9. Kvadraattinen emokolmio Kuva 0. Kuutiollinen emokolmio. Kvadraattiset interpolointifunktiot (9) jakaantuvat kahteen perustyyppiin,, ja ovat kärkifunktiot ja, ja sivufunktiot. Kun kaavan () lineaarisia interpolointifunktioita merkitään =, = ja =, voidaan kvadraattiset interpolointifunktiot (9) esittää niiden avulla = = = ( ( ) ) = = = ( ) (0) Voidaan osoittaa, että lineaaristen interpolointifunktioiden, ja avulla pystytään ilmaisemaan kaikkien emokolmion pisteiden sijainnit, mistä syystä niitä kutsutaan myös kolmiokoordinaateiksi. Osoittautuu, että myös korkeamman interpolointiasteen emokolmioelementtien interpolointifunktiot voidaan esittää kolmiokoordinaattien avulla. Kuvassa 0 on esitetty kuutiollinen 0-solmuinen emokolmio, jonka sivusolmut ovat tasajaolla ja sisäsolmu elementin pintakeskiössä. Sen interpolointifunktiot kolmiokoordinaattien avulla lausuttuna ovat

7 7/7 7 9 = = = 9 = 9 = 9 ( ( )( ( ( ( )( )/ )/ )/ )/ )/ 0 = = 9 = 9 = 9 ( = 7 ( ( ( )( )/ )/ )/ )/ () Kaavoista (), (9) ja () selviää, että kolmioelementin eriasteisiin interpolointifunktioihin sisältyvät funktiot ovat ineaarinen interpolointi:,, Kvadraattinen interpolointi:,,, Kuutiollinen interpolointi:,,,,,,,,,,, Tietyn asteiset interpolointifunktiot pystyvät esittämään astelukunsa mukaisen täydellisen muuttujien ja polynomin tarkasti ilman ylimääräisiä termejä. Tässä suhteessa kolmioelementit ovat tehokkaampia kuin nelikulmioelementit. Kuvassa () on kolmen alimman interpolointiasteen kolmioelementin interpolointifunktioihin sisältyvien termien kaavio. k= k= k= Kuva. Termien kaavio. ESIMERKKI FES7E Tarkastellaan funktion f(, ) = ( + )/( + + ) interpolointia emoneliön alueessa. Kun = / ja = /, saa f arvon f (/,/ ) = / =,. asketaan eri interpolointimenetelmien antamia likiarvoja tässä pisteessä. Bilineaarinen: f(, ) = f( +, ) = / f( +, + ) =,/ ) = 9 / f(, + ) = / (/,/ ) = / f (/,/ ) ( ) = = 0,7 (/ (/ (/,/ ),/ ) = / = /

8 7/ Bikvadraattinen: f(, ) = f( +, ) = / f( +, + ) = f(, + ) = / f(0, ) = f(,0) = (/ (/ (/,/ ) (/ (/ (/,/ ),/ ),/ ),/ ),/ ) = / = / = 9 / = / = / = / f(0,) = 7(/,/ ) = / f(,0) = (/,/ ) = / f(0,0) = 9(/,/ ) = / f (/,/ ) ( ) = =, Kvadraattinen Serendip: f(, ) = f( +, ) = / f( +, + ) = f(, + ) = / f(0, ) = (/ (/ (/ (/,/ ),/ ),/ ),/ ) (/,/ ) = / = / = 0 = / = / f(,0) = (/,/ ) = / f(0,) = 7(/,/ ) = / f(,0) = (/,/ ) = / f (/,/ ) ( ) = =, HARJOITUS FES7H Tarkastellaan funktion f(, ) = ( + + )/( + + ) interpolointia emoneliön alueessa. aske funktion tarkat arvot pisteissä ( /, / ) ja ( /, / ) sekä vastaavat bilineaarisella, bikvadraattisella ja kvadraattisella Serendip-interpoloinnilla saatavat arvot. Vast. tarkka bilin. bikv. Serendip f(/, f(/, f(/, f(/, / ) = 0,70000 / ) = 0,00000 / ) 0,900 / ) =,7000 f(/, / ) f(/, / ) f(/, / ) f(/, / ),7 0,,9,70 Vihjeet:

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 07: Aksiaalinen sauvaelementti, osa 2.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 07: Aksiaalinen sauvaelementti, osa 2. 7/ EEMENTTIMENETEMÄN PERSTEET SESSIO 7: Aksiaalinen sauvaelementti, osa. RATKAIS EEMENTIN AEESSA Verkon perusyhtälöstä [ K ]{ } = { F} saatavasta solmusiirtymävektorista { } voidaan poimia minkä tahansa

Lisätiedot

58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen)

58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen) 58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen) 1. Avaimet 1, 2, 3 ja 4 mahtuvat samaan lehtisolmuun. Tässä tapauksessa puussa on vain yksi solmu, joka on samaan aikaan juurisolmu

Lisätiedot

n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa.

n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa. MAA 12 kertaus Funktion kuvaaja n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa. Funktion nollakohta on piste, jossa f () = 0, eli kuvaaja leikkaa -akselin. Kuvaajan avulla

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 7. Kirsi Valjus. Jyväskylän yliopisto. Luento 7 () Numeeriset menetelmät / 43

Numeeriset menetelmät TIEA381. Luento 7. Kirsi Valjus. Jyväskylän yliopisto. Luento 7 () Numeeriset menetelmät / 43 Numeeriset menetelmät TIEA381 Luento 7 Kirsi Valjus Jyväskylän yliopisto Luento 7 () Numeeriset menetelmät 10.4.2013 1 / 43 Luennon 7 sisältö Interpolointi ja approksimointi Interpolaatiovirheestä Paloittainen

Lisätiedot

[ k ] ja ekvivalenttisen solmukuormitusvektorin { r } määritystä kaavoista (4.20) ja

[ k ] ja ekvivalenttisen solmukuormitusvektorin { r } määritystä kaavoista (4.20) ja Elementtimenetelmän perusteet 7. 7 D-SOLIDIRAKEEE 7. ohdanto Edellä tarkasteltiin interpolointia ja numeerista integrointia emoneliön ja emokolmion alueissa. Emoelementtien avulla voidaan muodostaa vaihtelevan

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

Epäyhtälöt 1/7 Sisältö ESITIEDOT: yhtälöt

Epäyhtälöt 1/7 Sisältö ESITIEDOT: yhtälöt Epäyhtälöt 1/7 Sisältö Epäyhtälö Epäyhtälöllä tarkoitetaan ehtoa, missä kahdesta lausekkeesta toinen on suurempi tai mahdollisesti yhtä suuri kuin toinen: f(x) < g(x), f(x) g(x).merkit voidaan luonnollisesti

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 7 Ti 27.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 7 Ti 27.9.2011 p. 1/39 p. 1/39 Interpolointi Ei tunneta funktion f : R R lauseketta, mutta tiedetään funktion

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10 13

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10 13 Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 2 x 2 3 2 3 x 1 4, (b) (x + 1)(x 2)

Lisätiedot

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora Ympyrä 1/6 Sisältö Ympyrä ja sen yhtälö Tason pisteet, jotka ovat vakioetäisyydellä kiinteästä pisteestä, muodostavat ympyrän eli ympyräviivan. Kiinteä piste on ympyrän keskipiste ja vakioetäisyys sen

Lisätiedot

2 Pistejoukko koordinaatistossa

2 Pistejoukko koordinaatistossa Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia

Lisätiedot

Juuri 2 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 2 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus K. a) E Nouseva suora. b) A 5. asteen polynomifunktio, pariton funktio Laskettu piste f() = 5 =, joten piste (, ) on kuvaajalla. c) D Paraabelin mallinen, alaspäin aukeava. Laskettu piste f() =

Lisätiedot

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u.

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u. DEE-00 Lineaariset järjestelmät Harjoitus, ratkaisuehdotukset Järjestelmien lineaarisuus ja aikainvarianttisuus Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla

Lisätiedot

MAA2 POLYNOMIFUNKTIOT JA -YHTÄLÖT

MAA2 POLYNOMIFUNKTIOT JA -YHTÄLÖT MAA POLYNOMIFUNKTIOT JA YHTÄLÖT 17.11.017 Nimi: 1 3 Yhteensä Kokeessa on kolme osaa: A, B1 ja B. Aosa: Tehtävät tehdään ilman laskinta Tee kaikki neljä () tehtävää (jokainen max 6p) Kun palautat tämän

Lisätiedot

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO Aki Taanila YHDEN SELITTÄJÄN REGRESSIO 26.4.2011 SISÄLLYS JOHDANTO... 1 LINEAARINEN MALLI... 1 Selityskerroin... 3 Excelin funktioita... 4 EKSPONENTIAALINEN MALLI... 4 MALLIN KÄYTTÄMINEN ENNUSTAMISEEN...

Lisätiedot

4. Funktion arvioimisesta eli approksimoimisesta

4. Funktion arvioimisesta eli approksimoimisesta 4. Funktion arvioimisesta eli approksimoimisesta Vaikka nykyaikaiset laskimet osaavatkin melkein kaiken muun välttämättömän paitsi kahvinkeiton, niin joskus, milloin mistäkin syystä, löytää itsensä tilanteessa,

Lisätiedot

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.5.08 Kertaus K. a) Polynomi P() = + 8 on jaollinen polynomilla Q() =, jos = on polynomin P nollakohta, eli P() = 0. P() = + 8 = 54 08 +

Lisätiedot

Aiheet. Kvadraattinen yhtälöryhmä. Kvadraattinen homogeeninen YR. Vapaa tai sidottu matriisi. Vapauden tutkiminen. Yhteenvetoa.

Aiheet. Kvadraattinen yhtälöryhmä. Kvadraattinen homogeeninen YR. Vapaa tai sidottu matriisi. Vapauden tutkiminen. Yhteenvetoa. Yhtälöryhmän ratkaisujen lukumäärä, L8 Esimerkki kvadraattinen Haluamme ratkaista n 4x + y z = x + y + z = 5 x + y + z = 4 4 x 4 + y x y z = + z 5 4 = 5 4 Esimerkki kvadraattinen Yhtälöryhmä on kvadraattinen,

Lisätiedot

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus K. a) Polynomi P() = 3 + 8 on jaollinen polynomilla Q() = 3, jos = 3 on polynomin P nollakohta, eli P(3) = 0. P(3) = 3 3 3 + 8 3 = 54 08 + 54 = 0. Polynomi P on jaollinen polynomilla Q. b) Jaetaan

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 14: Yleisen lujuusopin elementtimenetelmän perusteita.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 14: Yleisen lujuusopin elementtimenetelmän perusteita. 4/ LMNIMNLMÄN PRS SSSIO 4: Yleisen lujuusopin elementtimenetelmän perusteita. JOHDANO A A A A Yleinen elementtimenetelmä on osittaisdifferentiaalihtälörhmän reuna-arvotehtävän likimääräinen ratkaisumenetelmä.

Lisätiedot

1.2 Kulma. Kulmien luokittelua. Paralleeliaksiooma

1.2 Kulma. Kulmien luokittelua. Paralleeliaksiooma 1.2 Kulma. Kulmien luokittelua. Paralleeliaksiooma Pisteen, suoran ja tason avulla lähdetään muodostamaan uusia geometrian käsitteitä. Jos suora sahataan (keskeltä!!) poikki ja heitetään toinen puoli pois,

Lisätiedot

3.4 Rationaalifunktion kulku ja asymptootit

3.4 Rationaalifunktion kulku ja asymptootit .4 Rationaalifunktion kulku ja asymptootit Rationaali- eli murtofunktiolla tarkoitetaan funktiota R, jonka lauseke on kahden polynomin osamäärä: P() R(). Q() Ainakin nimittäjässä olevan polynomin asteluvun

Lisätiedot

102 Käyrä. Piste ( 3,0 ) on käyrällä, jos ja vain jos sen koordinaatit. Siis piste ( 1, 2) Siis piste ( 3,0 ) ei ole käyrällä.

102 Käyrä. Piste ( 3,0 ) on käyrällä, jos ja vain jos sen koordinaatit. Siis piste ( 1, 2) Siis piste ( 3,0 ) ei ole käyrällä. Pramidi 4 Analttinen geometria tehtävien ratkaisut sivu 1 Päivitett 19..6 11 Todistus 1 Kärä x + = x + 4 5 3 31 = x x+ 4, jos ja vain jos pisteen 3,7 koordinaatit toteuttavat kärän htälön. Kun x = 3 ja

Lisätiedot

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai MATP15 Approbatur 1B Ohjaus Keskiviikko 4.11. torstai 5.11.015 1. (Opiskeluteht. 6 s. 0.) Määritä sellainen vakio a, että polynomilla x + (a 1)x 4x a on juurena luku x = 1. Mitkä ovat tällöin muut juuret?.

Lisätiedot

sin x cos x cos x = sin x arvoilla x ] π

sin x cos x cos x = sin x arvoilla x ] π Matematiikan johdantokurssi, syksy 08 Harjoitus 0, ratkaisuista. Todenna, että = + tan x. Mutta selvitäppä millä reaaliarvoilla se oikeasti pitää paikkansa! Ratkaisu. Yhtälön molemmat puolet ovat määriteltyjä

Lisätiedot

Tampere University of Technology

Tampere University of Technology Tampere University of Technology EDE- Introduction to Finite Element Method. Exercise 3 Autumn 3.. Solve the deflection curve v(x) exactly for the beam shown y,v q v = q z, xxxx x E I z Integroidaan yhtälö

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Korkeamman asteen polynomifunktio

Korkeamman asteen polynomifunktio POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA Korkeamman asteen polnomifunktio Määritelmä: Jos polnomifunktion asteluku n, niin funktiota sanotaan korkeamman asteen polnomifunktioksi, P: P = a n n + a n 1 n 1 +...

Lisätiedot

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0 Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 K. a) b) c) d) 6 6 a a a, a > 0 6 6 a a a a, a > 0 5 5 55 5 5 5 5 5 5 5 5 5 5 a a a a a ( a ) a a a, a > 0 K.

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 01: Johdanto. Elementtiverkko. Solmusuureet.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 01: Johdanto. Elementtiverkko. Solmusuureet. 0/ ELEMENTTIMENETELMÄN PERUSTEET SESSIO 0: Johdanto. Elementtiverkko. Solmusuureet. JOHDANTO Lujuuslaskentatehtävässä on tavoitteena ratkaista annetuista kuormituksista aiheutuvat rakenteen siirtmätilakenttä,

Lisätiedot

Aiheet. Kvadraattinen yhtälöryhmä. Kvadraattinen homogeeninen YR. Vapaa tai sidottu matriisi. Vapauden tutkiminen. Yhteenvetoa.

Aiheet. Kvadraattinen yhtälöryhmä. Kvadraattinen homogeeninen YR. Vapaa tai sidottu matriisi. Vapauden tutkiminen. Yhteenvetoa. Yhtälöryhmän ratkaisujen lukumäärä, L26 Esimerkki 1 kvadraattinen 1 Haluamme ratkaista n 4x + y z = 2 x + 2y + z = 5 2x + 2y + 2z = 4 4 1 1 1 2 1 2 2 2 x 4 1 2 + y x y z 1 2 2 = + z 2 5 4 1 1 2 = 2 5 4

Lisätiedot

BM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 5, Syksy 2016

BM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 5, Syksy 2016 BM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 5, Syksy 2016 1. (a) Anna likiarvo lineaarisen approksimaation avulla sille mitä on T (100.5), kun T (100) = 45 ja T (100) = 10. (b) Käyttäen lineaarista

Lisätiedot

v 1 v 2 v 3 v 4 d lapsisolmua d 1 avainta lapsen v i alipuun avaimet k i 1 ja k i k 0 =, k d = Sisäsolmuissa vähint. yksi avain vähint.

v 1 v 2 v 3 v 4 d lapsisolmua d 1 avainta lapsen v i alipuun avaimet k i 1 ja k i k 0 =, k d = Sisäsolmuissa vähint. yksi avain vähint. Yleiset hakupuut 4 Monitiehakupuu: Binäärihakupuu 0 1 3 5 6 7 8 v k 1 k k 3 v v 3 v 4 k 1 k 3 k 1 k k k 3 d lapsisolmua d 1 avainta Yleinen hakupuu? Tietorakenteet, syksy 007 1 Esimerkki monitiehakupuusta

Lisätiedot

Numeerinen integrointi

Numeerinen integrointi Numeerinen integrointi hum 8.0. Numeerinen integrointi Numeerisia integrointimenetelmiä on useita. Käsitellään tässä yhteydessä kuitenkin vain Gauss in integrointia, joka on elementtimenetelmän yhteydessä

Lisätiedot

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että

Lisätiedot

1 Ensimmäisen asteen polynomifunktio

1 Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polynomifunktio ENNAKKOTEHTÄVÄT. a) f(x) = x 4 b) Nollakohdassa funktio f saa arvon nolla eli kuvaaja kohtaa x-akselin. Kuvaajan perusteella funktion nollakohta on x,. c) Funktion f

Lisätiedot

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia?

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia? Kertaustesti Nimi:. Onko väite tosi (T) vai epätosi (E)? a) Polynomin 4 3 + + asteluku on. b) F unktio f () = 8 saa positiivisia arvoja, kun > 4. c) F unktion f () = 3 4 kuvaaja on alaspäin aukeava paraabeli.

Lisätiedot

Ympyrän yhtälö

Ympyrän yhtälö Ympyrän yhtälö ANALYYTTINEN GEOMETRIA MAA4 On melko selvää, että origokeskisen ja r-säteisen ympyrän yhtälö voidaan esittää muodossa x 2 + y 2 = r 2. Vastaavalla tavalla muodostetaan ympyrän yhtälö, jonka

Lisätiedot

Vastepintamenetelmä. Kuusinen/Heliövaara 1

Vastepintamenetelmä. Kuusinen/Heliövaara 1 Vastepintamenetelmä Kuusinen/Heliövaara 1 Vastepintamenetelmä Vastepintamenetelmässä pyritään vasteen riippuvuutta siihen vaikuttavista tekijöistä approksimoimaan tekijöiden polynomimuotoisella funktiolla,

Lisätiedot

Yhden muuttujan funktion minimointi

Yhden muuttujan funktion minimointi Yhden muuttujan funktion minimointi Aloitetaan yhden muuttujan tapauksesta Tarpeellinen myös useamman muuttujan tapauksessa Tehtävä on muotoa min kun f(x) x S R 1 Sallittu alue on muotoa S = [a, b] tai

Lisätiedot

Ensimmäisen ja toisen asteen yhtälöt

Ensimmäisen ja toisen asteen yhtälöt Ensimmäisen ja toisen t nimittäjien poistaminen sieventäminen ensimmäisen identtinen yhtälö yhtälö verranto toisen asteen yhtälö korkeamman ristiin kertominen suhde täydellinen toisen ratkaisukaava vaillinainen

Lisätiedot

Ensimmäisen asteen polynomifunktio

Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polnomifunktio Yhtälön f = a+ b, a 0 määrittelemää funktiota sanotaan ensimmäisen asteen polnomifunktioksi. Esimerkki. Ensimmäisen asteen polnomifuktioita ovat esimerkiksi f = 3 7, v()

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 8 To 29.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 8 To 29.9.2011 p. 1/36 p. 1/36 Interpolointi kuutiosplinillä Osavälit: I i = [t i 1,t i ], i = 1,2,...,n

Lisätiedot

4 YLEINEN ELEMENTTIMENETELMÄ

4 YLEINEN ELEMENTTIMENETELMÄ Elementtimenetelmän perusteet 4. 4 YLEINEN ELEMENIMENEELMÄ 4. Johdanto Elementtimenetelmä on osittaisdifferentiaalihtälörhmän reuna-arvotehtävän likimääräinen ratkaisumenetelmä. ällöin tarkastellaan tiettä

Lisätiedot

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä?

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä? BM20A5840 - Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2017 1. Tunnemme vektorit a = [ 1 2 3 ] ja b = [ 2 1 2 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien

Lisätiedot

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdoituksia Rami Luisto Sivuja: 5

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdoituksia Rami Luisto Sivuja: 5 MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus 9 3.11.009 alkavalle viikolle Ratkaisuedoituksia Rami Luisto Sivuja: 5 Näissä arjoituksissa saa käyttää kaikkia koulusta tuttuja koulusta tuttujen

Lisätiedot

4 Yleinen potenssifunktio ja polynomifunktio

4 Yleinen potenssifunktio ja polynomifunktio 4 Yleinen potenssifunktio ja polynomifunktio ENNAKKOTEHTÄVÄT 1. a) Tutkitaan yhtälöiden ratkaisuja piirtämällä funktioiden f(x) = x, f(x) = x 3, f(x) = x 4 ja f(x) = x 5 kuvaajat. Näin nähdään, monessako

Lisätiedot

A = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2.

A = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2. MATP53 Approbatur B Harjoitus 7 Maanantai..5. (Teht. s. 9.) Neliön muotoisesta pahviarkista, jonka sivun pituus on a, taitellaan kanneton laatikko niin, että pahviarkin nurkista leikataan neliön muotoiset

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48 MS-A3/A5 Matriisilaskenta Malliratkaisut 5 / vko 48 Tehtävä (L): a) Onko 4 3 sitä vastaava ominaisarvo? b) Onko λ = 3 matriisin matriisin 2 2 3 2 3 7 9 4 5 2 4 4 ominaisvektori? Jos on, mikä on ominaisarvo?

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus 2 7.2.2013 1. Matematiikan lukiokurssissa on esitetty, että ylöspäin aukeavan paraabelin f(x) = ax 2 +bx+c,a > 0,minimikohtasaadaan,kunf

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti

Lisätiedot

2 Yhtälöitä ja epäyhtälöitä

2 Yhtälöitä ja epäyhtälöitä 2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja

Lisätiedot

Tekijä MAA2 Polynomifunktiot ja -yhtälöt = Vastaus a)

Tekijä MAA2 Polynomifunktiot ja -yhtälöt = Vastaus a) K1 a) Tekijä MAA Polynomifunktiot ja -yhtälöt 6.8.016 ( + + ) + ( ) = + + + = + + + = + 4 b) 4 4 ( 5 + ) ( 5 + 1) = 5 + + 5 + 1 4 = + + + 4 = + 5 5 1 1 Vastaus a) 4 + b) 4 + 1 K a) f ( ) = + 1 f () = +

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, 009-010 / ORMS1010 Matemaattinen Analyysi 7 harjoitus 1 Määritä seuraavien potenssisarjojen suppenemissäteet a) k k x 5)k b) k=1 k x 5)k = k k 1) k ) 1) Suppenemissäteen R käänteisarvo

Lisätiedot

3 Yleinen toisen asteen yhtälö ja epäyhtälö

3 Yleinen toisen asteen yhtälö ja epäyhtälö Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.8.016 3 Yleinen toisen asteen yhtälö ja epäyhtälö ENNAKKOTEHTÄVÄT 1. a) x + x + 1 = 4 (x + 1) = 4 Luvun x + 1 tulee olla tai, jotta sen

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 26.9.2016 Pekka Alestalo,

Lisätiedot

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu 2 Interpolointi Olkoon annettuna n+1 eri pistettä x 0, x 1, x n R ja n+1 lukua y 0, y 1,, y n Interpoloinnissa etsitään funktiota P, joka annetuissa pisteissä x 0,, x n saa annetut arvot y 0,, y n, (21)

Lisätiedot

Suoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on

Suoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on Suoran htälöt Suoran ratkaistu ja leinen muoto: Suoran htälö ratkaistussa, eli eksplisiittisessä muodossa, on ANALYYTTINEN GEOMETRIA MAA5 = k + b, tai = a missä vakiotermi b ilmoittaa suoran ja -akselin

Lisätiedot

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos

Lisätiedot

2 Raja-arvo ja jatkuvuus

2 Raja-arvo ja jatkuvuus Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.6 Raja-arvo ja jatkuvuus. a) Kun suorakulmion kärki on kohdassa =, on suorakulmion kannan pituus. Suorakulmion korkeus on käyrän y-koordinaatti

Lisätiedot

MAA02. A-osa. 1. Ratkaise. a) x 2 + 6x = 0 b) (x + 4)(x 4) = 9 a) 3x 6x

MAA02. A-osa. 1. Ratkaise. a) x 2 + 6x = 0 b) (x + 4)(x 4) = 9 a) 3x 6x MAA0 A-osa. Ratkaise. a) x + 6x = 0 b) (x + 4)(x 4) = 9 a) 3x 6x a) Kirjoitetaan summa x + 6x yhteisen tekijän avulla tulomuotoon ja ratkaistaan yhtälö tulon nollasäännön avulla. x + 6x = 0 x(x + 6) =

Lisätiedot

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7 1 Tuotteen hinta nousee ensin 10 % ja laskee sitten 10 %, joten lopullinen hinta on... alkuperäisestä hinnasta. alkuperäisestä hinnasta. YLIOPPILASTUTKINTO- LAUTAKUNTA 23.3.2016 MATEMATIIKAN KOE PITKÄ

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)

Lisätiedot

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018 BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018 1. (a) Tunnemme vektorit a = [ 5 1 1 ] ja b = [ 2 0 1 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien

Lisätiedot

MAA3 TEHTÄVIEN RATKAISUJA

MAA3 TEHTÄVIEN RATKAISUJA MAA3 TEHTÄVIEN RATKAISUJA 1. Piirretään kulman kärki keskipisteenä R-säteinen ympyränkaari, joka leikkaa kulman kyljet pisteissä A ja B. Nämä keskipisteenä piirretään samansäteiset ympyräviivat säde niin

Lisätiedot

MITEN RATKAISEN POLYNOMIYHTÄLÖITÄ?

MITEN RATKAISEN POLYNOMIYHTÄLÖITÄ? MITEN RATKAISEN POLYNOMIYHTÄLÖITÄ? Polynomiyhtälön ratkaiseminen Eri lajin yhtälöiden ratkaisutavat poikkeavat toisistaan. Siksi on tärkeää tunnistaa yhtälötyyppi. Polynomiyhtälö on yhtälö, joka voidaan

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan

Lisätiedot

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu LIS AYKSI A kirjaan Reaalimuuttujan analyysi 1.6. Numeerinen integrointi: Gaussin kaavat Edella kasitellyt numeerisen integroinnin kaavat eli kvadratuurikaavat Riemannin summa, puolisuunnikassaanto ja

Lisätiedot

Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan!

Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan! MAA4 koe 1.4.2016 Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan! Jussi Tyni A-osio: Ilman laskinta. Laske kaikki

Lisätiedot

1.4 Funktion jatkuvuus

1.4 Funktion jatkuvuus 1.4 Funktion jatkuvuus Kun arkikielessä puhutaan jonkin asian jatkuvuudesta, mielletään asiassa olevan jonkinlaista yhtäjaksoisuutta, katkeamattomuutta. Tässä ei kuitenkaan käsitellä työasioita eikä ihmissuhteita,

Lisätiedot

Kokelaan sukunimi ja kaikki etunimet selväsi kirjoitetuna. Kaava 1 b =2a 2 b =0,5a 3 b =1,5a 4 b = 1a. 4 5 b =4a 6 b = 5a

Kokelaan sukunimi ja kaikki etunimet selväsi kirjoitetuna. Kaava 1 b =2a 2 b =0,5a 3 b =1,5a 4 b = 1a. 4 5 b =4a 6 b = 5a 1 YLIOPPILASTUTKINTO- LAUTAKUNTA 28.9.2016 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän

Lisätiedot

1 Rationaalifunktio , a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen.

1 Rationaalifunktio , a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen. Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.06 Rationaalifunktio. a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen. f (50) 50 8 50 4 8 50 500 400 4 400

Lisätiedot

Matematiikan peruskurssi (MATY020) Harjoitus 7 to

Matematiikan peruskurssi (MATY020) Harjoitus 7 to Matematiikan peruskurssi (MATY020) Harjoitus 7 to 5..2009 ratkaisut 1. (a) Määritä funktion f(x) = e x e x x + 1 derivaatan f (x) pienin mahdollinen arvo. Ratkaisu. (a) Funktio f ja sen derivaatat ovat

Lisätiedot

Luku 4. Derivoituvien funktioiden ominaisuuksia.

Luku 4. Derivoituvien funktioiden ominaisuuksia. 1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen Väliarvolause Funktion kasvaminen ja väheneminen LAUSE VÄLIARVOLAUSE Oletus: Funktio f on jatkuva suljetulla välillä I: a < x < b f on derivoituva välillä a < x < b Väite: On olemassa ainakin yksi välille

Lisätiedot

Mat Dynaaminen optimointi, mallivastaukset, kierros Johdetaan välttämättömät ehdot funktionaalin. g(y(t), ẏ(t),...

Mat Dynaaminen optimointi, mallivastaukset, kierros Johdetaan välttämättömät ehdot funktionaalin. g(y(t), ẏ(t),... Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 6 1. Johdetaan välttämättömät ehdot funktionaalin J(y) = g(y(t), ẏ(t),..., dr y(t), t) dt dt r ekstremaalille, kun ja t f ovat kiinteitä ja tiedetään

Lisätiedot

Muodonmuutostila hum 30.8.13

Muodonmuutostila hum 30.8.13 Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan

Lisätiedot

3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) =

3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) = BM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 6, Syksy 2016 1. (a) Olkoon z = z(x,y) = yx 1/2 + y 1/2. Muodosta z:lle lineaarinen approksimaatio L(x,y) siten että approksimaation ja z:n arvot

Lisätiedot

, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).

, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1). HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 017 Harjoitus 4 Ratkaisuehdotukset 4.1. Osoita, että tasa-arvojoukko S F (0), F : R 3 R, F (x) = 3x 1 x 3 + e x + x e x 3, on säännöllinen

Lisätiedot

MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM)

MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM) . Lasketaan valmiiksi derivaattoja ja niiden arvoja pisteessä x = 2: f(x) = x + 3x 3 + x 2 + 2x + 8, f(2) = 56, f (x) = x 3 + 9x 2 + 2x + 2, f (2) = 7, f (x) = 2x 2 + 8x + 2, f (2) = 86, f (3) (x) = 2x

Lisätiedot

4 (x 1)(y 3) (y 3) (x 1)(y 3)3 5 3

4 (x 1)(y 3) (y 3) (x 1)(y 3)3 5 3 . Taylorin polynomi; funktion ääriarvot.1. Taylorin polynomi 94. Kehitä funktio f (x,y) = x 2 y Taylorin polynomiksi kehityskeskuksena piste ( 1,2) a) laskemalla osittaisderivaatat, b) kirjoittamalla muuttujat

Lisätiedot

Matematiikan tukikurssi, kurssikerta 2

Matematiikan tukikurssi, kurssikerta 2 Matematiikan tukikurssi kurssikerta 1 Relaatioista Oletetaan kaksi alkiota a ja b. Näistä kumpikin kuuluu johonkin tiettyyn joukkoon mahdollisesti ne kuuluvat eri joukkoihin; merkitään a A ja b B. Voidaan

Lisätiedot

1.6. Yhteen- ja vähennyslaskukaavat

1.6. Yhteen- ja vähennyslaskukaavat Yhteen- ja vähennyslaskukaavoiksi sanotaan trigonometriassa niitä kaavoja, jotka sisältävät kehitelmät kahden reaaliluvun summan tai erotuksen trigonometriselle funktiolle, kuten sin( + y) sin cos y +

Lisätiedot

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt Yhtälöryhmät 1/6 Sisältö Yhtälöryhmä Yhtälöryhmässä on useita yhtälöitä ja yleensä myös useita tuntemattomia. Tavoitteena on löytää tuntemattomille sellaiset arvot, että kaikki yhtälöt toteutuvat samanaikaisesti.

Lisätiedot

LABORAATIOSELOSTUSTEN OHJE H. Honkanen

LABORAATIOSELOSTUSTEN OHJE H. Honkanen LABORAATIOSELOSTUSTEN OHJE H. Honkanen Tämä ohje täydentää ja täsmentää osaltaan selostuskäytäntöä laboraatioiden osalta. Yleinen ohje työselostuksista löytyy intranetista, ohjeen on laatinut Eero Soininen

Lisätiedot

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja.

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja. Tehtävä 1 Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja. 1 Jos 1 < y < 3, niin kaikilla x pätee x y x 1. 2 Jos x 1 < 2 ja y 1 < 3, niin x y

Lisätiedot

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0 Juuri 8 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 8.9.07 Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) K. a) b) c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 6 6 a a a, a > 0 6 6 a

Lisätiedot

keskenään isomorfiset? (Perustele!) Ratkaisu. Ovat. Tämän näkee indeksoimalla kärjet kuvan osoittamalla tavalla: a 1 b 3 a 5

keskenään isomorfiset? (Perustele!) Ratkaisu. Ovat. Tämän näkee indeksoimalla kärjet kuvan osoittamalla tavalla: a 1 b 3 a 5 Johdatus diskreettiin matematiikkaan Harjoitus 6, 21.10.2015 1. Ovatko verkot keskenään isomorfiset? (Perustele!) Ratkaisu. Ovat. Tämän näkee indeksoimalla kärjet kuvan osoittamalla tavalla: a 2 b 4 a

Lisätiedot

FyMM IIa Kertausta loppukoetta varten

FyMM IIa Kertausta loppukoetta varten Tiistai 27.2.2018 1/11 FyMM IIa Kertausta loppukoetta varten 2018 Tiistai 27.2.2018 2/11 1 Kokeesta yleisesti 2 3 4 5 6 Koealue jakaantuu neljään pääalueeseen: 1 Ensimmäisen kertaluvun ODY:t 2 Toisen kertaluvun

Lisätiedot