SIIRTOTIET JA ANTENNIT

Koko: px
Aloita esitys sivulta:

Download "SIIRTOTIET JA ANTENNIT"

Transkriptio

1 SIIRTOTIET JA ANTENNIT 1. Langallinen ja langaton tiedonsiirto 2. Sähkömagneettisista kentistä ja aalloista 3. Johtimelliset siirtotiet 4. Johtimettomat siirtotiet: Radioaallot ja niiden eteneminen 5. Antennien perusteet Tiedonsiirron perusteet / AB 54

2 Siirtotiet Siirtotien muodostaa lähettimen ja vastaanottimen välinen fyysinen yhteys Siirtotie voi olla: Johtimellinen (parikaapeli, koaksiaalikaapeli, valokuitu) Johtimeton (mikroaaltolinkit, satelliittilinkit, radiotie, infrapunalinkit) Molemmissa tapauksissa tiedonsiirto tapahtuu sähkömagneettisten aaltojen avulla Tiedonsiirron perusteet / AB 55

3 Sähkömagneettisista kentistä ja aalloista Sähkömagneettinen aalto eli sähkömagneettinen säteily koostuu sähkö- ja magneettikentistä. Aalto etenee suoraviivaisesti tyhjiössä valon nopeudella c = 3 x 10 8 m/s. Ilmassa etenemisnopeus on lähes sama kuin tyhjiössä, mutta muissa väliaineissa etenemisnopeus voi poiketa tästä paljonkin. Sinimuotoisesti vaihtelevat sähkökenttä ja magneettikenttä ovat kohtisuorassa toisiinsa nähden ja kohtisuorassa myös aallon etenemissuuntaan nähden Tiedonsiirron perusteet / AB 56

4 Poikittaisissähkömagneettinen tasoaalto Tiedonsiirron perusteet / AB 57 Sähkömagneettisella aallolla sähkökenttä ja magneettikenttä ovat kohtisuorassa toisiinsa nähden ja kohtisuorassa myös aallon etenemissuuntaan nähden. Sähkömagneettisen aallon polarisaatio tarkoittaa sähkökentän E suuntaa: yllä olevassa kuvassa on kysymys vaakapolarisaatiosta*. Seuraavalla sivulla kuvatussa aallossa on pystypolarisaatio. Polarisaatiotaso voi myös kiertyä aallon edetessä; tällöin syntyy sirkulaarinen polarisaatio. (*Kuvassa on virhe/ristiriita merkinnöissä; Pitäisi olla E = sähkökenttä, H = magneettikenttä.)

5 Sähkömagneettisen aallon pituus Jos sähkömagneettisen aallon taajuus on f [Hz], niin aallonpituus λ = c / f [m] Tiedonsiirron perusteet / AB 58 Sähkömagneettinen säteily voi syntyä kun sähkövaraus kiihtyy; tämä voi aiheutua mm. suuritaajuisesta sähkövirran tai jännitteen vaihtelusta johtimissa tai muussa väliaineessa. Sähkömagneettiset aallot voidaan esittää Maxwellin yhtälöiden avulla ja niistä voidaan johtaa ns. tasoaaltoratkaisu yllä kuvatuille tapauksille.

6 Sähkömagneettisen aallon syntyminen, luonne Sähkömagneettinen aalto / säteily voi syntyä kun sähkövaraus kiihtyy mm. suuritaajuisesta sähkövirran tai jännitteen vaihdellessa. Sähkömagneettisten aaltojen teoria on monimutkaista; kenttien keskinäinen vuorovaikutus riippuu ympäröivästä materiasta. Sähkömagnetismin teoria voidaan esittää Maxwellin yhtälöiden avulla. Teoriasta on runsaasti kirjallisuutta Sähkömagneettisella säteilyllä on myös hiukkasluonne, ts. aallolla on energiakvantti, jonka energia W = h f [J] (h = 6,6256 x Js) Tiedonsiirron perusteet / AB 59 Sähkömagneettinen aalto / säteily voi syntyä kun sähkövaraus kiihtyy; tämä voi aiheutua mm. suuritaajuisesta sähkövirran tai jännitteen vaihtelusta johtimissa tai muussa väliaineessa. Sähkömagneettisten aaltojen syntymekanismeja on useita; ne ovat teorialtaan melko mutkikkaita. Aaltojen eteneminen on monimuotoista. Kenttien keskinäinen vuorovaikutus riippuu ympäröivästä väliaineesta (materiaalista ja rakenteista). Lisäksi väliaineen isotrooppisuus, homogeenisuus ja lineaarisuus on huomioitava, sillä ne vaikuttavat aallon etenemiseen. Eri aineiden rajapinnoissa on tarkasteltava rajapintaehdot. Väliaineen ominaisuuksia matemaattisissa ratkaisuissa edustavat: Permittiivisyys, ε - tyhjiössä ε =ε 0 8,8542 * F/m - muissa homogeenisissä väliaineissa ε = ε r ε 0 - suhteellinen permittiivisyys, ε r on aineen rakenteesta riippuva vakio (ilman ε r = 1) Permeabiliteetti, μ - tyhjiössä μ =μ 0 4π * 10-7 H/m - muissa homogeenisissä väliaineissa μ = μ r μ 0 - suhteellinen permittiivisyys, ε r on aineen rakenteesta riippuva vakio (ilman μ r = 1) Sähkömagnetismin teoria, joka voidaan esittää Maxwellin yhtälöiden avulla, on perustana kaikelle sähkötekniikalle. Teoriasta on runsaasti kirjallisuutta, mutta tässä opintojaksossa riittää yleiskuvan saaminen sähkömagneettisista aalloista. Sähkömagneettisten aaltojen eri aallonpituudet ovat hyvin eri tavoin vuorovaikutuksessa materiaalin kanssa. Radioaallon energiakvantin suuruus 1 THz taajuudella on vain 4 ev. Biologisen materiaalin ionisoimiseen tarvitaan vähintään energia 12 ev. UV-aallonpituinen ja sitä lyhytaaltoisempi sähkömagneettinen aalto / säteily pystyy ionisoimaan biologista materiaalia. pienempitaajuiset radioaallot voivat vain lämmittää biologista materiaalia mm. vesimolekyylejä liikuttamalla; vrt. mikroaaltouunin toimintaperiaate

7 Maxwellin yhtälöt Tiedonsiirron perusteet / AB 60 Maxwellin yhtälöiden perusteellinen käsittely tai ymmärtäminen ei kuulu tämän opintojakson tavoitteisiin. Yhtälöt on esitetty tässä vain teoriataustan esittelemiseksi.

8 Sähkömagneettinen spektri Tiedonsiirron perusteet / AB 61 Sähkömagneettisten aaltojen spektri on jaettu dekadin suuruisiin taajuusalueisiin, joista käytetään lyhenteitä; esim VLF-alue on 3 khz - 30 khz ja UHF-alue on 300 MHz 3 GHz. Radioaalloiksi kutsutaan tavallisesti sähkömagneettisen spektrin osaa, joka on taajuuden 300 MHz alapuolella. UHF- ja SHF-alueita (300 MHz 30 GHz) kutsutaan usein mikroaaltoalueeksi; Mikroaaltoalueen alarajana pidetään tosin toisinaan myös taajuutta 1 GHz. Radioaallot poikkeavat muista sähkömagneettisen spektrin osista vain aallonpituuden ja energiakvantin suhteen. Molemmat seikat liittyvät aallon vuorovaikutukseen ympäristönsä kanssa. Kuvaan on merkitty myös taajuuksien tyypillisiä käyttökohteita mm. tietoliikennesovelluksissa. Taajuuksien käytöstä eri tarkoituksiin on sovittu kansainvälisesti. Kansallinen radiolainsäädäntö noudattaa kansainvälisiä sopimuksia. Elektroniikan toteuttaminen, esim. vahvistinsuunnittelu, voidaan jakaa pientaajuustekniikaksi ja suurtaajuustekniikaksi eli RF-tekniikaksi. Näitten rajana on karkeasti taajuus 1 MHz.

9 Johtimelliset siirtotiet: Parikaapeli Eniten käytetty johtimellinen siirtotie Koostuu toistensa ympärille kiedotuista kahdesta kuparijohdosta Kierrolla häiriöitä pienentävä vaikutus Useita johtopareja voidaan yhdistää suuremmaksi kaapeliksi Tiedonsiirron perusteet / AB 62 Kierretty parikaapeli perustuu kahden tai useamman suojatun kuparijohdinparin säännölliseen spiraalirakenteeseen. Säännöllinen kiertäminen vähentää kaapelin herkkyyttä elektromagneettiselle häiriölle (ylikuuluminen, ympäristön kohinan kytkeytyminen). Häiriösietoisuutta voidaan parantaa myös päällystämällä kaapeli metallipunoksella. Vaimennus parikaapelissa on selkeä taajuuden funktio. Tyypit: Suojaamaton (UTP), edullisempi, helpommin käsiteltävissä, käytetään paljon puhelinkaapelina Kaapelisuojattu (STP), koko kaapeli ympäröity suojavaipalla, suositaan dataverkoissa, koska kestää paremmin ulkoisia häiriöitä Parisuojattu (FTP), jokainen pari kaapelissa on erikseen ympäröity suojavaipalla Parikaapelia käytetään niin puhelin- kuin dataverkoissa yleisesti. Parikaapelilla voidaan välittää sekä digitaalisia että analogisia signaaleita. Puhelinverkkojen siirtojärjestelmissä analogisia signaaleita käytettäessä (ei enää paljoa käytössä) vahvistimien on oltava 5-6 km välein ja digitaalisilla signaaleilla toistinten väli on 2-4 km. Puhelinverkoissa parikaapelia käytetään myös tilaajajohtimena. Myös xdsl-yhteydet on tilaajapäässä toteutettu kuparikaapeleilla. Lähiverkoissa parikaapelilla päästään jopa yli 100 Mbps nopeuteen rajoitetulla etäisyydellä. Yleisesti mitä suurempi tiedonsiirtonopeus, sitä lyhyempi etäisyys.

10 Koaksiaalikaapeli Suurtaajuisille signaaleille => suuri siirtokapasiteetti Kaksi johdinta sisäkkäin Sisempi kuparilankaa Ulompi ohuesta kuparilangasta punottua verkkoa Välissä eriste Epäsymmetrinen kaapeli Signaali vaimenee enemmän kuin parikaapelissa Tiedonsiirron perusteet / AB 63 Koaksiaalikaapeli on kuin parikaapeli, mutta johdot ovat sisäkkäin. Kaapelilla on jo luontaisesti parempi häiriönsieto. Suurimmat häiriötekijät ovat vaimennus, lämpökohina ja keskeismodulaatiokohina. Koaksiaalikaapelin taajuusvaste on selvästi parikaapelia parempi. Koaksiaalikaapelilla voidaan välittää sekä analogisia että digitaalisia signaaleita. Koaksiaalikaapelia käytetään esimerkiksi TV-jakeluverkoissa, puhelinverkkojen runkoverkoissa (nykyisin kuitu) ja lähiverkoissa (nykyisin on siirrytty paljolti parikaapeliin). Vahvistimet on yleensä sijoitettava parin km välein, toistimet 1 km välein (korkeilla siirtonopeuksilla jopa tiheämpään).

11 Optinen kuitu μm 125 μm Tiedonsiirron perusteet / AB 64 Optinen kuitu on µm paksuista valoa läpäisevää materiaalia (lasi, muovi, ). Kuitu koostuu ytimestä, heijastuspinnasta ja kuoresta. Ytimessä siirretään valoaallot, heijastuskerroksen tarkoituksena on pitää valo ytimessä ja kuori suojaa kuitua kosteudelta ja vaurioilta. Optiset kuidut toimivat THz alueella (infrapuna ja näkyvä valo). Kuitujen toiminta perustuu valon kokonaisheijastukseen. Kuidun etuja ovat suuri kapasiteetti (kaistanleveys, tiedonsiirtonopeus), pieni koko ja keveys (ohut kaapeli), elektromagneettinen häiriönsieto (ei impulssikohinaa tai ylikuulumista, turvallisuus), pieni vaimeneminen (toistinten etäisyys jopa satoja kilometrejä). Optisia kuituja käytetään kolmessa eri taajuusikkunassa infrapuna-alueella johtuen niiden ominaisuuksista (850, 1300, 1550 nm. Useat toteutukset käyttävät LEDiä ja 850 nm aluetta (ei suuria datanopeuksia). Suuret datanopeudet vaativat alempien taajuusalueiden käyttöä (ja mahdollisesti laseria).

12 Kuitutyypit: Tiedonsiirron perusteet / AB 65 Kuidut voidaan jakaa monimuoto- ja yksimuotokuituihin. Monimuotokuituja on askeltaitekertoimisia ja asteittaistaitekertoimisia (gradienttikuitu). Monimuotokuiduissa valo siirtyy useiden heijastusten avulla. Ytimen halkaisija on yleensä 50 tai 62 μm. Monimuotokuidut kärsivät signaalipulssin levenemisestä eli dispersiosta johtuen useista säteiden etenemisreiteistä. Asteittaistaitekertoimisella kuidulla on paremmat dispersio-ominaisuudet kuin askeltaitekertoimisella kuidulla (kulkuaikaerot tasoittuvat, koska säteet kulkevat ulkokerroksissa nopeammin kuin ytimessä). Yksimuotokuidun ytimen halkaisija on yleensä alle 10 μm. Yksimuotokuidun dispersio-ominaisuudet ovat parhaat, koska valo pääsee etenemään kuidussa vain suoraan. Tällöin myös signaalin vaimeneminen on pienintä.

13 Sovelluskohteita: Tiedonsiirron perusteet / AB 66 Sovellukset: Televerkkojen valokaapelisiirtojärjestelmä (ks. yllä) Optisessa johtopäätteessä sähköinen signaali muutetaan valoksi ja päinvastoin Käytetään kaksitasoista johtokoodia (valoteho ei voi olla negatiivinen) Järjestelmät aina digitaalisia Kuitujen käyttökohteita ovat televerkkojen runkoverkot (kuidut ovat parhaimmillaan suurta kapasiteettia vaativiin olosuhteisiin), kaupunkiverkot (kuituja voidaan käyttää myös lyhyemmillä matkoilla yhdistämään keskuksia), lähiverkot (useat uudet teknologiat perustuvat kuitujen käytölle) sekä tulevaisuudessa myös tilaajajohdot (mahdollistaa todellisen kotimultimedian). Kehityskohteita: Kehitystyötä tapahtuu kuiduissa, pääteyksiköissä ja liittimissä Kuituliittimen mekaniikka hyvin tarkkaa Lähetinosassa valolähteinä loistediodit (LEDit) tai laserit Vastaanottimessa ilmaisimina PIN- tai vyöryfotodiodit Kehitteillä yhä suurempia nopeuksia (nykyisinkin voidaan siirtää jopa satoja tuhansiia puheluita yhdessä kuidussa) WDM

14 Tiedonsiirron perusteet / AB 67 Parikierretty johdin (parikaapeli) Suojaamaton parikaapeli (Unshielded Twisted Pair), 100 ohm Kategoria 1 - ei suorituskykyvaatimuksia Kategoria 2 - Puhelinjärjestelmät, enintään 1 Mbps Kategoria 3 - Puhelinjärjestelmät ja lähiverkot, enintään 16 Mbps Kategoria 4 - Puhelinjärjestelmät ja lähiverkot, enintään 20 Mbps Kategoria 5 - Puhelinjärjestelmät ja lähiverkot, enintään 100 Mbps Kategoria 6 - Puhelinjärjestelmät ja lähiverkot, enintään 1 Gbps Kategoria 7 - Puhelinjärjestelmät ja lähiverkot, enintään 600 Mbps Suojattu parikaapeli (Shielded Twisted Pair), 150 ohm Kategoria 1 - IBM Token ring 4/16 Mbps Kategoria 9 - IBM Token ring 4/16 Mbps

15 Johtimettomat siirtotiet: Tiedonsiirron perusteet / AB 68 Johtimettomien siirtoteiden jako (käyttökohteita, esimerkkejä) Mikroaaltolinkit (suunnattu kommunikointi: kiinteät radioyhteydet) Satelliittilinkit (satelliittitiedonsiirto: kiinteät radioyhteydet, mm. mannerten välinen puhelinliikenne / satelliittitv = broadcasting) Radiotie (suuntaamaton kommunikointi: yleiset radio&tv = broadcasting / yl. matkapuhelinverkot;mobiilit! / erillisverkot, esim VIRVE) Infrapuna (lyhyen matkan point-to-point) Lyhyen kantaman radiotie (WLAN, Bluetooth, RFID, )

16 Radioaallot, etenemismekanismit: Tiedonsiirron perusteet / AB 69 Vapaassa tilassa signaali etenee radiotaajuisena säteilynä. Radioaallon eteneminen ilmakehässä riippuu taajuudesta (ks. taulukko yllä). Radioaallon etenemiseen vaikuttavat troposfäärin, ionosfäärin ja maaston ominaisuudet. Radioaallon eteneminen on melko monimutkaista näiden vaikuttavien tekijöiden vaikutuksesta. Ilmakehän alin kerros on troposfääri, se on kerros, missä sääilmiöt tapahtuvat. Troposfääri ulottuu navoilla noin 9 km:n ja päiväntasaajalla lähes noin 17 km:n korkeuteen. Troposfääri kerros on homogeeninen ja on jatkuvasti muuttuvassa tilassa. Radioaaltojen etenemiseen paikasta toiseen vaikuttavat lämpötila, paine, kosteus, sade jne. Aalto vaimenee, siroaa ja kaartuu sekä voi heijastua saapuessaan troposfääriin. Kun signaali vastaanotetaan, vastaanotetun signaalin amplitudi ja vaihe voivat vaihdella satunnaisesti monitie-etenemisen vuoksi. Myös signaalin polarisaatio saattaa muuttua ja ilmakehä voi aiheuttaa kohinaa. Ilmakehän seuraavana kerroksena on ionosfääri, joka ulottuu noin 60 km:stä 100 km:iin. Ionosfäärissä on auringon ultravioletti- ja hiukkassäteilyn ionisoimaa plasmaa eli vapaita elektroneita ja ioneja. Ionosfääriä radioaalto ei pääse läpäisemään sen tilasta riippuvan rajataajuuden ( n.10 MHz ) alapuolella ja näin ollen se vain heijastuu siitä Diffraktiota, sirontaa ja heijastuksia radioaalloille aiheuttavat maaston erilaiset kohteet ja rakennukset. Matalilla taajuuksilla pintaa pitkin etenevien aaltojen vaimennus riippuu paljolti maanpinnan sähköisistä ominaisuuksista. Katso myös: Antennien välinen yhteys Katso myös: EMI, EMC, Sähkömagneettinen yhteensopivuus

17 Radioaaltojen sovellukset Kiinteä radiotietoliikenne; linkit Yleisradiotoiminta Siirtyvä radiotietoliikenne Muut kuin tietoliikennesovellukset; useimmiten sis. tiedonsiirtoa Radionavigointi Tutkat Kaukokartoitus Radioastronomia Radiotaajuiset anturit Tehosovellukset; suurtaajuuskuumennus, Lääketieteelliset sovellukset; kuvantaminen, hoitolaitteet, Tiedonsiirron perusteet / AB 70 Sähkömagneettisten aaltojen eri aallonpituudet ovat hyvin eri tavoin vuorovaikutuksessa materian (aineen kanssa). Radioaallon energiakvantin suuruus 1 THz taajuudella on vain 4 ev. Biologisen materiaalin ionisoimiseen tarvitaan vähintään energia 12 ev. UV-aallonpituinen ja sitä lyhytaaltoisempi sähkömagneettinen aalto / säteily pystyy ionisoimaan biologista materiaalia. pienempitaajuiset radioaallot voivat vain lämmittää biologista materiaalia mm. vesimolekyylejä liikuttamalla; vrt. mikroaaltouunin toimintaperiaate

18 Radioaaltojen etenemismallit: Tiedonsiirron perusteet / AB 71 Radioyhteyksissä käytetyt tärkeimmät etenemismekanismit (alenevan taajuuden mukaisessa järjestyksessä ): 1. Eteneminen näköyhteysreittiä pitkin. Muistuttaa lähinnä likimäärin vapaan tilan etenemistä. Aallon kaartumisen takia radiohorisontti on geometristä horisonttia kauempana. UHF-, SHF- ja EHF- alueilla tämä on tärkein etenemismekanismi. Sateen ja ilmakehän kaasujen aiheuttama vaimennus rajoittaa yhteydet lyhyiksi millimetriaaltoalueella ja infrapuna-alueella. 2. Eteneminen ilmakehän homogeenisuuksista tapahtuvan sironnan avulla. Esitellyn mekanismin taajuusalue on noin 0,3-10 GHz. 3. Eteneminen ionosfäärin kautta. Ionosfäärin kautta radioaalto voi heijastua alle 30 MHz:n taajuuksilla. Uudelleen heijastumalla maanpinnasta on ympäri maapallon eteneminen mahdollista. 4. Eteneminen maanpinta- aaltona. Vaimennus kasvaa nopeasti taajuuden kasvaessa maanpinta-aallolla. Tämän vuoksi eteneminen rajoittuu noin alle 10 MHz:n taajuuksille.

19 Monitie-etenemisympäristö Tiedonsiirron perusteet / AB 72

20 Radiolinkkijärjestelmät Tiedonsiirron perusteet / AB 73 Radiolinkki käyttää signaalin siirtoon voimakkaasti suunnattuja radioaaltoja Lautas- tai torviantennit => hyvin kapea antennikeila Televerkon runkoyhteyksillä, tukiasemayhteyksillä ja televisiokuvan siirrossa lähetysasemille Digitaaliset SDH-linkit käyttävät FSK- tai PSK-modulointia Mikroaallot => näköyhteys lähetys- ja vastaanottoantennin välillä Lähetystehot 0,1 1W Yleisiä taajuuksia 15, 18, 23, 26, 28, 38, 53 ja 58 GHz Maksimipituus km yhdellä hypyllä (2 GHz), suurempitaajuuksisilla lyhemmät etäisyydet Tarvitaan yksi radiokanava molempiin suuntiin Kaupallinen toteutus esim. Nokian DMR18 Taajuusalue 18 GHz Siirtokapasiteetti 2*2, 4*2, 8*2, 16*2 tai 1*34 Mbit/s Lyhyillä etäisyyksillä käytetty paljon minilinkkejä (pienet antennit, radio-osa mastossa)

Sähkömagneettisista kentistä ja aalloista

Sähkömagneettisista kentistä ja aalloista SIIRTOTIET 75 Siirtotien muodostaa lähettimen ja vastaanottimen välinen fyysinen yhteys Siirtotie voi olla: Johtimellinen (parikaapeli, koaksiaalikaapeli, valokuitu) Johtimeton (mikroaaltolinkit, satelliittilinkit,

Lisätiedot

Parikaapeli. Siirtomedia. Sähkömagneettinen spektri. EIA/TIA kategoriat

Parikaapeli. Siirtomedia. Sähkömagneettinen spektri. EIA/TIA kategoriat Siirtomedia Ohjattu siirto; kaapelisiirto parikaapeli, koaksiaalikaapeli, valokuitu siirtomerdian ominaisuudet tärkeitä Ohjaamaton siirto; langaton siirto ilma tai tyhjiö: radio, infrapuna, valo lähetin/vastaanottimen

Lisätiedot

Siirtotiet (Siirtomedia)

Siirtotiet (Siirtomedia) CT30A2002 Tietoliikennetekniikan perusteet Siirtotiet (Siirtomedia) 1 Yleistä siirtoteistä Käydään läpi fyysiset ominaisuudet, sovelluskohteet ja pääpiirteet siirron kannalta Siirtotiet, joilla tietoa

Lisätiedot

CT30A2600 Langaton tietoliikenne Luento 3 Signaalien eteneminen

CT30A2600 Langaton tietoliikenne Luento 3 Signaalien eteneminen CT30A2600 Langaton tietoliikenne Luento 3 Signaalien eteneminen Professori Jari Porras 1 Luennon aiheet Radiotaajuudet ja niiden käyttö Radioaaltojen eteneminen Tärkeimmät etenemismekanismit Radioaaltojen

Lisätiedot

RF-tekniikan perusteet BL50A0301. 5. Luento 5.10.2015 Antennit Radioaaltojen eteneminen

RF-tekniikan perusteet BL50A0301. 5. Luento 5.10.2015 Antennit Radioaaltojen eteneminen RF-tekniikan perusteet BL50A0301 5. Luento 5.10.2015 Antennit Radioaaltojen eteneminen Antennit Antennit Antenni muuttaa siirtojohdolla kulkevan aallon vapaassa tilassa eteneväksi aalloksi ja päinvastoin

Lisätiedot

Reititys. Reititystaulukko. Virtuaalipiirin muunnostaulukko. Datasähkeverkko. virtuaalipiiriverkko. Eri verkkotekniikoita

Reititys. Reititystaulukko. Virtuaalipiirin muunnostaulukko. Datasähkeverkko. virtuaalipiiriverkko. Eri verkkotekniikoita Siirtoaika Sanoman siirto paketteina: ei etenemisviivettä, ei jonotuksia Linkkien määrän vaikutus Linkkien määrän n vaikutus = siirtoajan n-kertaistuminen Siirtoaika 1 2 3 4 1 2 3 4 Sanoman siirto: ei

Lisätiedot

RF-tekniikan perusteet BL50A0300

RF-tekniikan perusteet BL50A0300 RF-tekniikan perusteet BL50A0300 5. Luento 30.9.2013 Antennit Radioaaltojen eteneminen DI Juho Tyster Antennit Antenni muuttaa siirtojohdolla kulkevan aallon vapaassa tilassa eteneväksi aalloksi ja päinvastoin

Lisätiedot

Sanoman siirto paketteina: ei etenemisviivettä, ei jonotuksia

Sanoman siirto paketteina: ei etenemisviivettä, ei jonotuksia Sanoman siirto paketteina: ei etenemisviivettä, ei jonotuksia Siirtoaika Linkkien määrän vaikutus 1 2 3 4 Reitittimet 1 2 3 4 Linkkien määrän n vaikutus = siirtoajan n-kertaistuminen Siirtoaika Sanoman

Lisätiedot

Siirtotiet (Siirtomedia)

Siirtotiet (Siirtomedia) CT30A2002 Tietoliikennetekniikan perusteet Siirtotiet (Siirtomedia) 1 Yleistä siirtoteistä Käydään läpi fyysiset ominaisuudet, sovelluskohteet ja pääpiirteet siirron kannalta Siirtotiet, joilla tietoa

Lisätiedot

Radiotekniikan perusteet BL50A0301

Radiotekniikan perusteet BL50A0301 Radiotekniikan perusteet BL50A0301 1. Luento Kurssin sisältö ja tavoitteet, sähkömagneettinen aalto Opetusjärjestelyt Luentoja 12h, laskuharjoituksia 12h, 1. periodi Luennot Juhamatti Korhonen Harjoitukset

Lisätiedot

S 38.1105 Tietoliikennetekniikan perusteet. Luento 3 Siirtotiet. OSI kerrokset 1 ja 2.

S 38.1105 Tietoliikennetekniikan perusteet. Luento 3 Siirtotiet. OSI kerrokset 1 ja 2. S 38.1105 Tietoliikennetekniikan perusteet Luento 3 Siirtotiet. OSI kerrokset 1 ja 2. Luennon aiheet Kertausta OSI malli OSI mallin 1. kerros (fyysinen kerros) Siirtotiet: kuparikaapeli, valokuitu, radiolinkit

Lisätiedot

RF-tekniikan perusteet BL50A0300

RF-tekniikan perusteet BL50A0300 RF-tekniikan perusteet BL50A0300 1. Luento 26.8.2013 Kurssin sisältö ja tavoitteet, sähkömagneettinen aalto DI Juho Tyster Opetusjärjestelyt Luentoja 14h, laskuharjoituksia 14h, 1.periodi Luennot ja harjoitukset

Lisätiedot

RG-58U 4,5 db/30m. Spektrianalysaattori. 0,5m. 60m

RG-58U 4,5 db/30m. Spektrianalysaattori. 0,5m. 60m 1. Johtuvia häiiöitä mitataan LISN:n avulla EN55022-standadin mukaisessa johtuvan häiiön mittauksessa. a. 20 MHz taajuudella laite tuottaa 1.5 mv suuuista häiiösignaalia. Läpäiseekö laite standadin B-luokan

Lisätiedot

Kapasitiivinen ja induktiivinen kytkeytyminen

Kapasitiivinen ja induktiivinen kytkeytyminen Kapasitiivinen ja induktiivinen kytkeytyminen EMC - Kaapelointi ja kytkeytyminen Kaapelointi merkittävä EMC-ominaisuuksien kannalta yleensä pituudeltaan suurin elektroniikan osa > toimii helposti antennina

Lisätiedot

S-38.1105 Tietoliikennetekniikan perusteet

S-38.1105 Tietoliikennetekniikan perusteet S-38.1105 Tietoliikennetekniikan perusteet Luento 2 Siirtotiet. OSI-kerrokset 1 ja 2. Timo Smura 30.01.2008 Luennon aiheet Kertausta Verkkojen kerrosmalli: OSI Fyysinen kerros (OSI-mallin 1. kerros) Siirtotiet:

Lisätiedot

EMC: Electromagnetic Compatibility Sähkömagneettinen yhteensopivuus

EMC: Electromagnetic Compatibility Sähkömagneettinen yhteensopivuus EMC: Electromagnetic Compatibility Sähkömagneettinen yhteensopivuus Ympäristön häiriöt Laite toimii suunnitellusti Syntyvät häiriöt Sisäiset häiriöt EMC Directive Article 4 1. Equipment must be constructed

Lisätiedot

1 Määrittele seuraavat langattoman tiedonsiirron käsitteet.

1 Määrittele seuraavat langattoman tiedonsiirron käsitteet. 1 1 Määrittele seuraavat langattoman tiedonsiirron käsitteet. Radiosignaalin häipyminen. Adaptiivinen antenni. Piilossa oleva pääte. Radiosignaali voi edetä lähettäjältä vastanottajalle (jotka molemmat

Lisätiedot

SÄHKÖMAGNEETTINEN KYTKEYTYMINEN

SÄHKÖMAGNEETTINEN KYTKEYTYMINEN SÄHKÖMAGNEETTINEN KYTKEYTYMINEN H. Honkanen SÄHKÖMAGNEETTISEN KYTKEYTYMISEN TEORIAA Sähkömagneettinen kytkeytyminen on häiiöiden siitymistä sähkömagneettisen aaltoliikkeen välityksellä. Sähkömagneettisen

Lisätiedot

Ongelmia mittauksissa Ulkoiset häiriöt

Ongelmia mittauksissa Ulkoiset häiriöt Ongelmia mittauksissa Ulkoiset häiriöt Häiriöt peittävät mitattavia signaaleja Häriölähteitä: Sähköverkko 240 V, 50 Hz Moottorit Kytkimet Releet, muuntajat Virtalähteet Loisteputkivalaisimet Kännykät Radiolähettimet,

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat

Lisätiedot

Heijastuminen ionosfääristä

Heijastuminen ionosfääristä Aaltojen eteneminen Etenemistavat Pinta-aalto troposfäärissä Aallon heijastuminen ionosfääristä Lisäksi joitakin erikoisempia heijastumistapoja Eteneminen riippuu väliaineen ominaisuuksista, eri ilmiöt

Lisätiedot

Kanavointi (multiplexing) Samalla linkillä usean yhteyden sanomia. Siirtonopeus, siirtoaika. Lasketaan! Ratkaistaan!

Kanavointi (multiplexing) Samalla linkillä usean yhteyden sanomia. Siirtonopeus, siirtoaika. Lasketaan! Ratkaistaan! Piirikytkentäinen verkko -ensin varataan resurssit yhteyttä varten -sitten datan siirto yhteyttä pitkin -vapautetaan resurssit Kanavointi (multiplexing) Samalla linkillä usean yhteyden sanomia FDM (frequency-division

Lisätiedot

Radioaaltojen eteneminen. Marjo Yli-Paavola, OH3HOC

Radioaaltojen eteneminen. Marjo Yli-Paavola, OH3HOC Radioaaltojen eteneminen Marjo Yli-Paavola, OH3HOC 26.10.2010 Radioaaltojen etenemistavat Eteneminen ionosfäärissä Eteneminen troposfäärissä Pinta-aalto Erikoisemmat etenemismuodot Yleisesti eteneminen

Lisätiedot

Radioyhteys: Tehtävien ratkaisuja. 4π r. L v. a) Kiinteä päätelaite. Iso antennivahvistus, radioaaltojen vapaa eteneminen.

Radioyhteys: Tehtävien ratkaisuja. 4π r. L v. a) Kiinteä päätelaite. Iso antennivahvistus, radioaaltojen vapaa eteneminen. 1S1E ietoliikenteen perusteet Metropolia/A. Koivumäki adioyhteys: ehtävien ratkaisuja 1. Langatonta laajakaistaa tarjoavan 3.5 GHz:n taajuudella toimivan WiMAX-verkon tukiaseman lähettimen lähetysteho

Lisätiedot

Tiedote tuulivoimapuiston rakentajille

Tiedote tuulivoimapuiston rakentajille Tiedote 1 (5) Dnro: Kalle Pikkarainen 9.10.2014 1153/809/2014 Taajuusvalvonta 24.2.2015 Tiedote tuulivoimapuiston rakentajille Tuulivoimapuisto on laaja rakennushanke, jolla voi olla vähäisiä vaikutuksia

Lisätiedot

Radioamatöörikurssi 2014

Radioamatöörikurssi 2014 Radioamatöörikurssi 2014 Polyteknikkojen Radiokerho Siirtojohdot, Antennit ja Eteneminen 11.11.2014 Juha, OH2EAN 1 / 42 Illan aiheet Siirtojohdot Antennit Radioaaltojen eteneminen 2 / 42 Siirtojohto Mikä

Lisätiedot

Siirtotiet - johtimeton (Siirtomedia)

Siirtotiet - johtimeton (Siirtomedia) CT30A2003 Tietoliikennetekniikan perusteet Siirtotiet - johtimeton (Siirtomedia) 1 The Electromagnetic Spectrum The electromagnetic spectrum and its uses for communication. 2 Johtimettomat siirtotiet Signaali

Lisätiedot

= ωε ε ε o =8,853 pf/m

= ωε ε ε o =8,853 pf/m KUDOKSEN POLARISOITUMINEN SÄHKÖKENTÄSSÄ E ε,, jε r, jε, r i =,, ε r, i r, i E Efektiivinen johtavuus σ eff ( ω = = ωε ε ε o =8,853 pf/m,, r 2πf ) o Tyypillisiä arvoja radiotaajuukislla Kompleksinen permittiivisyys

Lisätiedot

Parikaapelit CATx / RJ45

Parikaapelit CATx / RJ45 Parikaapelit CATx / RJ45 Parikaapeli on yleinen kaapelityyppi, jossa käytetään toistensa ympäri kierrettyjä johdinpareja häiriöiden vähentämiseksi. Parien kierto on tyypillisesti kolme kierrosta tuumalla.

Lisätiedot

Maxwell ja hänen yhtälönsä mitä seurasi?

Maxwell ja hänen yhtälönsä mitä seurasi? Maxwell ja hänen yhtälönsä mitä seurasi? Oleteaan tyhjiö: ei virtoja ei varauksia Muutos magneettikentässä saisi aikaan sähkökentän. Muutos vuorostaan sähkökentässä saisi aikaan magneettikentän....ja niinhän

Lisätiedot

Kuva 1. Valon polarisoituminen. P = polarisaattori, A = analysaattori (kierrettävä).

Kuva 1. Valon polarisoituminen. P = polarisaattori, A = analysaattori (kierrettävä). P O L A R I S A A T I O VALON POLARISAATIO = ilmiö, jossa valon sähkökentän värähtelyt tapahtuvat vain yhdessä tasossa (= polarisaatiotasossa) kohtisuorasti etenemissuuntaa vastaan Kuva 1. Valon polarisoituminen.

Lisätiedot

MAA-57.1010 (4 OP) JOHDANTO VALOKUVAUKSEEN,FOTOGRAM- METRIAAN JA KAUKOKARTOITUKSEEN Kevät 2006

MAA-57.1010 (4 OP) JOHDANTO VALOKUVAUKSEEN,FOTOGRAM- METRIAAN JA KAUKOKARTOITUKSEEN Kevät 2006 MAA-57.1010 (4 OP) JOHDANTO VALOKUVAUKSEEN,FOTOGRAM- METRIAAN JA KAUKOKARTOITUKSEEN Kevät 2006 I. Mitä kuvasta voi nähdä? II. Henrik Haggrén Kuvan ottaminen/synty, mitä kuvista nähdään ja miksi Anita Laiho-Heikkinen:

Lisätiedot

JOHDANTO TIETOLIIKENNEJÄRJESTELMIIN

JOHDANTO TIETOLIIKENNEJÄRJESTELMIIN 1 JOHDANTO TIETOLIIKENNEJÄRJESTELMIIN Mitä keinoja on siirron toteuttamiseksi? Miten tähän on päädytty ja mikä on tulevaisuus? JOHDANTO 2 Modernin yhteiskunnan toiminta perustuu informaation tuottamiseen,

Lisätiedot

PIENTAAJUISET SÄHKÖ- JA MAGNEETTIKENTÄT HARJOITUSTEHTÄVÄ 1. Pallomaisen solun relaksaatiotaajuus 1 + 1

PIENTAAJUISET SÄHKÖ- JA MAGNEETTIKENTÄT HARJOITUSTEHTÄVÄ 1. Pallomaisen solun relaksaatiotaajuus 1 + 1 Aalto-yliopisto HARJOITUSTEHTÄVIEN Sähkötekniikan korkeakoulu RATKAISUT Sähkömagneettisten kenttien ja optisen säteilyn biologiset 8.1.016 vaikutukset ja mittaukset ELEC-E770 Lauri Puranen Säteilyturvakeskus

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)

Lisätiedot

OPTISET KUIDUT. KEMIA JA YMPÄRISTÖ Jesse Peurala ja Reijo Tolonen 0401422 ja 0501128 TP05S, ryhmä C

OPTISET KUIDUT. KEMIA JA YMPÄRISTÖ Jesse Peurala ja Reijo Tolonen 0401422 ja 0501128 TP05S, ryhmä C OPTISET KUIDUT KEMIA JA YMPÄRISTÖ Jesse Peurala ja Reijo Tolonen 0401422 ja 0501128 TP05S, ryhmä C SISÄLLYS SISÄLLYS...2 1 Johdanto...1 2 Valon taittuminen...1 3 Optisten kuitujen lasi ja kuidun rakenne...2

Lisätiedot

Fysiikka 8. Aine ja säteily

Fysiikka 8. Aine ja säteily Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian

Lisätiedot

Mustalamminmäen tuulivoimahanke, Karstula

Mustalamminmäen tuulivoimahanke, Karstula S U U N N IT T EL U JA T EK N IIK K A GREENWATT MUSTALAMMINMÄKI OY AB Mustalamminmäen tuulivoimahanke, Karstula FCG SUUNNITTELU JA TEKNIIKKA OY P25023 Digitan tv- ja radiolähetysten 1 (9) Vadbäck Hans

Lisätiedot

Infrapunaspektroskopia

Infrapunaspektroskopia ultravioletti näkyvä valo Infrapunaspektroskopia IHMISEN JA ELINYMPÄ- RISTÖN KEMIAA, KE2 Kertausta sähkömagneettisesta säteilystä Sekä IR-spektroskopia että NMR-spektroskopia käyttävät sähkömagneettista

Lisätiedot

Radioamatöörikurssi 2012

Radioamatöörikurssi 2012 Radioamatöörikurssi 2012 Sähkömagneettinen säteily, Aallot, spektri ja modulaatiot Ti 6.11.2012 Johannes, OH7EAL 6.11.2012 1 / 19 Sähkömagneettinen säteily Radioaallot ovat sähkömagneettista säteilyä.

Lisätiedot

EMC MITTAUKSET. Ari Honkala SGS Fimko Oy

EMC MITTAUKSET. Ari Honkala SGS Fimko Oy EMC MITTAUKSET Ari Honkala SGS Fimko Oy 5.3.2009 SGS Fimko Oy SGS Fimko kuuluu maailman johtavaan testaus-, sertifiointi-, verifiointi- ja tarkastusyritys SGS:ään, jossa työskentelee maailmanlaajuisesti

Lisätiedot

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen Valon luonne ja eteneminen Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen 1 Valonlähteitä Perimmiltään valon lähteenä toimii kiihtyvässä liikkeessä olevat sähkövaraukset Kaikki

Lisätiedot

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus värähtelytiheyden. 1 Funktiot ja aallot Aiemmin käsiteltiin funktioita ja miten niiden avulla voidaan kuvata fysiikan

Lisätiedot

Passiivista toistinantennia voidaan käyttää myös esimerkiksi WLAN-verkon laajentamiseen toiseen kerrokseen tai kantaman kasvattamiseen ulkona.

Passiivista toistinantennia voidaan käyttää myös esimerkiksi WLAN-verkon laajentamiseen toiseen kerrokseen tai kantaman kasvattamiseen ulkona. 1 (7) Passiivinen toistinantenni Passiivista toistinantennia tarvitaan, jos signaali ei kykene läpäisemään rakennuksen seiniä, ikkunoissa on heijastava metallipinnoite, tukiasema on viereisen rakennuksen

Lisätiedot

Radioamatöörikurssi 2014

Radioamatöörikurssi 2014 Radioamatöörikurssi 2014 Polyteknikkojen Radiokerho Siirtojohdot, Antennit ja Eteneminen 10.11.2015 Otto, OH2EMQ 1 / 44 Illan aiheet Siirtojohdot Antennit Radioaaltojen eteneminen 2 / 44 Siirtojohto Mikä

Lisätiedot

MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET

MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET KAIKKI HAVAITTAVA ON AINETTA TAI SÄTEILYÄ 1. Jokainen rakenne rakentuu pienemmistä rakenneosista. Luonnon rakenneosat suurimmasta pienimpään galaksijoukko

Lisätiedot

Maxwell ja hänen yhtälönsä mitä seurasi?

Maxwell ja hänen yhtälönsä mitä seurasi? Maxwell ja hänen yhtälönsä mitä seurasi? Oleteaan tyhjiö: ei virtoja ei varauksia Muutos magneettikentässä saisi aikaan sähkökentän. Muutos vuorostaan sähkökentässä saisi aikaan magneettikentän....ja niinhän

Lisätiedot

Radioamatöörikurssi 2016

Radioamatöörikurssi 2016 Radioamatöörikurssi 2016 Modulaatiot Radioiden toiminta 8.11.2016 Tatu Peltola, OH2EAT 1 / 18 Modulaatiot Erilaisia tapoja lähettää tietoa radioaalloilla Esim. puhetta ei yleensä laiteta antenniin sellaisenaan

Lisätiedot

Receiver. Nonelectrical noise sources (Temperature, chemical, etc.) ElectroMagnetic environment (Noise sources) Parametric coupling

Receiver. Nonelectrical noise sources (Temperature, chemical, etc.) ElectroMagnetic environment (Noise sources) Parametric coupling EMC Sähkömagneettinen kytkeytyminen EMC - Kytkeytymistavat ElectroMagnetic environment (Noise sources) Nonelectrical noise sources (Temperature, chemical, etc.) Conductors Capacitive Inductive Wave propagation

Lisätiedot

EMC Säteilevä häiriö

EMC Säteilevä häiriö EMC Säteilevä häiriö Kaksi päätyyppiä: Eromuotoinen johdinsilmukka (yleensä piirilevyllä) silmulla toimii antennina => säteilevä magneettikenttä Yhteismuotoinen ei-toivottuja jännitehäviöitä kytkennässä

Lisätiedot

Virtuaalipiirin muunnostaulukko. Magneettinen ja optinen media. 1.3. Siirtomedia. Kierretty parijohto (twisted pair) Eri verkkotekniikoita

Virtuaalipiirin muunnostaulukko. Magneettinen ja optinen media. 1.3. Siirtomedia. Kierretty parijohto (twisted pair) Eri verkkotekniikoita Virtuaalipiirin muunnostaulukko Sisääntulo tuleva VC lähtevä VC ulosmeno 1 12 34 3 1 97 56 2 2 42 101 3 2 10 78 1 3 12 65 2 piiríkytkentäiset FDM TDM Teleliikenneverkot Taulukkoa päivitettävä aina kun

Lisätiedot

Antenni ja säteilykuvio

Antenni ja säteilykuvio POHDIN projekti Antenni ja säteilykuvio Nykyaikana sekä tietoliikennekulttuuri että ylipäätään koko infrastruktuuri perustuvat hyvin voimallisesti sähkömagneettiseen säteilyyn ja antenneihin. Kun tarkastellaan

Lisätiedot

S-108.3020 Elektroniikan häiriökysymykset. Laboratoriotyö, kevät 2010

S-108.3020 Elektroniikan häiriökysymykset. Laboratoriotyö, kevät 2010 1/7 S-108.3020 Elektroniikan häiriökysymykset Laboratoriotyö, kevät 2010 Häiriöiden kytkeytyminen yhteisen impedanssin kautta lämpötilasäätimessä Viimeksi päivitetty 25.2.2010 / MO 2/7 Johdanto Sähköisiä

Lisätiedot

4 Optiikka. 4.1 Valon luonne

4 Optiikka. 4.1 Valon luonne 4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee

Lisätiedot

)\\VLQHQNHUURV Lähiverkot / Markus Peuhkuri 1

)\\VLQHQNHUURV Lähiverkot / Markus Peuhkuri 1 6/lKLYHUNRW )\\VLQHQNHUURV 1996 Lähiverkot / Markus Peuhkuri 1 /XHQQRQDLKHHW X Kaapelityypit X Standardeja X Koodaus siirtotielle .DDSHOLW\\SLW X parikaapeli suojattu suojaamaton parikierteen nousu ja

Lisätiedot

a P en.pdf KOKEET;

a P  en.pdf KOKEET; Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä ratkaisuineen. Tentaattorina on ollut Hanna Pulkkinen. Huomaa, että tämän kurssin sisältö on hiukan eri kuin Soveltavassa sähkömagnetiikassa, joten

Lisätiedot

RADIOTIETOLIIKENNEKANAVAT

RADIOTIETOLIIKENNEKANAVAT 1 RADIOTIETOLIIKENNEKANAVAT Millaisia stokastisia ilmiöitä kanavassa tapahtuu? ONGELMAT: MONITIE-ETENEMINEN & KOHINA 2 Monitie-eteneminen aiheuttaa destruktiivista interferenssia eri reittejä edenneiden

Lisätiedot

nykyään käytetään esim. kaapelitelevisioverkoissa radio- ja TVohjelmien

nykyään käytetään esim. kaapelitelevisioverkoissa radio- ja TVohjelmien 2.1.8. TAAJUUSJAKOKANAVOINTI (FDM) kanavointi eli multipleksointi tarkoittaa usean signaalin siirtoa samalla siirtoyhteydellä käyttäjien kannalta samanaikaisesti analogisten verkkojen siirtojärjestelmät

Lisätiedot

Seminaariesitelmä. Channel Model Integration into a Direct Sequence CDMA Radio Network Simulator

Seminaariesitelmä. Channel Model Integration into a Direct Sequence CDMA Radio Network Simulator S-38.310 Tietoverkkotekniikan diplomityöseminaari Seminaariesitelmä Channel Model Integration into a Direct Sequence CDMA Radio Network Simulator Teemu Karhima 12.8.2002 Koostuu kahdesta eri kokonaisuudesta:

Lisätiedot

Piirikytkentäinen verkko -ensin varataan resurssit yhteyttä varten -sitten datan siirto yhteyttä pitkin -vapautetaan resurssit.

Piirikytkentäinen verkko -ensin varataan resurssit yhteyttä varten -sitten datan siirto yhteyttä pitkin -vapautetaan resurssit. Piirikytkentäinen verkko -ensin varataan resurssit yhteyttä varten -sitten datan siirto yhteyttä pitkin -vapautetaan resurssit circuit Kanavointi (multiplexing) Samalla linkillä usean yhteyden sanomia

Lisätiedot

Kanavointi (multiplexing)

Kanavointi (multiplexing) Piirikytkentäinen verkko -ensin varataan resurssit yhteyttä varten -sitten datan siirto yhteyttä pitkin -vapautetaan resurssit circuit Kanavointi (multiplexing) Samalla linkillä usean yhteyden sanomia

Lisätiedot

Aaltoputket ja mikroliuska rakenteet

Aaltoputket ja mikroliuska rakenteet Aaltoputket ja mikroliuska rakenteet Luku 3 Suorat aaltojohdot Aaltojohdot voidaan jakaa kahteen pääryhmääm, TEM ja TE/TM sen mukaan millaiset kentät niissä etenevät. TEM-aallot voivat edetä vain sellaisissa

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 9 Tavoitteet Valon luonne ja eteneminen Dispersio Lähde: https: //www.flickr.com/photos/fastlizard4/5427856900/in/set-72157626537669172,

Lisätiedot

Radioamatöörikurssi 2017

Radioamatöörikurssi 2017 Radioamatöörikurssi 2017 Polyteknikkojen Radiokerho Luento 4: Modulaatiot 9.11.2017 Otto Mangs, OH2EMQ, oh2emq@sral.fi 1 / 29 Illan aiheet 1.Signaaleista yleisesti 2.Analogiset modulaatiot 3.Digitaalinen

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 8. marraskuuta 2016 Tasoaallot, osa 1 (Ulaby 7.1, 7.2, 7.4) Kenttäosoittimet Aikaharmoniset Maxwellin yhtälöt Tasoaaltoratkaisu Tasoaaltoyhtälöt

Lisätiedot

Logiikan rakenteen lisäksi kaikilla ohjelmoitavilla logiikoilla on myös muita yhteisiä piirteitä.

Logiikan rakenteen lisäksi kaikilla ohjelmoitavilla logiikoilla on myös muita yhteisiä piirteitä. Automaatio KYTKENTÄ INFORMAATIOTA 1 KOHTA1: KERRATTAVA MATERIAALISSA OLEVA SIEMENS SIMATIC S7CPU212 TUNNISSA TUTUKSI MONISTE ERITYISESTI LOGIIGAN TULO JA LÄHTÖ LIITTIMIEN JA LIITÄNTÖJEN OSALTA TÄSSÄ TULEE

Lisätiedot

Polarisaatio. Timo Lehtola. 26. tammikuuta 2009

Polarisaatio. Timo Lehtola. 26. tammikuuta 2009 Polarisaatio Timo Lehtola 26. tammikuuta 2009 1 Johdanto Lineaarinen, ympyrä, elliptinen Kahtaistaittuvuus Nicol, metalliverkko Aaltolevyt 2 45 Polarisaatio 3 Lineaarinen polarisaatio y Sähkökentän vaihtelu

Lisätiedot

SEISOVA AALTOLIIKE 1. TEORIAA

SEISOVA AALTOLIIKE 1. TEORIAA 1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus

Lisätiedot

jonka peruslait tiivistyvät neljään ns. Maxwellin yhtälöön.

jonka peruslait tiivistyvät neljään ns. Maxwellin yhtälöön. 71 4. SÄHKÖMAGNEETTINEN AALTO Sähköön ja magnetismiin liittyvät havainnot yhdistettiin noin 1800luvun puolessa välissä yhtenäiseksi sähkömagnetismin teoriaksi, jonka peruslait tiivistyvät neljään ns. Maxwellin

Lisätiedot

Referenssit ja näytteenotto VLBI -interferometriassa

Referenssit ja näytteenotto VLBI -interferometriassa Referenssit ja näytteenotto VLBI -interferometriassa Jan Wagner, jwagner@kurp.hut.fi Metsähovin radiotutkimusasema / TKK Eri taajuuksilla sama kohde nähdään eri tavalla ts. uutta tietoa pinta-ala D tarkkuustyötä

Lisätiedot

LexCom 125 Cat5e suojaamattomat kuparikaapelit (sisäkäyttöön) 100 Ohm +/- 15% 1-100 MHz. 4 parikierrettä kierrettynä Johdin Kiinteä kupari AWG 24

LexCom 125 Cat5e suojaamattomat kuparikaapelit (sisäkäyttöön) 100 Ohm +/- 15% 1-100 MHz. 4 parikierrettä kierrettynä Johdin Kiinteä kupari AWG 24 Kaapelit LexCom 125 Cat5e suojaamattomat kuparikaapelit (sisäkäyttöön) Suojaamaton (UTP, U-UTP) datakaapeli sisätilojen tietoverkkoihin. Kaapelissa on vihreä halogeeniton kuori, johon on painettu metrimerkinnät.

Lisätiedot

Antennit. Yleisiä tietoja

Antennit. Yleisiä tietoja Yleisiä tietoja Antenneja käytetään radioaaltojen vastaanottamiseen ja lähettämiseen ja se koostuu yleensä antennikotelosta ja antennipiiskasta. Antennikotelo on asennettu ohjaamon katolle tehtaalla. Kuljetuskorkeuden

Lisätiedot

Tietoliikennesignaalit & spektri

Tietoliikennesignaalit & spektri Tietoliikennesignaalit & spektri 1 Tietoliikenne = informaation siirtoa sähköisiä signaaleja käyttäen. Signaali = vaihteleva jännite (tms.), jonka vaihteluun on sisällytetty informaatiota. Signaalin ominaisuuksia

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

4 Optiikka. 4.1 Valon luonne

4 Optiikka. 4.1 Valon luonne 4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee

Lisätiedot

Tiedonkeruu ja analysointi

Tiedonkeruu ja analysointi Tiedonkeruu ja analysointi ViDRoM Virtual Design of Rotating Machines Raine Viitala 30.9.2015 ViDRoM Virtual Design of Rotating Machines Mitataan dynaamista käyttäytymistä -> nopeuden funktiona Puhtaat

Lisätiedot

Johdatus radiotekniikkaan. Ville Viikari ELEC-C5070 Elektroniikkapaja

Johdatus radiotekniikkaan. Ville Viikari ELEC-C5070 Elektroniikkapaja Johdatus radiotekniikkaan Ville Viikari ELEC-C5070 Elektroniikkapaja Sisältö Johdanto radiotekniikkaan Epälineaarisuuden hyödyntäminen RFIDssä Esimerkkejä radiotekniikan tutkimuksesta Radiotieteen ja tekniikan

Lisätiedot

Ch4 NMR Spectrometer

Ch4 NMR Spectrometer Ch4 NMR Spectrometer Tässä luvussa esitellään yleistajuisesti NMR spektrometrin tärkeimmät osat NMR-signaalin mittaaminen edellyttää spektrometriltä suurta herkkyyttä (kykyä mitata hyvin heikko SM-signaali

Lisätiedot

AED Plus. Trainer2. Ohjeet ja valmistajan ilmoitus Sähkömagneettinen säteily Sähkömagneettisen ilmoitus Suositeltu etäisyys siirrettävien

AED Plus. Trainer2. Ohjeet ja valmistajan ilmoitus Sähkömagneettinen säteily Sähkömagneettisen ilmoitus Suositeltu etäisyys siirrettävien AED Plus Trainer2 Ohjeet ja valmistajan ilmoitus Sähkömagneettinen säteily Sähkömagneettisen ilmoitus Suositeltu etäisyys siirrettävien VAROITUS Lääkinnällisissä sähkölaitteissa vaaditaan sähkömagneettisuuteen

Lisätiedot

9 VALOAALTOJEN SUPERPOSITIO

9 VALOAALTOJEN SUPERPOSITIO 09 9 VALOAALTOJEN SUPERPOSITIO Edellisissä kappaleissa olemme tutkineet valon heijastumista peileissä ja taittumista linsseissä geometrisen optiikan approksimaation avulla Approksimaatiossa valon aaltoluonnetta

Lisätiedot

TIIVISTELMÄRAPORTTI. Mekaanisiin antenneihin perustuvat radioyhteydet

TIIVISTELMÄRAPORTTI. Mekaanisiin antenneihin perustuvat radioyhteydet 2018 / 2500M-0097 ISSN 1797-3457 (verkkojulkaisu) ISBN (PDF) 978-951-663-047-5 TIIVISTELMÄRAPORTTI Mekaanisiin antenneihin perustuvat radioyhteydet Tommi Dufva Teknologian tutkimuskeskus VTT Oy Tietotie

Lisätiedot

Häiriöt kaukokentässä

Häiriöt kaukokentässä Häiriöt kaukokentässä eli kun ollaan kaukana antennista Tavoitteet Tuntee keskeiset periaatteet radioteitse tapahtuvan häiriön kytkeytymiseen ja suojaukseen Tunnistaa kauko- ja lähikentän sähkömagneettisessa

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Esimerkki: Kun halutaan suojautua sähkömagneettisia

Lisätiedot

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän 3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina

Lisätiedot

Sanoman siirto paketteina: ei etenemisviivettä, ei jonotuksia

Sanoman siirto paketteina: ei etenemisviivettä, ei jonotuksia Sanoman siirto paketteina: ei etenemisviivettä, ei jonotuksia Siirtoaika Linkkien määrän vaikutus 1 2 3 4 Reitittimet 1 2 3 4 Linkkien määrän n vaikutus = siirtoajan n-kertaistuminen Siirtoaika Sanoman

Lisätiedot

EMC. Elektroniikan käytön voimakas kasvu mobiililaitteet, sulautetut järjestelmät

EMC. Elektroniikan käytön voimakas kasvu mobiililaitteet, sulautetut järjestelmät EMC Johdanto EMC Mitä tarkoittaa EMC? ElectroMagnetic Compatibility Sähköisen laitteen kyky toimia laboratorion ulkopuolella laite ei aiheuta häiriöitä muille lähietäisyydellä oleville laitteille laitteen

Lisätiedot

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kurssin esittely Sähkömagneettiset ilmiöt varaus sähkökenttä magneettikenttä sähkömagneettinen induktio virta potentiaali ja jännite sähkömagneettinen energia teho Määritellään

Lisätiedot

Sähkötekniikka ja elektroniikka

Sähkötekniikka ja elektroniikka Sähkötekniikka ja elektroniikka Kimmo Silvonen (X) Siirtojohdot, Transmission Lines Luento, vrt. laboratoriotyö nr. 3. Siirtojohdon käsite Esim. antenni- tai muu koaksiaalikaapeli, ATK-verkko Aaltojen

Lisätiedot

MIKROAALTOUUNI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Tuomas Karri i78953 Jussi Luopajärvi i80712 Juhani Tammi o83312

MIKROAALTOUUNI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Tuomas Karri i78953 Jussi Luopajärvi i80712 Juhani Tammi o83312 VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Tuomas Karri i78953 Jussi Luopajärvi i80712 Juhani Tammi o83312 SATE.2010 Dynaaminen kenttäteoria MIKROAALTOUUNI Sivumäärä: 12 Jätetty tarkastettavaksi:

Lisätiedot

Scanned by CamScanner

Scanned by CamScanner Scanned by CamScanner ELEC-C414 Kenttäteoria ESIMERKKIRATKAISUT 2. välikoe: 13.12.216 4. (a) Ominaisimpedanssi (merkitään Z ) on siirtojohdon ominaisuus. Se on siis eri asia kuin tasoaaltojen yhteydessä

Lisätiedot

+ 0, (29.20) 32 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) i c+ ε 0 dφ E / dt ja silmukan kohdalla vaikuttavan magneettivuon tiheyden

+ 0, (29.20) 32 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) i c+ ε 0 dφ E / dt ja silmukan kohdalla vaikuttavan magneettivuon tiheyden 5 3 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) Mitä valo on? Tämä kysymys on askarruttanut ihmisiä vuosisatojen ajan. Nykykäsityksen mukaan valo on luonteeltaan kaksijakoinen eli dualistinen. Valoa

Lisätiedot

Radiokurssi. Modulaatiot, arkkitehtuurit, modulaattorit, ilmaisimet ja muut

Radiokurssi. Modulaatiot, arkkitehtuurit, modulaattorit, ilmaisimet ja muut Radiokurssi Modulaatiot, arkkitehtuurit, modulaattorit, ilmaisimet ja muut Modulaatiot CW/OOK Continous Wave AM Amplitude Modulation FM Frequency Modulation SSB Single Side Band PM Phase Modulation ASK

Lisätiedot

HÄIRIÖSUOJAUS KAKSISUUNTAINEN PROSESSI SISÄISET JA ULKOISET HÄIRIÖT

HÄIRIÖSUOJAUS KAKSISUUNTAINEN PROSESSI SISÄISET JA ULKOISET HÄIRIÖT LUENTO 4 HÄIRIÖSUOJAUS KAKSISUUNTAINEN PROSESSI SISÄISET JA ULKOISET HÄIRIÖT HAVAINTOJA ELÄVÄSTÄ ELÄMÄSTÄ HYVÄ HÄIRIÖSUOJAUS ON HARVOIN HALPA JÄRJESTELMÄSSÄ ON PAREMPI ESTÄÄ HÄIRIÖIDEN SYNTYMINEN KUIN

Lisätiedot

2 Staattinen sähkökenttä Sähkövaraus ja Coulombin laki... 9

2 Staattinen sähkökenttä Sähkövaraus ja Coulombin laki... 9 Sisältö 1 Johdanto 3 1.1 Mikä tämä kurssi on....................... 3 1.2 Hieman taustaa.......................... 4 1.3 Elektrodynamiikan perusrakenne................ 5 1.4 Pari sanaa laskennasta......................

Lisätiedot

1 Johdanto Mikä tämä kurssi on Hieman taustaa Elektrodynamiikan perusrakenne Kirjallisuutta... 8

1 Johdanto Mikä tämä kurssi on Hieman taustaa Elektrodynamiikan perusrakenne Kirjallisuutta... 8 Sisältö 1 Johdanto 3 1.1 Mikä tämä kurssi on....................... 3 1.2 Hieman taustaa.......................... 4 1.3 Elektrodynamiikan perusrakenne................ 6 1.4 Kirjallisuutta...........................

Lisätiedot

Pinces AC/DC-virtapihdit ampèremetriques pour courant AC

Pinces AC/DC-virtapihdit ampèremetriques pour courant AC Pinces AC/DC-virtapihdit ampèremetriques pour courant AC E N- SARJA E N -sarjan virtapihdit hyödyntävät Hall-ilmiöön perustuvaa tekniikkaa AC ja DC -virtojen mittauksessa, muutamasta milliamperista yli

Lisätiedot

Virtuaalipiirin muunnostaulukko

Virtuaalipiirin muunnostaulukko Virtuaalipiirin muunnostaulukko Sisääntulo tuleva VC lähtevä VC ulosmeno 1 12 34 3 1 97 56 2 2 42 101 3 2 10 78 1 3 12 65 2 Taulukkoa päivitettävä aina kun uusi yhteys on muodostettu tai vanha purettu!

Lisätiedot

Havaitsevan tähtitieteen pk I, 2012

Havaitsevan tähtitieteen pk I, 2012 Havaitsevan tähtitieteen pk I, 2012 Kuva: J.Näränen 2004 Luento 2, 26.1.2012: Ilmakehän vaikutus havaintoihin Luennoitsija: Thomas Hackman HTTPK I, kevät 2012, luento2 1 2. Ilmakehän vaikutus havaintoihin

Lisätiedot

S-108.3020. Elektroniikan häiriökysymykset. Laboratoriotyö 1

S-108.3020. Elektroniikan häiriökysymykset. Laboratoriotyö 1 1/8 S-108.3020 Elektroniikan häiriökysymykset Laboratoriotyö 1 Häiriöiden kytkeytyminen yhteisen impedanssin kautta lämpötilasäätimessä 13.9.2007 TJ 2/8 3/8 Johdanto Sähköisiä häiriöitä on kaikkialla ja

Lisätiedot